//
// SMPStaticAnalyzer.cpp
//
// This plugin performs the static analyses needed for the SMP project
//   (Software Memory Protection).
//

#include <ida.hpp>
#include <idp.hpp>
#include <allins.hpp>
#include <auto.hpp>
#include <bytes.hpp>
#include <funcs.hpp>
#include <intel.hpp>
#include <loader.hpp>
#include <lines.hpp>
#include <name.hpp>
#include <ua.hpp>

#include "SMPStaticAnalyzer.h"
#include "SMPDataFlowAnalysis.h"


// Set to 1 for debugging output
#define SMP_DEBUG 1
#define SMP_DEBUG2 1   // verbose
#define SMP_DEBUG3 0   // verbose
#define SMP_DEBUG_MEM 0 // print memory operands
#define SMP_DEBUG_TYPE0 0 // Output instr info for OptType = 0

// Set to 1 when doing a binary search using SMP_DEBUG_COUNT to find
//  which function is causing a problem.
#define SMP_BINARY_DEBUG 0
#define SMP_DEBUG_COUNT 356  // How many funcs to process in problem search
int FuncsProcessed = 0;


// Define optimization categories for instructions.
int OptCategory[NN_last+1];
// Initialize the OptCategory[] array.
void InitOptCategory(void);

// Keep statistics on how many instructions we saw in each optimization
//  category, and how many optimizing annotations were emitted for
//  each category.
int OptCount[LAST_OPT_CATEGORY + 1];
int AnnotationCount[LAST_OPT_CATEGORY + 1];

static char *RegNames[R_of + 1] =
	{ "EAX", "ECX", "EDX", "EBX", "ESP", "EBP", "ESI", "EDI",
	  "R8", "R9", "R10", "R11", "R12", "R13", "R14", "R15",
	  "AL", "CL", "DL", "BL", "AH", "CH", "DH", "BH",
	  "SPL", "BPL", "SIL", "DIL", "EIP", "ES", "CS", "SS",
	  "DS", "FS", "GS", "CF", "ZF", "SF", "OF" 
	};

// The types of data objects based on their first operand flags.
static char *DataTypes[] = { "VOID", "NUMHEX", "NUMDEC", "CHAR",
		"SEG", "OFFSET", "NUMBIN", "NUMOCT", "ENUM", "FORCED", 
		"STRUCTOFFSET", "STACKVAR", "NUMFLOAT", "UNKNOWN", 
		"UNKNOWN", "UNKNOWN", 0};


void IDAP_run(int);




static int idaapi idp_callback(void *, int event_id, va_list va) {
	if (event_id == ph.auto_empty_finally) {   // IDA analysis is done
		IDAP_run(0);
		qexit(0);
	}
	return 0;
}

int IDAP_init(void) {
#if 0 // We are now calling from the SMP.idc script.
	// Skip this plugin if it was not specified by the user on the
	//  command line.
	if (get_plugin_options("SMPStaticAnalyzer") == NULL) {
		msg("IDAP_init point 2.\n");
		return PLUGIN_SKIP;
	}
#endif
	// Ensure correct working environment.
	if ((inf.filetype != f_ELF) && (inf.filetype != f_PE)) {
		error("Executable format must be PE or ELF.");
		return PLUGIN_SKIP;
	}
	if (ph.id != PLFM_386) {
		error("Processor must be x86.");
 		return PLUGIN_SKIP;
	}
	hook_to_notification_point(HT_IDP, idp_callback, NULL);
    InitOptCategory();
	InitDFACategory();
	return PLUGIN_KEEP;
} // end of IDAP_init

void IDAP_term(void) {
	unhook_from_notification_point(HT_IDP, idp_callback, NULL);
	return;
}

void IDAP_run(int arg) {

	segment_t *seg;
	char buf[MAXSTR];
	ea_t ea;
	flags_t ObjFlags;
	bool ReadOnlyFlag;
	FILE *SymsFile;
	char FuncName[MAXSTR];			
	SMPFunction *CurrFunc = NULL;
	bool FuncsDumped = false;

#if SMP_DEBUG
	msg("Beginning IDAP_run.\n");
#endif
	// Open the output file.
	SymsFile = qfopen("SMP.annot", "w");
	if (NULL == SymsFile) {
		error("FATAL: Cannot open output file SMP.annot\n");
		return;
	}

	(void) memset(OptCount, 0, sizeof(OptCount));
	(void) memset(AnnotationCount, 0, sizeof(AnnotationCount));

	// First, examine the data segments and print info about static
	//   data, such as name/address/size. Do the same for functions in
	//   code segments.
	// Loop through all segments.
	for (int SegIndex = 0; SegIndex < get_segm_qty(); ++SegIndex) {
		seg = getnseg(SegIndex);

		// We are only interested in the data segments of type
		// SEG_DATA, SEG_BSS and SEG_COMM.
		if ((seg->type == SEG_DATA) || (seg->type == SEG_BSS)
		    || (seg->type == SEG_COMM)) {
			// Loop through each of the segments we are interested in,
			//  examining all data objects (effective addresses).
			ReadOnlyFlag = ((seg->perm & SEGPERM_READ) && (!(seg->perm & SEGPERM_WRITE)));
#if SMP_DEBUG
			msg("Starting data segment of type %d\n", seg->type);
			if (ReadOnlyFlag) {
				msg("Read-only data segment.\n");
			}
#endif
			ea = seg->startEA;
			while (ea < seg->endEA) {
				ObjFlags = get_flags_novalue(ea);
				// Only process head bytes of data objects, i.e. isData().
				if (isData(ObjFlags)) {
				    // Compute the size of the data object.
					ea_t NextEA = ea;
				    do {
				       NextEA = nextaddr(NextEA);
					} while ((NextEA < seg->endEA) && (!isHead(get_flags_novalue(NextEA))));
				    size_t ObjSize = (size_t) (NextEA - ea);
					// Get the data object name using its address.
				    char *TrueName = get_true_name(BADADDR, ea, buf, sizeof(buf));
					if (NULL == TrueName) {
						qstrncpy(buf, "SMP_dummy0", 12);
					}
				    // Output the name, address, size, and type info.
					if (ReadOnlyFlag) {
						qfprintf(SymsFile, 
							"%x %d OBJECT GLOBAL %s  %s RO\n", ea, ObjSize,
				  			buf, DataTypes[get_optype_flags0(ObjFlags) >> 20]);
					}
					else {
						qfprintf(SymsFile, 
							"%x %d OBJECT GLOBAL %s  %s RW\n", ea, ObjSize,
				  			buf, DataTypes[get_optype_flags0(ObjFlags) >> 20]);
					}
					// Move on to next data object
					ea = NextEA;
				}
				else {
					ea = nextaddr(ea);
				}
			} // end while (ea < seg->endEA)
		} // end if (seg->type == SEG_DATA ...)
		else if (seg->type == SEG_CODE) {
#if SMP_DEBUG
			msg("Starting code segment.\n");
#endif
#if SMP_DEBUG2
			if (!FuncsDumped) {
				for (size_t FuncIndex = 0; FuncIndex < get_func_qty(); ++FuncIndex) {
					func_t *FuncInfo = getn_func(FuncIndex);
					get_func_name(FuncInfo->startEA, FuncName, MAXSTR-1);
					msg("FuncName dump: %s\n", FuncName);
				}
				for (size_t ChunkIndex = 0; ChunkIndex < get_fchunk_qty(); ++ChunkIndex) {
					func_t *ChunkInfo = getn_fchunk((int) ChunkIndex);
					get_func_name(ChunkInfo->startEA, FuncName, MAXSTR-1);
					if (0 == strcmp(FuncName, "fflush")) {
						msg("fflush chunk: address %x", ChunkInfo->startEA);
						if (is_func_tail(ChunkInfo))
							msg(" TAIL\n");
						else
							msg(" ENTRY\n");
					}
					else if ((0x81498f0 < ChunkInfo->startEA)
							&& (0x8149cb6 > ChunkInfo->startEA)) {
						msg("Missing fflush chunk: %s %x",
							FuncName, ChunkInfo->startEA);
						if (is_func_tail(ChunkInfo))
							msg(" TAIL\n");
						else
							msg(" ENTRY\n");
					}
				} // end for (size_t ChunkIndex = ...)
				func_t *FuncInfo = get_func(0x8149be0);
				if (NULL == FuncInfo)
					msg("No func at 0x8149be0\n");
				else {
					get_func_name(FuncInfo->startEA, FuncName, MAXSTR-1);
					msg("Func at 0x8149be0: %s\n", FuncName);
				}
				FuncsDumped = true;
			}
#endif
			for (size_t FuncIndex = 0; FuncIndex < get_func_qty(); ++FuncIndex) {
				func_t *FuncInfo = getn_func(FuncIndex);

