/* * SMPInstr.h - <see below>. * * Copyright (c) 2000, 2001, 2010 - University of Virginia * * This file is part of the Memory Error Detection System (MEDS) infrastructure. * This file may be used and modified for non-commercial purposes as long as * all copyright, permission, and nonwarranty notices are preserved. * Redistribution is prohibited without prior written consent from the University * of Virginia. * * Please contact the authors for restrictions applying to commercial use. * * THIS SOURCE IS PROVIDED "AS IS" AND WITHOUT ANY EXPRESS OR IMPLIED * WARRANTIES, INCLUDING, WITHOUT LIMITATION, THE IMPLIED WARRANTIES OF * MERCHANTIBILITY AND FITNESS FOR A PARTICULAR PURPOSE. * * Author: University of Virginia * e-mail: jwd@virginia.com * URL : http://www.cs.virginia.edu/ * * Additional copyrights 2010, 2011 by Zephyr Software LLC * e-mail: {clc,jwd}@zephyr-software.com * URL : http://www.zephyr-software.com/ * */ #ifndef SMPINSTR_H #define SMPINSTR_H 1 // SMPInstr.h // // This header defines the interfaces needed for analyzing instructions. #include <cstddef> #include <string> #include <bitset> #include <pro.h> #include <ida.hpp> #include <ua.hpp> #include "SMPDataFlowAnalysis.h" using namespace std; // Value to signal error in computing stack pointer alteration by instruction or RTL. #define SMP_STACK_DELTA_ERROR_CODE 0xebfaf0fd // Value to signal that stack pointer is bitwise ANDed to align it; unknown delta that can // probably be ignored. #define SMP_STACK_POINTER_BITWISE_AND_CODE 0xebeae0ed enum SMPoperator { SMP_NULL_OPERATOR = 0, SMP_CALL, // CALL instruction SMP_INPUT, // input from port SMP_OUTPUT, // output to port SMP_ADDRESS_OF, // take effective address SMP_U_LEFT_SHIFT, // unsigned left shift SMP_S_LEFT_SHIFT, // signed left shift SMP_U_RIGHT_SHIFT, // unsigned right shift SMP_S_RIGHT_SHIFT, // signed right shift SMP_ROTATE_LEFT, SMP_ROTATE_LEFT_CARRY, // rotate left through carry SMP_ROTATE_RIGHT, SMP_ROTATE_RIGHT_CARRY, // rotate right through carry SMP_DECREMENT, SMP_INCREMENT, SMP_ADD, SMP_ADD_CARRY, // add with carry SMP_SUBTRACT, SMP_SUBTRACT_BORROW, // subtract with borrow SMP_U_MULTIPLY, SMP_S_MULTIPLY, SMP_U_DIVIDE, SMP_S_DIVIDE, SMP_U_REMAINDER, SMP_SIGN_EXTEND, SMP_ZERO_EXTEND, SMP_ASSIGN, SMP_BITWISE_AND, SMP_BITWISE_OR, SMP_BITWISE_NOT, // unary operator SMP_BITWISE_XOR, SMP_BITWISE_AND_NOT, SMP_NEGATE, // unary negation SMP_S_COMPARE, // signed compare (subtraction-based) SMP_U_COMPARE, // unsigned compare (AND-based) SMP_GENERAL_COMPARE, // comparisons of packed data, strings, signed, unsigned depending on control words SMP_LESS_THAN, // boolean test operators SMP_GREATER_THAN, SMP_LESS_EQUAL, SMP_GREATER_EQUAL, SMP_EQUAL, SMP_NOT_EQUAL, SMP_LOGICAL_AND, SMP_LOGICAL_OR, SMP_UNARY_NUMERIC_OPERATION, // miscellaneous; produces NUMERIC result SMP_BINARY_NUMERIC_OPERATION, // miscellaneous; produces NUMERIC result SMP_SYSTEM_OPERATION, // for instructions such as CPUID, RDTSC, etc.; NUMERIC SMP_UNARY_FLOATING_ARITHMETIC, // all the same to our type system; all NUMERIC SMP_BINARY_FLOATING_ARITHMETIC, // all the same to our type system; all NUMERIC SMP_REVERSE_SHIFT_U, // Shift right operand by bit count in left operand SMP_SHUFFLE, // Shuffle bytes, words, etc. within destination operation per source mask SMP_COMPARE_EQ_AND_SET, // Compare for equality and set fields to all 1's or all 0's SMP_COMPARE_NE_AND_SET, // Compare for not-equal and set fields to all 1's or all 0's SMP_COMPARE_GT_AND_SET, // Compare for greater-than and set fields to all 1's or all 0's SMP_COMPARE_GE_AND_SET, // Compare for greater-than-or-equal and set fields to all 1's or all 0's SMP_COMPARE_LT_AND_SET, // Compare for less-than and set fields to all 1's or all 0's SMP_COMPARE_LE_AND_SET, // Compare for less-than-or-equal and set fields to all 1's or all 0's SMP_PACK_S, // Pack operands into extended-precision register, signed saturation for loss of precision SMP_PACK_U, // Pack operands into extended-precision register, unsigned saturation for loss of precision SMP_AVERAGE_U, // Average of unsigned operands SMP_MULTIPLY_AND_ADD, // multiply and add (or multiply and accumulate) SMP_SUM_OF_DIFFS, // sum over two vectors of absolute values of differences of their elements SMP_MAX_S, // dest := signed_max(dest, src) SMP_MAX_U, // dest := unsigned_max(dest, src) SMP_MIN_S, // dest := signed_min(dest, src) SMP_MIN_U, // dest := unsigned_min(dest, src) SMP_ABSOLUTE_VALUE, // take absolute value SMP_CONVERT_INT_TO_FP, // convert integer to floating point SMP_CONVERT_FP_TO_INT, // convert floating point to integer SMP_CREATE_MASK, // Create AND-mask from operand and byte/word/dword position # in immediate SMP_INTERLEAVE, // extended-precision interleaving of bytes or words or dwords etc.; NUMERIC SMP_CONCATENATE, // extended-precision concatenation; NUMERIC SMP_EXTRACT_ZERO_EXTEND, // Extract sub-reg and zero-extend to reg length SMP_ENCRYPTION_OPERATION, // encryption or decryption bit manipulation operation SMP_SIGNAL // signal or raise exception }; // end enum SMPoperator #define LAST_SMP_OPERATOR SMP_SIGNAL #if 0 // Does the CurrOperator definitely indicate a signed or unsigned operation? bool OperatorHasSignedness(SMPoperator CurrOperator); #endif // Should we keep track of what the operator type was before profiler // information was applied? (Memory usage is affected) #define SMP_TRACK_NONSPEC_OPER_TYPE 0 struct RTLoperator { SMPoperator oper; SMPOperandType type; #if SMP_TRACK_NONSPEC_OPER_TYPE SMPOperandType NonSpeculativeType; #endif }; // Class for a guard expression in an RTL class SMPGuard { public: // Constructors