Skip to content
Snippets Groups Projects
SMPDataFlowAnalysis.cpp 179 KiB
Newer Older
2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313
//      MMX instructions
//

SMPDefsFlags[NN_emms] = false;                // Empty MMX state
SMPDefsFlags[NN_movd] = false;                // Move 32 bits
SMPDefsFlags[NN_movq] = false;                // Move 64 bits
SMPDefsFlags[NN_packsswb] = false;            // Pack with Signed Saturation (Word->Byte)
SMPDefsFlags[NN_packssdw] = false;            // Pack with Signed Saturation (Dword->Word)
SMPDefsFlags[NN_packuswb] = false;            // Pack with Unsigned Saturation (Word->Byte)
SMPDefsFlags[NN_paddb] = false;               // Packed Add Byte
SMPDefsFlags[NN_paddw] = false;               // Packed Add Word
SMPDefsFlags[NN_paddd] = false;               // Packed Add Dword
SMPDefsFlags[NN_paddsb] = false;              // Packed Add with Saturation (Byte)
SMPDefsFlags[NN_paddsw] = false;              // Packed Add with Saturation (Word)
SMPDefsFlags[NN_paddusb] = false;             // Packed Add Unsigned with Saturation (Byte)
SMPDefsFlags[NN_paddusw] = false;             // Packed Add Unsigned with Saturation (Word)
SMPDefsFlags[NN_pand] = false;                // Bitwise Logical And
SMPDefsFlags[NN_pandn] = false;               // Bitwise Logical And Not
SMPDefsFlags[NN_pcmpeqb] = false;             // Packed Compare for Equal (Byte)
SMPDefsFlags[NN_pcmpeqw] = false;             // Packed Compare for Equal (Word)
SMPDefsFlags[NN_pcmpeqd] = false;             // Packed Compare for Equal (Dword)
SMPDefsFlags[NN_pcmpgtb] = false;             // Packed Compare for Greater Than (Byte)
SMPDefsFlags[NN_pcmpgtw] = false;             // Packed Compare for Greater Than (Word)
SMPDefsFlags[NN_pcmpgtd] = false;             // Packed Compare for Greater Than (Dword)
SMPDefsFlags[NN_pmaddwd] = false;             // Packed Multiply and Add
SMPDefsFlags[NN_pmulhw] = false;              // Packed Multiply High
SMPDefsFlags[NN_pmullw] = false;              // Packed Multiply Low
SMPDefsFlags[NN_por] = false;                 // Bitwise Logical Or
SMPDefsFlags[NN_psllw] = false;               // Packed Shift Left Logical (Word)
SMPDefsFlags[NN_pslld] = false;               // Packed Shift Left Logical (Dword)
SMPDefsFlags[NN_psllq] = false;               // Packed Shift Left Logical (Qword)
SMPDefsFlags[NN_psraw] = false;               // Packed Shift Right Arithmetic (Word)
SMPDefsFlags[NN_psrad] = false;               // Packed Shift Right Arithmetic (Dword)
SMPDefsFlags[NN_psrlw] = false;               // Packed Shift Right Logical (Word)
SMPDefsFlags[NN_psrld] = false;               // Packed Shift Right Logical (Dword)
SMPDefsFlags[NN_psrlq] = false;               // Packed Shift Right Logical (Qword)
SMPDefsFlags[NN_psubb] = false;               // Packed Subtract Byte
SMPDefsFlags[NN_psubw] = false;               // Packed Subtract Word
SMPDefsFlags[NN_psubd] = false;               // Packed Subtract Dword
SMPDefsFlags[NN_psubsb] = false;              // Packed Subtract with Saturation (Byte)
SMPDefsFlags[NN_psubsw] = false;              // Packed Subtract with Saturation (Word)
SMPDefsFlags[NN_psubusb] = false;             // Packed Subtract Unsigned with Saturation (Byte)
SMPDefsFlags[NN_psubusw] = false;             // Packed Subtract Unsigned with Saturation (Word)
SMPDefsFlags[NN_punpckhbw] = false;           // Unpack High Packed Data (Byte->Word)
SMPDefsFlags[NN_punpckhwd] = false;           // Unpack High Packed Data (Word->Dword)
SMPDefsFlags[NN_punpckhdq] = false;           // Unpack High Packed Data (Dword->Qword)
SMPDefsFlags[NN_punpcklbw] = false;           // Unpack Low Packed Data (Byte->Word)
SMPDefsFlags[NN_punpcklwd] = false;           // Unpack Low Packed Data (Word->Dword)
SMPDefsFlags[NN_punpckldq] = false;           // Unpack Low Packed Data (Dword->Qword)
SMPDefsFlags[NN_pxor] = false;                // Bitwise Logical Exclusive Or

//
//      Undocumented Deschutes processor instructions
//

SMPDefsFlags[NN_fxsave] = false;              // Fast save FP context        
SMPDefsFlags[NN_fxrstor] = false;             // Fast restore FP context     

//      Pentium II instructions

SMPDefsFlags[NN_sysexit] = false;             // Fast Transition from System Call Entry Point

//      3DNow! instructions

SMPDefsFlags[NN_pavgusb] = false;             // Packed 8-bit Unsigned Integer Averaging
SMPDefsFlags[NN_pfadd] = false;               // Packed Floating-Point Addition
SMPDefsFlags[NN_pfsub] = false;               // Packed Floating-Point Subtraction
SMPDefsFlags[NN_pfsubr] = false;              // Packed Floating-Point Reverse Subtraction
SMPDefsFlags[NN_pfacc] = false;               // Packed Floating-Point Accumulate
SMPDefsFlags[NN_pfcmpge] = false;             // Packed Floating-Point Comparison, Greater or Equal
SMPDefsFlags[NN_pfcmpgt] = false;             // Packed Floating-Point Comparison, Greater
SMPDefsFlags[NN_pfcmpeq] = false;             // Packed Floating-Point Comparison, Equal
SMPDefsFlags[NN_pfmin] = false;               // Packed Floating-Point Minimum
SMPDefsFlags[NN_pfmax] = false;               // Packed Floating-Point Maximum
SMPDefsFlags[NN_pi2fd] = false;               // Packed 32-bit Integer to Floating-Point
SMPDefsFlags[NN_pf2id] = false;               // Packed Floating-Point to 32-bit Integer
SMPDefsFlags[NN_pfrcp] = false;               // Packed Floating-Point Reciprocal Approximation
SMPDefsFlags[NN_pfrsqrt] = false;             // Packed Floating-Point Reciprocal Square Root Approximation
SMPDefsFlags[NN_pfmul] = false;               // Packed Floating-Point Multiplication
SMPDefsFlags[NN_pfrcpit1] = false;            // Packed Floating-Point Reciprocal First Iteration Step
SMPDefsFlags[NN_pfrsqit1] = false;            // Packed Floating-Point Reciprocal Square Root First Iteration Step
SMPDefsFlags[NN_pfrcpit2] = false;            // Packed Floating-Point Reciprocal Second Iteration Step
SMPDefsFlags[NN_pmulhrw] = false;             // Packed Floating-Point 16-bit Integer Multiply with rounding
SMPDefsFlags[NN_femms] = false;               // Faster entry/exit of the MMX or floating-point state
SMPDefsFlags[NN_prefetch] = false;            // Prefetch at least a 32-byte line into L1 data cache
SMPDefsFlags[NN_prefetchw] = false;           // Prefetch processor cache line into L1 data cache (mark as modified)


