Skip to content
Snippets Groups Projects
STARSProgram.cpp 374 KiB
Newer Older
/* STARSProgram.cpp: Base class
 * Copyright 2015 by Zephyr Software LLC 
 */

#include <cstring>
#include <algorithm>
#include <iostream>
#include <sstream>
#include "interfaces/STARSTypes.h"
#include "interfaces/SMPDBInterface.h"
// #include "interfaces/abstract/all.h"
#include "base/SMPDataFlowAnalysis.h"


void STARS_Program_t::MDInitializeCallerSavedRegs(void) {
	this->STARS_MDCallerSavedRegs.clear();
	bool x86_64_ISA_flag = false;
#ifdef __EA64__
	x86_64_ISA_flag = (this->GetSTARS_ISA_Bitwidth() == 64);
#endif
	if (!x86_64_ISA_flag) {
		// 32-bit x86 uses EAX, ECX, EDX as caller-saved.
		this->STARS_MDCallerSavedRegs.push_back(STARS_x86_R_ax);
		this->STARS_MDCallerSavedRegs.push_back(STARS_x86_R_cx);
		this->STARS_MDCallerSavedRegs.push_back(STARS_x86_R_dx);
	}
	else {
		// 64-bit x86 uses EDI, ESI, EDX, ECX, R8 and R9
		//  in that order. After six arguments that fit into
		//  these regs, arguments are passed on the stack.
		// In addition, registers EAX, R10 and R11 are caller-saved
		//  but are not used to pass arguments.
		this->STARS_MDCallerSavedRegs.push_back(STARS_x86_R_ax);
		this->STARS_MDCallerSavedRegs.push_back(STARS_x86_R_cx);
		this->STARS_MDCallerSavedRegs.push_back(STARS_x86_R_dx);
		this->STARS_MDCallerSavedRegs.push_back(STARS_x86_R_si);
		this->STARS_MDCallerSavedRegs.push_back(STARS_x86_R_di);
		this->STARS_MDCallerSavedRegs.push_back(STARS_x86_R_r8);
		this->STARS_MDCallerSavedRegs.push_back(STARS_x86_R_r9);
		this->STARS_MDCallerSavedRegs.push_back(STARS_x86_R_r10);
		this->STARS_MDCallerSavedRegs.push_back(STARS_x86_R_r11);
	}
	return;
} // end of STARS_IDA_Program_t::MDInitializeCallerSavedRegs()

void STARS_Program_t::MDInitializeArgumentRegs(void) {
	bool x86_64_ISA_flag = false;
#ifdef __EA64__
	x86_64_ISA_flag = (this->GetSTARS_ISA_Bitwidth() == 64);
#endif
	if (x86_64_ISA_flag) {
		this->STARS_MDArgumentRegs.push_back(STARS_x86_R_di);
		this->STARS_MDArgumentRegs.push_back(STARS_x86_R_si);
		this->STARS_MDArgumentRegs.push_back(STARS_x86_R_dx);
		this->STARS_MDArgumentRegs.push_back(STARS_x86_R_cx);
		this->STARS_MDArgumentRegs.push_back(STARS_x86_R_r8);
		this->STARS_MDArgumentRegs.push_back(STARS_x86_R_r9);
	}
	else {
		this->STARS_MDArgumentRegs.clear();
	}
	return;
} // end of STARS_IDA_Program_t::MDInitializeArgumentRegs()

void STARS_Program_t::MDInitializeCalleeSavedRegs(void) {
	this->STARS_MDCalleeSavedRegs.clear();
	bool x86_64_ISA_flag = false;
#ifdef __EA64__
	x86_64_ISA_flag = (this->GetSTARS_ISA_Bitwidth() == 64);
#endif
	if (!x86_64_ISA_flag) {
		// 32-bit x86 uses EAX, ECX, EDX as caller-saved, EBX, EBP, ESI, EDI as callee-saved.
		this->STARS_MDCalleeSavedRegs.push_back(STARS_x86_R_bx);
		this->STARS_MDCalleeSavedRegs.push_back(STARS_x86_R_bp);
		this->STARS_MDCalleeSavedRegs.push_back(STARS_x86_R_si);
		this->STARS_MDCalleeSavedRegs.push_back(STARS_x86_R_di);
	}
	else {
		// 64-bit x86 uses EDI, ESI, EDX, ECX, R8 and R9
		//  in that order. After six arguments that fit into
		//  these regs, arguments are passed on the stack.
		// In addition, registers EAX, R10 and R11 are caller-saved
		//  but are not used to pass arguments. The rest, besides RSP,
		//  are callee-saved.
		this->STARS_MDCalleeSavedRegs.push_back(STARS_x86_R_bx);
		this->STARS_MDCalleeSavedRegs.push_back(STARS_x86_R_bp);
		this->STARS_MDCalleeSavedRegs.push_back(STARS_x86_R_r12);
		this->STARS_MDCalleeSavedRegs.push_back(STARS_x86_R_r13);
		this->STARS_MDCalleeSavedRegs.push_back(STARS_x86_R_r14);
		this->STARS_MDCalleeSavedRegs.push_back(STARS_x86_R_r15);
	}
	return;
} // end of STARS_IDA_Program_t::MDInitializeCalleeSavedRegs()

bool STARS_Program_t::OpenFiles(void) {
	// Open the output files.
	assert(0 < this->RootFileName.size());  // SetRootFileName() must be called previously.

	string ZSTAlarmFileName(this->GetRootFileName());
	string AlarmFileSuffix(".alarms");
	ZSTAlarmFileName += AlarmFileSuffix;
	string XrefsFileName(this->GetRootFileName());
	string XrefsFileSuffix(".STARSxrefs");
	XrefsFileName += XrefsFileSuffix;
	string CallRetFileName(this->GetRootFileName());
	string CallRetFileSuffix(".STARScallreturn");
	CallRetFileName += CallRetFileSuffix;
#if ZST_EMIT_SPARK_ADA_TRANSLATION
	// Extract "foo" from "foo.exe" to get the Ada package name
	istringstream StreamRootName(this->RootFileName);
	(void) std::getline(StreamRootName, this->PackageName, '.');
	if (this->PackageName.empty()) {
		SMP_msg("ERROR: Could not extract an Ada package name from the root of file name %s\n", this->RootFileName.c_str());
		return false;
	}