SMPGuard(void); // Get methods inline SMPoperator GetOperator(void) { return GuardOp; }; inline op_t &GetLeftOperand(void) { return LeftOperand; }; inline op_t &GetRightOperand(void) { return RightOperand; }; // Set methods inline void SetOperator(SMPoperator op) { GuardOp = op; }; inline void SetLeftOperand(op_t Left) { LeftOperand = Left; }; inline void SetRightOperand(op_t Right) { RightOperand = Right; }; // Printing methods void Dump(void) const; private: op_t LeftOperand; op_t RightOperand; SMPoperator GuardOp; }; // end class SMPGuard // Masks to set bits to use as booleans1 in SMPRegTransfer. #define RTL_SET_RIGHT_SUBTREE 0x01 #define RTL_SET_TYPE_INFERENCE_COMPLETE 0x02 #define RTL_SET_UNUSED1 0x04 #define RTL_SET_UNUSED2 0x08 #define RTL_SET_UNUSED3 0x10 #define RTL_SET_UNUSED4 0x20 #define RTL_SET_UNUSED5 0x40 #define RTL_SET_UNUSED6 0x80 #define RTL_RESET_RIGHT_SUBTREE 0xfe #define RTL_RESET_TYPE_INFERENCE_COMPLETE 0xfd #define RTL_RESET_UNUSED1 0xfb #define RTL_RESET_UNUSED2 0xf7 #define RTL_RESET_UNUSED3 0xef #define RTL_RESET_UNUSED4 0xdf #define RTL_RESET_UNUSED5 0xbf #define RTL_RESET_UNUSED6 0x7f // Classes for register transfers and register transfer lists (RTLs) class SMPRegTransfer { public: // Constructors and destructors SMPRegTransfer(void); ~SMPRegTransfer(); // Get methods inline SMPoperator GetOperator(void) const { return RTop.oper; }; inline SMPOperandType GetOperatorType(void) const { return RTop.type; }; op_t GetLeftOperand(void) const; op_t GetRightOperand(void) const; inline SMPRegTransfer *GetRightTree(void) const { return RightRT; }; inline SMPGuard *GetGuard(void) const { return Guard; }; // Set methods inline void SetOperator(SMPoperator op) { RTop.oper = op; }; void SetOperatorType(SMPOperandType OpType, const SMPInstr* instr); inline void SetLeftOperand(op_t Left) { LeftOperand = Left; }; inline void SetRightOperand(op_t Right) { RightOperand = Right; booleans1 &= RTL_RESET_RIGHT_SUBTREE; }; inline void SetRightTree(SMPRegTransfer *RightTree) { RightRT = RightTree; booleans1 |= RTL_SET_RIGHT_SUBTREE; }; inline void SetGuard(SMPGuard *NewGuard) { Guard = NewGuard; }; inline void SetTypeInferenceComplete(void) { booleans1 |= RTL_SET_TYPE_INFERENCE_COMPLETE; }; inline void SetParentInst(SMPInstr *Parent) { ParentInst = Parent; }; // Query methods inline bool HasRightSubTree(void) const { return (booleans1 & RTL_SET_RIGHT_SUBTREE); }; inline bool IsTypeInferenceComplete(void) const { return (booleans1 & RTL_SET_TYPE_INFERENCE_COMPLETE); }; bool OperandTransfersValueToDef(op_t UseOp) const; // Does UseOp arithmetically affect the value of the NonFlagsDef for this RTL? // Printing methods void Dump(void) const; // Analysis methods bool IsAllocaRTL(void); // subtracts unknown value from stack pointer sval_t ComputeStackPointerAlteration(bool IsLeaveInstr, sval_t IncomingDelta, sval_t FramePtrDelta); // For instruction with operand-dependent effects on stack pointer. private: SMPGuard *Guard; // guard expression RTLoperator RTop; // operator for the reg transfer op_t LeftOperand; // operand to the left of the operator in the expression unsigned char booleans1; // hold boolean flags as bits #if 0 // now part of booleans1 bool RightSubTree; // Is right operand another tree (true) or an operand (false)? bool TypeInferenceComplete; // RTL tree at this root has all operands and operators typed #endif op_t RightOperand; // valid only if RightSubTree is false SMPRegTransfer *RightRT; // right subtree, valid only if RightSubTree is true SMPInstr *ParentInst; // SMPInstr that contains this RegTransfer // Methods bool OperandTransfersHelper(op_t UseOp) const; // recursive helper for OperandTransfersValueToDef() }; // end class SMPRegTransfer #define SMP_RT_LIMIT 9 // how many register transfers could be in an RTL? // the x86 PUSHA and POPA opcodes need 9 RTLs each class SMPRTL { // register transfer list public: // Constructors and destructors. SMPRTL(); ~SMPRTL(); // Get methods inline size_t GetCount(void) const { return RTCount; }; SMPRegTransfer *GetRT(size_t index) const; // Set methods void push_back(SMPRegTransfer *NewEffect); // Printing methods void Dump(void) const; // Analysis methods. sval_t TotalStackPointerAlteration(bool IsLeaveInstr, sval_t IncomingDelta, sval_t FramePtrDelta); // sum across all RTs in RTL // Public data for ease of use. vector<op_t> ExtraKills; // kills other than left operands private: size_t RTCount; SMPRegTransfer *RTvector[SMP_RT_LIMIT]; }; // end class SMPRTL // Masks to set bits to use as booleans1 in SMPInstr. #define INSTR_SET_GOODRTL 0x01 #define INSTR_SET_JUMP_TARGET 0x02 #define INSTR_SET_BLOCK_TERM 0x04 #define INSTR_SET_TAIL_CALL 0x08 #define INSTR_SET_COND_TAIL_CALL 0x10 #define INSTR_SET_CALL_USED_AS_JUMP 0x20 #define INSTR_SET_DIRECT_RECURSIVE_CALL 0x40 #define INSTR_SET_INTERRUPT 0x80 #define INSTR_RESET_GOODRTL 0xfe #define INSTR_RESET_JUMP_TARGET 0xfd #define INSTR_RESET_BLOCK_TERM 0xfb #define INSTR_RESET_TAIL_CALL 0xf7 #define INSTR_RESET_COND_TAIL_CALL 0xef #define INSTR_RESET_CALL_USED_AS_JUMP 0xdf #define INSTR_RESET_DIRECT_RECURSIVE_CALL 0xbf #define INSTR_RESET_INTERRUPT 0x7f // Masks to set bits to use as booleans2 in SMPInstr. #define INSTR_SET_NOP 0x01 #define INSTR_SET_REG_CLEAR_IDIOM 0x02 #define INSTR_SET_DEFS_FLAGS 0x04 #define INSTR_SET_USES_FLAGS 0x08 #define INSTR_SET_FAR_BRANCH_COMPUTED 0x10 #define INSTR_SET_BRANCHES_TO_FAR_CHUNK 0x20 #define INSTR_SET_INDIRECT_MEM_WRITE 0x40 #define INSTR_SET_INDIRECT_MEM_READ 0x80 #define INSTR_RESET_NOP 0xfe #define INSTR_RESET_REG_CLEAR_IDIOM 0xfd #define INSTR_RESET_DEFS_FLAGS 0xfb #define INSTR_RESET_USES_FLAGS 