//      Pentium III instructions

SMPDefsFlags[NN_addps] = false;               // Packed Single-FP Add
SMPDefsFlags[NN_addss] = false;               // Scalar Single-FP Add
SMPDefsFlags[NN_andnps] = false;              // Bitwise Logical And Not for Single-FP
SMPDefsFlags[NN_andps] = false;               // Bitwise Logical And for Single-FP
SMPDefsFlags[NN_cmpps] = false;               // Packed Single-FP Compare
SMPDefsFlags[NN_cmpss] = false;               // Scalar Single-FP Compare
SMPDefsFlags[NN_cvtpi2ps] = false;            // Packed signed INT32 to Packed Single-FP conversion
SMPDefsFlags[NN_cvtps2pi] = false;            // Packed Single-FP to Packed INT32 conversion
SMPDefsFlags[NN_cvtsi2ss] = false;            // Scalar signed INT32 to Single-FP conversion
SMPDefsFlags[NN_cvtss2si] = false;            // Scalar Single-FP to signed INT32 conversion
SMPDefsFlags[NN_cvttps2pi] = false;           // Packed Single-FP to Packed INT32 conversion (truncate)
SMPDefsFlags[NN_cvttss2si] = false;           // Scalar Single-FP to signed INT32 conversion (truncate)
SMPDefsFlags[NN_divps] = false;               // Packed Single-FP Divide
SMPDefsFlags[NN_divss] = false;               // Scalar Single-FP Divide
SMPDefsFlags[NN_ldmxcsr] = false;             // Load Streaming SIMD Extensions Technology Control/Status Register
SMPDefsFlags[NN_maxps] = false;               // Packed Single-FP Maximum
SMPDefsFlags[NN_maxss] = false;               // Scalar Single-FP Maximum
SMPDefsFlags[NN_minps] = false;               // Packed Single-FP Minimum
SMPDefsFlags[NN_minss] = false;               // Scalar Single-FP Minimum
SMPDefsFlags[NN_movaps] = false;              // Move Aligned Four Packed Single-FP  
SMPDefsFlags[NN_movhlps] = false;             // Move High to Low Packed Single-FP
SMPDefsFlags[NN_movhps] = false;              // Move High Packed Single-FP
SMPDefsFlags[NN_movlhps] = false;             // Move Low to High Packed Single-FP
SMPDefsFlags[NN_movlps] = false;              // Move Low Packed Single-FP
SMPDefsFlags[NN_movmskps] = false;            // Move Mask to Register
SMPDefsFlags[NN_movss] = false;               // Move Scalar Single-FP
SMPDefsFlags[NN_movups] = false;              // Move Unaligned Four Packed Single-FP
SMPDefsFlags[NN_mulps] = false;               // Packed Single-FP Multiply
SMPDefsFlags[NN_mulss] = false;               // Scalar Single-FP Multiply
SMPDefsFlags[NN_orps] = false;                // Bitwise Logical OR for Single-FP Data
SMPDefsFlags[NN_rcpps] = false;               // Packed Single-FP Reciprocal
SMPDefsFlags[NN_rcpss] = false;               // Scalar Single-FP Reciprocal
SMPDefsFlags[NN_rsqrtps] = false;             // Packed Single-FP Square Root Reciprocal
SMPDefsFlags[NN_rsqrtss] = false;             // Scalar Single-FP Square Root Reciprocal
SMPDefsFlags[NN_shufps] = false;              // Shuffle Single-FP
SMPDefsFlags[NN_sqrtps] = false;              // Packed Single-FP Square Root
SMPDefsFlags[NN_sqrtss] = false;              // Scalar Single-FP Square Root
SMPDefsFlags[NN_stmxcsr] = false;             // Store Streaming SIMD Extensions Technology Control/Status Register 
SMPDefsFlags[NN_subps] = false;               // Packed Single-FP Subtract
SMPDefsFlags[NN_subss] = false;               // Scalar Single-FP Subtract
SMPDefsFlags[NN_unpckhps] = false;            // Unpack High Packed Single-FP Data
SMPDefsFlags[NN_unpcklps] = false;            // Unpack Low Packed Single-FP Data
SMPDefsFlags[NN_xorps] = false;               // Bitwise Logical XOR for Single-FP Data
SMPDefsFlags[NN_pavgb] = false;               // Packed Average (Byte)
SMPDefsFlags[NN_pavgw] = false;               // Packed Average (Word)
SMPDefsFlags[NN_pextrw] = false;              // Extract Word
SMPDefsFlags[NN_pinsrw] = false;              // Insert Word
SMPDefsFlags[NN_pmaxsw] = false;              // Packed Signed Integer Word Maximum
SMPDefsFlags[NN_pmaxub] = false;              // Packed Unsigned Integer Byte Maximum
SMPDefsFlags[NN_pminsw] = false;              // Packed Signed Integer Word Minimum
SMPDefsFlags[NN_pminub] = false;              // Packed Unsigned Integer Byte Minimum
SMPDefsFlags[NN_pmovmskb] = false;            // Move Byte Mask to Integer
SMPDefsFlags[NN_pmulhuw] = false;             // Packed Multiply High Unsigned
SMPDefsFlags[NN_psadbw] = false;              // Packed Sum of Absolute Differences
SMPDefsFlags[NN_pshufw] = false;              // Packed Shuffle Word
SMPDefsFlags[NN_maskmovq] = false;            // Byte Mask write  
SMPDefsFlags[NN_movntps] = false;             // Move Aligned Four Packed Single-FP Non Temporal
SMPDefsFlags[NN_movntq] = false;              // Move 64 Bits Non Temporal   
SMPDefsFlags[NN_prefetcht0] = false;          // Prefetch to all cache levels
SMPDefsFlags[NN_prefetcht1] = false;          // Prefetch to all cache levels
SMPDefsFlags[NN_prefetcht2] = false;          // Prefetch to L2 cache
SMPDefsFlags[NN_prefetchnta] = false;         // Prefetch to L1 cache
SMPDefsFlags[NN_sfence] = false;              // Store Fence

// Pentium III Pseudo instructions

SMPDefsFlags[NN_cmpeqps] = false;             // Packed Single-FP Compare EQ
SMPDefsFlags[NN_cmpltps] = false;             // Packed Single-FP Compare LT
SMPDefsFlags[NN_cmpleps] = false;             // Packed Single-FP Compare LE
SMPDefsFlags[NN_cmpunordps] = false;          // Packed Single-FP Compare UNORD
SMPDefsFlags[NN_cmpneqps] = false;            // Packed Single-FP Compare NOT EQ
SMPDefsFlags[NN_cmpnltps] = false;            // Packed Single-FP Compare NOT LT
SMPDefsFlags[NN_cmpnleps] = false;            // Packed Single-FP Compare NOT LE
SMPDefsFlags[NN_cmpordps] = false;            // Packed Single-FP Compare ORDERED
SMPDefsFlags[NN_cmpeqss] = false;             // Scalar Single-FP Compare EQ
SMPDefsFlags[NN_cmpltss] = false;             // Scalar Single-FP Compare LT
SMPDefsFlags[NN_cmpless] = false;             // Scalar Single-FP Compare LE
SMPDefsFlags[NN_cmpunordss] = false;          // Scalar Single-FP Compare UNORD
SMPDefsFlags[NN_cmpneqss] = false;            // Scalar Single-FP Compare NOT EQ
SMPDefsFlags[NN_cmpnltss] = false;            // Scalar Single-FP Compare NOT LT
SMPDefsFlags[NN_cmpnless] = false;            // Scalar Single-FP Compare NOT LE
SMPDefsFlags[NN_cmpordss] = false;            // Scalar Single-FP Compare ORDERED

// AMD K7 instructions

// Revisit AMD if we port to it.
SMPDefsFlags[NN_pf2iw] = false;               // Packed Floating-Point to Integer with Sign Extend
SMPDefsFlags[NN_pfnacc] = false;              // Packed Floating-Point Negative Accumulate
SMPDefsFlags[NN_pfpnacc] = false;             // Packed Floating-Point Mixed Positive-Negative Accumulate
SMPDefsFlags[NN_pi2fw] = false;               // Packed 16-bit Integer to Floating-Point
SMPDefsFlags[NN_pswapd] = false;              // Packed Swap Double Word

// Undocumented FP instructions (thanks to norbert.juffa@adm.com)

SMPDefsFlags[NN_fstp1] = false;               // Alias of Store Real and Pop
SMPDefsFlags[NN_fxch4] = false;               // Alias of Exchange Registers
SMPDefsFlags[NN_ffreep] = false;              // Free Register and Pop
SMPDefsFlags[NN_fxch7] = false;               // Alias of Exchange Registers
SMPDefsFlags[NN_fstp8] = false;               // Alias of Store Real and Pop
SMPDefsFlags[NN_fstp9] = false;               // Alias of Store Real and Pop