	// Convert dashes to underscores in the package name to suit Ada standards.
	replace(this->PackageName.begin(), this->PackageName.end(), '-', '_');

	string SPARKSourceFileName(this->PackageName);
	string SPARKSourceFileSuffix(".ZSTSPARK.adb");
	SPARKSourceFileName += SPARKSourceFileSuffix;
	string SPARKHeaderFileName(this->PackageName);
	string SPARKHeaderFileSuffix(".ZSTSPARK.ads");
	SPARKHeaderFileName += SPARKHeaderFileSuffix;
#endif

	this->STARS_XrefsFile = SMP_fopen(XrefsFileName.c_str(), "w");
	if (NULL == this->STARS_XrefsFile) {
		SMP_msg("FATAL ERROR: Cannot open STARS code xrefs file %s\n", XrefsFileName.c_str());
		return false;
	}

	this->STARS_CallReturnFile = SMP_fopen(CallRetFileName.c_str(), "w");
	if (NULL == this->STARS_CallReturnFile) {
		SMP_msg("FATAL ERROR: Cannot open STARS calls and returns info file %s\n", CallRetFileName.c_str());
		(void)SMP_fclose(this->STARS_XrefsFile);
		return false;
	}

	this->ZST_AlarmFile = SMP_fopen(ZSTAlarmFileName.c_str(), "w");
	if (NULL == this->ZST_AlarmFile) {
		SMP_msg("FATAL ERROR: Cannot open security alarms file %s\n", ZSTAlarmFileName.c_str());
		SMP_fclose(this->STARS_XrefsFile);
		SMP_fclose(this->STARS_CallReturnFile);
		return false;
	}

	this->STARS_AnnotFile = SMP_fopen(this->AnnotFileName.c_str(), "w");
	if (NULL == this->STARS_AnnotFile) {
		SMP_msg("FATAL ERROR: Cannot open annotations file %s\n", this->AnnotFileName.c_str());
		SMP_fclose(this->STARS_XrefsFile);
		SMP_fclose(this->STARS_CallReturnFile);
		SMP_fclose(this->ZST_AlarmFile);
		return false;
	}

	this->STARS_InfoAnnotFile = SMP_fopen(this->InfoAnnotFileName.c_str(), "w");
	if (NULL == this->STARS_InfoAnnotFile) {
		SMP_msg("FATAL ERROR: Cannot open annotations file %s\n", this->InfoAnnotFileName.c_str());
		SMP_fclose(this->STARS_XrefsFile);
		SMP_fclose(this->STARS_CallReturnFile);
		SMP_fclose(this->ZST_AlarmFile);
		SMP_fclose(this->STARS_AnnotFile);
		return false;
	}

#if ZST_EMIT_SPARK_ADA_TRANSLATION
	this->ZST_SPARKSourceFile = SMP_fopen(SPARKSourceFileName.c_str(), "w");
	if (NULL == this->ZST_SPARKSourceFile) {
		SMP_msg("FATAL ERROR: Cannot open SPARK-Ada source output file %s\n", SPARKSourceFileName.c_str());
		SMP_fclose(this->STARS_XrefsFile);
		SMP_fclose(this->STARS_CallReturnFile);
		SMP_fclose(this->ZST_AlarmFile);
		SMP_fclose(this->STARS_AnnotFile);
		SMP_fclose(this->STARS_InfoAnnotFile);
		return false;
	}
	this->ZST_SPARKHeaderFile = SMP_fopen(SPARKHeaderFileName.c_str(), "w");
	if (NULL == this->ZST_SPARKHeaderFile) {
		SMP_msg("FATAL ERROR: Cannot open SPARK-Ada header output file %s\n", SPARKHeaderFileName.c_str());
		SMP_fclose(this->STARS_XrefsFile);
		SMP_fclose(this->STARS_CallReturnFile);
		SMP_fclose(this->ZST_AlarmFile);
		SMP_fclose(this->STARS_AnnotFile);
		SMP_fclose(this->STARS_InfoAnnotFile);
		SMP_fclose(this->ZST_SPARKSourceFile);
		return false;
	}
#endif
	return true;
} // end of STARS_Program_t::OpenFiles()

void STARS_Program_t::CloseFiles(void) {
	(void) SMP_fclose(this->STARS_AnnotFile);
	(void) SMP_fclose(this->STARS_InfoAnnotFile);

#if ZST_EMIT_SPARK_ADA_TRANSLATION
	(void) SMP_fclose(this->ZST_SPARKSourceFile);
	(void) SMP_fclose(this->ZST_SPARKHeaderFile);
#endif
	(void) SMP_fclose(this->ZST_AlarmFile);
	(void) SMP_fclose(this->STARS_CallReturnFile);
	(void) SMP_fclose(this->STARS_XrefsFile);
	return;
} // end of STARS_Program_t::CloseFiles()

// Apply new mode to the AnnotFile.
bool STARS_Program_t::ReopenAnnotFile(const char *mode) {
	FILE *TempHandle = freopen(NULL, mode, this->GetAnnotFile());
	bool success = (NULL != TempHandle);
	if  (success) {
		this->STARS_AnnotFile = TempHandle;
	}
	return success;
}

void STARS_Program_t::InitData(void) {
clc5q's avatar
clc5q committed
	this->IDAProDriver = false;  // default; set to true explicitly from IDA Pro code.
clc5q's avatar
clc5q committed
	this->CurrentFileNumber = 0;
	this->ZST_AlarmFile = NULL;
	this->STARS_CallReturnFile = NULL;
	this->STARS_XrefsFile = NULL;

	this->MDInitializeArgumentRegs();
	this->MDInitializeCallerSavedRegs(); 
	this->MDInitializeCalleeSavedRegs();
	// Initialize global counters for statistics-gathering purposes.
	STARS_SPARK_IndentCount = 1;
	UnusedStructCount = 0;
	UnusedIntCount = 0;
	DeadMetadataCount = 0;
	LiveMetadataCount = 0;
	ResolvedIndirectJumpCount = 0;
	UnresolvedIndirectJumpCount = 0;
	ConstantDEFCount = 0;
	AlwaysTakenBranchCount = 0;
	NeverTakenBranchCount = 0;
	SubwordRegCount = 0;
	SubwordMemCount = 0;
	SubwordAddressRegCount = 0;
	SPARKOperandCount = 0;
#if SMP_COUNT_MEMORY_ALLOCATIONS
	SMPInstCount = 0;
	SMPBlockCount = 0;
	SMPDefUseChainCount = 0;
	SMPFuncCount = 0;
	SMPGlobalVarCount = 0;
	SMPLocalVarCount = 0;
	SMPInstBytes = 0;
	SMPDefUseChainBytes = 0;
#endif
#if SMP_MEASURE_NUMERIC_ANNOTATIONS
	NumericAnnotationsCount12 = 0;
	NumericAnnotationsCount3 = 0;
	TruncationAnnotationsCount = 0;
	SignednessWithoutTruncationCount = 0;
	LeaInstOverflowCount = 0;
	WidthDoublingTruncationCount = 0;
	BenignOverflowInstCount = 0;
	BenignOverflowDefCount = 0;
	SuppressStackPtrOverflowCount = 0;
	SuppressLiveFlagsOverflowCount = 0;
	LiveMultiplyBitsCount = 0;
	BenignTruncationCount = 0;
	SuppressTruncationRegPiecesAllUsed = 0;
	SuppressSignednessOnTruncation = 0;
#endif
#if STARS_SCCP_GATHER_STATISTICS
	SCCPFuncsWithArgWriteCount = 0;
	SCCPFuncsWithConstantArgWriteCount = 0;
	SCCPOutgoingArgWriteCount = 0;
	SCCPConstantOutgoingArgWriteCount = 0;
#endif
	STARS_MaxBlockCount = 0;

	(void) memset(this->OptCount, 0, sizeof(this->OptCount));
	(void) memset(this->AnnotationCount, 0, sizeof(this->AnnotationCount));
	this->STARS_PerformReducedAnalysis = false;
	this->DataReferentID = 1;
	this->ShadowID = 1;
	this->STARS_TotalCodeSize = 0;

	this->InitOptCategory();
	this->InitStackAlteration();
	this->InitDFACategory();
	this->InitTypeCategory();
	this->InitSMPDefsFlags();
	this->InitSMPUsesFlags();
	this->InitLibFuncFGInfoMaps();
	InitIntegerErrorCallSinkMap();
	InitUnsignedArgPositionMap();
	InitTaintWarningArgPositionMap();
	InitPointerArgPositionMap();

	return;
} // end of STARS_Program_t::InitData()