0xf7 #define INSTR_RESET_FAR_BRANCH_COMPUTED 0xef #define INSTR_RESET_BRANCHES_TO_FAR_CHUNK 0xdf #define INSTR_RESET_INDIRECT_MEM_WRITE 0xbf #define INSTR_RESET_INDIRECT_MEM_READ 0x7f // Masks to set bits to use as booleans3 in SMPInstr. #define INSTR_SET_LOAD_FROM_STACK 0x01 #define INSTR_SET_MULTIPLICATION_BITS_DISCARDED 0x02 #define INSTR_SET_TYPE_INFERENCE_COMPLETE 0x04 #define INSTR_SET_CATEGORY_INFERENCE_COMPLETE 0x08 #define INSTR_SET_DEFS_TYPED 0x10 #define INSTR_SET_USES_TYPED 0x20 #define INSTR_SET_MEM_DEF_USE_COMPUTED 0x40 #define INSTR_SET_FIRST_IN_BLOCK 0x80 #define INSTR_RESET_LOAD_FROM_STACK 0xfe #define INSTR_RESET_MULTIPLICATION_BITS_DISCARDED 0xfd #define INSTR_RESET_TYPE_INFERENCE_COMPLETE 0xfb #define INSTR_RESET_CATEGORY_INFERENCE_COMPLETE 0xf7 #define INSTR_RESET_DEFS_TYPED 0xef #define INSTR_RESET_USES_TYPED 0xdf #define INSTR_RESET_MEM_DEF_USE_COMPUTED 0xbf #define INSTR_RESET_FIRST_IN_BLOCK 0x7f // Masks to set bits to use as booleans4 in SMPInstr. #define INSTR_SET_DEFS_NORMALIZED 0x01 #define INSTR_SET_INST_REMOVED 0x02 #define INSTR_SET_STACK_ALIGNMENT 0x04 #define INSTR_SET_FP_NORMALIZED_TO_SP 0x08 #define INSTR_SET_ALLOCA 0x10 #define INSTR_SET_SUPPRESS_NUMERIC_ANNOTATION 0x20 #define INSTR_SET_HASH_OPERATION 0x40 #define INSTR_SET_UNUSED128 0x80 #define INSTR_RESET_DEFS_NORMALIZED 0xfe #define INSTR_RESET_INST_REMOVED 0xfd #define INSTR_RESET_STACK_ALIGNMENT 0xfb #define INSTR_RESET_FP_NORMALIZED_TO_SP 0xf7 #define INSTR_RESET_ALLOCA 0xef #define INSTR_RESET_SUPPRESS_NUMERIC_ANNOTATION 0xdf #define INSTR_RESET_HASH_OPERATION 0xbf #define INSTR_RESET_UNUSED128 0x7f class SMPInstr { public: // Constructors and destructors SMPInstr(ea_t addr); ~SMPInstr(); // Operators int operator==(const SMPInstr &rhs) const; int operator<(const SMPInstr &rhs) const; int operator<=(const SMPInstr &rhs) const; int operator!=(const SMPInstr &rhs) const; // Get methods inline ea_t GetAddr(void) const { return address; }; inline ea_t GetCallTarget(void) const { return CallTarget; }; inline ea_t GetFarBranchTarget(void) const { return FarBranchTarget; }; char *GetDisasm(void) const; inline SMPBasicBlock *GetBlock(void) const { return BasicBlock; }; inline set<DefOrUse, LessDefUse>::iterator GetFirstUse(void) { return Uses.GetFirstRef(); }; inline set<DefOrUse, LessDefUse>::iterator GetFirstDef(void) { return Defs.GetFirstRef(); }; inline set<DefOrUse, LessDefUse>::iterator GetLastUse(void) { return Uses.GetLastRef(); }; inline set<DefOrUse, LessDefUse>::iterator GetLastDef(void) { return Defs.GetLastRef(); }; inline set<DefOrUse, LessDefUse>::iterator FindUse(op_t SearchOp) { return Uses.FindRef(SearchOp); }; inline set<DefOrUse, LessDefUse>::iterator FindDef(op_t SearchOp) { return Defs.FindRef(SearchOp); }; set<DefOrUse, LessDefUse>::iterator GetFirstNonFlagsDef(void); inline op_t GetMemDef(void) const { return DEFMemOp; }; inline op_t GetMemUse(void) const { return USEMemOp; }; #if 0 inline set<sval_t>::iterator GetFirstStackDelta(void) { return StackDeltaSet.begin(); }; inline set<sval_t>::iterator GetLastStackDelta(void) { return StackDeltaSet.end(); }; #endif inline size_t NumUses(void) const { return Uses.GetSize(); }; inline size_t NumDefs(void) const { return Defs.GetSize(); }; inline insn_t GetCmd(void) const { return SMPcmd; }; inline int GetOptType(void) const { return OptType; }; inline SMPitype GetDataFlowType(void) const { return type; }; op_t MDGetMemUseOp(void) const; op_t MDGetMemDefOp(void) const; op_t GetLeaMemUseOp(void); // return original Lea instruction [pseudo-]memory operand. inline op_t GetMoveSource(void) const { return MoveSource; }; inline op_t GetUseOnlyAddSubOp(void) const { return AddSubSourceOp; }; inline sval_t GetStackPtrOffset(void) const { return StackPtrOffset; }; ea_t GetJumpTarget(void) const; // return BADADDR if not jump, target addr otherwise. // Set methods inline void SetGoodRTL(void) { booleans1 |= INSTR_SET_GOODRTL; }; inline void ResetCondTailCall(void) { booleans1 &= INSTR_RESET_COND_TAIL_CALL; }; inline void SetCondTailCall(void) { booleans1 |= INSTR_SET_COND_TAIL_CALL; }; inline void SetBlock(SMPBasicBlock *Block) { BasicBlock = Block; }; inline void SetCmd(insn_t cmd) { SMPcmd = cmd; return; }; inline void SetTerminatesBlock(void) { booleans1 |= INSTR_SET_BLOCK_TERM; }; void SetTailCall(void); void SetLeaMemUseOp(op_t NewLeaOperand); // record original Lea instruction [pseudo-]memory operand. inline void SetFirstInBlock(void) { booleans3 |= INSTR_SET_FIRST_IN_BLOCK; }; inline void SetInstRemove(void) { booleans4 |= INSTR_SET_INST_REMOVED; }; inline void SetAllocaCall(void) { booleans4 |= INSTR_SET_ALLOCA; }; inline void SetSuppressNumericAnnotation(void) { booleans4 |= INSTR_SET_SUPPRESS_NUMERIC_ANNOTATION; }; inline void SetHashOperation(void) { booleans4 |= INSTR_SET_HASH_OPERATION; }; inline void AddDef(op_t DefOp, SMPOperandType DefType, int DefSSANum) { Defs.SetRef(DefOp, DefType, DefSSANum); } void MDAddRegDef(ushort DefReg, bool Shown, SMPOperandType Type = UNINIT); // Add DEF of register if not already a DEF void MDAddRegUse(ushort UseReg, bool Shown, SMPOperandType Type = UNINIT); // Add USE of register if not already a USE set<DefOrUse, LessDefUse>::iterator SetUseSSA(op_t CurrOp, int SSASub); set<DefOrUse, LessDefUse>::iterator SetDefSSA(op_t CurrOp, int SSASub); set<DefOrUse, LessDefUse>::iterator SetUseType(op_t CurrOp, SMPOperandType CurrType); set<DefOrUse, LessDefUse>::iterator SetDefType(op_t CurrOp, SMPOperandType CurrType); set<DefOrUse, LessDefUse>::iterator SetDefMetadata(op_t CurrOp, SMPMetadataType Status); set<DefOrUse, LessDefUse>::iterator