// Pentium 4 instructions

SMPDefsFlags[NN_addpd] = false;               // Add Packed Double-Precision Floating-Point Values
SMPDefsFlags[NN_addsd] = false;               // Add Scalar Double-Precision Floating-Point Values
SMPDefsFlags[NN_andnpd] = false;              // Bitwise Logical AND NOT of Packed Double-Precision Floating-Point Values
SMPDefsFlags[NN_andpd] = false;               // Bitwise Logical AND of Packed Double-Precision Floating-Point Values
SMPDefsFlags[NN_clflush] = false;             // Flush Cache Line
SMPDefsFlags[NN_cmppd] = false;               // Compare Packed Double-Precision Floating-Point Values
SMPDefsFlags[NN_cmpsd] = false;               // Compare Scalar Double-Precision Floating-Point Values
SMPDefsFlags[NN_cvtdq2pd] = false;            // Convert Packed Doubleword Integers to Packed Single-Precision Floating-Point Values
SMPDefsFlags[NN_cvtdq2ps] = false;            // Convert Packed Doubleword Integers to Packed Double-Precision Floating-Point Values
SMPDefsFlags[NN_cvtpd2dq] = false;            // Convert Packed Double-Precision Floating-Point Values to Packed Doubleword Integers
SMPDefsFlags[NN_cvtpd2pi] = false;            // Convert Packed Double-Precision Floating-Point Values to Packed Doubleword Integers
SMPDefsFlags[NN_cvtpd2ps] = false;            // Convert Packed Double-Precision Floating-Point Values to Packed Single-Precision Floating-Point Values
SMPDefsFlags[NN_cvtpi2pd] = false;            // Convert Packed Doubleword Integers to Packed Double-Precision Floating-Point Values
SMPDefsFlags[NN_cvtps2dq] = false;            // Convert Packed Single-Precision Floating-Point Values to Packed Doubleword Integers
SMPDefsFlags[NN_cvtps2pd] = false;            // Convert Packed Single-Precision Floating-Point Values to Packed Double-Precision Floating-Point Values
SMPDefsFlags[NN_cvtsd2si] = false;            // Convert Scalar Double-Precision Floating-Point Value to Doubleword Integer
SMPDefsFlags[NN_cvtsd2ss] = false;            // Convert Scalar Double-Precision Floating-Point Value to Scalar Single-Precision Floating-Point Value
SMPDefsFlags[NN_cvtsi2sd] = false;            // Convert Doubleword Integer to Scalar Double-Precision Floating-Point Value
SMPDefsFlags[NN_cvtss2sd] = false;            // Convert Scalar Single-Precision Floating-Point Value to Scalar Double-Precision Floating-Point Value
SMPDefsFlags[NN_cvttpd2dq] = false;           // Convert With Truncation Packed Double-Precision Floating-Point Values to Packed Doubleword Integers
SMPDefsFlags[NN_cvttpd2pi] = false;           // Convert with Truncation Packed Double-Precision Floating-Point Values to Packed Doubleword Integers
SMPDefsFlags[NN_cvttps2dq] = false;           // Convert With Truncation Packed Single-Precision Floating-Point Values to Packed Doubleword Integers
SMPDefsFlags[NN_cvttsd2si] = false;           // Convert with Truncation Scalar Double-Precision Floating-Point Value to Doubleword Integer
SMPDefsFlags[NN_divpd] = false;               // Divide Packed Double-Precision Floating-Point Values
SMPDefsFlags[NN_divsd] = false;               // Divide Scalar Double-Precision Floating-Point Values
SMPDefsFlags[NN_lfence] = false;              // Load Fence
SMPDefsFlags[NN_maskmovdqu] = false;          // Store Selected Bytes of Double Quadword 
SMPDefsFlags[NN_maxpd] = false;               // Return Maximum Packed Double-Precision Floating-Point Values
SMPDefsFlags[NN_maxsd] = false;               // Return Maximum Scalar Double-Precision Floating-Point Value
SMPDefsFlags[NN_mfence] = false;              // Memory Fence
SMPDefsFlags[NN_minpd] = false;               // Return Minimum Packed Double-Precision Floating-Point Values
SMPDefsFlags[NN_minsd] = false;               // Return Minimum Scalar Double-Precision Floating-Point Value
SMPDefsFlags[NN_movapd] = false;              // Move Aligned Packed Double-Precision Floating-Point Values 
SMPDefsFlags[NN_movdq2q] = false;             // Move Quadword from XMM to MMX Register
SMPDefsFlags[NN_movdqa] = false;              // Move Aligned Double Quadword  
SMPDefsFlags[NN_movdqu] = false;              // Move Unaligned Double Quadword  
SMPDefsFlags[NN_movhpd] = false;              // Move High Packed Double-Precision Floating-Point Values 
SMPDefsFlags[NN_movlpd] = false;              // Move Low Packed Double-Precision Floating-Point Values 
SMPDefsFlags[NN_movmskpd] = false;            // Extract Packed Double-Precision Floating-Point Sign Mask
SMPDefsFlags[NN_movntdq] = false;             // Store Double Quadword Using Non-Temporal Hint
SMPDefsFlags[NN_movnti] = false;              // Store Doubleword Using Non-Temporal Hint
SMPDefsFlags[NN_movntpd] = false;             // Store Packed Double-Precision Floating-Point Values Using Non-Temporal Hint
SMPDefsFlags[NN_movq2dq] = false;             // Move Quadword from MMX to XMM Register
SMPDefsFlags[NN_movsd] = false;               // Move Scalar Double-Precision Floating-Point Values
SMPDefsFlags[NN_movupd] = false;              // Move Unaligned Packed Double-Precision Floating-Point Values
SMPDefsFlags[NN_mulpd] = false;               // Multiply Packed Double-Precision Floating-Point Values
SMPDefsFlags[NN_mulsd] = false;               // Multiply Scalar Double-Precision Floating-Point Values
SMPDefsFlags[NN_orpd] = false;                // Bitwise Logical OR of Double-Precision Floating-Point Values
SMPDefsFlags[NN_paddq] = false;               // Add Packed Quadword Integers
SMPDefsFlags[NN_pause] = false;               // Spin Loop Hint
SMPDefsFlags[NN_pmuludq] = false;             // Multiply Packed Unsigned Doubleword Integers
SMPDefsFlags[NN_pshufd] = false;              // Shuffle Packed Doublewords
SMPDefsFlags[NN_pshufhw] = false;             // Shuffle Packed High Words
SMPDefsFlags[NN_pshuflw] = false;             // Shuffle Packed Low Words
SMPDefsFlags[NN_pslldq] = false;              // Shift Double Quadword Left Logical
SMPDefsFlags[NN_psrldq] = false;              // Shift Double Quadword Right Logical
SMPDefsFlags[NN_psubq] = false;               // Subtract Packed Quadword Integers
SMPDefsFlags[NN_punpckhqdq] = false;          // Unpack High Data
SMPDefsFlags[NN_punpcklqdq] = false;          // Unpack Low Data
SMPDefsFlags[NN_shufpd] = false;              // Shuffle Packed Double-Precision Floating-Point Values
SMPDefsFlags[NN_sqrtpd] = false;              // Compute Square Roots of Packed Double-Precision Floating-Point Values
SMPDefsFlags[NN_sqrtsd] = false;              // Compute Square Rootof Scalar Double-Precision Floating-Point Value
SMPDefsFlags[NN_subpd] = false;               // Subtract Packed Double-Precision Floating-Point Values
SMPDefsFlags[NN_subsd] = false;               // Subtract Scalar Double-Precision Floating-Point Values
SMPDefsFlags[NN_unpckhpd] = false;            // Unpack and Interleave High Packed Double-Precision Floating-Point Values
SMPDefsFlags[NN_unpcklpd] = false;            // Unpack and Interleave Low Packed Double-Precision Floating-Point Values
SMPDefsFlags[NN_xorpd] = false;               // Bitwise Logical OR of Double-Precision Floating-Point Values


// AMD syscall/sysret instructions  NOTE: not AMD, found in Intel manual


// AMD64 instructions    NOTE: not AMD, found in Intel manual

SMPDefsFlags[NN_swapgs] = false;              // Exchange GS base with KernelGSBase MSR

// New Pentium instructions (SSE3)

SMPDefsFlags[NN_movddup] = false;             // Move One Double-FP and Duplicate
SMPDefsFlags[NN_movshdup] = false;            // Move Packed Single-FP High and Duplicate
SMPDefsFlags[NN_movsldup] = false;            // Move Packed Single-FP Low and Duplicate

// Missing AMD64 instructions  NOTE: also found in Intel manual

SMPDefsFlags[NN_movsxd] = false;              // Move with Sign-Extend Doubleword

// SSE3 instructions

SMPDefsFlags[NN_addsubpd] = false;            // Add /Sub packed DP FP numbers
SMPDefsFlags[NN_addsubps] = false;            // Add /Sub packed SP FP numbers
SMPDefsFlags[NN_haddpd] = false;              // Add horizontally packed DP FP numbers
SMPDefsFlags[NN_haddps] = false;              // Add horizontally packed SP FP numbers
SMPDefsFlags[NN_hsubpd] = false;              // Sub horizontally packed DP FP numbers
SMPDefsFlags[NN_hsubps] = false;              // Sub horizontally packed SP FP numbers
SMPDefsFlags[NN_monitor] = false;             // Set up a linear address range to be monitored by hardware
SMPDefsFlags[NN_mwait] = false;               // Wait until write-back store performed within the range specified by the MONITOR instruction
SMPDefsFlags[NN_fisttp] = false;              // Store ST in intXX (chop) and pop
SMPDefsFlags[NN_lddqu] = false;               // Load unaligned integer 128-bit

// SSSE3 instructions

SMPDefsFlags[NN_psignb] = false;              // Packed SIGN Byte
SMPDefsFlags[NN_psignw] = false;              // Packed SIGN Word
SMPDefsFlags[NN_psignd] = false;              // Packed SIGN Doubleword
SMPDefsFlags[NN_pshufb] = false;              // Packed Shuffle Bytes
SMPDefsFlags[NN_pmulhrsw] = false;            // Packed Multiply High with Round and Scale
SMPDefsFlags[NN_pmaddubsw] = false;           // Multiply and Add Packed Signed and Unsigned Bytes
SMPDefsFlags[NN_phsubsw] = false;             // Packed Horizontal Subtract and Saturate
SMPDefsFlags[NN_phaddsw] = false;             // Packed Horizontal Add and Saturate
SMPDefsFlags[NN_phaddw] = false;              // Packed Horizontal Add Word
SMPDefsFlags[NN_phaddd] = false;              // Packed Horizontal Add Doubleword
SMPDefsFlags[NN_phsubw] = false;              // Packed Horizontal Subtract Word
SMPDefsFlags[NN_phsubd] = false;              // Packed Horizontal Subtract Doubleword
SMPDefsFlags[NN_palignr] = false;             // Packed Align Right
SMPDefsFlags[NN_pabsb] = false;               // Packed Absolute Value Byte
SMPDefsFlags[NN_pabsw] = false;               // Packed Absolute Value Word
SMPDefsFlags[NN_pabsd] = false;               // Packed Absolute Value Doubleword

// VMX instructions

#if 599 < IDA_SDK_VERSION

SMPDefsFlags[NN_ud2] = false;                 // Undefined Instruction

// Added with x86-64

SMPDefsFlags[NN_rdtscp] = false;              // Read Time-Stamp Counter and Processor ID

// Geode LX 3DNow! extensions

SMPDefsFlags[NN_pfrcpv] = false;              // Reciprocal Approximation for a Pair of 32-bit Floats
SMPDefsFlags[NN_pfrsqrtv] = false;            // Reciprocal Square Root Approximation for a Pair of 32-bit Floats