// These two constants should agree with their counterparts in ZST-policy.c.
#define ZST_MAX_FILE_NAME_LEN 1024
#define ZST_MAX_CALL_NAME_LEN 64

// Convert a call type string from the policy file, such as "FILECALLS", to the
//  corresponding ZST_SysCallType, such as ZST_FILE_CALL.
ZST_SysCallType STARS_Program_t::ConvertStringToCallType(char *Str2) {
	ZST_SysCallType ReturnVal;
	if (0 == strcmp("PRIVILEGECALLS", Str2)) {
		ReturnVal = ZST_HIGHPRIVILEGE_CALL;
	}
	else if (0 == strcmp("FILECALLS", Str2)) {
		ReturnVal = ZST_FILE_CALL;
	}
	else if (0 == strcmp("NETWORKCALLS", Str2)) {
		ReturnVal = ZST_NETWORK_CALL;
	}
	else {
		ReturnVal = ZST_UNMONITORED_CALL;
	}
	return ReturnVal;
} // end of STARS_Program_t::ConvertStringToCallType()

// Convert a policy string from the policy file, such as "DISALLOW", to
//  the corresponding ZST_Policy value, such as ZST_DISALLOW.
ZST_Policy STARS_Program_t::ConvertStringToPolicy(char *Str3) {
	ZST_Policy ReturnVal;
	if (0 == strcmp("DISALLOW", Str3)) {
		ReturnVal = ZST_DISALLOW;
	}
	else if (0 == strcmp("WHITELIST", Str3)) {
		ReturnVal = ZST_WHITELIST;
	}
	else if (0 == strcmp("BLACKLIST", Str3)) {
		ReturnVal = ZST_BLACKLIST;
	}
	else { // error handling precedes calls to this function
		ReturnVal = ZST_ALLOWALL;
	}
	return ReturnVal;
} // end of STARS_Program_t::ConvertStringToPolicy()

// Given a function name, return its Zephyr Security Toolkit call type.
ZST_SysCallType STARS_Program_t::GetCallTypeFromFuncName(string SysCallName) const {
	ZST_SysCallType ReturnVal;
	map<string, ZST_SysCallType>::const_iterator FindIter = this->ZST_FuncTypeMap.find(SysCallName);
	if (FindIter == this->ZST_FuncTypeMap.end()) { // not found; might not even be system call
		ReturnVal = ZST_UNMONITORED_CALL;
	}
	else {
		ReturnVal = FindIter->second;
	}
	return ReturnVal;
} // end of GetCallTypeFromFuncName()

// Get the user-specified security policy for the given call type.
ZST_Policy STARS_Program_t::GetPolicyFromCallType(ZST_SysCallType CallType) const {
	ZST_Policy ReturnVal;
	map<ZST_SysCallType, ZST_Policy>::const_iterator FindIter = ZST_TypePolicyMap.find(CallType);
	if (FindIter == ZST_TypePolicyMap.end()) {
		// Policy not found; default to ALLOW_ALL
		ReturnVal = ZST_ALLOWALL;
	}
	else {
		ReturnVal = FindIter->second;
	}
	return ReturnVal;
} // end of STARS_Program_t::GetPolicyFromCallType()

// Given a call type and called function name, is it on the location whitelist
//  for that call type?
// NOTE: HANDLE CASE IN WHICH WHITELISTED LOCATION IS A PREFIX, TERMINATING in a slash.
bool STARS_Program_t::IsLocationWhitelisted(ZST_SysCallType CallType, string LocationName) const {
	set<string>::const_iterator FindIter;
	bool ReturnVal;

	if (CallType == ZST_FILE_CALL) {
		FindIter = ZST_FileLocWhitelist.find(LocationName);
		ReturnVal = (FindIter != ZST_FileLocWhitelist.end());
	}
	else if (CallType == ZST_NETWORK_CALL) {
		FindIter = ZST_NetworkLocWhitelist.find(LocationName);
		ReturnVal = (FindIter != ZST_NetworkLocWhitelist.end());
	}
	else { // should not be here
		ReturnVal = false;
	}
	return ReturnVal;
} // end of STARS_Program_t::IsLocationWhitelisted()

// Given a call type and called function name, is it on the location blacklist
//  for that call type?
// NOTE: HANDLE CASE IN WHICH BLACKLISTED LOCATION IS A PREFIX, TERMINATING in a slash.
bool STARS_Program_t::IsLocationBlacklisted(ZST_SysCallType CallType, string LocationName) const {
	set<string>::const_iterator FindIter;
	bool ReturnVal;

	if (CallType == ZST_FILE_CALL) {
		FindIter = ZST_FileLocBlacklist.find(LocationName);
		ReturnVal = (FindIter != ZST_FileLocBlacklist.end());
	}
	else if (CallType == ZST_NETWORK_CALL) {
		FindIter = ZST_NetworkLocBlacklist.find(LocationName);
		ReturnVal = (FindIter != ZST_NetworkLocBlacklist.end());
	}
	else { // should not be here
		ReturnVal = false;
	}
	return ReturnVal;
} // end of STARS_Program_t::IsLocationBlacklisted()

// Given a called function name, does it produce only benign numeric errors when
//  its returned values are used in arithmetic? (i.e. it is a trusted input)
bool STARS_Program_t::IsNumericSafeSystemCall(string CallName) const {
	set<string>::const_iterator FindIter = ZST_SystemCallNumericWhitelist.find(CallName);
	bool ReturnVal = (FindIter != ZST_SystemCallNumericWhitelist.end());
	return ReturnVal;
}

bool STARS_Program_t::IsCalleeSavedReg(uint16_t RegNum) const {
	bool found = false;
	std::list<uint16_t>::const_iterator CalleeSavedIter = this->STARS_MDCalleeSavedRegs.cbegin();
	while (CalleeSavedIter != this->STARS_MDCalleeSavedRegs.cend()) {
		if (*CalleeSavedIter == RegNum) {
			found = true;
			break;
		}
		++CalleeSavedIter;
	}
	return found;
}

bool STARS_Program_t::IsCallerSavedReg(uint16_t RegNum) const {
	bool found = false;
	std::list<uint16_t>::const_iterator CallerSavedIter = this->STARS_MDCallerSavedRegs.cbegin();
	while (CallerSavedIter != this->STARS_MDCallerSavedRegs.cend()) {
		if (*CallerSavedIter == RegNum) {
			found = true;
			break;
		}
		else if (*CallerSavedIter > RegNum) {
			break; // passed it in sorted list; return false
		}
		++CallerSavedIter;
	}
	return found;
}

bool STARS_Program_t::AreInstIDsInSameFunction(const STARS_ea_t InstID1, const STARS_ea_t InstID2) const {
	STARS_Function_t *Func1 = SMP_get_func(InstID1);
	STARS_Function_t *Func2 = SMP_get_func(InstID2);
	return ((NULL != Func1) && (NULL != Func2) && (Func1->get_startEA() == Func2->get_startEA()));
}

void STARS_Program_t::PrintTypeCode(IBType TypeCode){
	if (ZST_RETURN == TypeCode) {
		SMP_fprintf(this->GetXrefsFile(), "RETURNTARGET\n");
	}
	else if (ZST_SWITCHTABLE == TypeCode) {
		SMP_fprintf(this->GetXrefsFile(), "SWITCHTABLE\n");
	}
	else if (ZST_INDIRCALL == TypeCode) {
		SMP_fprintf(this->GetXrefsFile(), "INDIRCALL\n");
	}
	else if (ZST_COMPUTEDGOTO == TypeCode) {
		SMP_fprintf(this->GetXrefsFile(), "COMPUTEDGOTOHEURISTIC\n");
	}
	else if (ZST_CODEADDRESSTAKEN == TypeCode) {
		SMP_fprintf(this->GetXrefsFile(), "CODEADDRESSTAKEN\n");
	}
	else if (ZST_UNREACHABLEBLOCK == TypeCode) {
		SMP_fprintf(this->GetXrefsFile(), "UNREACHABLEBLOCK\n");
	}
	else {
		SMP_fprintf(this->GetXrefsFile(), "UNKNOWN\n");
	}
	return;
}