SetDefIndWrite(op_t CurrOp, bool IndWriteFlag); set<DefOrUse, LessDefUse>::iterator SetUseNoTruncate(op_t CurrOp, bool NoTruncFlag); set<DefOrUse, LessDefUse>::iterator SetDefNoOverflow(op_t DefOp, bool NoOverflowFlag); inline void EraseUse(set<DefOrUse, LessDefUse>::iterator UseIter) { Uses.EraseRef(UseIter); }; void SetRegDead(size_t RegNum); // Set the DeadRegsBitmap entry for Regnum. inline void SetStackPtrOffset(sval_t Delta) { StackPtrOffset = Delta; }; // Query methods bool HasDestMemoryOperand(void); // Does instruction write to memory? bool HasSourceMemoryOperand(void); // Does instruction read from memory? inline bool HasIndirectMemoryWrite(void) const { return (booleans2 & INSTR_SET_INDIRECT_MEM_WRITE); }; inline bool HasIndirectMemoryRead(void) const { return (booleans2 & INSTR_SET_INDIRECT_MEM_READ); }; bool HasNegatedPtrUSE(void); // Does a USE have type NEGATEDPTR? bool IsSecondSrcOperandNumeric(flags_t F) const; bool IsBasicBlockTerminator(void) const; // kind of inst that ALWAYS terminates a block inline bool IsLastInBlock(void) const { return (booleans1 & INSTR_SET_BLOCK_TERM); }; // does terminate its block inline bool IsJumpTarget(void) { return (booleans1 & INSTR_SET_JUMP_TARGET); }; bool IsBranchToFarChunk(void); // instr jumps outside current chunk inline bool IsTailCall(void) const { return (booleans1 & INSTR_SET_TAIL_CALL); }; inline bool IsCondTailCall(void) const { return (booleans1 & INSTR_SET_COND_TAIL_CALL); }; inline bool IsCallUsedAsJump(void) const { return (booleans1 & INSTR_SET_CALL_USED_AS_JUMP); }; inline bool IsRecursiveCall(void) const { return (booleans1 & INSTR_SET_DIRECT_RECURSIVE_CALL); }; inline bool MDIsInterruptCall(void) const { return (booleans1 & INSTR_SET_INTERRUPT); }; inline bool IsNop(void) const { return (booleans2 & INSTR_SET_NOP); }; // instruction is simple or complex no-op inline bool IsFloatNop(void) const { return (SMPcmd.itype == NN_fnop); }; inline bool MDIsDecrement(void) const { return (SMPcmd.itype == NN_dec); }; bool MDIsPushInstr(void) const; bool MDIsPopInstr(void) const; bool MDIsReturnInstr(void) const; bool MDIsEnterInstr(void) const; bool MDIsLeaveInstr(void) const; bool MDIsHaltInstr(void) const; bool MDIsConditionalMoveInstr(void) const; bool MDIsMoveInstr(void) const; bool MDIsLoadEffectiveAddressInstr(void) const { return (SMPcmd.itype == NN_lea); }; bool MDIsStackPointerCopy(bool UseFP); // copies ESP or EBP to register bool MDIsFrameAllocInstr(void); bool MDIsFrameDeallocInstr(bool UseFP, asize_t LocSize); bool MDUsesCalleeSavedReg(void); inline bool MDIsUnsignedArithmetic(void) const { return ((NN_mul == SMPcmd.itype) || (NN_div == SMPcmd.itype)); }; bool MDIsSignedArithmetic(void) const; bool MDIsUnsignedBranch(void) const; bool MDIsSignedBranch(void) const; bool MDIsUnsignedSetValue(void) const; bool MDIsSignedSetValue(void) const; bool MDIsAnySetValue(void) const; bool MDIsHashingArithmetic(void) const; // Is kind of shift or rotate that is used in hash functions bool MDIsCompareToPositiveConstant(op_t &NonConstOperand, uval_t &ConstValue) const; bool MDIsSubtractionOfConstant(op_t &NonConstOperand, uval_t &ConstValue) const; bool MDIsSubregMaskInst(size_t &BytesMasked); // is AND operation that masks off lower BytesMasked bytes inline bool MDIsBitwiseNotOpcode(void) const { return (NN_not == SMPcmd.itype); }; inline bool MDIsBitwiseAndOpcode(void) const { return (NN_and == SMPcmd.itype); }; inline bool MDIsBitwiseOrOpcode(void) const { return (NN_or == SMPcmd.itype); }; inline bool MDIsSignBitFill(void) const { return ((NN_sar == SMPcmd.itype) && ((MD_NORMAL_MACHINE_BITWIDTH - 1) == MDGetShiftCount())); }; inline bool MDDoublesWidth(void) const { return ((NN_cbw == SMPcmd.itype) || (NN_cwde == SMPcmd.itype) || (NN_cdqe == SMPcmd.itype)); } inline bool MDPropagateUseUpFromBranch(void) const { // Do we propagate branch signedness through the register USEs of this opcode to their DEFs? return ((NN_cmp == SMPcmd.itype) || (NN_test == SMPcmd.itype) || (NN_mov == SMPcmd.itype) #if 0 || ((NN_bt <= SMPcmd.itype) && (NN_bts >= SMPcmd.itype)) #endif ); }; inline bool IsLoadFromStack(void) const { return (booleans3 & INSTR_SET_LOAD_FROM_STACK); }; inline bool IsFirstInBlock(void) const { return (booleans3 & INSTR_SET_FIRST_IN_BLOCK); }; inline bool HasFlagsDef(void) const { return (booleans2 & INSTR_SET_DEFS_FLAGS); }; inline bool HasFlagsUse(void) const { return (booleans2 & INSTR_SET_USES_FLAGS); }; inline bool IsRegClearIdiom(void) const { return (booleans2 & INSTR_SET_REG_CLEAR_IDIOM); }; bool AllDEFsTyped(void); // No DEF is UNINIT bool AllUSEsTyped(void); // No USE is UNINIT bool IsNonAddressReg(op_t UseOp) const; // UseOp is a USE reg, not just an address reg in a memory USE bool IsSubRegUsedAsShiftCount(op_t UseOp); // Is a subreg of UseOp used as a shift counter? bool IsOpSourceSmallPositiveConstant(op_t UseOp, int UseSSANum); // Does UseOp ultimately come from a small positive constant? bool IsOpSourceBitwiseNot(op_t UseOp, int UseSSANum); // Does UseOp ultimately come from a bitwise not instruction? bool IsOpSourceConditionCode(op_t UseOp, int UseSSANum); // Does UseOp ultimately come from a set-condition-code instruction? bool IsOpSourceZeroExtendedMove(op_t UseOp, int UseSSANum, bool TruncationCheck); // Does UseOp ultimately come from a move-with-zero-extension instruction? bool IsOpSourceZeroExtendedMoveShiftRightOrConditionCode(op_t UseOp, int UseSSANum, bool TruncationCheck); // Union of two previous methods plus right shifts bool IsOpSourceSpecial(op_t UseOp, int UseSSANum, bool TruncationCheck, ea_t &SourceInstAddr); // Trace