// SSE2 pseudoinstructions

SMPDefsFlags[NN_cmpeqpd] = false;             // Packed Double-FP Compare EQ
SMPDefsFlags[NN_cmpltpd] = false;             // Packed Double-FP Compare LT
SMPDefsFlags[NN_cmplepd] = false;             // Packed Double-FP Compare LE
SMPDefsFlags[NN_cmpunordpd] = false;          // Packed Double-FP Compare UNORD
SMPDefsFlags[NN_cmpneqpd] = false;            // Packed Double-FP Compare NOT EQ
SMPDefsFlags[NN_cmpnltpd] = false;            // Packed Double-FP Compare NOT LT
SMPDefsFlags[NN_cmpnlepd] = false;            // Packed Double-FP Compare NOT LE
SMPDefsFlags[NN_cmpordpd] = false;            // Packed Double-FP Compare ORDERED
SMPDefsFlags[NN_cmpeqsd] = false;             // Scalar Double-FP Compare EQ
SMPDefsFlags[NN_cmpltsd] = false;             // Scalar Double-FP Compare LT
SMPDefsFlags[NN_cmplesd] = false;             // Scalar Double-FP Compare LE
SMPDefsFlags[NN_cmpunordsd] = false;          // Scalar Double-FP Compare UNORD
SMPDefsFlags[NN_cmpneqsd] = false;            // Scalar Double-FP Compare NOT EQ
SMPDefsFlags[NN_cmpnltsd] = false;            // Scalar Double-FP Compare NOT LT
SMPDefsFlags[NN_cmpnlesd] = false;            // Scalar Double-FP Compare NOT LE
SMPDefsFlags[NN_cmpordsd] = false;            // Scalar Double-FP Compare ORDERED

// SSSE4.1 instructions

SMPDefsFlags[NN_blendpd] = false;              // Blend Packed Double Precision Floating-Point Values
SMPDefsFlags[NN_blendps] = false;              // Blend Packed Single Precision Floating-Point Values
SMPDefsFlags[NN_blendvpd] = false;             // Variable Blend Packed Double Precision Floating-Point Values
SMPDefsFlags[NN_blendvps] = false;             // Variable Blend Packed Single Precision Floating-Point Values
SMPDefsFlags[NN_dppd] = false;                 // Dot Product of Packed Double Precision Floating-Point Values
SMPDefsFlags[NN_dpps] = false;                 // Dot Product of Packed Single Precision Floating-Point Values
SMPDefsFlags[NN_extractps] = 2;            // Extract Packed Single Precision Floating-Point Value
SMPDefsFlags[NN_insertps] = false;             // Insert Packed Single Precision Floating-Point Value
SMPDefsFlags[NN_movntdqa] = false;             // Load Double Quadword Non-Temporal Aligned Hint
SMPDefsFlags[NN_mpsadbw] = false;              // Compute Multiple Packed Sums of Absolute Difference
SMPDefsFlags[NN_packusdw] = false;             // Pack with Unsigned Saturation
SMPDefsFlags[NN_pblendvb] = false;             // Variable Blend Packed Bytes
SMPDefsFlags[NN_pblendw] = false;              // Blend Packed Words
SMPDefsFlags[NN_pcmpeqq] = false;              // Compare Packed Qword Data for Equal
SMPDefsFlags[NN_pextrb] = false;               // Extract Byte
SMPDefsFlags[NN_pextrd] = false;               // Extract Dword
SMPDefsFlags[NN_pextrq] = false;               // Extract Qword
SMPDefsFlags[NN_phminposuw] = false;           // Packed Horizontal Word Minimum
SMPDefsFlags[NN_pinsrb] = false;               // Insert Byte
SMPDefsFlags[NN_pinsrd] = false;               // Insert Dword
SMPDefsFlags[NN_pinsrq] = false;               // Insert Qword
SMPDefsFlags[NN_pmaxsb] = false;               // Maximum of Packed Signed Byte Integers
SMPDefsFlags[NN_pmaxsd] = false;               // Maximum of Packed Signed Dword Integers
SMPDefsFlags[NN_pmaxud] = false;               // Maximum of Packed Unsigned Dword Integers
SMPDefsFlags[NN_pmaxuw] = false;               // Maximum of Packed Word Integers
SMPDefsFlags[NN_pminsb] = false;               // Minimum of Packed Signed Byte Integers
SMPDefsFlags[NN_pminsd] = false;               // Minimum of Packed Signed Dword Integers
SMPDefsFlags[NN_pminud] = false;               // Minimum of Packed Unsigned Dword Integers
SMPDefsFlags[NN_pminuw] = false;               // Minimum of Packed Word Integers
SMPDefsFlags[NN_pmovsxbw] = false;             // Packed Move with Sign Extend
SMPDefsFlags[NN_pmovsxbd] = false;             // Packed Move with Sign Extend
SMPDefsFlags[NN_pmovsxbq] = false;             // Packed Move with Sign Extend
SMPDefsFlags[NN_pmovsxwd] = false;             // Packed Move with Sign Extend
SMPDefsFlags[NN_pmovsxwq] = false;             // Packed Move with Sign Extend
SMPDefsFlags[NN_pmovsxdq] = false;             // Packed Move with Sign Extend
SMPDefsFlags[NN_pmovzxbw] = false;             // Packed Move with Zero Extend
SMPDefsFlags[NN_pmovzxbd] = false;             // Packed Move with Zero Extend
SMPDefsFlags[NN_pmovzxbq] = false;             // Packed Move with Zero Extend
SMPDefsFlags[NN_pmovzxwd] = false;             // Packed Move with Zero Extend
SMPDefsFlags[NN_pmovzxwq] = false;             // Packed Move with Zero Extend
SMPDefsFlags[NN_pmovzxdq] = false;             // Packed Move with Zero Extend
SMPDefsFlags[NN_pmuldq] = false;               // Multiply Packed Signed Dword Integers
SMPDefsFlags[NN_pmulld] = false;               // Multiply Packed Signed Dword Integers and Store Low Result
SMPDefsFlags[NN_roundpd] = false;              // Round Packed Double Precision Floating-Point Values
SMPDefsFlags[NN_roundps] = false;              // Round Packed Single Precision Floating-Point Values
SMPDefsFlags[NN_roundsd] = false;              // Round Scalar Double Precision Floating-Point Values
SMPDefsFlags[NN_roundss] = false;              // Round Scalar Single Precision Floating-Point Values

// SSSE4.2 instructions
SMPDefsFlags[NN_crc32] = false;                // Accumulate CRC32 Value
SMPDefsFlags[NN_pcmpgtq] = false;              // Compare Packed Data for Greater Than

// AMD SSE4a instructions

SMPDefsFlags[NN_extrq] = false;                // Extract Field From Register
SMPDefsFlags[NN_insertq] = false;              // Insert Field
SMPDefsFlags[NN_movntsd] = false;              // Move Non-Temporal Scalar Double-Precision Floating-Point
SMPDefsFlags[NN_movntss] = false;              // Move Non-Temporal Scalar Single-Precision Floating-Point

// xsave/xrstor instructions

SMPDefsFlags[NN_xgetbv] = false;               // Get Value of Extended Control Register
SMPDefsFlags[NN_xrstor] = false;               // Restore Processor Extended States
SMPDefsFlags[NN_xsave] = false;                // Save Processor Extended States
SMPDefsFlags[NN_xsetbv] = false;               // Set Value of Extended Control Register

// Intel Safer Mode Extensions (SMX)

// AMD-V Virtualization ISA Extension

SMPDefsFlags[NN_invlpga] = false;              // Invalidate TLB Entry in a Specified ASID
SMPDefsFlags[NN_skinit] = false;               // Secure Init and Jump with Attestation
SMPDefsFlags[NN_vmexit] = false;               // Stop Executing Guest, Begin Executing Host
SMPDefsFlags[NN_vmload] = false;               // Load State from VMCB
SMPDefsFlags[NN_vmmcall] = false;              // Call VMM
SMPDefsFlags[NN_vmrun] = false;                // Run Virtual Machine
SMPDefsFlags[NN_vmsave] = false;               // Save State to VMCB

// VMX+ instructions

SMPDefsFlags[NN_invept] = false;               // Invalidate Translations Derived from EPT
SMPDefsFlags[NN_invvpid] = false;              // Invalidate Translations Based on VPID

// Intel Atom instructions

SMPDefsFlags[NN_movbe] = false;                // Move Data After Swapping Bytes

// Intel AES instructions

SMPDefsFlags[NN_aesenc] = false;                // Perform One Round of an AES Encryption Flow
SMPDefsFlags[NN_aesenclast] = false;            // Perform the Last Round of an AES Encryption Flow
SMPDefsFlags[NN_aesdec] = false;                // Perform One Round of an AES Decryption Flow
SMPDefsFlags[NN_aesdeclast] = false;            // Perform the Last Round of an AES Decryption Flow
SMPDefsFlags[NN_aesimc] = false;                // Perform the AES InvMixColumn Transformation
SMPDefsFlags[NN_aeskeygenassist] = false;       // AES Round Key Generation Assist

// Carryless multiplication

SMPDefsFlags[NN_pclmulqdq] = false;            // Carry-Less Multiplication Quadword

#endif // 599 < IDA_SDK_VERSION

SMPDefsFlags[NN_last] = false;

  return;

} // end InitSMPDefsFlags()

// Initialize the SMPUsesFlags[] array to define how we emit
//   optimizing annotations.
void InitSMPUsesFlags(void) {
	// Default value is false. Few instructions use the flags.
	(void) memset(SMPUsesFlags, false, sizeof(SMPUsesFlags));