				// If more than one SEG_CODE segment, only process 
				//  functions within the current segment. Don't know
				//  if multiple code segments are possible, but
				//  get_func_qty() is for the whole program, not just
				//  the current segment.
				if (FuncInfo->startEA < seg->startEA) {
					// Already processed this func in earlier segment.
					continue;
				}
				else if (FuncInfo->startEA >= seg->endEA) {
#if SMP_DEBUG2
						get_func_name(FuncInfo->startEA, FuncName, MAXSTR-1);
						msg("Skipping function until we reach its segment: %s\n",
							FuncName);
#endif
						break;
				}

				// Create a function object.
				if (NULL != CurrFunc){
					delete CurrFunc;
					CurrFunc = NULL;
				}
				CurrFunc = new SMPFunction(FuncInfo);
				

#if SMP_BINARY_DEBUG
				if (FuncsProcessed++ > SMP_DEBUG_COUNT) {
					get_func_name(FuncInfo->startEA, FuncName, MAXSTR-1);
					msg("Debug termination. FuncName = %s \n", FuncName);
					msg("Function startEA: %x endEA: %x \n",
						FuncInfo->startEA,
						FuncInfo->endEA);
				    break;
				}
#endif
#if SMP_BINARY_DEBUG
				if (FuncsProcessed > SMP_DEBUG_COUNT) {
					get_func_name(FuncInfo->startEA, FuncName, MAXSTR-1);
					msg("Final FuncName:  %s \n", FuncName);
					SMPBinaryDebug = true;
				}
#endif
				CurrFunc->Analyze();
				CurrFunc->EmitAnnotations(SymsFile);
				delete CurrFunc;
				CurrFunc = NULL;
			} // end for (size_t FuncIndex = 0; ...) 
		} // end else if (seg->type === SEG_CODE)
		else {
#if SMP_DEBUG
			msg("Not processing segment of type %d \n", seg->type);
#endif
		}
	} // end for (int SegIndex = 0; ... )

	for (int OptType = 0; OptType <= LAST_OPT_CATEGORY; ++OptType) {
		msg("Optimization Category Count %d:  %d Annotations: %d\n",
			OptType, OptCount[OptType], AnnotationCount[OptType]);
	}

	qfclose(SymsFile);
	return;
} // end IDAP_run()

char IDAP_comment[] = "UVa SMP/NICECAP Project";
char IDAP_help[] = "Good luck";
char IDAP_name[] = "SMPStaticAnalyzer";
char IDAP_hotkey[] = "Alt-J";

plugin_t PLUGIN = {
	IDP_INTERFACE_VERSION,
	0,
	IDAP_init,
	IDAP_term,
	IDAP_run,
	IDAP_comment,
	IDAP_help,
	IDAP_name,
	IDAP_hotkey
};



// Initialize the OptCategory[] array to define how we emit
//   optimizing annotations.
void InitOptCategory(void) {
	// Default category is 0, no optimization without knowing context.
	(void) memset(OptCategory, 0, sizeof(OptCategory));
	// Category 1 instructions never need updating of their memory
	//  metadata by the Memory Monitor SDT. Currently, this is because
	//  these instructions only have effects on registers we do not maintain
	//  metadata for, such as the EIP and the FLAGS, e.g. jumps, compares.
	// Category 2 instructions always have a result type of 'n' (number).
	// Category 3 instructions have a result type of 'n' (number)
	//  whenever the second source operand is an immediate operand of type 'n'.
	//  NOTE: MOV is only current example, and this will take some thought if 
   //   other examples arise.
	// Category 4 instructions have a result type identical to the 1st source operand type.
	//  NOTE: This is currently set for single-operand instructions such as
	//   INC, DEC. As a result, these are treated pretty much as if
	//   they were category 1 instructions, as there is no metadata update,
	//   unless the operand is a memory operand (i.e. mem or [reg]).
	//   If new instructions are added to this category that are not single
	//   operand and do require some updating, the category should be split.
	// Category 5 instructions have a result type identical to the 1st source operand
	//  type whenever the 2nd source operand is an operand of type 'n'.
	//  If the destination is memory, metadata still needs to be checked; if
	//  not, no metadata check is needed, so it becomes category 1.
	// Category 6 instructions always have a result type of 'p' (pointer).
	// Category 7 instructions are category 2 instructions with two destinations,
	//  such as multiply and divide instructions that affect EDX:EAX. There are
	//  forms of these instructions that only have one destination, so they have
	//  to be distinguished via the operand info.
   // Category 8 instructions implicitly write a numeric value to EDX:EAX, but
   //  EDX and EAX are not listed as operands. RDTSC, RDPMC, RDMSR, and other
   //  instructions that copy machine registers into EDX:EAX are category 8.
   // Category 9 instructions are floating point instructions that either
   //  have a memory destination (treat as category 0) or a FP reg destination
   //  (treat as category 1).

	// NOTE: The Memory Monitor SDT needs just three categories, corresponding
	//  to categories 0, 1, and all others. For all categories > 1, the
	//  annotation should tell the SDT exactly how to update its metadata.
	//  For example, a division instruction will write type 'n' (NUM) as
	//  the metadata for result registers EDX:EAX. So, the annotation should
	//  list 'n', EDX, EAX, and a terminator of '/'. CWD (convert word to
	//  doubleword) should have a list of 'n', EAX, '/'.

