Newer
Older
msg("MDFixUseFP reset UseFP to false for %s\n", this->GetFuncName());
return true;
} // end of SMPFunction::MDFixUseFP()
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
// Find the callee-saved reg offsets (negative offset from return address)
// for all registers pushed onto the stack before the stack frame allocation
// instruction.
void SMPFunction::MDFindSavedRegs(void) {
list<SMPInstr>::iterator CurrInst;
int RegIndex;
func_t *CurrFunc = get_func(this->GetStartAddr());
assert(NULL != CurrFunc);
for (CurrInst = this->Instrs.begin(); CurrInst != this->Instrs.end(); ++CurrInst) {
if (CurrInst->GetAddr() > this->LocalVarsAllocInstr)
break;
if (!(CurrInst->MDIsPushInstr()))
continue;
sval_t CurrOffset = get_spd(CurrFunc, CurrInst->GetAddr());
if (CurrInst->GetCmd().itype == NN_push) {
op_t PushedReg = CurrInst->GetPushedOpnd();
if (o_reg == PushedReg.type) {
RegIndex = (int) PushedReg.reg;
if (RegIndex > R_di) {
msg("WARNING: Skipping save of register %d\n", RegIndex);
continue;
}
if (this->SavedRegLoc.at((size_t) RegIndex) == 0) {
this->SavedRegLoc[(size_t) RegIndex] = CurrOffset - 4;
}
else {
msg("WARNING: Multiple saves of register %d\n", RegIndex);
}
} // end if register push operand
} // end if PUSH instruction
else if (NN_pusha == CurrInst->GetCmd().itype) {
// **!!** Handle pushes of all regs.
this->SavedRegLoc[(size_t) R_ax] = CurrOffset - 4;
this->SavedRegLoc[(size_t) R_cx] = CurrOffset - 8;
this->SavedRegLoc[(size_t) R_dx] = CurrOffset - 12;
this->SavedRegLoc[(size_t) R_bx] = CurrOffset - 16;
this->SavedRegLoc[(size_t) R_sp] = CurrOffset - 20;
this->SavedRegLoc[(size_t) R_bp] = CurrOffset - 24;
this->SavedRegLoc[(size_t) R_si] = CurrOffset - 28;
this->SavedRegLoc[(size_t) R_di] = CurrOffset - 32;
break; // all regs accounted for
}
else if (CurrInst->MDIsEnterInstr()) {
this->SavedRegLoc[(size_t) R_bp] = CurrOffset - 4;
}
} // end for all instructions
return;
} // end of SMPFunction::MDFindSavedRegs()
// Compute the ReturnRegTypes[] as the meet over all register types
// at all return instructions.
void SMPFunction::MDFindReturnTypes(void) {
list<SMPBasicBlock>::iterator CurrBlock;
list<list<SMPInstr>::iterator>::iterator InstIter;
vector<SMPOperandType> RegTypes;
for (CurrBlock = this->Blocks.begin(); CurrBlock != this->Blocks.end(); ++CurrBlock) {
if (CurrBlock->HasReturn()) {
// Get the types of all registers at the RETURN point.
// Calculate the meet function over them.
InstIter = CurrBlock->GetLastInstr();
--InstIter;
assert(RETURN == (*InstIter)->GetDataFlowType());
set<DefOrUse, LessDefUse>::iterator CurrUse;
for (CurrUse = (*InstIter)->GetFirstUse();
CurrUse != (*InstIter)->GetLastUse();
++CurrUse) {
op_t UseOp = CurrUse->GetOp();
if ((o_reg != UseOp.type) || (R_di < UseOp.reg))
continue;
this->ReturnRegTypes[UseOp.reg]
= SMPTypeMeet(this->ReturnRegTypes.at(UseOp.reg),
CurrUse->GetType());
} // for all USEs in the RETURN instruction
} // end if current block has a RETURN
} // end for all blocks
return;
} // end of SMPFunction::MDFindReturnTypes()
// Determine local variable boundaries in the stack frame.
void SMPFunction::BuildLocalVarTable(void) {
// Currently we just use the info that IDA Pro has inferred from the direct
// addressing of stack locations.
this->SemiNaiveLocalVarID();
return;
} // end of SMPFunction::BuildLocalVarTable()
// Use the local variable offset list from IDA's stack frame structure to compute
// the table of local variable boundaries.