// Utility functions to print code xrefs to STARS_XrefsFile
clc5q's avatar
clc5q committed
bool STARS_Program_t::PrintCodeToCodeXref(STARS_ea_t FromAddr, STARS_ea_t ToAddr, std::size_t InstrSize, IBType TypeCode) {
	bool success = false;
	if (IsAddressInCodeRange(ToAddr)) {
clc5q's avatar
clc5q committed
		success = true;
		SMP_fprintf(this->GetXrefsFile(), "%18llx %6zu INSTR XREF IBT FROMIB %18llx ",
			(unsigned long long) ToAddr, InstrSize, (unsigned long long) FromAddr);
		this->PrintTypeCode(TypeCode);
clc5q's avatar
clc5q committed
	return success;
// Utility functions to print code xrefs to STARS_XrefsFile
clc5q's avatar
clc5q committed
bool STARS_Program_t::PrintReturnInstXref(STARS_ea_t RetInstAddr, STARS_ea_t TargetAddr, std::size_t InstrSize, bool TailCallTargetAddr) {
	bool success = false;
clc5q's avatar
clc5q committed
	if (IsAddressInCodeRange(TargetAddr)) {
clc5q's avatar
clc5q committed
		success = true;
clc5q's avatar
clc5q committed
		FILE *XrefsFile = this->GetXrefsFile();
		SMP_fprintf(XrefsFile, "%18llx %6zu INSTR XREF IBT FROMIB %18llx ",
			(unsigned long long) TargetAddr, InstrSize, (unsigned long long) RetInstAddr);
clc5q's avatar
clc5q committed
		if (!TailCallTargetAddr) {
			SMP_fprintf(XrefsFile, "RETURNTARGET\n");
		}
		else {
			SMP_fprintf(XrefsFile, "TAILCALLRETURNTARGET\n");
		}
clc5q's avatar
clc5q committed
	return success;
void STARS_Program_t::PrintDataToCodeXref(STARS_ea_t FromDataAddr, STARS_ea_t ToCodeAddr, std::size_t InstrSize) {
	if (IsAddressInCodeRange(ToCodeAddr)) {
		SMP_fprintf(this->GetXrefsFile(), "%18llx %6zu INSTR XREF IBT FROMDATA %18llx \n",
			(unsigned long long) ToCodeAddr, InstrSize, (unsigned long long) FromDataAddr);
	}
void STARS_Program_t::PrintUnknownCodeXref(STARS_ea_t ToAddr, std::size_t InstrSize, IBType TypeCode) {
	SMP_fprintf(this->GetXrefsFile(), "%18llx %6zu INSTR XREF IBT FROMUNKNOWN ",
		(unsigned long long) ToAddr, InstrSize);
	this->PrintTypeCode(TypeCode);
// Utility functions to signify code xrefs are complete in STARS_XrefsFile for FromAddr
clc5q's avatar
clc5q committed
void STARS_Program_t::PrintCodeToCodeXrefComplete(STARS_ea_t FromAddr, std::size_t InstrSize, std::size_t IBTCount, IBType TypeCode) {
	if (IsAddressInCodeRange(FromAddr)) {
clc5q's avatar
clc5q committed
		SMP_fprintf(this->GetXrefsFile(), "%18llx %6zu INSTR XREF FROMIB COMPLETE %6zu ",
			(unsigned long long) FromAddr, InstrSize, IBTCount);
		this->PrintTypeCode(TypeCode);
// Read the foo.exe.policy file to initialize our security policies for system calls.
void STARS_Program_t::ZST_InitPolicies(void) {
	string ZSTPolicyFileName(this->GetRootFileName());
	string PolicyFileSuffix(".policy");
	ZSTPolicyFileName += PolicyFileSuffix;
	FILE *PolicyFile = SMP_fopen(ZSTPolicyFileName.c_str(), "r");
	char Str1[ZST_MAX_CALL_NAME_LEN], Str2[ZST_MAX_CALL_NAME_LEN], Str3[ZST_MAX_FILE_NAME_LEN];

	string SafeSystemCall1("gettimeofday");
	this->ZST_SystemCallNumericWhitelist.insert(SafeSystemCall1);