OptCategory[NN_null] = 0;            // Unknown Operation
OptCategory[NN_aaa] = 2;                 // ASCII Adjust after Addition
OptCategory[NN_aad] = 2;                 // ASCII Adjust AX before Division
OptCategory[NN_aam] = 2;                 // ASCII Adjust AX after Multiply
OptCategory[NN_aas] = 2;                 // ASCII Adjust AL after Subtraction
OptCategory[NN_adc] = 5;                 // Add with Carry
OptCategory[NN_add] = 5;                 // Add
OptCategory[NN_and] = 0;                 // Logical AND
OptCategory[NN_arpl] = 1;                // Adjust RPL Field of Selector
OptCategory[NN_bound] = 1;               // Check Array Index Against Bounds
OptCategory[NN_bsf] = 2;                 // Bit Scan Forward
OptCategory[NN_bsr] = 2;                 // Bit Scan Reverse
OptCategory[NN_bt] = 2;                  // Bit Test
OptCategory[NN_btc] = 2;                 // Bit Test and Complement
OptCategory[NN_btr] = 2;                 // Bit Test and Reset
OptCategory[NN_bts] = 2;                 // Bit Test and Set
OptCategory[NN_call] = 1;                // Call Procedure
OptCategory[NN_callfi] = 1;              // Indirect Call Far Procedure
OptCategory[NN_callni] = 1;              // Indirect Call Near Procedure
OptCategory[NN_cbw] = 2;                 // AL -> AX (with sign)            ** No ops?
OptCategory[NN_cwde] = 2;                // AX -> EAX (with sign)           **
OptCategory[NN_cdqe] = 2;                // EAX -> RAX (with sign)          **
OptCategory[NN_clc] = 1;                 // Clear Carry Flag
OptCategory[NN_cld] = 1;                 // Clear Direction Flag
OptCategory[NN_cli] = 1;                 // Clear Interrupt Flag
OptCategory[NN_clts] = 1;                // Clear Task-Switched Flag in CR0
OptCategory[NN_cmc] = 1;                 // Complement Carry Flag
OptCategory[NN_cmp] = 1;                 // Compare Two Operands
OptCategory[NN_cmps] = 1;                // Compare Strings
OptCategory[NN_cwd] = 2;                 // AX -> DX:AX (with sign)
OptCategory[NN_cdq] = 2;                 // EAX -> EDX:EAX (with sign)
OptCategory[NN_cqo] = 2;                 // RAX -> RDX:RAX (with sign)
OptCategory[NN_daa] = 2;                 // Decimal Adjust AL after Addition
OptCategory[NN_das] = 2;                 // Decimal Adjust AL after Subtraction
OptCategory[NN_dec] = 4;                 // Decrement by 1
OptCategory[NN_div] = 7;                 // Unsigned Divide
OptCategory[NN_enterw] = 0;              // Make Stack Frame for Procedure Parameters  **
OptCategory[NN_enter] = 0;               // Make Stack Frame for Procedure Parameters  **
OptCategory[NN_enterd] = 0;              // Make Stack Frame for Procedure Parameters  **
OptCategory[NN_enterq] = 0;              // Make Stack Frame for Procedure Parameters  **
OptCategory[NN_hlt] = 0;                 // Halt
OptCategory[NN_idiv] = 7;                // Signed Divide
OptCategory[NN_imul] = 7;                // Signed Multiply
OptCategory[NN_in] = 0;                  // Input from Port                         **
OptCategory[NN_inc] = 4;                 // Increment by 1
OptCategory[NN_ins] = 2;                 // Input Byte(s) from Port to String       **
OptCategory[NN_int] = 1;                 // Call to Interrupt Procedure
OptCategory[NN_into] = 1;                // Call to Interrupt Procedure if Overflow Flag = 1
OptCategory[NN_int3] = 1;                // Trap to Debugger
OptCategory[NN_iretw] = 1;               // Interrupt Return
OptCategory[NN_iret] = 1;                // Interrupt Return
OptCategory[NN_iretd] = 1;               // Interrupt Return (use32)
OptCategory[NN_iretq] = 1;               // Interrupt Return (use64)
OptCategory[NN_ja] = 1;                  // Jump if Above (CF=0 & ZF=0)
OptCategory[NN_jae] = 1;                 // Jump if Above or Equal (CF=0)
OptCategory[NN_jb] = 1;                  // Jump if Below (CF=1)
OptCategory[NN_jbe] = 1;                 // Jump if Below or Equal (CF=1 | ZF=1)
OptCategory[NN_jc] = 1;                  // Jump if Carry (CF=1)
OptCategory[NN_jcxz] = 1;                // Jump if CX is 0
OptCategory[NN_jecxz] = 1;               // Jump if ECX is 0
OptCategory[NN_jrcxz] = 1;               // Jump if RCX is 0
OptCategory[NN_je] = 1;                  // Jump if Equal (ZF=1)
OptCategory[NN_jg] = 1;                  // Jump if Greater (ZF=0 & SF=OF)
OptCategory[NN_jge] = 1;                 // Jump if Greater or Equal (SF=OF)
OptCategory[NN_jl] = 1;                  // Jump if Less (SF!=OF)
OptCategory[NN_jle] = 1;                 // Jump if Less or Equal (ZF=1 | SF!=OF)
OptCategory[NN_jna] = 1;                 // Jump if Not Above (CF=1 | ZF=1)
OptCategory[NN_jnae] = 1;                // Jump if Not Above or Equal (CF=1)
OptCategory[NN_jnb] = 1;                 // Jump if Not Below (CF=0)
OptCategory[NN_jnbe] = 1;                // Jump if Not Below or Equal (CF=0 & ZF=0)
OptCategory[NN_jnc] = 1;                 // Jump if Not Carry (CF=0)
OptCategory[NN_jne] = 1;                 // Jump if Not Equal (ZF=0)
OptCategory[NN_jng] = 1;                 // Jump if Not Greater (ZF=1 | SF!=OF)
OptCategory[NN_jnge] = 1;                // Jump if Not Greater or Equal (ZF=1)
OptCategory[NN_jnl] = 1;                 // Jump if Not Less (SF=OF)
OptCategory[NN_jnle] = 1;                // Jump if Not Less or Equal (ZF=0 & SF=OF)
OptCategory[NN_jno] = 1;                 // Jump if Not Overflow (OF=0)
OptCategory[NN_jnp] = 1;                 // Jump if Not Parity (PF=0)
OptCategory[NN_jns] = 1;                 // Jump if Not Sign (SF=0)
OptCategory[NN_jnz] = 1;                 // Jump if Not Zero (ZF=0)
OptCategory[NN_jo] = 1;                  // Jump if Overflow (OF=1)
OptCategory[NN_jp] = 1;                  // Jump if Parity (PF=1)
OptCategory[NN_jpe] = 1;                 // Jump if Parity Even (PF=1)
OptCategory[NN_jpo] = 1;                 // Jump if Parity Odd  (PF=0)
OptCategory[NN_js] = 1;                  // Jump if Sign (SF=1)
OptCategory[NN_jz] = 1;                  // Jump if Zero (ZF=1)
OptCategory[NN_jmp] = 1;                 // Jump
OptCategory[NN_jmpfi] = 1;               // Indirect Far Jump
OptCategory[NN_jmpni] = 1;               // Indirect Near Jump
OptCategory[NN_jmpshort] = 1;            // Jump Short (not used)
OptCategory[NN_lahf] = 2;                // Load Flags into AH Register
OptCategory[NN_lar] = 2;                 // Load Access Rights Byte
OptCategory[NN_lea] = 0;                 // Load Effective Address           **
OptCategory[NN_leavew] = 0;              // High Level Procedure Exit        **
OptCategory[NN_leave] = 0;               // High Level Procedure Exit        **
OptCategory[NN_leaved] = 0;              // High Level Procedure Exit        **
OptCategory[NN_leaveq] = 0;              // High Level Procedure Exit        **
OptCategory[NN_lgdt] = 0;                // Load Global Descriptor Table Register
OptCategory[NN_lidt] = 0;                // Load Interrupt Descriptor Table Register
OptCategory[NN_lgs] = 6;                 // Load Full Pointer to GS:xx
OptCategory[NN_lss] = 6;                 // Load Full Pointer to SS:xx
OptCategory[NN_lds] = 6;                 // Load Full Pointer to DS:xx
OptCategory[NN_les] = 6;                 // Load Full Pointer to ES:xx
OptCategory[NN_lfs] = 6;                 // Load Full Pointer to FS:xx
OptCategory[NN_lldt] = 0;                // Load Local Descriptor Table Register
OptCategory[NN_lmsw] = 1;                // Load Machine Status Word
OptCategory[NN_lock] = 1;                // Assert LOCK# Signal Prefix
OptCategory[NN_lods] = 0;                // Load String
OptCategory[NN_loopw] = 1;               // Loop while ECX != 0
OptCategory[NN_loop] = 1;                // Loop while CX != 0
OptCategory[NN_loopd] = 1;               // Loop while ECX != 0
OptCategory[NN_loopq] = 1;               // Loop while RCX != 0
OptCategory[NN_loopwe] = 1;              // Loop while CX != 0 and ZF=1
OptCategory[NN_loope] = 1;               // Loop while rCX != 0 and ZF=1
OptCategory[NN_loopde] = 1;              // Loop while ECX != 0 and ZF=1
OptCategory[NN_loopqe] = 1;              // Loop while RCX != 0 and ZF=1
OptCategory[NN_loopwne] = 1;             // Loop while CX != 0 and ZF=0
OptCategory[NN_loopne] = 1;              // Loop while rCX != 0 and ZF=0
OptCategory[NN_loopdne] = 1;             // Loop while ECX != 0 and ZF=0
OptCategory[NN_loopqne] = 1;             // Loop while RCX != 0 and ZF=0
OptCategory[NN_lsl] = 6;                 // Load Segment Limit
OptCategory[NN_ltr] = 1;                 // Load Task Register
OptCategory[NN_mov] = 3;                 // Move Data
OptCategory[NN_movsp] = 3;               // Move to/from Special Registers
OptCategory[NN_movs] = 0;                // Move Byte(s) from String to String
OptCategory[NN_movsx] = 3;               // Move with Sign-Extend
OptCategory[NN_movzx] = 3;               // Move with Zero-Extend
OptCategory[NN_mul] = 7;                 // Unsigned Multiplication of AL or AX
OptCategory[NN_neg] = 2;                 // Two's Complement Negation
OptCategory[NN_nop] = 1;                 // No Operation
OptCategory[NN_not] = 2;                 // One's Complement Negation
OptCategory[NN_or] = 0;                  // Logical Inclusive OR
OptCategory[NN_out] = 0;                 // Output to Port
OptCategory[NN_outs] = 0;                // Output Byte(s) to Port
OptCategory[NN_pop] = 0;                 // Pop a word from the Stack
OptCategory[NN_popaw] = 0;               // Pop all General Registers
OptCategory[NN_popa] = 0;                // Pop all General Registers
OptCategory[NN_popad] = 0;               // Pop all General Registers (use32)
OptCategory[NN_popaq] = 0;               // Pop all General Registers (use64)
OptCategory[NN_popfw] = 1;               // Pop Stack into Flags Register         **
OptCategory[NN_popf] = 1;                // Pop Stack into Flags Register         **
OptCategory[NN_popfd] = 1;               // Pop Stack into Eflags Register        **
OptCategory[NN_popfq] = 1;               // Pop Stack into Rflags Register        **
OptCategory[NN_push] = 0;                // Push Operand onto the Stack
OptCategory[NN_pushaw] = 0;              // Push all General Registers
OptCategory[NN_pusha] = 0;               // Push all General Registers
OptCategory[NN_pushad] = 0;              // Push all General Registers (use32)
OptCategory[NN_pushaq] = 0;              // Push all General Registers (use64)
OptCategory[NN_pushfw] = 0;              // Push Flags Register onto the Stack
OptCategory[NN_pushf] = 0;               // Push Flags Register onto the Stack
OptCategory[NN_pushfd] = 0;              // Push Flags Register onto the Stack (use32)
OptCategory[NN_pushfq] = 0;              // Push Flags Register onto the Stack (use64)
OptCategory[NN_rcl] = 2;                 // Rotate Through Carry Left
OptCategory[NN_rcr] = 2;                 // Rotate Through Carry Right
OptCategory[NN_rol] = 2;                 // Rotate Left
OptCategory[NN_ror] = 2;                 // Rotate Right
OptCategory[NN_rep] = 0;                 // Repeat String Operation
OptCategory[NN_repe] = 0;                // Repeat String Operation while ZF=1
OptCategory[NN_repne] = 0;               // Repeat String Operation while ZF=0
OptCategory[NN_retn] = 0;                // Return Near from Procedure
OptCategory[NN_retf] = 0;                // Return Far from Procedure
OptCategory[NN_sahf] = 1;                // Store AH into Flags Register
OptCategory[NN_sal] = 2;                 // Shift Arithmetic Left
OptCategory[NN_sar] = 2;                 // Shift Arithmetic Right
OptCategory[NN_shl] = 2;                 // Shift Logical Left
OptCategory[NN_shr] = 2;                 // Shift Logical Right
OptCategory[NN_sbb] = 5;                 // Integer Subtraction with Borrow
OptCategory[NN_scas] = 1;                // Compare String
OptCategory[NN_seta] = 2;                // Set Byte if Above (CF=0 & ZF=0)
OptCategory[NN_setae] = 2;               // Set Byte if Above or Equal (CF=0)
OptCategory[NN_setb] = 2;                // Set Byte if Below (CF=1)
OptCategory[NN_setbe] = 2;               // Set Byte if Below or Equal (CF=1 | ZF=1)
OptCategory[NN_setc] = 2;                // Set Byte if Carry (CF=1)
OptCategory[NN_sete] = 2;                // Set Byte if Equal (ZF=1)
OptCategory[NN_setg] = 2;                // Set Byte if Greater (ZF=0 & SF=OF)
OptCategory[NN_setge] = 2;               // Set Byte if Greater or Equal (SF=OF)
OptCategory[NN_setl] = 2;                // Set Byte if Less (SF!=OF)
OptCategory[NN_setle] = 2;               // Set Byte if Less or Equal (ZF=1 | SF!=OF)
OptCategory[NN_setna] = 2;               // Set Byte if Not Above (CF=1 | ZF=1)
OptCategory[NN_setnae] = 2;              // Set Byte if Not Above or Equal (CF=1)
OptCategory[NN_setnb] = 2;               // Set Byte if Not Below (CF=0)
OptCategory[NN_setnbe] = 2;              // Set Byte if Not Below or Equal (CF=0 & ZF=0)
OptCategory[NN_setnc] = 2;               // Set Byte if Not Carry (CF=0)
OptCategory[NN_setne] = 2;               // Set Byte if Not Equal (ZF=0)
OptCategory[NN_setng] = 2;               // Set Byte if Not Greater (ZF=1 | SF!=OF)
OptCategory[NN_setnge] = 2;              // Set Byte if Not Greater or Equal (ZF=1)
OptCategory[NN_setnl] = 2;               // Set Byte if Not Less (SF=OF)
OptCategory[NN_setnle] = 2;              // Set Byte if Not Less or Equal (ZF=0 & SF=OF)
OptCategory[NN_setno] = 2;               // Set Byte if Not Overflow (OF=0)
OptCategory[NN_setnp] = 2;               // Set Byte if Not Parity (PF=0)
OptCategory[NN_setns] = 2;               // Set Byte if Not Sign (SF=0)
OptCategory[NN_setnz] = 2;               // Set Byte if Not Zero (ZF=0)
OptCategory[NN_seto] = 2;                // Set Byte if Overflow (OF=1)
OptCategory[NN_setp] = 2;                // Set Byte if Parity (PF=1)
OptCategory[NN_setpe] = 2;               // Set Byte if Parity Even (PF=1)
OptCategory[NN_setpo] = 2;               // Set Byte if Parity Odd  (PF=0)
OptCategory[NN_sets] = 2;                // Set Byte if Sign (SF=1)
OptCategory[NN_setz] = 2;                // Set Byte if Zero (ZF=1)
OptCategory[NN_sgdt] = 0;                // Store Global Descriptor Table Register
OptCategory[NN_sidt] = 0;                // Store Interrupt Descriptor Table Register
OptCategory[NN_shld] = 2;                // Double Precision Shift Left
OptCategory[NN_shrd] = 2;                // Double Precision Shift Right
OptCategory[NN_sldt] = 6;                // Store Local Descriptor Table Register
OptCategory[NN_smsw] = 2;                // Store Machine Status Word
OptCategory[NN_stc] = 1;                 // Set Carry Flag
OptCategory[NN_std] = 1;                 // Set Direction Flag
OptCategory[NN_sti] = 1;                 // Set Interrupt Flag
OptCategory[NN_stos] = 0;                // Store String
OptCategory[NN_str] = 6;                 // Store Task Register
OptCategory[NN_sub] = 5;                 // Integer Subtraction
OptCategory[NN_test] = 1;                // Logical Compare
OptCategory[NN_verr] = 1;                // Verify a Segment for Reading
OptCategory[NN_verw] = 1;                // Verify a Segment for Writing
OptCategory[NN_wait] = 1;                // Wait until BUSY# Pin is Inactive (HIGH)
OptCategory[NN_xchg] = 0;                // Exchange Register/Memory with Register
OptCategory[NN_xlat] = 0;                // Table Lookup Translation
OptCategory[NN_xor] = 2;                 // Logical Exclusive OR