void SMPFunction::SemiNaiveLocalVarID(void) {
// NOTE: We use IDA Pro's offsets from this->FuncInfo (e.g. frsize) and NOT
// our own corrected values in our private data members. The offsets we
// read from the stack frame structure returned by get_frame() are consistent
// with other IDA Pro values, not with our corrected values.
bool DebugFlag = false;
#if SMP_DEBUG_STACK_GRANULARITY
DebugFlag |= (0 == strcmp("qSort3", this->GetFuncName()));
#endif
func_t *FuncPtr = get_func(this->FuncInfo.startEA);
if (NULL == FuncPtr) {
msg("ERROR in SMPFunction::SemiNaiveLocalVarID; no func ptr\n");
}
assert(NULL != FuncPtr);
struc_t *StackFrame = get_frame(FuncPtr);
if (NULL == StackFrame) {
msg("WARNING: No stack frame info from get_frame for %s\n", this->GetFuncName());
return;
}
member_t *Member = StackFrame->members;
for (size_t i = 0; i < StackFrame->memqty; ++i, ++Member) {
long offset;
if (NULL == Member) {
msg("NULL stack frame member pointer in %s\n", this->GetFuncName());
break;
}
get_member_name(Member->id, MemberName, MAXSMPVARSTR - 1);
if (MemberName == NULL) {
#if SMP_DEBUG_STACK_GRANULARITY
msg("NULL stack frame member in %s\n", this->GetFuncName());
continue;
}
offset = Member->soff;
if (MemberName[0] == ' ') {
#if SMP_DEBUG_STACK_GRANULARITY
msg("NULL stack frame name at offset %d in %s\n", offset, this->GetFuncName());
MemberName[1] = '\0';
}
if (DebugFlag) {
clc5q
committed
msg("%s local var %s at offset %ld\n", this->GetFuncName(), MemberName, offset);
}
if (offset >= (long) this->LocalVarsSize)
#if 1
continue; // Skip incoming args
#else
break; // Stop after processing locals and outgoing args
#if 0
// We want the offset from the stack pointer after local frame allocation.
// This subtraction would make it relative to the original stack pointer.
offset -= this->FuncInfo.frsize;
#endif
struct LocalVar TempLocal;
TempLocal.offset = offset;
qstrncpy(TempLocal.VarName, MemberName, sizeof(TempLocal.VarName) - 1);
this->LocalVarTable.push_back(TempLocal);
} // end for all stack frame members
if (!(this->LocalVarTable.empty()))
this->GoodLocalVarTable = true;
#if SMP_DEBUG_STACK_GRANULARITY
msg("Computing %d local var sizes\n", this->LocalVarTable.size());
// Now we want to fill in the size field for each local
if (this->GoodLocalVarTable) {
size_t VarLimit = this->LocalVarTable.size() - 1;
assert(this->LocalVarTable.size() > 0);
for (size_t VarIndex = 0; VarIndex < VarLimit; ++VarIndex) {
this->LocalVarTable[VarIndex].size = this->LocalVarTable[VarIndex + 1].offset
- this->LocalVarTable[VarIndex].offset;
}
#if SMP_DEBUG_STACK_GRANULARITY
msg("Computing last local var size for frsize %d\n", this->FuncInfo.frsize);
// Size of last local is total frsize minus savedregs in frame minus offset of last local
size_t SavedRegsSpace = 0; // portion of frsize that is saved regs, not locals.
if (this->CalleeSavedRegsSize > this->FuncInfo.frregs) {
// IDA Pro counts the save of EBP in frregs, but then EBP gets its new
// value and callee saved regs other than the old EBP push get counted
// in frsize rather than frregs. CalleeSavedRegsSize includes all saved
// regs on the stack, both above and below the current EBP offset.
// NOTE: For windows, this has to be done differently, as callee saved regs
// happen at the bottom of the local frame, not the top.
#if 0
SavedRegsSpace = this->CalleeSavedRegsSize - this->FuncInfo.frregs;
#else
SavedRegsSpace = this->FuncInfo.frsize - this->LocalVarsSize;
#endif
this->LocalVarTable.back().size = this->FuncInfo.frsize
- SavedRegsSpace - this->LocalVarTable.back().offset;
this->LocalVarOffsetLimit = this->LocalVarTable.back().offset
+ (adiff_t) this->LocalVarTable.back().size;
}
// IDA Pro can have difficulty with some irregular functions such as are found
// in the C startup code. The frsize value might be bogus. Just punt on the
// local variable ID if that is the case.