	if (NULL != PolicyFile) {
		while (!SMP_feof(PolicyFile)) {
			int ItemsRead = SMP_fscanf(PolicyFile, "%63s %63s %1023s", Str1, Str2, Str3);
559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000
			if (3 != ItemsRead) {
				SMP_msg("ERROR: Line in %s had %d items instead of the required 3; line ignored.\n", ZSTPolicyFileName.c_str(), ItemsRead);
			}
			else {
				string ThirdStr(Str3);
				pair<set<string>::iterator, bool> SetInsertResult;
				if (0 == strcmp(Str1, "SECURITYPOLICY")) {
					ZST_SysCallType TempCallType = ConvertStringToCallType(Str2);
					ZST_Policy TempPolicy = ConvertStringToPolicy(Str3);
					pair<map<ZST_SysCallType, ZST_Policy>::iterator, bool> InsertResult;
					pair<ZST_SysCallType, ZST_Policy> TempPair(TempCallType, TempPolicy);
					InsertResult = this->ZST_TypePolicyMap.insert(TempPair);
					if (!(InsertResult.second)) {
						SMP_msg("ERROR: Could not insert security policy %s for %s. Possible duplicate or conflicting policies.\n",
							Str3, Str2);
					}
				}
				else if (0 == strcmp(Str1, "FILELOCATION")) {
					if (0 == strcmp(Str2, "WHITELIST")) {
						SetInsertResult = this->ZST_FileLocWhitelist.insert(ThirdStr);
						if (!(SetInsertResult.second)) {
							SMP_msg("WARNING: Duplicate file whitelist location %s ignored.\n", Str3);
						}
					}
					else if (0 == strcmp(Str2, "BLACKLIST")) {
						SetInsertResult = this->ZST_FileLocBlacklist.insert(ThirdStr);
						if (!(SetInsertResult.second)) {
							SMP_msg("WARNING: Duplicate file blacklist location %s ignored.\n", Str3);
						}
					}
					else {
						SMP_msg("ERROR: Unknown second field value in policy line: %s %s %s ; ignored\n", Str1, Str2, Str3);
					}
				}
				else if (0 == strcmp(Str1, "NETWORKLOCATION")) {
					if (0 == strcmp(Str2, "WHITELIST")) {
						SetInsertResult = this->ZST_NetworkLocWhitelist.insert(ThirdStr);
						if (!(SetInsertResult.second)) {
							SMP_msg("WARNING: Duplicate network whitelist location %s ignored.\n", Str3);
						}
					}
					else if (0 == strcmp(Str2, "BLACKLIST")) {
						SetInsertResult = this->ZST_NetworkLocBlacklist.insert(ThirdStr);
						if (!(SetInsertResult.second)) {
							SMP_msg("WARNING: Duplicate network blacklist location %s ignored.\n", Str3);
						}
					}
					else {
						SMP_msg("ERROR: Unknown second field value in policy line: %s %s %s ; ignored\n", Str1, Str2, Str3);
					}
				}
				else {
					SMP_msg("ERROR: Unknown first field value in policy line: %s %s %s ; ignored\n", Str1, Str2, Str3);
				}
			}
		}
		if (0 == SMP_fclose(PolicyFile)) {
			SMP_msg("Policy file %s successfully closed; all policies recorded.\n", ZSTPolicyFileName.c_str());
		}
		else {
			SMP_msg("ERROR: fclose failed on policy file %s. However, policies should be in effect.\n", ZSTPolicyFileName.c_str());
		}
		// Now, initialize the system call name maps.
		pair<map<string, ZST_SysCallType>::iterator, bool> FuncInsertResult;
		// Do all the high privilege calls first.
		string SysFuncName("putenv");
		pair<string, ZST_SysCallType> FuncNamePolicyPair(SysFuncName, ZST_HIGHPRIVILEGE_CALL);
		FuncInsertResult = this->ZST_FuncTypeMap.insert(FuncNamePolicyPair);
		assert(FuncInsertResult.second);
		FuncNamePolicyPair.first.clear();
		FuncNamePolicyPair.first.append("setenv");
		FuncInsertResult = this->ZST_FuncTypeMap.insert(FuncNamePolicyPair);
		assert(FuncInsertResult.second);
		FuncNamePolicyPair.first.clear();
		FuncNamePolicyPair.first.append("setegid");
		FuncInsertResult = this->ZST_FuncTypeMap.insert(FuncNamePolicyPair);
		assert(FuncInsertResult.second);
		FuncNamePolicyPair.first.clear();
		FuncNamePolicyPair.first.append("seteuid");
		FuncInsertResult = this->ZST_FuncTypeMap.insert(FuncNamePolicyPair);
		assert(FuncInsertResult.second);
		FuncNamePolicyPair.first.clear();
		FuncNamePolicyPair.first.append("setgid");
		FuncInsertResult = this->ZST_FuncTypeMap.insert(FuncNamePolicyPair);
		assert(FuncInsertResult.second);
		FuncNamePolicyPair.first.clear();
		FuncNamePolicyPair.first.append("setpgid");
		FuncInsertResult = this->ZST_FuncTypeMap.insert(FuncNamePolicyPair);
		assert(FuncInsertResult.second);
		FuncNamePolicyPair.first.clear();
		FuncNamePolicyPair.first.append("setregid");
		FuncInsertResult = this->ZST_FuncTypeMap.insert(FuncNamePolicyPair);
		assert(FuncInsertResult.second);
		FuncNamePolicyPair.first.clear();
		FuncNamePolicyPair.first.append("setreuid");
		FuncInsertResult = this->ZST_FuncTypeMap.insert(FuncNamePolicyPair);
		assert(FuncInsertResult.second);
		FuncNamePolicyPair.first.clear();
		FuncNamePolicyPair.first.append("setuid");
		FuncInsertResult = this->ZST_FuncTypeMap.insert(FuncNamePolicyPair);
		assert(FuncInsertResult.second);
		FuncNamePolicyPair.first.clear();
		FuncNamePolicyPair.first.append("execl");
		FuncInsertResult = this->ZST_FuncTypeMap.insert(FuncNamePolicyPair);
		assert(FuncInsertResult.second);
		FuncNamePolicyPair.first.clear();
		FuncNamePolicyPair.first.append("execv");
		FuncInsertResult = this->ZST_FuncTypeMap.insert(FuncNamePolicyPair);
		assert(FuncInsertResult.second);
		FuncNamePolicyPair.first.clear();
		FuncNamePolicyPair.first.append("execle");
		FuncInsertResult = this->ZST_FuncTypeMap.insert(FuncNamePolicyPair);
		assert(FuncInsertResult.second);
		FuncNamePolicyPair.first.clear();
		FuncNamePolicyPair.first.append("execve");
		FuncInsertResult = this->ZST_FuncTypeMap.insert(FuncNamePolicyPair);
		assert(FuncInsertResult.second);
		FuncNamePolicyPair.first.clear();
		FuncNamePolicyPair.first.append("execlp");
		FuncInsertResult = this->ZST_FuncTypeMap.insert(FuncNamePolicyPair);
		assert(FuncInsertResult.second);
		FuncNamePolicyPair.first.clear();
		FuncNamePolicyPair.first.append("execvp");
		FuncInsertResult = this->ZST_FuncTypeMap.insert(FuncNamePolicyPair);
		assert(FuncInsertResult.second);
		FuncNamePolicyPair.first.clear();
		FuncNamePolicyPair.first.append("system");
		FuncInsertResult = this->ZST_FuncTypeMap.insert(FuncNamePolicyPair);
		assert(FuncInsertResult.second);

		// Now do all the file operation calls.
		FuncNamePolicyPair.second = ZST_FILE_CALL;
		FuncNamePolicyPair.first.clear();
		FuncNamePolicyPair.first.append("chdir");
		FuncInsertResult = this->ZST_FuncTypeMap.insert(FuncNamePolicyPair);
		assert(FuncInsertResult.second);
		FuncNamePolicyPair.first.clear();
		FuncNamePolicyPair.first.append("chmod");
		FuncInsertResult = this->ZST_FuncTypeMap.insert(FuncNamePolicyPair);
		assert(FuncInsertResult.second);
		FuncNamePolicyPair.first.clear();
		FuncNamePolicyPair.first.append("chown");
		FuncInsertResult = this->ZST_FuncTypeMap.insert(FuncNamePolicyPair);
		assert(FuncInsertResult.second);
		FuncNamePolicyPair.first.clear();
		FuncNamePolicyPair.first.append("creat");
		FuncInsertResult = this->ZST_FuncTypeMap.insert(FuncNamePolicyPair);
		assert(FuncInsertResult.second);
		FuncNamePolicyPair.first.clear();
		FuncNamePolicyPair.first.append("creat64");
		FuncInsertResult = this->ZST_FuncTypeMap.insert(FuncNamePolicyPair);
		assert(FuncInsertResult.second);
		FuncNamePolicyPair.first.clear();
		FuncNamePolicyPair.first.append("fopen");
		FuncInsertResult = this->ZST_FuncTypeMap.insert(FuncNamePolicyPair);
		assert(FuncInsertResult.second);
		FuncNamePolicyPair.first.clear();
		FuncNamePolicyPair.first.append("freopen");
		FuncInsertResult = this->ZST_FuncTypeMap.insert(FuncNamePolicyPair);
		assert(FuncInsertResult.second);
		FuncNamePolicyPair.first.clear();
		FuncNamePolicyPair.first.append("open");
		FuncInsertResult = this->ZST_FuncTypeMap.insert(FuncNamePolicyPair);
		assert(FuncInsertResult.second);
		FuncNamePolicyPair.first.clear();
		FuncNamePolicyPair.first.append("open64");
		FuncInsertResult = this->ZST_FuncTypeMap.insert(FuncNamePolicyPair);
		assert(FuncInsertResult.second);
		FuncNamePolicyPair.first.clear();
		FuncNamePolicyPair.first.append("mknod");
		FuncInsertResult = this->ZST_FuncTypeMap.insert(FuncNamePolicyPair);
		assert(FuncInsertResult.second);
		FuncNamePolicyPair.first.clear();
		FuncNamePolicyPair.first.append("remove");
		FuncInsertResult = this->ZST_FuncTypeMap.insert(FuncNamePolicyPair);
		assert(FuncInsertResult.second);
		FuncNamePolicyPair.first.clear();
		FuncNamePolicyPair.first.append("rmdir");
		FuncInsertResult = this->ZST_FuncTypeMap.insert(FuncNamePolicyPair);
		assert(FuncInsertResult.second);
		FuncNamePolicyPair.first.clear();
		FuncNamePolicyPair.first.append("unlink");
		FuncInsertResult = this->ZST_FuncTypeMap.insert(FuncNamePolicyPair);
		assert(FuncInsertResult.second);