through moves to any of the above cases, return source addr bool MDIsOverflowingOpcode(void) const; // Is non-multiply arithmetic instruction that can possibly overflow? bool MDIsUnderflowingOpcode(void) const; // Is non-multiply arithmetic instruction that can possibly underflow? bool MDIsAddition(void) const; bool MDIsShiftOrRotate(void) const; // Is opcode a shift or rotate? bool MDIsShiftRight(void) const; // Is opcode a shift to the right? bool ShiftMakesUpperBitsLower(size_t HalfBitWidth, bool MustBeHalfRegWidth); // Do upper HalfBitWidth bits end up lower HalfBitWidth bits?s bool MDComparesImmedASCII(void); // Inst compares a location to an apparent ASCII immediate value. inline bool HasGoodRTL(void) const { return (booleans1 & INSTR_SET_GOODRTL); }; inline bool AreDefsNormalized(void) const { return (booleans4 & INSTR_SET_DEFS_NORMALIZED); }; inline bool IsInstRemoved(void) const { return (booleans4 & INSTR_SET_INST_REMOVED); }; // e.g. inst is unreachable or other optimization removed it inline bool IsStackAlignmentInst(void) const { return (booleans4 & INSTR_SET_STACK_ALIGNMENT); }; inline bool HasFPNormalizedToSP(void) const { return (booleans4 & INSTR_SET_FP_NORMALIZED_TO_SP); }; inline bool IsAllocaCall(void) const { return (booleans4 & INSTR_SET_ALLOCA); }; inline bool IsNumericAnnotationSuppressed(void) const { return (booleans4 & INSTR_SET_SUPPRESS_NUMERIC_ANNOTATION); }; inline bool IsHashOperation(void) const { return (booleans4 & INSTR_SET_HASH_OPERATION); }; inline bool MDIsReducedWidthMove(void) const { return (MoveSource.dtyp < 2); }; // Are numeric values from a system call trusted input, so that all numeric errors // derived from the returned values should be treated as benign? bool IsNumericTrustedSystemCall(void); #if 0 bool FindStackPtrDelta(sval_t SearchDelta) const; // Is SearchDelta in the set of possible stack pointer deltas for this inst? // If not, add it to the set. #endif // Printing methods void PrintOperands(void) const; char *DestString(int OptType); void PrintDeadRegs(FILE *OutputFile); // print the registers that are dead right before this instruction. void Dump(void); // Complete debug print, with DEF/USE list, SSA #s, RTL // Analysis methods op_t GetSourceOnlyOperand(void); // return non-flags-reg non-dest source operand set<DefOrUse, LessDefUse>::iterator GetPointerAddressReg(op_t MemOp); void Analyze(void); // Fill in basic data for instruction. void AnalyzeMarker(void); // Fill in basic data for top of function pseudo-instruction. void AnalyzeCallInst(ea_t FirstFuncAddr, ea_t LastFuncAddr); // Detect pseudo-calls void AnalyzeIndirectRefs(bool UseFP); // Detect indirect memory operands sval_t AnalyzeStackPointerDelta(sval_t IncomingDelta, sval_t FramePtrDelta); sval_t FindStackAdjustment(void); // Find amount of stack adjustment, e.g. if this inst is after a call void FixupTailCall(void); // make adjustments after discovering inst is a tail call bool MDComputeNormalizedDataFlowOp(bool UseFP, sval_t FPDelta, op_t &DefOp); // Normalize stack operands to use incoming stack delta; leave others as is // return true if register or stack memory operand, false otherwise bool MDNormalizeStackOps(bool UseFP, sval_t FPDelta, bool Recomputing, sval_t DeltaIncrement = 0); // Iterate through Defs and Uses, calling MDComputeNormalizedDataFlowOp(); true if changed DEFs or USEs void MDGetUnnormalizedOp(op_t &NormOp); // If NormOp is a normalized stack memory operand, unnormalize it. bool HasAllocaRTL(void); // RTL shows alloca pattern, i.e. subtracts non-const value from stack pointer bool MDIsStackPtrSaveOrRestore(bool UseFP, sval_t FPDelta, bool &Save, sval_t &StackDelta, op_t &CopyOp, bool &Error); // is stack/frame pointer saved to/restored from CopyOp void MDFixupDefUseLists(void); // Machine-dependent ad hoc fixes void MDFindLoadFromStack(bool UseFP); // determine if instruction is load from stack loc bool MDIsSignedLoad(unsigned short &SignMask); // true if sign or zero-extended; pass out mask bits bool MDIsSmallPositiveAddition(void); // true if increment or addition of small positive immediate value bool MDIsSmallAdditionOrSubtraction(void); // true if increment, decrement, or addition or subtraction of small immediate value bool MDIsSimpleAssignment(bool &ValueFound, uval_t &ConstValue); // Inst is move or register clear. bool IsCounterOperation(void); // Inst clears register or adds or subtracts small immediate value, as is done with counter variables. bool MDIsNonOverflowingBitManipulation(void) const; // Inst does an AND, OR, XOR operation, does not do add, subtract, etc. bool FindConstantValue(set<DefOrUse, LessDefUse>::iterator UseIter, uval_t &ConstValue); // return true if traced USE to a constant value bool BuildRTL(void); // Build RTL trees; return true if successfully built. void SyncAllRTs(bool UseFP, sval_t FPDelta); // calls SyncRTLDefUse() for all RTs in RTL op_t GetPushedOpnd(void); // Extract source operand from PUSH RTL int MDGetImmedUse(void); // Get immed value from USE list of inst bool MDIsArgumentPass(void); // Does inst pass an outgoing argument? bool OperandTransfersValueToDef(op_t UseOp); // Does UseOp arithmetically affect the value of the NonFlagsDef for this inst? string GetTrimmedCalledFunctionName(void); // Get funcname from call inst and remove "." and "_" prefices void SetImmedTypes(bool UseFP); // type all immediate operands as NUMERIC, CODEPTR, GLOBALPTR // and set other context-free types (ESP == STACKPTR, etc.) void MDSetWidthSignInfo(bool UseFP); // Infer sign, bit width, etc. in simple cases within one instr void InferSignednessFromSMPTypes(bool UseFP); // Infer