//
//      486 instructions
//

OptCategory[NN_cmpxchg] = 0;             // Compare and Exchange
OptCategory[NN_bswap] = 1;               // Swap bytes in register
OptCategory[NN_xadd] = 0;                // t<-dest; dest<-src+dest; src<-t
OptCategory[NN_invd] = 1;                // Invalidate Data Cache
OptCategory[NN_wbinvd] = 1;              // Invalidate Data Cache (write changes)
OptCategory[NN_invlpg] = 1;              // Invalidate TLB entry

//
//      Pentium instructions
//

OptCategory[NN_rdmsr] = 8;               // Read Machine Status Register
OptCategory[NN_wrmsr] = 1;               // Write Machine Status Register
OptCategory[NN_cpuid] = 8;               // Get CPU ID
OptCategory[NN_cmpxchg8b] = 0;           // Compare and Exchange Eight Bytes
OptCategory[NN_rdtsc] = 8;               // Read Time Stamp Counter
OptCategory[NN_rsm] = 1;                 // Resume from System Management Mode

//
//      Pentium Pro instructions
//

OptCategory[NN_cmova] = 0;               // Move if Above (CF=0 & ZF=0)
OptCategory[NN_cmovb] = 0;               // Move if Below (CF=1)
OptCategory[NN_cmovbe] = 0;              // Move if Below or Equal (CF=1 | ZF=1)
OptCategory[NN_cmovg] = 0;               // Move if Greater (ZF=0 & SF=OF)
OptCategory[NN_cmovge] = 0;              // Move if Greater or Equal (SF=OF)
OptCategory[NN_cmovl] = 0;               // Move if Less (SF!=OF)
OptCategory[NN_cmovle] = 0;              // Move if Less or Equal (ZF=1 | SF!=OF)
OptCategory[NN_cmovnb] = 0;              // Move if Not Below (CF=0)
OptCategory[NN_cmovno] = 0;              // Move if Not Overflow (OF=0)
OptCategory[NN_cmovnp] = 0;              // Move if Not Parity (PF=0)
OptCategory[NN_cmovns] = 0;              // Move if Not Sign (SF=0)
OptCategory[NN_cmovnz] = 0;              // Move if Not Zero (ZF=0)
OptCategory[NN_cmovo] = 0;               // Move if Overflow (OF=1)
OptCategory[NN_cmovp] = 0;               // Move if Parity (PF=1)
OptCategory[NN_cmovs] = 0;               // Move if Sign (SF=1)
OptCategory[NN_cmovz] = 0;               // Move if Zero (ZF=1)
OptCategory[NN_fcmovb] = 1;              // Floating Move if Below          
OptCategory[NN_fcmove] = 1;              // Floating Move if Equal          
OptCategory[NN_fcmovbe] = 1;             // Floating Move if Below or Equal 
OptCategory[NN_fcmovu] = 1;              // Floating Move if Unordered      
OptCategory[NN_fcmovnb] = 1;             // Floating Move if Not Below      
OptCategory[NN_fcmovne] = 1;             // Floating Move if Not Equal      
OptCategory[NN_fcmovnbe] = 1;            // Floating Move if Not Below or Equal
OptCategory[NN_fcmovnu] = 1;             // Floating Move if Not Unordered     
OptCategory[NN_fcomi] = 1;               // FP Compare, result in EFLAGS
OptCategory[NN_fucomi] = 1;              // FP Unordered Compare, result in EFLAGS
OptCategory[NN_fcomip] = 1;              // FP Compare, result in EFLAGS, pop stack
OptCategory[NN_fucomip] = 1;             // FP Unordered Compare, result in EFLAGS, pop stack
OptCategory[NN_rdpmc] = 8;               // Read Performance Monitor Counter