		// Finally, handle all the network connection calls.
		FuncNamePolicyPair.second = ZST_NETWORK_CALL;
		FuncNamePolicyPair.first.clear();
		FuncNamePolicyPair.first.append("socket");
		FuncInsertResult = this->ZST_FuncTypeMap.insert(FuncNamePolicyPair);
		assert(FuncInsertResult.second);
		FuncNamePolicyPair.first.clear();
		FuncNamePolicyPair.first.append("socketpair");
		FuncInsertResult = this->ZST_FuncTypeMap.insert(FuncNamePolicyPair);
		assert(FuncInsertResult.second);
		FuncNamePolicyPair.first.clear();
		FuncNamePolicyPair.first.append("pipe");
		FuncInsertResult = this->ZST_FuncTypeMap.insert(FuncNamePolicyPair);
		assert(FuncInsertResult.second);
		FuncNamePolicyPair.first.clear();
		FuncNamePolicyPair.first.append("bind");
		FuncInsertResult = this->ZST_FuncTypeMap.insert(FuncNamePolicyPair);
		assert(FuncInsertResult.second);
		FuncNamePolicyPair.first.clear();
		FuncNamePolicyPair.first.append("listen");
		FuncInsertResult = this->ZST_FuncTypeMap.insert(FuncNamePolicyPair);
		assert(FuncInsertResult.second);
		FuncNamePolicyPair.first.clear();
		FuncNamePolicyPair.first.append("accept");
		FuncInsertResult = this->ZST_FuncTypeMap.insert(FuncNamePolicyPair);
		assert(FuncInsertResult.second);
		FuncNamePolicyPair.first.clear();
		FuncNamePolicyPair.first.append("connect");
		FuncInsertResult = this->ZST_FuncTypeMap.insert(FuncNamePolicyPair);
		assert(FuncInsertResult.second);
	}
	else {
		SMP_msg("WARNING: No policy file %s found. System call policies not in effect.\n", ZSTPolicyFileName.c_str());
	}
	return;
} // end of STARS_Program_t::ZST_InitPolicies()

// Initialize the OptCategory[] array to define how we emit optimizing annotations.
void STARS_Program_t::InitOptCategory(void) {
	// Default category is 0, no optimization without knowing context.
	(void)memset(OptCategory, 0, sizeof(OptCategory));
	// Category 1 instructions never need updating of their memory
	//  metadata by the Memory Monitor SDT. Currently, this is because
	//  these instructions only have effects on registers we do not maintain
	//  metadata for, such as the EIP and the FLAGS, e.g. jumps, compares,
	//  or because they are no-ops, including machine-dependent no-op idioms.
	//  Effects on floating-point regs are always NUMERIC and can be put into
	//  categury 1 because mmStrata knows these registers are NUMERIC and does
	//  not keep a metadata map for them.
	// Category 2 instructions always have a result type of 'n' (number).
	// Category 3 instructions have a result type of 'n' (number)
	//  whenever the second source operand is an operand of type 'n'.
	//  NOTE: MOV is only current example, and this will take some thought if 
	//   other examples arise.
	// Category 4 instructions have a result type identical to the 1st source operand type.
	//  NOTE: This is currently set for single-operand instructions such as
	//   INC, DEC. As a result, these are treated pretty much as if
	//   they were category 1 instructions, as there is no metadata update,
	//   unless the operand is a memory operand (i.e. mem or [reg]).
	//   If new instructions are added to this category that are not single
	//   operand and do require some updating, the category should be split.
	// Category 5 instructions have a result type identical to the 1st source operand
	//  type whenever the 2nd source operand is an operand of type 'n'.
	//  If the destination is memory, metadata still needs to be checked; if
	//  not, no metadata check is needed, so it becomes category 1.
	// Category 6 instructions always have a result type of 'p' (pointer).
	// Category 7 instructions are category 2 instructions with two destinations,
	//  such as multiply and divide instructions that affect EDX:EAX. There are
	//  forms of these instructions that only have one destination, so they have
	//  to be distinguished via the operand info.
	// Category 8 instructions implicitly write a numeric value to EDX:EAX, but
	//  EDX and EAX are not listed as operands. RDTSC, RDPMC, RDMSR, and other
	//  instructions that copy machine registers into EDX:EAX are category 8.
	// Category 9 instructions are floating point instructions that either
	//  have a memory destination (treat as category 0) or a FP reg destination
	//  (treat as category 1).
	// Category 10 instructions are the same as category 8, but also write
	//  to register ECX in addition to EDX:EAX.

	// NOTE: The Memory Monitor SDT needs just three categories, corresponding
	//  to categories 0, 1, and all others. For all categories > 1, the
	//  annotation should tell the SDT exactly how to update its metadata.
	//  For example, a division instruction will write type 'n' (NUM) as
	//  the metadata for result registers EDX:EAX. So, the annotation should
	//  list 'n', EDX, EAX, and a terminator of ZZ. CWD (convert word to
	//  doubleword) should have a list of 'n', EAX, ZZ.