sign from the SMP types for USEs and DEFs. bool InferTypes(void); // return true if any DEF-USE or RTL operator types were updated. bool InferFGInfo(unsigned short IterCount); // infer width on first pass, signedness on all passes void AnnotateStackConstants(bool UseFP, FILE *AnnotFile); void EmitAnnotations(bool UseFP, bool AllocSeen, bool NeedsFrame, FILE *AnnotFile, FILE *InfoAnnotFile); // No RTLs available void EmitTypeAnnotations(bool UseFP, bool AllocSeen, bool NeedsFrame, FILE *AnnotFile, FILE *InfoAnnotFile); // Use RTL types void EmitSafeReturn(FILE *AnnotFile); // emit annotation to denote that the return belongs to a safe function. void EmitIntegerErrorAnnotations(FILE *InfoAnnotFile, list<size_t> &LoopList); // emit check annotations for signedness, overflow, truncation, etc. void MDEmitLeaOpcodeOverflowAnnotations(FILE *InfoAnnotFile, list<size_t> &LoopList); // check for silent overflow in load effective address opcodes void UpdateMemLoadTypes(SMPOperandType newType); bool SkipSignednessCheckOnStackWrite(int DefSSANum); // Should we omit signedness check on store to stack in current inst? // Trace UseOp through register moves back to its stack location or immediate value source. // Return true if we are passing an immediate or stack location back in UltSource. bool TraceUltimateMoveSource(op_t UseOp, int UseSSANum, op_t &UltSource, bool &FPRelative); private: // Data SMPBasicBlock *BasicBlock; // basic block containing this instruction insn_t SMPcmd; // copy of 'cmd' for this instruction ulong features; // Canonical features for SMPcmd SMPitype type; // Data flow analysis category int OptType; // Optimization category (see OptCategory[]) ea_t address; // Code address for 1st byte of instruction sval_t StackPtrOffset; // <=0, before inst executes, relative to stack ptr value at function entry unsigned char booleans1; // bit set for first 8 bools #if 0 // now in booleans1 bool GoodRTL; // Has a good RTL been built? bool JumpTarget; // Is Instr the target of any jumps or branches? bool BlockTerm; // This instruction terminates a basic block. bool TailCall; // This instruction is a tail call (jump to far chunk with stack restored). bool CondTailCall; // Tail call is conditional branch. bool CallUsedAsJump; // Call instruction, but actually a jump within the function. bool DirectRecursiveCall; // Call to first address in same function bool Interrupt; // Instruction is a software interrupt call. #endif unsigned char booleans2; #if 0 // now in booleans2 bool Nop; // instruction is a no-op, including compiler idioms for no-op. bool RegClearIdiom; // ASM idiom for move zero into register? bool DefsFlags; // Instr DEFs the flags bool UsesFlags; // Instr USEs the flags bool FarBranchComputed; // Have we computed whether branch is to far chunk? bool BranchesToFarChunk; // true if branch to far chunk bool IndirectMemWrite; // Writes through indirect memory operand bool IndirectMemRead; // Reads through indirect memory operand #endif unsigned char booleans3; #if 0 // now in booleans3 bool LoadFromStack; // memory load from stack location bool MultiplicationBitsDiscarded; // upper bits of multiply result discarded by instruction bool TypeInferenceComplete; // All types have been resolved // For some type categories, inference just based on the category is done one time // only, so this is a variable that is set to true after the first inference // for those instruction types. For other categories, leave it false so that we // try to infer types on each iteration of InferTypes(). bool CategoryInferenceComplete; bool DEFsTyped; // all DEFs have a type other than UNINIT bool USEsTyped; // all USEs have a type other than UNINIT bool MemDefUseComputed; // DEFMemOp and USEMemOp have been set bool FirstInBlock; // first inst in basic block #endif unsigned char booleans4; #if 0 // now in booleans4 bool NormalizedDefs; // stack offsets in DEFs have been normalized with respect to incoming stack delta. bool NormalizedUses; // stack offsets in USEs have been normalized with respect to incoming stack delta. bool StackAlignmentInst; // AND of stack pointer with mask to align stack frame bool FPNormalizedToSP; // inst has frame-pointer-relative stack memory access that has been normalized to stack-pointer-relative bool AllocaCall; // subtracts unknown value from stack pointer to allocate temp memory on stack bool SuppressNumericAnnotation; // any numeric error has been determined to be benign bool HashOperation; // arithmetic operation will likely overflow benignly because it is part of hash function, pseudo-RNG, etc. #endif std::bitset<1 + MD_LAST_REG_NO> DeadRegsBitmap; // Registers that are dead at this instruction, as a bitmap. ea_t CallTarget; // target address of direct or indirect call instruction; BADADDR if unknown or not a call ea_t FarBranchTarget; // target address of branch to far chunk; BADADDR if unknown or not a far branch SMPOperandType AddSubSourceType; // Source op (USE only) type for add/sub op_t AddSubSourceOp; // operand corresponding to AddSubSourceType SMPOperandType AddSubUseType; // type of USE that is also DEFed by add /sub op_t AddSubUseOp; // operand corresponding to AddSubUseType op_t DEFMemOp; // memory DEF list opnd, if any op_t USEMemOp; // memory USE list opnd, if any #if 0 // now held in a map in SMPFunction op_t LeaUSEMemOp; // Original USEMemOp for LEA inst before converting it to arithmetic. #endif op_t MoveSource; // source operand for any move instruction, including // zero-extended or sign-extended. DefOrUseSet Defs; // Definitions list DefOrUseSet Uses; // Uses list SMPRTL RTL; #if 0 