//
//      FPP instructuions
//

OptCategory[NN_fld] = 1;                 // Load Real             ** Infer src is 'n'
OptCategory[NN_fst] = 9;                 // Store Real            
OptCategory[NN_fstp] = 9;                // Store Real and Pop   
OptCategory[NN_fxch] = 1;                // Exchange Registers
OptCategory[NN_fild] = 1;                // Load Integer          ** Infer src is 'n'
OptCategory[NN_fist] = 0;                // Store Integer
OptCategory[NN_fistp] = 0;               // Store Integer and Pop
OptCategory[NN_fbld] = 1;                // Load BCD
OptCategory[NN_fbstp] = 1;               // Store BCD and Pop
OptCategory[NN_fadd] = 1;                // Add Real
OptCategory[NN_faddp] = 1;               // Add Real and Pop
OptCategory[NN_fiadd] = 1;               // Add Integer
OptCategory[NN_fsub] = 1;                // Subtract Real
OptCategory[NN_fsubp] = 1;               // Subtract Real and Pop
OptCategory[NN_fisub] = 1;               // Subtract Integer
OptCategory[NN_fsubr] = 1;               // Subtract Real Reversed
OptCategory[NN_fsubrp] = 1;              // Subtract Real Reversed and Pop
OptCategory[NN_fisubr] = 1;              // Subtract Integer Reversed
OptCategory[NN_fmul] = 1;                // Multiply Real
OptCategory[NN_fmulp] = 1;               // Multiply Real and Pop
OptCategory[NN_fimul] = 1;               // Multiply Integer
OptCategory[NN_fdiv] = 1;                // Divide Real
OptCategory[NN_fdivp] = 1;               // Divide Real and Pop
OptCategory[NN_fidiv] = 1;               // Divide Integer
OptCategory[NN_fdivr] = 1;               // Divide Real Reversed
OptCategory[NN_fdivrp] = 1;              // Divide Real Reversed and Pop
OptCategory[NN_fidivr] = 1;              // Divide Integer Reversed
OptCategory[NN_fsqrt] = 1;               // Square Root
OptCategory[NN_fscale] = 1;              // Scale:  st(0) <- st(0) * 2^st(1)
OptCategory[NN_fprem] = 1;               // Partial Remainder
OptCategory[NN_frndint] = 1;             // Round to Integer
OptCategory[NN_fxtract] = 1;             // Extract exponent and significand
OptCategory[NN_fabs] = 1;                // Absolute value
OptCategory[NN_fchs] = 1;                // Change Sign
OptCategory[NN_fcom] = 1;                // Compare Real
OptCategory[NN_fcomp] = 1;               // Compare Real and Pop
OptCategory[NN_fcompp] = 1;              // Compare Real and Pop Twice
OptCategory[NN_ficom] = 1;               // Compare Integer
OptCategory[NN_ficomp] = 1;              // Compare Integer and Pop
OptCategory[NN_ftst] = 1;                // Test
OptCategory[NN_fxam] = 1;                // Examine
OptCategory[NN_fptan] = 1;               // Partial tangent
OptCategory[NN_fpatan] = 1;              // Partial arctangent
OptCategory[NN_f2xm1] = 1;               // 2^x - 1
OptCategory[NN_fyl2x] = 1;               // Y * lg2(X)
OptCategory[NN_fyl2xp1] = 1;             // Y * lg2(X+1)
OptCategory[NN_fldz] = 1;                // Load +0.0
OptCategory[NN_fld1] = 1;                // Load +1.0
OptCategory[NN_fldpi] = 1;               // Load PI=3.14...
OptCategory[NN_fldl2t] = 1;              // Load lg2(10)
OptCategory[NN_fldl2e] = 1;              // Load lg2(e)
OptCategory[NN_fldlg2] = 1;              // Load lg10(2)
OptCategory[NN_fldln2] = 1;              // Load ln(2)
OptCategory[NN_finit] = 1;               // Initialize Processor
OptCategory[NN_fninit] = 1;              // Initialize Processor (no wait)
OptCategory[NN_fsetpm] = 1;              // Set Protected Mode
OptCategory[NN_fldcw] = 1;               // Load Control Word
OptCategory[NN_fstcw] = 0;               // Store Control Word
OptCategory[NN_fnstcw] = 0;              // Store Control Word (no wait)
OptCategory[NN_fstsw] = 2;               // Store Status Word to memory or AX
OptCategory[NN_fnstsw] = 2;              // Store Status Word (no wait) to memory or AX
OptCategory[NN_fclex] = 1;               // Clear Exceptions
OptCategory[NN_fnclex] = 1;              // Clear Exceptions (no wait)
OptCategory[NN_fstenv] = 0;              // Store Environment
OptCategory[NN_fnstenv] = 0;             // Store Environment (no wait)
OptCategory[NN_fldenv] = 1;              // Load Environment
OptCategory[NN_fsave] = 0;               // Save State
OptCategory[NN_fnsave] = 0;              // Save State (no wait)
OptCategory[NN_frstor] = 1;              // Restore State    **  infer src is 'n'
OptCategory[NN_fincstp] = 1;             // Increment Stack Pointer
OptCategory[NN_fdecstp] = 1;             // Decrement Stack Pointer
OptCategory[NN_ffree] = 1;               // Free Register
OptCategory[NN_fnop] = 1;                // No Operation
OptCategory[NN_feni] = 1;                // (8087 only)
OptCategory[NN_fneni] = 1;               // (no wait) (8087 only)
OptCategory[NN_fdisi] = 1;               // (8087 only)
OptCategory[NN_fndisi] = 1;              // (no wait) (8087 only)

//
//      80387 instructions
//

OptCategory[NN_fprem1] = 1;              // Partial Remainder ( < half )
OptCategory[NN_fsincos] = 1;             // t<-cos(st); st<-sin(st); push t
OptCategory[NN_fsin] = 1;                // Sine
OptCategory[NN_fcos] = 1;                // Cosine
OptCategory[NN_fucom] = 1;               // Compare Unordered Real
OptCategory[NN_fucomp] = 1;              // Compare Unordered Real and Pop
OptCategory[NN_fucompp] = 1;             // Compare Unordered Real and Pop Twice

//
//      Instructions added 28.02.96
//

OptCategory[NN_setalc] = 2;              // Set AL to Carry Flag     **
OptCategory[NN_svdc] = 0;                // Save Register and Descriptor
OptCategory[NN_rsdc] = 0;                // Restore Register and Descriptor
OptCategory[NN_svldt] = 0;               // Save LDTR and Descriptor
OptCategory[NN_rsldt] = 0;               // Restore LDTR and Descriptor
OptCategory[NN_svts] = 1;                // Save TR and Descriptor
OptCategory[NN_rsts] = 1;                // Restore TR and Descriptor
OptCategory[NN_icebp] = 1;               // ICE Break Point
OptCategory[NN_loadall] = 0;             // Load the entire CPU state from ES:EDI