SMPUsesFlags[NN_null] = true;            // Unknown Operation
SMPUsesFlags[NN_aaa] = true;                 // ASCII adjust after addition
SMPUsesFlags[NN_aas] = true;				 // ASCII adjust after subtraction
SMPUsesFlags[NN_adc] = true;                 // Add with Carry
SMPUsesFlags[NN_cmps] = true;                // Compare Strings (uses DF direction flag)
SMPUsesFlags[NN_daa] = true;                 // Decimal Adjust AL after Addition
SMPUsesFlags[NN_das] = true;                 // Decimal Adjust AL after Subtraction
SMPUsesFlags[NN_ins] = true;                 // Input Byte(s) from Port to String        
SMPUsesFlags[NN_into] = true;                // Call to Interrupt Procedure if Overflow Flag = 1
SMPUsesFlags[NN_ja] = true;                  // Jump if Above (CF=0 & ZF=0)
SMPUsesFlags[NN_jae] = true;                 // Jump if Above or Equal (CF=0)
SMPUsesFlags[NN_jb] = true;                  // Jump if Below (CF=1)
SMPUsesFlags[NN_jbe] = true;                 // Jump if Below or Equal (CF=1 | ZF=1)
SMPUsesFlags[NN_jc] = true;                  // Jump if Carry (CF=1)
SMPUsesFlags[NN_jcxz] = true;                // Jump if CX is 0
SMPUsesFlags[NN_jecxz] = true;               // Jump if ECX is 0
SMPUsesFlags[NN_jrcxz] = true;               // Jump if RCX is 0
SMPUsesFlags[NN_je] = true;                  // Jump if Equal (ZF=1)
SMPUsesFlags[NN_jg] = true;                  // Jump if Greater (ZF=0 & SF=OF)
SMPUsesFlags[NN_jge] = true;                 // Jump if Greater or Equal (SF=OF)
SMPUsesFlags[NN_jl] = true;                  // Jump if Less (SF!=OF)
SMPUsesFlags[NN_jle] = true;                 // Jump if Less or Equal (ZF=1 | SF!=OF)
SMPUsesFlags[NN_jna] = true;                 // Jump if Not Above (CF=1 | ZF=1)
SMPUsesFlags[NN_jnae] = true;                // Jump if Not Above or Equal (CF=1)
SMPUsesFlags[NN_jnb] = true;                 // Jump if Not Below (CF=0)
SMPUsesFlags[NN_jnbe] = true;                // Jump if Not Below or Equal (CF=0 & ZF=0)
SMPUsesFlags[NN_jnc] = true;                 // Jump if Not Carry (CF=0)
SMPUsesFlags[NN_jne] = true;                 // Jump if Not Equal (ZF=0)
SMPUsesFlags[NN_jng] = true;                 // Jump if Not Greater (ZF=1 | SF!=OF)
SMPUsesFlags[NN_jnge] = true;                // Jump if Not Greater or Equal (ZF=1)
SMPUsesFlags[NN_jnl] = true;                 // Jump if Not Less (SF=OF)
SMPUsesFlags[NN_jnle] = true;                // Jump if Not Less or Equal (ZF=0 & SF=OF)
SMPUsesFlags[NN_jno] = true;                 // Jump if Not Overflow (OF=0)
SMPUsesFlags[NN_jnp] = true;                 // Jump if Not Parity (PF=0)
SMPUsesFlags[NN_jns] = true;                 // Jump if Not Sign (SF=0)
SMPUsesFlags[NN_jnz] = true;                 // Jump if Not Zero (ZF=0)
SMPUsesFlags[NN_jo] = true;                  // Jump if Overflow (OF=1)
SMPUsesFlags[NN_jp] = true;                  // Jump if Parity (PF=1)
SMPUsesFlags[NN_jpe] = true;                 // Jump if Parity Even (PF=1)
SMPUsesFlags[NN_jpo] = true;                 // Jump if Parity Odd  (PF=0)
SMPUsesFlags[NN_js] = true;                  // Jump if Sign (SF=1)
SMPUsesFlags[NN_jz] = true;                  // Jump if Zero (ZF=1)
SMPUsesFlags[NN_lahf] = true;                // Load Flags into AH Register
SMPUsesFlags[NN_lods] = true;                // Load String
SMPUsesFlags[NN_loopwe] = true;              // Loop while CX != 0 and ZF=1
SMPUsesFlags[NN_loope] = true;               // Loop while rCX != 0 and ZF=1
SMPUsesFlags[NN_loopde] = true;              // Loop while ECX != 0 and ZF=1
SMPUsesFlags[NN_loopqe] = true;              // Loop while RCX != 0 and ZF=1
SMPUsesFlags[NN_loopwne] = true;             // Loop while CX != 0 and ZF=0
SMPUsesFlags[NN_loopne] = true;              // Loop while rCX != 0 and ZF=0
SMPUsesFlags[NN_loopdne] = true;             // Loop while ECX != 0 and ZF=0
SMPUsesFlags[NN_loopqne] = true;             // Loop while RCX != 0 and ZF=0
SMPUsesFlags[NN_movs] = true;  		         // Move String (uses flags if REP prefix)
SMPUsesFlags[NN_outs] = true;                // Output Byte(s) to Port
SMPUsesFlags[NN_pushfw] = true;              // Push Flags Register onto the Stack
SMPUsesFlags[NN_pushf] = true;               // Push Flags Register onto the Stack
SMPUsesFlags[NN_pushfd] = true;              // Push Flags Register onto the Stack (use32)
SMPUsesFlags[NN_pushfq] = true;              // Push Flags Register onto the Stack (use64)
SMPUsesFlags[NN_rcl] = true;                 // Rotate Through Carry Left
SMPUsesFlags[NN_rcr] = true;                 // Rotate Through Carry Right
SMPUsesFlags[NN_repe] = true;                // Repeat String Operation while ZF=1
SMPUsesFlags[NN_repne] = true;               // Repeat String Operation while ZF=0
SMPUsesFlags[NN_sbb] = true;                 // Integer Subtraction with Borrow
SMPUsesFlags[NN_scas] = true;                // Compare String (uses DF direction flag)
SMPUsesFlags[NN_seta] = true;                // Set Byte if Above (CF=0 & ZF=0)
SMPUsesFlags[NN_setae] = true;               // Set Byte if Above or Equal (CF=0)
SMPUsesFlags[NN_setb] = true;                // Set Byte if Below (CF=1)
SMPUsesFlags[NN_setbe] = true;               // Set Byte if Below or Equal (CF=1 | ZF=1)
SMPUsesFlags[NN_setc] = true;                // Set Byte if Carry (CF=1)
SMPUsesFlags[NN_sete] = true;                // Set Byte if Equal (ZF=1)
SMPUsesFlags[NN_setg] = true;                // Set Byte if Greater (ZF=0 & SF=OF)
SMPUsesFlags[NN_setge] = true;               // Set Byte if Greater or Equal (SF=OF)
SMPUsesFlags[NN_setl] = true;                // Set Byte if Less (SF!=OF)
SMPUsesFlags[NN_setle] = true;               // Set Byte if Less or Equal (ZF=1 | SF!=OF)
SMPUsesFlags[NN_setna] = true;               // Set Byte if Not Above (CF=1 | ZF=1)
SMPUsesFlags[NN_setnae] = true;              // Set Byte if Not Above or Equal (CF=1)
SMPUsesFlags[NN_setnb] = true;               // Set Byte if Not Below (CF=0)
SMPUsesFlags[NN_setnbe] = true;              // Set Byte if Not Below or Equal (CF=0 & ZF=0)
SMPUsesFlags[NN_setnc] = true;               // Set Byte if Not Carry (CF=0)
SMPUsesFlags[NN_setne] = true;               // Set Byte if Not Equal (ZF=0)
SMPUsesFlags[NN_setng] = true;               // Set Byte if Not Greater (ZF=1 | SF!=OF)
SMPUsesFlags[NN_setnge] = true;              // Set Byte if Not Greater or Equal (ZF=1)
SMPUsesFlags[NN_setnl] = true;               // Set Byte if Not Less (SF=OF)
SMPUsesFlags[NN_setnle] = true;              // Set Byte if Not Less or Equal (ZF=0 & SF=OF)
SMPUsesFlags[NN_setno] = true;               // Set Byte if Not Overflow (OF=0)
SMPUsesFlags[NN_setnp] = true;               // Set Byte if Not Parity (PF=0)
SMPUsesFlags[NN_setns] = true;               // Set Byte if Not Sign (SF=0)
SMPUsesFlags[NN_setnz] = true;               // Set Byte if Not Zero (ZF=0)
SMPUsesFlags[NN_seto] = true;                // Set Byte if Overflow (OF=1)
SMPUsesFlags[NN_setp] = true;                // Set Byte if Parity (PF=1)
SMPUsesFlags[NN_setpe] = true;               // Set Byte if Parity Even (PF=1)
SMPUsesFlags[NN_setpo] = true;               // Set Byte if Parity Odd  (PF=0)
SMPUsesFlags[NN_sets] = true;                // Set Byte if Sign (SF=1)
SMPUsesFlags[NN_setz] = true;                // Set Byte if Zero (ZF=1)
SMPUsesFlags[NN_stos] = true;                // Store String

//
//      486 instructions
//

//
//      Pentium instructions
//

SMPUsesFlags[NN_cpuid] = true;               // Get CPU ID
SMPUsesFlags[NN_cmpxchg8b] = true;           // Compare and Exchange Eight Bytes