set<sval_t> StackDeltaSet; // For functions with extra stack allocations, e.g. alloca() calls, different // paths can produce multiple stack delta values. Temporary container until // the function and stack frame can be analyzed and summarized. #endif // Methods inline void ResetGoodRTL(void) { booleans1 &= INSTR_RESET_GOODRTL; }; inline void SetJumpTarget(void) { booleans1 |= INSTR_SET_JUMP_TARGET; }; inline void ResetJumpTarget(void) { booleans1 &= INSTR_RESET_JUMP_TARGET; }; inline void ResetBlockTerm(void) { booleans1 &= INSTR_RESET_BLOCK_TERM; }; inline void ResetTailCall(void) { booleans1 &= INSTR_RESET_TAIL_CALL; }; inline void SetCallUsedAsJump(void) { booleans1 |= INSTR_SET_CALL_USED_AS_JUMP; }; inline void ResetCallUsedAsJump(void) { booleans1 &= INSTR_RESET_CALL_USED_AS_JUMP; }; inline void SetDirectRecursiveCall(void) { booleans1 |= INSTR_SET_DIRECT_RECURSIVE_CALL; }; inline void ResetDirectRecursiveCall(void) { booleans1 &= INSTR_RESET_DIRECT_RECURSIVE_CALL; }; inline void SetInterrupt(void) { booleans1 |= INSTR_SET_INTERRUPT; }; inline void ResetInterrupt(void) { booleans1 &= INSTR_RESET_INTERRUPT; }; inline void SetNop(void) { booleans2 |= INSTR_SET_NOP; }; inline void ResetNop(void) { booleans2 &= INSTR_RESET_NOP; }; inline void SetRegClearIdiom(void) { booleans2 |= INSTR_SET_REG_CLEAR_IDIOM; }; inline void ResetRegClearIdiom(void) { booleans2 &= INSTR_RESET_REG_CLEAR_IDIOM; }; inline bool SetDefsFlags(void) { booleans2 |= INSTR_SET_DEFS_FLAGS; }; inline bool ResetDefsFlags(void) { booleans2 &= INSTR_RESET_DEFS_FLAGS; }; inline bool IsDefsFlags(void) const { return (booleans2 & INSTR_SET_DEFS_FLAGS); }; inline bool SetUsesFlags(void) { booleans2 |= INSTR_SET_USES_FLAGS; }; inline bool ResetUsesFlags(void) { booleans2 &= INSTR_RESET_USES_FLAGS; }; inline bool IsUsesFlags(void) const { return (booleans2 & INSTR_SET_USES_FLAGS); }; inline bool SetFarBranchComputed(void) { booleans2 |= INSTR_SET_FAR_BRANCH_COMPUTED; }; inline bool ResetFarBranchComputed(void) { booleans2 &= INSTR_RESET_FAR_BRANCH_COMPUTED; }; inline bool IsFarBranchComputed(void) const { return (booleans2 & INSTR_SET_FAR_BRANCH_COMPUTED); }; inline bool SetBranchesToFarChunk(void) { booleans2 |= INSTR_SET_BRANCHES_TO_FAR_CHUNK; }; inline bool ResetBranchesToFarChunk(void) { booleans2 &= INSTR_RESET_BRANCHES_TO_FAR_CHUNK; }; inline bool IsBranchesToFarChunk(void) const { return (booleans2 & INSTR_SET_BRANCHES_TO_FAR_CHUNK); }; inline bool SetIndirectMemWrite(void) { booleans2 |= INSTR_SET_INDIRECT_MEM_WRITE; }; inline bool ResetIndirectMemWrite(void) { booleans2 &= INSTR_RESET_INDIRECT_MEM_WRITE; }; inline bool SetIndirectMemRead(void) { booleans2 |= INSTR_SET_INDIRECT_MEM_READ; }; inline bool ResetIndirectMemRead(void) { booleans2 &= INSTR_RESET_INDIRECT_MEM_READ; }; inline void SetLoadFromStack(void) { booleans3 |= INSTR_SET_LOAD_FROM_STACK; }; inline void ResetLoadFromStack(void) { booleans3 &= INSTR_RESET_LOAD_FROM_STACK; }; inline void SetMultiplicationBitsDiscarded(void) { booleans3 |= INSTR_SET_MULTIPLICATION_BITS_DISCARDED; }; inline void ResetMultiplicationBitsDiscarded(void) { booleans3 &= INSTR_RESET_MULTIPLICATION_BITS_DISCARDED; }; inline bool AreMultiplicationBitsDiscarded(void) const { return (booleans3 & INSTR_SET_MULTIPLICATION_BITS_DISCARDED); }; inline void SetTypeInferenceComplete(void) { booleans3 |= INSTR_SET_TYPE_INFERENCE_COMPLETE; }; inline void ResetTypeInferenceComplete(void) { booleans3 &= INSTR_RESET_TYPE_INFERENCE_COMPLETE; }; inline bool IsTypeInferenceComplete(void) const { return (booleans3 & INSTR_SET_TYPE_INFERENCE_COMPLETE); }; inline void SetCategoryInferenceComplete(void) { booleans3 |= INSTR_SET_CATEGORY_INFERENCE_COMPLETE; }; inline void ResetCategoryInferenceComplete(void) { booleans3 &= INSTR_RESET_CATEGORY_INFERENCE_COMPLETE; }; inline bool IsCategoryInferenceComplete(void) const { return (booleans3 & INSTR_SET_CATEGORY_INFERENCE_COMPLETE); }; inline void SetDEFsTyped(void) { booleans3 |= INSTR_SET_DEFS_TYPED; }; inline void ResetDEFsTyped(void) { booleans3 &= INSTR_RESET_DEFS_TYPED; }; inline bool AreDEFsTyped(void) const { return (booleans3 & INSTR_SET_DEFS_TYPED); }; inline void SetUSEsTyped(void) { booleans3 |= INSTR_SET_USES_TYPED; }; inline void ResetUSEsTyped(void) { booleans3 &= INSTR_RESET_USES_TYPED; }; inline bool AreUSEsTyped(void) const { return (booleans3 & INSTR_SET_USES_TYPED); }; inline bool AreMemOpsFound(void) const { return (booleans3 & INSTR_SET_MEM_DEF_USE_COMPUTED); }; inline void SetMemOpsFound(void) { booleans3 |= INSTR_SET_MEM_DEF_USE_COMPUTED; }; inline void SetDefsNormalized(void) { booleans4 |= INSTR_SET_DEFS_NORMALIZED; } inline void SetStackAlignmentInst(void) { booleans4 |= INSTR_SET_STACK_ALIGNMENT; } inline void SetFPNormalizedToSP(void) { booleans4 |= INSTR_SET_FP_NORMALIZED_TO_SP; }; uval_t MDGetShiftCount(void) const; bool AllDefsNumeric(void); // true if all DEFs are NUMERIC or CODEPTR bool AnyDefsProfiled(void); // true if any defs are profile derived bool AllDefMetadataUnused(void); // true if all DEF metadata not needed void MDFixupIDAProOperandList(void); // Fix problems with the operands list in SMPcmd. void BuildSMPDefUseLists(void); // Build DEF and USE lists for instruction void MDAnnotateSIBStackConstants(FILE *, op_t, ea_t, bool); // Handle x86 opcode SIB byte void FindMemOps(void); // Find memory DEFs and USEs, store in DEFMemOp and USEMemOp bool MDIgnoreMemOps(void); // Should apparent memory operands be ignored? e.g. lea opcode on x86 bool MDFindPointerUse(op_t MemOp, bool UseFP); // Set base reg to POINTER bool MDFindMallocCall(op_t TargetOp); // Set return reg from