//
//      MMX instructions
//

OptCategory[NN_emms] = 1;                // Empty MMX state
OptCategory[NN_movd] = 9;                // Move 32 bits
OptCategory[NN_movq] = 9;                // Move 64 bits
OptCategory[NN_packsswb] = 1;            // Pack with Signed Saturation (Word->Byte)
OptCategory[NN_packssdw] = 1;            // Pack with Signed Saturation (Dword->Word)
OptCategory[NN_packuswb] = 1;            // Pack with Unsigned Saturation (Word->Byte)
OptCategory[NN_paddb] = 1;               // Packed Add Byte
OptCategory[NN_paddw] = 1;               // Packed Add Word
OptCategory[NN_paddd] = 1;               // Packed Add Dword
OptCategory[NN_paddsb] = 1;              // Packed Add with Saturation (Byte)
OptCategory[NN_paddsw] = 1;              // Packed Add with Saturation (Word)
OptCategory[NN_paddusb] = 1;             // Packed Add Unsigned with Saturation (Byte)
OptCategory[NN_paddusw] = 1;             // Packed Add Unsigned with Saturation (Word)
OptCategory[NN_pand] = 1;                // Bitwise Logical And
OptCategory[NN_pandn] = 1;               // Bitwise Logical And Not
OptCategory[NN_pcmpeqb] = 1;             // Packed Compare for Equal (Byte)
OptCategory[NN_pcmpeqw] = 1;             // Packed Compare for Equal (Word)
OptCategory[NN_pcmpeqd] = 1;             // Packed Compare for Equal (Dword)
OptCategory[NN_pcmpgtb] = 1;             // Packed Compare for Greater Than (Byte)
OptCategory[NN_pcmpgtw] = 1;             // Packed Compare for Greater Than (Word)
OptCategory[NN_pcmpgtd] = 1;             // Packed Compare for Greater Than (Dword)
OptCategory[NN_pmaddwd] = 1;             // Packed Multiply and Add
OptCategory[NN_pmulhw] = 1;              // Packed Multiply High
OptCategory[NN_pmullw] = 1;              // Packed Multiply Low
OptCategory[NN_por] = 1;                 // Bitwise Logical Or
OptCategory[NN_psllw] = 1;               // Packed Shift Left Logical (Word)
OptCategory[NN_pslld] = 1;               // Packed Shift Left Logical (Dword)
OptCategory[NN_psllq] = 1;               // Packed Shift Left Logical (Qword)
OptCategory[NN_psraw] = 1;               // Packed Shift Right Arithmetic (Word)
OptCategory[NN_psrad] = 1;               // Packed Shift Right Arithmetic (Dword)
OptCategory[NN_psrlw] = 1;               // Packed Shift Right Logical (Word)
OptCategory[NN_psrld] = 1;               // Packed Shift Right Logical (Dword)
OptCategory[NN_psrlq] = 1;               // Packed Shift Right Logical (Qword)
OptCategory[NN_psubb] = 1;               // Packed Subtract Byte
OptCategory[NN_psubw] = 1;               // Packed Subtract Word
OptCategory[NN_psubd] = 1;               // Packed Subtract Dword
OptCategory[NN_psubsb] = 1;              // Packed Subtract with Saturation (Byte)
OptCategory[NN_psubsw] = 1;              // Packed Subtract with Saturation (Word)
OptCategory[NN_psubusb] = 1;             // Packed Subtract Unsigned with Saturation (Byte)
OptCategory[NN_psubusw] = 1;             // Packed Subtract Unsigned with Saturation (Word)
OptCategory[NN_punpckhbw] = 1;           // Unpack High Packed Data (Byte->Word)
OptCategory[NN_punpckhwd] = 1;           // Unpack High Packed Data (Word->Dword)
OptCategory[NN_punpckhdq] = 1;           // Unpack High Packed Data (Dword->Qword)
OptCategory[NN_punpcklbw] = 1;           // Unpack Low Packed Data (Byte->Word)
OptCategory[NN_punpcklwd] = 1;           // Unpack Low Packed Data (Word->Dword)
OptCategory[NN_punpckldq] = 1;           // Unpack Low Packed Data (Dword->Qword)
OptCategory[NN_pxor] = 1;                // Bitwise Logical Exclusive Or

//
//      Undocumented Deschutes processor instructions
//

OptCategory[NN_fxsave] = 1;              // Fast save FP context            ** to where?
OptCategory[NN_fxrstor] = 1;             // Fast restore FP context         ** from where?

//      Pentium II instructions

OptCategory[NN_sysenter] = 1;            // Fast Transition to System Call Entry Point
OptCategory[NN_sysexit] = 1;             // Fast Transition from System Call Entry Point

//      3DNow! instructions

OptCategory[NN_pavgusb] = 1;             // Packed 8-bit Unsigned Integer Averaging
OptCategory[NN_pfadd] = 1;               // Packed Floating-Point Addition
OptCategory[NN_pfsub] = 1;               // Packed Floating-Point Subtraction
OptCategory[NN_pfsubr] = 1;              // Packed Floating-Point Reverse Subtraction
OptCategory[NN_pfacc] = 1;               // Packed Floating-Point Accumulate
OptCategory[NN_pfcmpge] = 1;             // Packed Floating-Point Comparison, Greater or Equal
OptCategory[NN_pfcmpgt] = 1;             // Packed Floating-Point Comparison, Greater
OptCategory[NN_pfcmpeq] = 1;             // Packed Floating-Point Comparison, Equal
OptCategory[NN_pfmin] = 1;               // Packed Floating-Point Minimum
OptCategory[NN_pfmax] = 1;               // Packed Floating-Point Maximum
OptCategory[NN_pi2fd] = 1;               // Packed 32-bit Integer to Floating-Point
OptCategory[NN_pf2id] = 1;               // Packed Floating-Point to 32-bit Integer
OptCategory[NN_pfrcp] = 1;               // Packed Floating-Point Reciprocal Approximation
OptCategory[NN_pfrsqrt] = 1;             // Packed Floating-Point Reciprocal Square Root Approximation
OptCategory[NN_pfmul] = 1;               // Packed Floating-Point Multiplication
OptCategory[NN_pfrcpit1] = 1;            // Packed Floating-Point Reciprocal First Iteration Step
OptCategory[NN_pfrsqit1] = 1;            // Packed Floating-Point Reciprocal Square Root First Iteration Step
OptCategory[NN_pfrcpit2] = 1;            // Packed Floating-Point Reciprocal Second Iteration Step
OptCategory[NN_pmulhrw] = 1;             // Packed Floating-Point 16-bit Integer Multiply with rounding
OptCategory[NN_femms] = 1;               // Faster entry/exit of the MMX or floating-point state
OptCategory[NN_prefetch] = 1;            // Prefetch at least a 32-byte line into L1 data cache
OptCategory[NN_prefetchw] = 1;           // Prefetch processor cache line into L1 data cache (mark as modified)


//      Pentium III instructions

OptCategory[NN_addps] = 1;               // Packed Single-FP Add
OptCategory[NN_addss] = 1;               // Scalar Single-FP Add
OptCategory[NN_andnps] = 1;              // Bitwise Logical And Not for Single-FP
OptCategory[NN_andps] = 1;               // Bitwise Logical And for Single-FP
OptCategory[NN_cmpps] = 1;               // Packed Single-FP Compare
OptCategory[NN_cmpss] = 1;               // Scalar Single-FP Compare
OptCategory[NN_comiss] = 1;              // Scalar Ordered Single-FP Compare and Set EFLAGS
OptCategory[NN_cvtpi2ps] = 1;            // Packed signed INT32 to Packed Single-FP conversion
OptCategory[NN_cvtps2pi] = 1;            // Packed Single-FP to Packed INT32 conversion
OptCategory[NN_cvtsi2ss] = 1;            // Scalar signed INT32 to Single-FP conversion
OptCategory[NN_cvtss2si] = 2;            // Scalar Single-FP to signed INT32 conversion
OptCategory[NN_cvttps2pi] = 1;           // Packed Single-FP to Packed INT32 conversion (truncate)
OptCategory[NN_cvttss2si] = 2;           // Scalar Single-FP to signed INT32 conversion (truncate)
OptCategory[NN_divps] = 1;               // Packed Single-FP Divide
OptCategory[NN_divss] = 1;               // Scalar Single-FP Divide
OptCategory[NN_ldmxcsr] = 1;             // Load Streaming SIMD Extensions Technology Control/Status Register
OptCategory[NN_maxps] = 1;               // Packed Single-FP Maximum
OptCategory[NN_maxss] = 1;               // Scalar Single-FP Maximum
OptCategory[NN_minps] = 1;               // Packed Single-FP Minimum
OptCategory[NN_minss] = 1;               // Scalar Single-FP Minimum
OptCategory[NN_movaps] = 9;              // Move Aligned Four Packed Single-FP  ** infer memsrc 'n'?
OptCategory[NN_movhlps] = 1;             // Move High to Low Packed Single-FP
OptCategory[NN_movhps] = 1;              // Move High Packed Single-FP
OptCategory[NN_movlhps] = 1;             // Move Low to High Packed Single-FP
OptCategory[NN_movlps] = 1;              // Move Low Packed Single-FP
OptCategory[NN_movmskps] = 1;            // Move Mask to Register
OptCategory[NN_movss] = 9;               // Move Scalar Single-FP
OptCategory[NN_movups] = 9;              // Move Unaligned Four Packed Single-FP
OptCategory[NN_mulps] = 1;               // Packed Single-FP Multiply
OptCategory[NN_mulss] = 1;               // Scalar Single-FP Multiply
OptCategory[NN_orps] = 1;                // Bitwise Logical OR for Single-FP Data
OptCategory[NN_rcpps] = 1;               // Packed Single-FP Reciprocal
OptCategory[NN_rcpss] = 1;               // Scalar Single-FP Reciprocal
OptCategory[NN_rsqrtps] = 1;             // Packed Single-FP Square Root Reciprocal
OptCategory[NN_rsqrtss] = 1;             // Scalar Single-FP Square Root Reciprocal
OptCategory[NN_shufps] = 1;              // Shuffle Single-FP
OptCategory[NN_sqrtps] = 1;              // Packed Single-FP Square Root
OptCategory[NN_sqrtss] = 1;              // Scalar Single-FP Square Root
OptCategory[NN_stmxcsr] = 0;             // Store Streaming SIMD Extensions Technology Control/Status Register    ** Infer dest is 'n'
OptCategory[NN_subps] = 1;               // Packed Single-FP Subtract
OptCategory[NN_subss] = 1;               // Scalar Single-FP Subtract
OptCategory[NN_ucomiss] = 1;             // Scalar Unordered Single-FP Compare and Set EFLAGS
OptCategory[NN_unpckhps] = 1;            // Unpack High Packed Single-FP Data
OptCategory[NN_unpcklps] = 1;            // Unpack Low Packed Single-FP Data
OptCategory[NN_xorps] = 1;               // Bitwise Logical XOR for Single-FP Data
OptCategory[NN_pavgb] = 1;               // Packed Average (Byte)
OptCategory[NN_pavgw] = 1;               // Packed Average (Word)
OptCategory[NN_pextrw] = 2;              // Extract Word
OptCategory[NN_pinsrw] = 1;              // Insert Word
OptCategory[NN_pmaxsw] = 1;              // Packed Signed Integer Word Maximum
OptCategory[NN_pmaxub] = 1;              // Packed Unsigned Integer Byte Maximum
OptCategory[NN_pminsw] = 1;              // Packed Signed Integer Word Minimum
OptCategory[NN_pminub] = 1;              // Packed Unsigned Integer Byte Minimum
OptCategory[NN_pmovmskb] = 1;            // Move Byte Mask to Integer
OptCategory[NN_pmulhuw] = 1;             // Packed Multiply High Unsigned
OptCategory[NN_psadbw] = 1;              // Packed Sum of Absolute Differences
OptCategory[NN_pshufw] = 1;              // Packed Shuffle Word
OptCategory[NN_maskmovq] = 0;            // Byte Mask write   ** Infer dest is 'n'
OptCategory[NN_movntps] = 0;             // Move Aligned Four Packed Single-FP Non Temporal  * infer dest is 'n'
OptCategory[NN_movntq] = 0;              // Move 64 Bits Non Temporal    ** Infer dest is 'n'
OptCategory[NN_prefetcht0] = 1;          // Prefetch to all cache levels
OptCategory[NN_prefetcht1] = 1;          // Prefetch to all cache levels
OptCategory[NN_prefetcht2] = 1;          // Prefetch to L2 cache
OptCategory[NN_prefetchnta] = 1;         // Prefetch to L1 cache
OptCategory[NN_sfence] = 1;              // Store Fence