	OptCategory[STARS_NN_null] = 0;            // Unknown Operation
	OptCategory[STARS_NN_aaa] = 2;                 // ASCII Adjust after Addition
	OptCategory[STARS_NN_aad] = 2;                 // ASCII Adjust AX before Division
	OptCategory[STARS_NN_aam] = 2;                 // ASCII Adjust AX after Multiply
	OptCategory[STARS_NN_aas] = 2;                 // ASCII Adjust AL after Subtraction
	OptCategory[STARS_NN_adc] = 5;                 // Add with Carry
	OptCategory[STARS_NN_add] = 5;                 // Add
	OptCategory[STARS_NN_and] = 0;                 // Logical AND
	OptCategory[STARS_NN_arpl] = 1;                // Adjust RPL Field of Selector
	OptCategory[STARS_NN_bound] = 1;               // Check Array Index Against Bounds
	OptCategory[STARS_NN_bsf] = 2;                 // Bit Scan Forward
	OptCategory[STARS_NN_bsr] = 2;                 // Bit Scan Reverse
	OptCategory[STARS_NN_bt] = 0;                  // Bit Test
	OptCategory[STARS_NN_btc] = 0;                 // Bit Test and Complement
	OptCategory[STARS_NN_btr] = 0;                 // Bit Test and Reset
	OptCategory[STARS_NN_bts] = 0;                 // Bit Test and Set
	OptCategory[STARS_NN_call] = 1;                // Call Procedure
	OptCategory[STARS_NN_callfi] = 1;              // Indirect Call Far Procedure
	OptCategory[STARS_NN_callni] = 1;              // Indirect Call Near Procedure
	OptCategory[STARS_NN_cbw] = 2;                 // AL -> AX (with sign)            ** No ops?
	OptCategory[STARS_NN_cwde] = 2;                // AX -> EAX (with sign)           **
	OptCategory[STARS_NN_cdqe] = 2;                // EAX -> RAX (with sign)          **
	OptCategory[STARS_NN_clc] = 1;                 // Clear Carry Flag
	OptCategory[STARS_NN_cld] = 1;                 // Clear Direction Flag
	OptCategory[STARS_NN_cli] = 1;                 // Clear Interrupt Flag
	OptCategory[STARS_NN_clts] = 1;                // Clear Task-Switched Flag in CR0
	OptCategory[STARS_NN_cmc] = 1;                 // Complement Carry Flag
	OptCategory[STARS_NN_cmp] = 1;                 // Compare Two Operands
	OptCategory[STARS_NN_cmps] = 1;                // Compare Strings
	OptCategory[STARS_NN_cwd] = 2;                 // AX -> DX:AX (with sign)
	OptCategory[STARS_NN_cdq] = 2;                 // EAX -> EDX:EAX (with sign)
	OptCategory[STARS_NN_cqo] = 2;                 // RAX -> RDX:RAX (with sign)
	OptCategory[STARS_NN_daa] = 2;                 // Decimal Adjust AL after Addition
	OptCategory[STARS_NN_das] = 2;                 // Decimal Adjust AL after Subtraction
	OptCategory[STARS_NN_dec] = 4;                 // Decrement by 1
	OptCategory[STARS_NN_div] = 7;                 // Unsigned Divide
	OptCategory[STARS_NN_enterw] = 0;              // Make Stack Frame for Procedure Parameters  **
	OptCategory[STARS_NN_enter] = 0;               // Make Stack Frame for Procedure Parameters  **
	OptCategory[STARS_NN_enterd] = 0;              // Make Stack Frame for Procedure Parameters  **
	OptCategory[STARS_NN_enterq] = 0;              // Make Stack Frame for Procedure Parameters  **
	OptCategory[STARS_NN_hlt] = 0;                 // Halt
	OptCategory[STARS_NN_idiv] = 7;                // Signed Divide
	OptCategory[STARS_NN_imul] = 7;                // Signed Multiply
	OptCategory[STARS_NN_in] = 0;                  // Input from Port                         **
	OptCategory[STARS_NN_inc] = 4;                 // Increment by 1
	OptCategory[STARS_NN_ins] = 2;                 // Input Byte(s) from Port to String       **
	OptCategory[STARS_NN_int] = 0;                 // Call to Interrupt Procedure
	OptCategory[STARS_NN_into] = 0;                // Call to Interrupt Procedure if Overflow Flag = 1
	OptCategory[STARS_NN_int3] = 0;                // Trap to Debugger
	OptCategory[STARS_NN_iretw] = 0;               // Interrupt Return
	OptCategory[STARS_NN_iret] = 0;                // Interrupt Return
	OptCategory[STARS_NN_iretd] = 0;               // Interrupt Return (use32)
	OptCategory[STARS_NN_iretq] = 0;               // Interrupt Return (use64)
	OptCategory[STARS_NN_ja] = 1;                  // Jump if Above (CF=0 & ZF=0)
	OptCategory[STARS_NN_jae] = 1;                 // Jump if Above or Equal (CF=0)
	OptCategory[STARS_NN_jb] = 1;                  // Jump if Below (CF=1)
	OptCategory[STARS_NN_jbe] = 1;                 // Jump if Below or Equal (CF=1 | ZF=1)
	OptCategory[STARS_NN_jc] = 1;                  // Jump if Carry (CF=1)
	OptCategory[STARS_NN_jcxz] = 1;                // Jump if CX is 0
	OptCategory[STARS_NN_jecxz] = 1;               // Jump if ECX is 0
	OptCategory[STARS_NN_jrcxz] = 1;               // Jump if RCX is 0
	OptCategory[STARS_NN_je] = 1;                  // Jump if Equal (ZF=1)
	OptCategory[STARS_NN_jg] = 1;                  // Jump if Greater (ZF=0 & SF=OF)
	OptCategory[STARS_NN_jge] = 1;                 // Jump if Greater or Equal (SF=OF)
	OptCategory[STARS_NN_jl] = 1;                  // Jump if Less (SF!=OF)
	OptCategory[STARS_NN_jle] = 1;                 // Jump if Less or Equal (ZF=1 | SF!=OF)
	OptCategory[STARS_NN_jna] = 1;                 // Jump if Not Above (CF=1 | ZF=1)
	OptCategory[STARS_NN_jnae] = 1;                // Jump if Not Above or Equal (CF=1)
	OptCategory[STARS_NN_jnb] = 1;                 // Jump if Not Below (CF=0)
	OptCategory[STARS_NN_jnbe] = 1;                // Jump if Not Below or Equal (CF=0 & ZF=0)
	OptCategory[STARS_NN_jnc] = 1;                 // Jump if Not Carry (CF=0)
	OptCategory[STARS_NN_jne] = 1;                 // Jump if Not Equal (ZF=0)
	OptCategory[STARS_NN_jng] = 1;                 // Jump if Not Greater (ZF=1 | SF!=OF)
	OptCategory[STARS_NN_jnge] = 1;                // Jump if Not Greater or Equal (SF!=OF)
	OptCategory[STARS_NN_jnl] = 1;                 // Jump if Not Less (SF=OF)
	OptCategory[STARS_NN_jnle] = 1;                // Jump if Not Less or Equal (ZF=0 & SF=OF)
	OptCategory[STARS_NN_jno] = 1;                 // Jump if Not Overflow (OF=0)
	OptCategory[STARS_NN_jnp] = 1;                 // Jump if Not Parity (PF=0)
	OptCategory[STARS_NN_jns] = 1;                 // Jump if Not Sign (SF=0)
	OptCategory[STARS_NN_jnz] = 1;                 // Jump if Not Zero (ZF=0)
	OptCategory[STARS_NN_jo] = 1;                  // Jump if Overflow (OF=1)
	OptCategory[STARS_NN_jp] = 1;                  // Jump if Parity (PF=1)
	OptCategory[STARS_NN_jpe] = 1;                 // Jump if Parity Even (PF=1)
	OptCategory[STARS_NN_jpo] = 1;                 // Jump if Parity Odd  (PF=0)
	OptCategory[STARS_NN_js] = 1;                  // Jump if Sign (SF=1)
	OptCategory[STARS_NN_jz] = 1;                  // Jump if Zero (ZF=1)