malloc() call to HEAPPTR bool MDIsNop(void) const; // instruction is simple or complex no-op inline bool MDIsMultiply(void) const { return ((NN_mul == SMPcmd.itype) || (NN_imul == SMPcmd.itype)); }; bool MDAlwaysUnsignedDEF(void) const; // Always produces an UNSIGNED DEF bool MDAlwaysSignedDEF(void) const; // Always produces a SIGNED DEF bool IsBenignTruncation(int &IdiomCode); // Is the instruction such that truncation is not an error? bool IsBenignOverflow(int &IdiomCode); // Is the instruction such that overflow is not an error? bool MDIsMaybeBenignOverflowOpcode(void) const; // Is arithmetic opcode that could need its overflow ignored? bool MDIsMaybeBenignUnderflowOpcode(void) const; // Is arithmetic opcode that could need its underflow ignored? bool MDIsDefiniteBenignUnderflowOpcode(int &IdiomCode); // Is opcode that definitely should have its underflow ignored? // NOTE: Overlaps with MDIsMaybeBenignUnderflowOpcode(), so call this one first. bool SubtractsFromItself(void); // RTL has subtraction operator applied to identical operands, producing zero. bool SubtractsImmedASCII(void); // Inst subtracts an apparent ASCII immediate value. bool IsMultiplyByLargeConstant(uval_t &ConstValue, unsigned short SignMask); // Multiply by large constant; overflow is probably intentional. bool IsSubtractionOfLargeConstant(uval_t &ConstValue, unsigned short SignMask); // Subtraction of large constant; underflow is probably intentional. bool IsAdditionOfLargeConstant(uval_t &ConstValue, unsigned short SignMask); // Addition of large constant; overflow is probably intentional. bool BuildUnaryRTL(SMPoperator UnaryOp); // helper for BuildRTL() bool BuildUnary2OpndRTL(SMPoperator UnaryOp); // helper for BuildRTL() bool BuildBinaryRTL(SMPoperator BinaryOp, bool HiddenFPStackOp = false); // helper for BuildRTL() bool BuildGuardedSignalRTL(SMPoperator SignalOp); // helper for BuildRTL() bool BuildBinaryPlusImmedRTL(SMPoperator BinaryOp, SMPoperator ImmedOp); // helper for BuildRTL() bool BuildBinaryIgnoreImmedRTL(SMPoperator BinaryOp); // helper for BuildRTL(), ignore immed operand bool BuildLeaRTL(void); // helper for BuildRTL() bool BuildDoubleShiftRTL(SMPoperator BinaryOp); // helper for BuildRTL() bool BuildPackShiftRTL(SMPoperator PackOp, SMPoperator ShiftOp); // helper for BuildRTL() bool BuildBinaryPlusFlagsRTL(SMPoperator BinaryOp); // helper for BuildRTL() bool BuildFlagsDestBinaryRTL(SMPoperator BinaryOp); // helper for BuildRTL() bool BuildCallRTL(void); // helper for BuildRTL() bool BuildReturnRTL(void); // helper for BuildRTL() bool BuildJumpRTL(SMPoperator CondBranchOp); // helper for BuildRTL() bool BuildEnterRTL(void); // helper for BuildRTL() bool BuildLeaveRTL(void); // helper for BuildRTL() bool BuildOptType8RTL(void); // helper for BuildRTL() bool BuildMoveRTL(SMPoperator GuardOp); // helper for BuildRTL() bool BuildLoopRTL(SMPoperator GuardOp); // helper for BuildRTL() bool BuildLoadStringRTL(void); // helper for BuildRTL() bool BuildCompareStringRTL(void); // helper for BuildRTL() bool BuildExchangeRTL(void); // helper for BuildRTL() bool BuildExchangeAddRTL(void); // helper for BuildRTL() bool BuildCompareExchangeRTL(void); // helper for BuildRTL() bool BuildPushRTL(void); // helper for BuildRTL() bool BuildPopRTL(void); // helper for BuildRTL() void AddToStackPointer(uval_t delta); // helper for BuildRTL() void SubFromStackPointer(uval_t delta); // helper for BuildRTL() bool BuildMultiplyDivideRTL(SMPoperator BinaryOp); // helper for BuildRTL() void SyncRTLDefUse(SMPRegTransfer *CurrRT, bool UseFP, sval_t FPDelta); // Ensure that all RTL operands are in the DEF/USE lists bool InferOperatorType(SMPRegTransfer *CurrRT); // return true if type updated void SetAddSubSourceType(void); int GetUseOpHashAndSSA(op_t UseOp, int &SSANum); // helper to find SSANum and create & return hash value int GetDefOpHashAndSSA(op_t DefOp, int &SSANum); // helper to find SSANum and create & return hash value void MDSetRTLRegWidthInfo(SMPRegTransfer *CurrRT); // Walk RTL and set register operand width info. void SetRTLUseOpRegWidthInfo(op_t UseOp); // helper, for USE operands in RTL unsigned short SignMaskUnionFromUseRegs(void); // union of sign masks from 2 reg USEs for binary arithmetic bool DoesOperatorTransferSign(SMPoperator CurrOp); // Does operator propagate signedness upwards? void MDFixupSignedness(void); // Adjust signedness based on SSA def-use info. bool InitFGInfoFromOperator(SMPoperator CurrOp, struct FineGrainedInfo &InitFG); // infer initial FG info (if possible) solely from the operator type bool InferOperatorFGInfo(SMPRegTransfer *CurrRT, bool FirstIter, struct FineGrainedInfo &OpFG); // infer FG info, + width on FirstIter; pass out FG info, return true if changes to FG info maps bool UpdateUseOpFGInfo(op_t UseOp, struct FineGrainedInfo NewFG); // helper for InferOperatorFGInfo() to update USE maps, return true if changed maps bool UpdateDefOpFGInfo(op_t DefOp, struct FineGrainedInfo NewFG); // helper for InferOperatorFGInfo() to update DEF maps, return true if changed maps unsigned short GetDefSignInfoFromUseOp(op_t UseOp); // Helper to fetch DEF signedness info for UseOp that has none. SMPMetadataType GetDefMetadataType(void); // metadata type of non-flags DEF bool MDIsAddImmediateToReg(op_t &DefOp, op_t &ImmOp); // return true if we have register DefOp += ImmOp. bool MDRecomputeNormalizedDataFlowOp(sval_t DeltaIncrement, bool UpdateMaps, op_t &DefOp); // Alter stack delta for SP-relative stack operands in alloca-calling functions // return true if register or stack memory operand, false otherwise }; // end class SMPInstr #endif