// Pentium III Pseudo instructions

OptCategory[NN_cmpeqps] = 1;             // Packed Single-FP Compare EQ
OptCategory[NN_cmpltps] = 1;             // Packed Single-FP Compare LT
OptCategory[NN_cmpleps] = 1;             // Packed Single-FP Compare LE
OptCategory[NN_cmpunordps] = 1;          // Packed Single-FP Compare UNORD
OptCategory[NN_cmpneqps] = 1;            // Packed Single-FP Compare NOT EQ
OptCategory[NN_cmpnltps] = 1;            // Packed Single-FP Compare NOT LT
OptCategory[NN_cmpnleps] = 1;            // Packed Single-FP Compare NOT LE
OptCategory[NN_cmpordps] = 1;            // Packed Single-FP Compare ORDERED
OptCategory[NN_cmpeqss] = 1;             // Scalar Single-FP Compare EQ
OptCategory[NN_cmpltss] = 1;             // Scalar Single-FP Compare LT
OptCategory[NN_cmpless] = 1;             // Scalar Single-FP Compare LE
OptCategory[NN_cmpunordss] = 1;          // Scalar Single-FP Compare UNORD
OptCategory[NN_cmpneqss] = 1;            // Scalar Single-FP Compare NOT EQ
OptCategory[NN_cmpnltss] = 1;            // Scalar Single-FP Compare NOT LT
OptCategory[NN_cmpnless] = 1;            // Scalar Single-FP Compare NOT LE
OptCategory[NN_cmpordss] = 1;            // Scalar Single-FP Compare ORDERED

// AMD K7 instructions

// Revisit AMD if we port to it.
OptCategory[NN_pf2iw] = 0;               // Packed Floating-Point to Integer with Sign Extend
OptCategory[NN_pfnacc] = 0;              // Packed Floating-Point Negative Accumulate
OptCategory[NN_pfpnacc] = 0;             // Packed Floating-Point Mixed Positive-Negative Accumulate
OptCategory[NN_pi2fw] = 0;               // Packed 16-bit Integer to Floating-Point
OptCategory[NN_pswapd] = 0;              // Packed Swap Double Word

// Undocumented FP instructions (thanks to norbert.juffa@adm.com)

OptCategory[NN_fstp1] = 9;               // Alias of Store Real and Pop
OptCategory[NN_fcom2] = 1;               // Alias of Compare Real
OptCategory[NN_fcomp3] = 1;              // Alias of Compare Real and Pop
OptCategory[NN_fxch4] = 1;               // Alias of Exchange Registers
OptCategory[NN_fcomp5] = 1;              // Alias of Compare Real and Pop
OptCategory[NN_ffreep] = 1;              // Free Register and Pop
OptCategory[NN_fxch7] = 1;               // Alias of Exchange Registers
OptCategory[NN_fstp8] = 9;               // Alias of Store Real and Pop
OptCategory[NN_fstp9] = 9;               // Alias of Store Real and Pop