//
//      Pentium Pro instructions
//

SMPUsesFlags[NN_cmova] = true;               // Move if Above (CF=0 & ZF=0)
SMPUsesFlags[NN_cmovb] = true;               // Move if Below (CF=1)
SMPUsesFlags[NN_cmovbe] = true;              // Move if Below or Equal (CF=1 | ZF=1)
SMPUsesFlags[NN_cmovg] = true;               // Move if Greater (ZF=0 & SF=OF)
SMPUsesFlags[NN_cmovge] = true;              // Move if Greater or Equal (SF=OF)
SMPUsesFlags[NN_cmovl] = true;               // Move if Less (SF!=OF)
SMPUsesFlags[NN_cmovle] = true;              // Move if Less or Equal (ZF=1 | SF!=OF)
SMPUsesFlags[NN_cmovnb] = true;              // Move if Not Below (CF=0)
SMPUsesFlags[NN_cmovno] = true;              // Move if Not Overflow (OF=0)
SMPUsesFlags[NN_cmovnp] = true;              // Move if Not Parity (PF=0)
SMPUsesFlags[NN_cmovns] = true;              // Move if Not Sign (SF=0)
SMPUsesFlags[NN_cmovnz] = true;              // Move if Not Zero (ZF=0)
SMPUsesFlags[NN_cmovo] = true;               // Move if Overflow (OF=1)
SMPUsesFlags[NN_cmovp] = true;               // Move if Parity (PF=1)
SMPUsesFlags[NN_cmovs] = true;               // Move if Sign (SF=1)
SMPUsesFlags[NN_cmovz] = true;               // Move if Zero (ZF=1)
SMPUsesFlags[NN_fcmovb] = true;              // Floating Move if Below          
SMPUsesFlags[NN_fcmove] = true;              // Floating Move if Equal          
SMPUsesFlags[NN_fcmovbe] = true;             // Floating Move if Below or Equal 
SMPUsesFlags[NN_fcmovu] = true;              // Floating Move if Unordered      
SMPUsesFlags[NN_fcmovnb] = true;             // Floating Move if Not Below      
SMPUsesFlags[NN_fcmovne] = true;             // Floating Move if Not Equal      
SMPUsesFlags[NN_fcmovnbe] = true;            // Floating Move if Not Below or Equal
SMPUsesFlags[NN_fcmovnu] = true;             // Floating Move if Not Unordered     

//
//


//
//      80387 instructions
//


//
//      Instructions added 28.02.96
//

SMPUsesFlags[NN_setalc] = true;              // Set AL to Carry Flag      

//
//      MMX instructions
//


//
//      Undocumented Deschutes processor instructions
//


//      Pentium II instructions


//      3DNow! instructions


//      Pentium III instructions


// Pentium III Pseudo instructions


// AMD K7 instructions

// Revisit AMD if we port to it.

// Undocumented FP instructions (thanks to norbert.juffa@adm.com)

// Pentium 4 instructions



// AMD syscall/sysret instructions  NOTE: not AMD, found in Intel manual

// AMD64 instructions    NOTE: not AMD, found in Intel manual


// New Pentium instructions (SSE3)


// Missing AMD64 instructions  NOTE: also found in Intel manual


// SSE3 instructions


// SSSE3 instructions


// VMX instructions

// Added with x86-64

// Geode LX 3DNow! extensions

// SSE2 pseudoinstructions

// SSSE4.1 instructions

// SSSE4.2 instructions

// AMD SSE4a instructions

// xsave/xrstor instructions

// Intel Safer Mode Extensions (SMX)

// AMD-V Virtualization ISA Extension

// VMX+ instructions

// Intel Atom instructions

// Intel AES instructions

// Carryless multiplication

SMPUsesFlags[NN_last] = false;

  return;

} // end InitSMPUsesFlags()


// Initialize the SMPTypeCategory[] array to define how we infer
//   numeric or pointer operand types for optimizing annotations.
void InitTypeCategory(void) {
	// Default category is 0, no type inference without knowing context.
	(void) memset(SMPTypeCategory, 0, sizeof(SMPTypeCategory));
	// Category 1 instructions will need no mmStrata instrumentation
	//  and are irrelevant to our type system, so we do not attempt
	//  to make type inferences. Many of these operate on numeric
	//  operands such as floating point or MMX/SSE registers. mmStrata
	//  assumes that such registers are always numeric, so we do not
	//  need annotations informing mmStrata that FP/MMX/SSE regs are numeric.
	// Category 2 instructions always have a result type of 'n' (number).
	// Category 3 instructions have a result type of 'n' (number)
	//  whenever the second source operand is an operand of type 'n'.
	//  NOTE: MOV is the only current example, and this will take some thought if 
    //   other examples arise.
	// Category 4 instructions have a result type identical to the 1st source operand type.
	//  NOTE: This is currently set for single-operand instructions such as
	//   INC, DEC. As a result, these are treated pretty much as if
	//   they were category 1 instructions, as there is no metadata update,
	//   even if the operand is a memory operand.
	//   If new instructions are added to this category that are not single
	//   operand and do require some updating, the category should be split.
	// Category 5 instructions have a result type identical to the 1st source operand
	//  type whenever the 2nd source operand is an operand of type 'n' & vice versa.
	//  Examples are add, sub, adc, and sbb. There are subtle exceptions
	//  handled in the SMPInstr::EmitTypeAnnotations() method.
	// Category 6 instructions always have a result type of 'p' (pointer).
	// Category 7 instructions are category 2 instructions with two destinations,
	//  such as multiply and divide instructions that affect EDX:EAX. There are
	//  forms of these instructions that only have one destination, so they have
	//  to be distinguished via the operand info.
    // Category 8 instructions implicitly write a numeric value to EDX:EAX, but
    //  EDX and EAX are not listed as operands. RDTSC, RDPMC, RDMSR, and other
    //  instructions that copy machine registers into EDX:EAX are category 8.
	//  Some instructions in category 8 also write to ECX.
    // Category 9 instructions are floating point instructions that either
    //  have a memory destination (treat as category 13) or a FP reg destination
    //  (treat as category 1, as FP regs are always 'n' and ignored in our system).
	// Category 10 instructions have 'n' results if the sources are all 'n';
	//  we cannot infer the type of the result if the sources are of mixed types.
	//  Bitwise OR and AND and LEA (load effective address) are examples.
	// Category 11 instructions need to have their types and locations on the stack
	//  frame tracked, e.g. push and pop instructions. No direct type inference.
	// Category 12 instructions are similar to category 10, except that we do not
	//  output 'n' annotations when all sources are 'n'; rather, the instruction can
	//  be simply ignored (not instrumented by mmStrata) in that case. Conditional
	//  exchange instructions are examples; we do or do not
	//  move a numeric value into a register that already has numeric metadata.
	// Category 13 instructions imply that their memory destination is 'n'.
	// Category 14 instructions imply that their reg or memory source operand is 'n';
	//  if source is not memory, they are category 1 (inferences, but no instrumentation).
	//  There should never be a memory destination (usual destination is fpreg or flags).
	// Category 15 instructions always have 'n' source AND destination operands;
	//  if addressed using indirect or indexed addressing, they are a subset of category 0
	//  (must be instrumented by mmStrata to keep index in bounds). Memory destinations
	//  are common in this category.

	// NOTE: The Memory Monitor SDT needs just three categories, corresponding
	//  to categories 0, 1, and all others. For all categories > 1, the
	//  annotation should tell the SDT exactly how to update its metadata.
	//  For example, a division instruction will write type 'n' (NUM) as
	//  the metadata for result registers EDX:EAX. So, the annotation should
	//  list 'n', EDX, EAX, and a terminator of ZZ. CWD (convert word to
	//  doubleword) should have a list of n EAX ZZ.