	OptCategory[STARS_NN_jmp] = 1;                 // Jump
	OptCategory[STARS_NN_jmpfi] = 1;               // Indirect Far Jump
	OptCategory[STARS_NN_jmpni] = 1;               // Indirect Near Jump
	OptCategory[STARS_NN_jmpshort] = 1;            // Jump Short (not used)
	OptCategory[STARS_NN_lahf] = 2;                // Load Flags into AH Register
	OptCategory[STARS_NN_lar] = 2;                 // Load Access Rights Byte
	OptCategory[STARS_NN_lea] = 0;                 // Load Effective Address           **
	OptCategory[STARS_NN_leavew] = 0;              // High Level Procedure Exit        **
	OptCategory[STARS_NN_leave] = 0;               // High Level Procedure Exit        **
	OptCategory[STARS_NN_leaved] = 0;              // High Level Procedure Exit        **
	OptCategory[STARS_NN_leaveq] = 0;              // High Level Procedure Exit        **
	OptCategory[STARS_NN_lgdt] = 0;                // Load Global Descriptor Table Register
	OptCategory[STARS_NN_lidt] = 0;                // Load Interrupt Descriptor Table Register
	OptCategory[STARS_NN_lgs] = 6;                 // Load Full Pointer to GS:xx
	OptCategory[STARS_NN_lss] = 6;                 // Load Full Pointer to SS:xx
	OptCategory[STARS_NN_lds] = 6;                 // Load Full Pointer to DS:xx
	OptCategory[STARS_NN_les] = 6;                 // Load Full Pointer to ES:xx
	OptCategory[STARS_NN_lfs] = 6;                 // Load Full Pointer to FS:xx
	OptCategory[STARS_NN_lldt] = 0;                // Load Local Descriptor Table Register
	OptCategory[STARS_NN_lmsw] = 1;                // Load Machine Status Word
	OptCategory[STARS_NN_lock] = 1;                // Assert LOCK# Signal Prefix
	OptCategory[STARS_NN_lods] = 0;                // Load String
	OptCategory[STARS_NN_loopw] = 1;               // Loop while ECX != 0
	OptCategory[STARS_NN_loop] = 1;                // Loop while CX != 0
	OptCategory[STARS_NN_loopd] = 1;               // Loop while ECX != 0
	OptCategory[STARS_NN_loopq] = 1;               // Loop while RCX != 0
	OptCategory[STARS_NN_loopwe] = 1;              // Loop while CX != 0 and ZF=1
	OptCategory[STARS_NN_loope] = 1;               // Loop while rCX != 0 and ZF=1
	OptCategory[STARS_NN_loopde] = 1;              // Loop while ECX != 0 and ZF=1
	OptCategory[STARS_NN_loopqe] = 1;              // Loop while RCX != 0 and ZF=1
	OptCategory[STARS_NN_loopwne] = 1;             // Loop while CX != 0 and ZF=0
	OptCategory[STARS_NN_loopne] = 1;              // Loop while rCX != 0 and ZF=0
	OptCategory[STARS_NN_loopdne] = 1;             // Loop while ECX != 0 and ZF=0
	OptCategory[STARS_NN_loopqne] = 1;             // Loop while RCX != 0 and ZF=0
	OptCategory[STARS_NN_lsl] = 6;                 // Load Segment Limit
	OptCategory[STARS_NN_ltr] = 1;                 // Load Task Register
	OptCategory[STARS_NN_mov] = 3;                 // Move Data
	OptCategory[STARS_NN_movsp] = 3;               // Move to/from Special Registers
	OptCategory[STARS_NN_movs] = 0;                // Move Byte(s) from String to String
	OptCategory[STARS_NN_movsx] = 3;               // Move with Sign-Extend
	OptCategory[STARS_NN_movzx] = 3;               // Move with Zero-Extend
	OptCategory[STARS_NN_mul] = 7;                 // Unsigned Multiplication of AL or AX
	OptCategory[STARS_NN_neg] = 2;                 // Two's Complement Negation   !!!!****!!!! Change this when mmStrata handles NEGATEDPTR type.
	OptCategory[STARS_NN_nop] = 1;                 // No Operation
	OptCategory[STARS_NN_not] = 2;                 // One's Complement Negation
	OptCategory[STARS_NN_or] = 0;                  // Logical Inclusive OR
	OptCategory[STARS_NN_out] = 0;                 // Output to Port
	OptCategory[STARS_NN_outs] = 0;                // Output Byte(s) to Port
	OptCategory[STARS_NN_pop] = 0;                 // Pop a word from the Stack
	OptCategory[STARS_NN_popaw] = 0;               // Pop all General Registers
	OptCategory[STARS_NN_popa] = 0;                // Pop all General Registers
	OptCategory[STARS_NN_popad] = 0;               // Pop all General Registers (use32)
	OptCategory[STARS_NN_popaq] = 0;               // Pop all General Registers (use64)
	OptCategory[STARS_NN_popfw] = 1;               // Pop Stack into Flags Register         **
	OptCategory[STARS_NN_popf] = 1;                // Pop Stack into Flags Register         **
	OptCategory[STARS_NN_popfd] = 1;               // Pop Stack into Eflags Register        **
	OptCategory[STARS_NN_popfq] = 1;               // Pop Stack into Rflags Register        **
	OptCategory[STARS_NN_push] = 0;                // Push Operand onto the Stack
	OptCategory[STARS_NN_pushaw] = 0;              // Push all General Registers
	OptCategory[STARS_NN_pusha] = 0;               // Push all General Registers
	OptCategory[STARS_NN_pushad] = 0;              // Push all General Registers (use32)
	OptCategory[STARS_NN_pushaq] = 0;              // Push all General Registers (use64)
	OptCategory[STARS_NN_pushfw] = 0;              // Push Flags Register onto the Stack
	OptCategory[STARS_NN_pushf] = 0;               // Push Flags Register onto the Stack
	OptCategory[STARS_NN_pushfd] = 0;              // Push Flags Register onto the Stack (use32)
	OptCategory[STARS_NN_pushfq] = 0;              // Push Flags Register onto the Stack (use64)
	OptCategory[STARS_NN_rcl] = 2;                 // Rotate Through Carry Left
	OptCategory[STARS_NN_rcr] = 2;                 // Rotate Through Carry Right
	OptCategory[STARS_NN_rol] = 2;                 // Rotate Left
	OptCategory[STARS_NN_ror] = 2;                 // Rotate Right
	OptCategory[STARS_NN_rep] = 0;                 // Repeat String Operation
	OptCategory[STARS_NN_repe] = 0;                // Repeat String Operation while ZF=1
	OptCategory[STARS_NN_repne] = 0;               // Repeat String Operation while ZF=0
	OptCategory[STARS_NN_retn] = 0;                // Return Near from Procedure
	OptCategory[STARS_NN_retf] = 0;                // Return Far from Procedure
	OptCategory[STARS_NN_sahf] = 1;                // Store AH into Flags Register
	OptCategory[STARS_NN_sal] = 2;                 // Shift Arithmetic Left
	OptCategory[STARS_NN_sar] = 2;                 // Shift Arithmetic Right
	OptCategory[STARS_NN_shl] = 2;                 // Shift Logical Left
	OptCategory[STARS_NN_shr] = 2;                 // Shift Logical Right
	OptCategory[STARS_NN_sbb] = 5;                 // Integer Subtraction with Borrow
	OptCategory[STARS_NN_scas] = 1;                // Compare String
	OptCategory[STARS_NN_seta] = 2;                // Set Byte if Above (CF=0 & ZF=0)
	OptCategory[STARS_NN_setae] = 2;               // Set Byte if Above or Equal (CF=0)