// Pentium 4 instructions

OptCategory[NN_addpd] = 1;               // Add Packed Double-Precision Floating-Point Values
OptCategory[NN_addsd] = 1;               // Add Scalar Double-Precision Floating-Point Values
OptCategory[NN_andnpd] = 1;              // Bitwise Logical AND NOT of Packed Double-Precision Floating-Point Values
OptCategory[NN_andpd] = 1;               // Bitwise Logical AND of Packed Double-Precision Floating-Point Values
OptCategory[NN_clflush] = 1;             // Flush Cache Line
OptCategory[NN_cmppd] = 1;               // Compare Packed Double-Precision Floating-Point Values
OptCategory[NN_cmpsd] = 1;               // Compare Scalar Double-Precision Floating-Point Values
OptCategory[NN_comisd] = 1;              // Compare Scalar Ordered Double-Precision Floating-Point Values and Set EFLAGS
OptCategory[NN_cvtdq2pd] = 1;            // Convert Packed Doubleword Integers to Packed Single-Precision Floating-Point Values
OptCategory[NN_cvtdq2ps] = 1;            // Convert Packed Doubleword Integers to Packed Double-Precision Floating-Point Values
OptCategory[NN_cvtpd2dq] = 1;            // Convert Packed Double-Precision Floating-Point Values to Packed Doubleword Integers
OptCategory[NN_cvtpd2pi] = 1;            // Convert Packed Double-Precision Floating-Point Values to Packed Doubleword Integers
OptCategory[NN_cvtpd2ps] = 1;            // Convert Packed Double-Precision Floating-Point Values to Packed Single-Precision Floating-Point Values
OptCategory[NN_cvtpi2pd] = 1;            // Convert Packed Doubleword Integers to Packed Double-Precision Floating-Point Values
OptCategory[NN_cvtps2dq] = 1;            // Convert Packed Single-Precision Floating-Point Values to Packed Doubleword Integers
OptCategory[NN_cvtps2pd] = 1;            // Convert Packed Single-Precision Floating-Point Values to Packed Double-Precision Floating-Point Values
OptCategory[NN_cvtsd2si] = 2;            // Convert Scalar Double-Precision Floating-Point Value to Doubleword Integer
OptCategory[NN_cvtsd2ss] = 1;            // Convert Scalar Double-Precision Floating-Point Value to Scalar Single-Precision Floating-Point Value
OptCategory[NN_cvtsi2sd] = 1;            // Convert Doubleword Integer to Scalar Double-Precision Floating-Point Value
OptCategory[NN_cvtss2sd] = 1;            // Convert Scalar Single-Precision Floating-Point Value to Scalar Double-Precision Floating-Point Value
OptCategory[NN_cvttpd2dq] = 1;           // Convert With Truncation Packed Double-Precision Floating-Point Values to Packed Doubleword Integers
OptCategory[NN_cvttpd2pi] = 1;           // Convert with Truncation Packed Double-Precision Floating-Point Values to Packed Doubleword Integers
OptCategory[NN_cvttps2dq] = 1;           // Convert With Truncation Packed Single-Precision Floating-Point Values to Packed Doubleword Integers
OptCategory[NN_cvttsd2si] = 2;           // Convert with Truncation Scalar Double-Precision Floating-Point Value to Doubleword Integer
OptCategory[NN_divpd] = 1;               // Divide Packed Double-Precision Floating-Point Values
OptCategory[NN_divsd] = 1;               // Divide Scalar Double-Precision Floating-Point Values
OptCategory[NN_lfence] = 1;              // Load Fence
OptCategory[NN_maskmovdqu] = 0;          // Store Selected Bytes of Double Quadword  ** Infer dest is 'n'
OptCategory[NN_maxpd] = 1;               // Return Maximum Packed Double-Precision Floating-Point Values
OptCategory[NN_maxsd] = 1;               // Return Maximum Scalar Double-Precision Floating-Point Value
OptCategory[NN_mfence] = 1;              // Memory Fence
OptCategory[NN_minpd] = 1;               // Return Minimum Packed Double-Precision Floating-Point Values
OptCategory[NN_minsd] = 1;               // Return Minimum Scalar Double-Precision Floating-Point Value
OptCategory[NN_movapd] = 9;              // Move Aligned Packed Double-Precision Floating-Point Values  ** Infer dest is 'n'
OptCategory[NN_movdq2q] = 1;             // Move Quadword from XMM to MMX Register
OptCategory[NN_movdqa] = 9;              // Move Aligned Double Quadword  ** Infer dest is 'n'
OptCategory[NN_movdqu] = 9;              // Move Unaligned Double Quadword  ** Infer dest is 'n'
OptCategory[NN_movhpd] = 9;              // Move High Packed Double-Precision Floating-Point Values  ** Infer dest is 'n'
OptCategory[NN_movlpd] = 9;              // Move Low Packed Double-Precision Floating-Point Values  ** Infer dest is 'n'
OptCategory[NN_movmskpd] = 2;            // Extract Packed Double-Precision Floating-Point Sign Mask
OptCategory[NN_movntdq] = 0;             // Store Double Quadword Using Non-Temporal Hint
OptCategory[NN_movnti] = 0;              // Store Doubleword Using Non-Temporal Hint
OptCategory[NN_movntpd] = 0;             // Store Packed Double-Precision Floating-Point Values Using Non-Temporal Hint
OptCategory[NN_movq2dq] = 1;             // Move Quadword from MMX to XMM Register
OptCategory[NN_movsd] = 9;               // Move Scalar Double-Precision Floating-Point Values
OptCategory[NN_movupd] = 9;              // Move Unaligned Packed Double-Precision Floating-Point Values
OptCategory[NN_mulpd] = 1;               // Multiply Packed Double-Precision Floating-Point Values
OptCategory[NN_mulsd] = 1;               // Multiply Scalar Double-Precision Floating-Point Values
OptCategory[NN_orpd] = 1;                // Bitwise Logical OR of Double-Precision Floating-Point Values
OptCategory[NN_paddq] = 1;               // Add Packed Quadword Integers
OptCategory[NN_pause] = 1;               // Spin Loop Hint
OptCategory[NN_pmuludq] = 1;             // Multiply Packed Unsigned Doubleword Integers
OptCategory[NN_pshufd] = 1;              // Shuffle Packed Doublewords
OptCategory[NN_pshufhw] = 1;             // Shuffle Packed High Words
OptCategory[NN_pshuflw] = 1;             // Shuffle Packed Low Words
OptCategory[NN_pslldq] = 1;              // Shift Double Quadword Left Logical
OptCategory[NN_psrldq] = 1;              // Shift Double Quadword Right Logical
OptCategory[NN_psubq] = 1;               // Subtract Packed Quadword Integers
OptCategory[NN_punpckhqdq] = 1;          // Unpack High Data
OptCategory[NN_punpcklqdq] = 1;          // Unpack Low Data
OptCategory[NN_shufpd] = 1;              // Shuffle Packed Double-Precision Floating-Point Values
OptCategory[NN_sqrtpd] = 1;              // Compute Square Roots of Packed Double-Precision Floating-Point Values
OptCategory[NN_sqrtsd] = 1;              // Compute Square Rootof Scalar Double-Precision Floating-Point Value
OptCategory[NN_subpd] = 1;               // Subtract Packed Double-Precision Floating-Point Values
OptCategory[NN_subsd] = 1;               // Subtract Scalar Double-Precision Floating-Point Values
OptCategory[NN_ucomisd] = 1;             // Unordered Compare Scalar Ordered Double-Precision Floating-Point Values and Set EFLAGS
OptCategory[NN_unpckhpd] = 1;            // Unpack and Interleave High Packed Double-Precision Floating-Point Values
OptCategory[NN_unpcklpd] = 1;            // Unpack and Interleave Low Packed Double-Precision Floating-Point Values
OptCategory[NN_xorpd] = 1;               // Bitwise Logical OR of Double-Precision Floating-Point Values


// AMD syscall/sysret instructions  NOTE: not AMD, found in Intel manual

OptCategory[NN_syscall] = 1;             // Low latency system call
OptCategory[NN_sysret] = 1;              // Return from system call

// AMD64 instructions    NOTE: not AMD, found in Intel manual

OptCategory[NN_swapgs] = 1;              // Exchange GS base with KernelGSBase MSR

// New Pentium instructions (SSE3)

OptCategory[NN_movddup] = 9;             // Move One Double-FP and Duplicate
OptCategory[NN_movshdup] = 9;            // Move Packed Single-FP High and Duplicate
OptCategory[NN_movsldup] = 9;            // Move Packed Single-FP Low and Duplicate

// Missing AMD64 instructions  NOTE: also found in Intel manual

OptCategory[NN_movsxd] = 2;              // Move with Sign-Extend Doubleword
OptCategory[NN_cmpxchg16b] = 0;          // Compare and Exchange 16 Bytes

// SSE3 instructions

OptCategory[NN_addsubpd] = 1;            // Add /Sub packed DP FP numbers
OptCategory[NN_addsubps] = 1;            // Add /Sub packed SP FP numbers
OptCategory[NN_haddpd] = 1;              // Add horizontally packed DP FP numbers
OptCategory[NN_haddps] = 1;              // Add horizontally packed SP FP numbers
OptCategory[NN_hsubpd] = 1;              // Sub horizontally packed DP FP numbers
OptCategory[NN_hsubps] = 1;              // Sub horizontally packed SP FP numbers
OptCategory[NN_monitor] = 1;             // Set up a linear address range to be monitored by hardware
OptCategory[NN_mwait] = 1;               // Wait until write-back store performed within the range specified by the MONITOR instruction
OptCategory[NN_fisttp] = 2;              // Store ST in intXX (chop) and pop
OptCategory[NN_lddqu] = 0;               // Load unaligned integer 128-bit

// SSSE3 instructions

OptCategory[NN_psignb] = 1;              // Packed SIGN Byte
OptCategory[NN_psignw] = 1;              // Packed SIGN Word
OptCategory[NN_psignd] = 1;              // Packed SIGN Doubleword
OptCategory[NN_pshufb] = 1;              // Packed Shuffle Bytes
OptCategory[NN_pmulhrsw] = 1;            // Packed Multiply High with Round and Scale
OptCategory[NN_pmaddubsw] = 1;           // Multiply and Add Packed Signed and Unsigned Bytes
OptCategory[NN_phsubsw] = 1;             // Packed Horizontal Subtract and Saturate
OptCategory[NN_phaddsw] = 1;             // Packed Horizontal Add and Saturate
OptCategory[NN_phaddw] = 1;              // Packed Horizontal Add Word
OptCategory[NN_phaddd] = 1;              // Packed Horizontal Add Doubleword
OptCategory[NN_phsubw] = 1;              // Packed Horizontal Subtract Word
OptCategory[NN_phsubd] = 1;              // Packed Horizontal Subtract Doubleword
OptCategory[NN_palignr] = 1;             // Packed Align Right
OptCategory[NN_pabsb] = 1;               // Packed Absolute Value Byte
OptCategory[NN_pabsw] = 1;               // Packed Absolute Value Word
OptCategory[NN_pabsd] = 1;               // Packed Absolute Value Doubleword

// VMX instructions

OptCategory[NN_vmcall] = 1;              // Call to VM Monitor
OptCategory[NN_vmclear] = 0;             // Clear Virtual Machine Control Structure
OptCategory[NN_vmlaunch] = 1;            // Launch Virtual Machine
OptCategory[NN_vmresume] = 1;            // Resume Virtual Machine
OptCategory[NN_vmptrld] = 6;             // Load Pointer to Virtual Machine Control Structure
OptCategory[NN_vmptrst] = 0;             // Store Pointer to Virtual Machine Control Structure
OptCategory[NN_vmread] = 0;              // Read Field from Virtual Machine Control Structure
OptCategory[NN_vmwrite] = 0;             // Write Field from Virtual Machine Control Structure
OptCategory[NN_vmxoff] = 1;              // Leave VMX Operation
OptCategory[NN_vmxon] = 1;               // Enter VMX Operation

OptCategory[NN_last] = 1;

  return;

} // end InitOptCategory()