SMPTypeCategory[NN_null] = 0;            // Unknown Operation
SMPTypeCategory[NN_aaa] = 2;                 // ASCII Adjust after Addition
SMPTypeCategory[NN_aad] = 2;                 // ASCII Adjust AX before Division
SMPTypeCategory[NN_aam] = 2;                 // ASCII Adjust AX after Multiply
SMPTypeCategory[NN_aas] = 2;                 // ASCII Adjust AL after Subtraction
SMPTypeCategory[NN_adc] = 5;                 // Add with Carry
SMPTypeCategory[NN_add] = 5;                 // Add
SMPTypeCategory[NN_and] = 10;                // Logical AND
SMPTypeCategory[NN_arpl] = 1;                // Adjust RPL Field of Selector
SMPTypeCategory[NN_bound] = 1;               // Check Array Index Against Bounds
SMPTypeCategory[NN_bsf] = 2;                 // Bit Scan Forward
SMPTypeCategory[NN_bsr] = 2;                 // Bit Scan Reverse
SMPTypeCategory[NN_bt] = 2;                  // Bit Test
SMPTypeCategory[NN_btc] = 2;                 // Bit Test and Complement
SMPTypeCategory[NN_btr] = 2;                 // Bit Test and Reset
SMPTypeCategory[NN_bts] = 2;                 // Bit Test and Set
SMPTypeCategory[NN_call] = 1;                // Call Procedure
SMPTypeCategory[NN_callfi] = 1;              // Indirect Call Far Procedure
SMPTypeCategory[NN_callni] = 1;              // Indirect Call Near Procedure
SMPTypeCategory[NN_cbw] = 2;                 // AL -> AX (with sign)            ** No ops?
SMPTypeCategory[NN_cwde] = 2;                // AX -> EAX (with sign)           **
SMPTypeCategory[NN_cdqe] = 2;                // EAX -> RAX (with sign)          **
SMPTypeCategory[NN_clc] = 1;                 // Clear Carry Flag
SMPTypeCategory[NN_cld] = 1;                 // Clear Direction Flag
SMPTypeCategory[NN_cli] = 1;                 // Clear Interrupt Flag
SMPTypeCategory[NN_clts] = 1;                // Clear Task-Switched Flag in CR0
SMPTypeCategory[NN_cmc] = 1;                 // Complement Carry Flag
SMPTypeCategory[NN_cmp] = 1;                 // Compare Two Operands
SMPTypeCategory[NN_cmps] = 14;                // Compare Strings
SMPTypeCategory[NN_cwd] = 2;                 // AX -> DX:AX (with sign)
SMPTypeCategory[NN_cdq] = 2;                 // EAX -> EDX:EAX (with sign)
SMPTypeCategory[NN_cqo] = 2;                 // RAX -> RDX:RAX (with sign)
SMPTypeCategory[NN_daa] = 2;                 // Decimal Adjust AL after Addition
SMPTypeCategory[NN_das] = 2;                 // Decimal Adjust AL after Subtraction
SMPTypeCategory[NN_dec] = 4;                 // Decrement by 1
SMPTypeCategory[NN_div] = 7;                 // Unsigned Divide
SMPTypeCategory[NN_enterw] = 0;              // Make Stack Frame for Procedure Parameters  **
SMPTypeCategory[NN_enter] = 0;               // Make Stack Frame for Procedure Parameters  **
SMPTypeCategory[NN_enterd] = 0;              // Make Stack Frame for Procedure Parameters  **
SMPTypeCategory[NN_enterq] = 0;              // Make Stack Frame for Procedure Parameters  **
SMPTypeCategory[NN_hlt] = 0;                 // Halt
SMPTypeCategory[NN_idiv] = 7;                // Signed Divide
SMPTypeCategory[NN_imul] = 7;                // Signed Multiply
SMPTypeCategory[NN_in] = 0;                  // Input from Port                         **
SMPTypeCategory[NN_inc] = 4;                 // Increment by 1
SMPTypeCategory[NN_ins] = 2;                 // Input Byte(s) from Port to String       **
SMPTypeCategory[NN_int] = 0;                 // Call to Interrupt Procedure
SMPTypeCategory[NN_into] = 0;                // Call to Interrupt Procedure if Overflow Flag = 1
SMPTypeCategory[NN_int3] = 0;                // Trap to Debugger
SMPTypeCategory[NN_iretw] = 0;               // Interrupt Return
SMPTypeCategory[NN_iret] = 0;                // Interrupt Return
SMPTypeCategory[NN_iretd] = 0;               // Interrupt Return (use32)
SMPTypeCategory[NN_iretq] = 0;               // Interrupt Return (use64)
SMPTypeCategory[NN_ja] = 1;                  // Jump if Above (CF=0 & ZF=0)
SMPTypeCategory[NN_jae] = 1;                 // Jump if Above or Equal (CF=0)
SMPTypeCategory[NN_jb] = 1;                  // Jump if Below (CF=1)
SMPTypeCategory[NN_jbe] = 1;                 // Jump if Below or Equal (CF=1 | ZF=1)
SMPTypeCategory[NN_jc] = 1;                  // Jump if Carry (CF=1)
SMPTypeCategory[NN_jcxz] = 1;                // Jump if CX is 0
SMPTypeCategory[NN_jecxz] = 1;               // Jump if ECX is 0
SMPTypeCategory[NN_jrcxz] = 1;               // Jump if RCX is 0
SMPTypeCategory[NN_je] = 1;                  // Jump if Equal (ZF=1)
SMPTypeCategory[NN_jg] = 1;                  // Jump if Greater (ZF=0 & SF=OF)
SMPTypeCategory[NN_jge] = 1;                 // Jump if Greater or Equal (SF=OF)
SMPTypeCategory[NN_jl] = 1;                  // Jump if Less (SF!=OF)
SMPTypeCategory[NN_jle] = 1;                 // Jump if Less or Equal (ZF=1 | SF!=OF)
SMPTypeCategory[NN_jna] = 1;                 // Jump if Not Above (CF=1 | ZF=1)
SMPTypeCategory[NN_jnae] = 1;                // Jump if Not Above or Equal (CF=1)
SMPTypeCategory[NN_jnb] = 1;                 // Jump if Not Below (CF=0)
SMPTypeCategory[NN_jnbe] = 1;                // Jump if Not Below or Equal (CF=0 & ZF=0)
SMPTypeCategory[NN_jnc] = 1;                 // Jump if Not Carry (CF=0)
SMPTypeCategory[NN_jne] = 1;                 // Jump if Not Equal (ZF=0)
SMPTypeCategory[NN_jng] = 1;                 // Jump if Not Greater (ZF=1 | SF!=OF)
SMPTypeCategory[NN_jnge] = 1;                // Jump if Not Greater or Equal (ZF=1)
SMPTypeCategory[NN_jnl] = 1;                 // Jump if Not Less (SF=OF)
SMPTypeCategory[NN_jnle] = 1;                // Jump if Not Less or Equal (ZF=0 & SF=OF)
SMPTypeCategory[NN_jno] = 1;                 // Jump if Not Overflow (OF=0)
SMPTypeCategory[NN_jnp] = 1;                 // Jump if Not Parity (PF=0)
SMPTypeCategory[NN_jns] = 1;                 // Jump if Not Sign (SF=0)
SMPTypeCategory[NN_jnz] = 1;                 // Jump if Not Zero (ZF=0)
SMPTypeCategory[NN_jo] = 1;                  // Jump if Overflow (OF=1)
SMPTypeCategory[NN_jp] = 1;                  // Jump if Parity (PF=1)
SMPTypeCategory[NN_jpe] = 1;                 // Jump if Parity Even (PF=1)
SMPTypeCategory[NN_jpo] = 1;                 // Jump if Parity Odd  (PF=0)
SMPTypeCategory[NN_js] = 1;                  // Jump if Sign (SF=1)
SMPTypeCategory[NN_jz] = 1;                  // Jump if Zero (ZF=1)
SMPTypeCategory[NN_jmp] = 1;                 // Jump
SMPTypeCategory[NN_jmpfi] = 1;               // Indirect Far Jump
SMPTypeCategory[NN_jmpni] = 1;               // Indirect Near Jump
SMPTypeCategory[NN_jmpshort] = 1;            // Jump Short (not used)
SMPTypeCategory[NN_lahf] = 2;                // Load Flags into AH Register
SMPTypeCategory[NN_lar] = 2;                 // Load Access Rights Byte
SMPTypeCategory[NN_lea] = 10;                // Load Effective Address           **
SMPTypeCategory[NN_leavew] = 0;              // High Level Procedure Exit        **
SMPTypeCategory[NN_leave] = 0;               // High Level Procedure Exit        **
SMPTypeCategory[NN_leaved] = 0;              // High Level Procedure Exit        **
SMPTypeCategory[NN_leaveq] = 0;              // High Level Procedure Exit        **
SMPTypeCategory[NN_lgdt] = 0;                // Load Global Descriptor Table Register
SMPTypeCategory[NN_lidt] = 0;                // Load Interrupt Descriptor Table Register
SMPTypeCategory[NN_lgs] = 6;                 // Load Full Pointer to GS:xx
SMPTypeCategory[NN_lss] = 6;                 // Load Full Pointer to SS:xx
SMPTypeCategory[NN_lds] = 6;                 // Load Full Pointer to DS:xx
SMPTypeCategory[NN_les] = 6;                 // Load Full Pointer to ES:xx
SMPTypeCategory[NN_lfs] = 6;                 // Load Full Pointer to FS:xx
SMPTypeCategory[NN_lldt] = 0;                // Load Local Descriptor Table Register
SMPTypeCategory[NN_lmsw] = 1;                // Load Machine Status Word
SMPTypeCategory[NN_lock] = 1;                // Assert LOCK# Signal Prefix
SMPTypeCategory[NN_lods] = 0;                // Load String
SMPTypeCategory[NN_loopw] = 1;               // Loop while ECX != 0
SMPTypeCategory[NN_loop] = 1;                // Loop while CX != 0
SMPTypeCategory[NN_loopd] = 1;               // Loop while ECX != 0
SMPTypeCategory[NN_loopq] = 1;               // Loop while RCX != 0
SMPTypeCategory[NN_loopwe] = 1;              // Loop while CX != 0 and ZF=1
SMPTypeCategory[NN_loope] = 1;               // Loop while rCX != 0 and ZF=1
SMPTypeCategory[NN_loopde] = 1;              // Loop while ECX != 0 and ZF=1
SMPTypeCategory[NN_loopqe] = 1;              // Loop while RCX != 0 and ZF=1
SMPTypeCategory[NN_loopwne] = 1;             // Loop while CX != 0 and ZF=0
SMPTypeCategory[NN_loopne] = 1;              // Loop while rCX != 0 and ZF=0
SMPTypeCategory[NN_loopdne] = 1;             // Loop while ECX != 0 and ZF=0
SMPTypeCategory[NN_loopqne] = 1;             // Loop while RCX != 0 and ZF=0
SMPTypeCategory[NN_lsl] = 6;                 // Load Segment Limit
SMPTypeCategory[NN_ltr] = 1;                 // Load Task Register
SMPTypeCategory[NN_mov] = 3;                 // Move Data
SMPTypeCategory[NN_movsp] = 3;               // Move to/from Special Registers
SMPTypeCategory[NN_movs] = 0;                // Move Byte(s) from String to String
SMPTypeCategory[NN_movsx] = 3;               // Move with Sign-Extend
SMPTypeCategory[NN_movzx] = 3;               // Move with Zero-Extend
SMPTypeCategory[NN_mul] = 7;                 // Unsigned Multiplication of AL or AX
SMPTypeCategory[NN_neg] = 2;                 // Two's Complement Negation
SMPTypeCategory[NN_nop] = 1;                 // No Operation
SMPTypeCategory[NN_not] = 2;                 // One's Complement Negation
SMPTypeCategory[NN_or] = 10;                  // Logical Inclusive OR
SMPTypeCategory[NN_out] = 0;                 // Output to Port
SMPTypeCategory[NN_outs] = 0;                // Output Byte(s) to Port
SMPTypeCategory[NN_pop] = 11;                 // Pop a word from the Stack
SMPTypeCategory[NN_popaw] = 11;               // Pop all General Registers
SMPTypeCategory[NN_popa] = 11;                // Pop all General Registers
SMPTypeCategory[NN_popad] = 11;               // Pop all General Registers (use32)
SMPTypeCategory[NN_popaq] = 11;               // Pop all General Registers (use64)
SMPTypeCategory[NN_popfw] = 11;               // Pop Stack into Flags Register         **
SMPTypeCategory[NN_popf] = 11;                // Pop Stack into Flags Register         **
SMPTypeCategory[NN_popfd] = 11;               // Pop Stack into Eflags Register        **
SMPTypeCategory[NN_popfq] = 11;               // Pop Stack into Rflags Register        **
SMPTypeCategory[NN_push] = 11;                // Push Operand onto the Stack
SMPTypeCategory[NN_pushaw] = 11;              // Push all General Registers
SMPTypeCategory[NN_pusha] = 11;               // Push all General Registers
SMPTypeCategory[NN_pushad] = 11;              // Push all General Registers (use32)
SMPTypeCategory[NN_pushaq] = 11;              // Push all General Registers (use64)
SMPTypeCategory[NN_pushfw] = 11;              // Push Flags Register onto the Stack
SMPTypeCategory[NN_pushf] = 11;               // Push Flags Register onto the Stack
SMPTypeCategory[NN_pushfd] = 11;              // Push Flags Register onto the Stack (use32)
SMPTypeCategory[NN_pushfq] = 11;              // Push Flags Register onto the Stack (use64)
SMPTypeCategory[NN_rcl] = 2;                 // Rotate Through Carry Left
SMPTypeCategory[NN_rcr] = 2;                 // Rotate Through Carry Right
SMPTypeCategory[NN_rol] = 2;                 // Rotate Left
SMPTypeCategory[NN_ror] = 2;                 // Rotate Right
SMPTypeCategory[NN_rep] = 0;                 // Repeat String Operation
SMPTypeCategory[NN_repe] = 0;                // Repeat String Operation while ZF=1
SMPTypeCategory[NN_repne] = 0;               // Repeat String Operation while ZF=0
SMPTypeCategory[NN_retn] = 0;                // Return Near from Procedure
SMPTypeCategory[NN_retf] = 0;                // Return Far from Procedure
SMPTypeCategory[NN_sahf] = 14;                // Store AH into Flags Register
SMPTypeCategory[NN_sal] = 2;                 // Shift Arithmetic Left
SMPTypeCategory[NN_sar] = 2;                 // Shift Arithmetic Right
SMPTypeCategory[NN_shl] = 2;                 // Shift Logical Left
SMPTypeCategory[NN_shr] = 2;                 // Shift Logical Right
SMPTypeCategory[NN_sbb] = 5;                 // Integer Subtraction with Borrow
SMPTypeCategory[NN_scas] = 14;                // Compare String
SMPTypeCategory[NN_seta] = 2;                // Set Byte if Above (CF=0 & ZF=0)
SMPTypeCategory[NN_setae] = 2;               // Set Byte if Above or Equal (CF=0)
SMPTypeCategory[NN_setb] = 2;                // Set Byte if Below (CF=1)
SMPTypeCategory[NN_setbe] = 2;               // Set Byte if Below or Equal (CF=1 | ZF=1)
SMPTypeCategory[NN_setc] = 2;                // Set Byte if Carry (CF=1)
SMPTypeCategory[NN_sete] = 2;                // Set Byte if Equal (ZF=1)
SMPTypeCategory[NN_setg] = 2;                // Set Byte if Greater (ZF=0 & SF=OF)
SMPTypeCategory[NN_setge] = 2;               // Set Byte if Greater or Equal (SF=OF)
SMPTypeCategory[NN_setl] = 2;                // Set Byte if Less (SF!=OF)
SMPTypeCategory[NN_setle] = 2;               // Set Byte if Less or Equal (ZF=1 | SF!=OF)
SMPTypeCategory[NN_setna] = 2;               // Set Byte if Not Above (CF=1 | ZF=1)
SMPTypeCategory[NN_setnae] = 2;              // Set Byte if Not Above or Equal (CF=1)
SMPTypeCategory[NN_setnb] = 2;               // Set Byte if Not Below (CF=0)
SMPTypeCategory[NN_setnbe] = 2;              // Set Byte if Not Below or Equal (CF=0 & ZF=0)
SMPTypeCategory[NN_setnc] = 2;               // Set Byte if Not Carry (CF=0)
SMPTypeCategory[NN_setne] = 2;               // Set Byte if Not Equal (ZF=0)
SMPTypeCategory[NN_setng] = 2;               // Set Byte if Not Greater (ZF=1 | SF!=OF)
SMPTypeCategory[NN_setnge] = 2;              // Set Byte if Not Greater or Equal (ZF=1)
SMPTypeCategory[NN_setnl] = 2;               // Set Byte if Not Less (SF=OF)
SMPTypeCategory[NN_setnle] = 2;              // Set Byte if Not Less or Equal (ZF=0 & SF=OF)
SMPTypeCategory[NN_setno] = 2;               // Set Byte if Not Overflow (OF=0)
SMPTypeCategory[NN_setnp] = 2;               // Set Byte if Not Parity (PF=0)
SMPTypeCategory[NN_setns] = 2;               // Set Byte if Not Sign (SF=0)
SMPTypeCategory[NN_setnz] = 2;               // Set Byte if Not Zero (ZF=0)
SMPTypeCategory[NN_seto] = 2;                // Set Byte if Overflow (OF=1)
SMPTypeCategory[NN_setp] = 2;                // Set Byte if Parity (PF=1)
SMPTypeCategory[NN_setpe] = 2;               // Set Byte if Parity Even (PF=1)
SMPTypeCategory[NN_setpo] = 2;               // Set Byte if Parity Odd  (PF=0)
SMPTypeCategory[NN_sets] = 2;                // Set Byte if Sign (SF=1)
SMPTypeCategory[NN_setz] = 2;                // Set Byte if Zero (ZF=1)
SMPTypeCategory[NN_sgdt] = 0;                // Store Global Descriptor Table Register
SMPTypeCategory[NN_sidt] = 0;                // Store Interrupt Descriptor Table Register
SMPTypeCategory[NN_shld] = 2;                // Double Precision Shift Left
SMPTypeCategory[NN_shrd] = 2;                // Double Precision Shift Right
SMPTypeCategory[NN_sldt] = 6;                // Store Local Descriptor Table Register
SMPTypeCategory[NN_smsw] = 2;                // Store Machine Status Word
SMPTypeCategory[NN_stc] = 1;                 // Set Carry Flag
SMPTypeCategory[NN_std] = 1;                 // Set Direction Flag
SMPTypeCategory[NN_sti] = 1;                 // Set Interrupt Flag
SMPTypeCategory[NN_stos] = 0;                // Store String
SMPTypeCategory[NN_str] = 6;                 // Store Task Register
SMPTypeCategory[NN_sub] = 5;                 // Integer Subtraction
SMPTypeCategory[NN_test] = 1;                // Logical Compare
SMPTypeCategory[NN_verr] = 1;                // Verify a Segment for Reading
SMPTypeCategory[NN_verw] = 1;                // Verify a Segment for Writing
SMPTypeCategory[NN_wait] = 1;                // Wait until BUSY# Pin is Inactive (HIGH)
SMPTypeCategory[NN_xchg] = 12;               // Exchange Register/Memory with Register
SMPTypeCategory[NN_xlat] = 0;                // Table Lookup Translation
SMPTypeCategory[NN_xor] = 2;                 // Logical Exclusive OR

//
//      486 instructions
//

SMPTypeCategory[NN_cmpxchg] = 12;             // Compare and Exchange
SMPTypeCategory[NN_bswap] = 1;               // Swap bytes in register
SMPTypeCategory[NN_xadd] = 12;                // t<-dest; dest<-src+dest; src<-t
SMPTypeCategory[NN_invd] = 1;                // Invalidate Data Cache
SMPTypeCategory[NN_wbinvd] = 1;              // Invalidate Data Cache (write changes)
SMPTypeCategory[NN_invlpg] = 1;              // Invalidate TLB entry

//
//      Pentium instructions
//

SMPTypeCategory[NN_rdmsr] = 8;               // Read Machine Status Register
SMPTypeCategory[NN_wrmsr] = 1;               // Write Machine Status Register