if (this->LocalVarOffsetLimit > (adiff_t) this->FuncInfo.frsize) {
this->LocalVarTable.clear();
this->GoodLocalVarTable = false;
msg("WARNING: Bad frsize for %s ; abandoning SemiNaiveLocalVarID.\n", this->FuncName);
return;
}
assert(this->LocalVarOffsetLimit <= (adiff_t) this->FuncInfo.frsize);
// Find out how many of the locals are really outgoing args.
if (this->AnalyzedSP && !this->CallsAlloca && (BADADDR != this->LocalVarsAllocInstr)) {
this->FindOutgoingArgsSize();
}
else {
msg("FindOutgoingArgsSize not called for %s ", this->GetFuncName());
msg("AnalyzedSP: %d CallsAlloca: %d LocalVarsAllocInstr: %x \n",
this->AnalyzedSP, this->CallsAlloca, this->LocalVarsAllocInstr);
}
return;
} // end of SMPFunction::SemiNaiveLocalVarID()
// Determine how many bytes at the bottom of the stack frame (i.e. at bottom of
// this->LocalVarsSize) are used for outgoing args. This is the case when the cdecl
// calling convention is used, e.g. gcc/linux allocates local var space + out args space
// in a single allocation and then writes outarg values directly to ESP+0, ESP+4, etc.
void SMPFunction::FindOutgoingArgsSize(void) {
// Compute the lowest value reached by the stack pointer.
list<SMPInstr>::iterator CurrInst;
this->MinStackDelta = 20000; // Final value should be negative or zero
unsigned short BitWidthMask;
bool DebugFlag = false;
#if SMP_DEBUG_STACK_GRANULARITY
DebugFlag = (0 == strcmp("error_for_asm", this->GetFuncName()));
#endif
this->OutgoingArgsComputed = true;
if (DebugFlag) {
msg("DEBUG: Entered FindOutgoingArgsSize for %s\n", this->GetFuncName());
#if SMP_IDAPRO52_WORKAROUND
this->OutgoingArgsSize = 16;
return;
CurrInst = this->Instrs.begin();
#if SMP_USE_SSA_FNOP_MARKER
if (CurrInst->IsFloatNop())
++CurrInst; // skip marker instruction
for ( ; CurrInst != this->Instrs.end(); ++CurrInst) {
ea_t addr = CurrInst->GetAddr();
clc5q
committed
sval_t sp_delta = get_spd(this->GetFuncInfo(), addr);
if (sp_delta < this->MinStackDelta)
this->MinStackDelta = sp_delta;
if (addr == this->LocalVarsAllocInstr) {
// Total stack pointer delta is sp_delta for the next instruction,
// because IDA updates the sp delta AFTER each instruction.
list<SMPInstr>::iterator NextInst = CurrInst;
++NextInst;
clc5q
committed
sp_delta = get_spd(this->GetFuncInfo(), NextInst->GetAddr());
this->AllocPointDelta = sp_delta;
}
}
#if SMP_DEBUG_STACK_GRANULARITY
msg("AllocPointDelta: %d MinStackDelta: %d\n", this->AllocPointDelta, this->MinStackDelta);
#endif
if ((0 <= this->MinStackDelta) || (0 <= this->AllocPointDelta)) {
// No allocations; sometimes happens in library functions.
this->OutgoingArgsSize = 0;
this->MinStackDelta = 0;
this->AllocPointDelta = 0;
return;
}
assert(0 > this->MinStackDelta);
// Allocate a vector of stack frame entries, one for each byte of the stack frame.
// This will be our memory map for analyzing stack usage.
int limit = 0;
#if 1
if (this->LocalVarOffsetLimit > 0)
limit = this->LocalVarOffsetLimit;
#endif
for (int i = this->MinStackDelta; i < limit; ++i) {
struct StackFrameEntry TempEntry;
struct FineGrainedInfo TempFineGrained;
TempEntry.VarPtr = NULL;
TempEntry.offset = (long) i;
TempEntry.Read = false;
TempEntry.Written = false;
TempEntry.AddressTaken = false;
TempEntry.ESPRelativeAccess = false;
TempEntry.EBPRelativeAccess = false;
TempEntry.IndexedAccess = false;
this->StackFrameMap.push_back(TempEntry);
TempFineGrained.SignMiscInfo = 0;
TempFineGrained.SizeInfo = 0;
this->FineGrainedStackTable.push_back(TempFineGrained);
}
// Fill in the VarPtr fields for each StackFrameMap entry.
if (0 <= this->AllocPointDelta) {
msg("FATAL ERROR: AllocPointDelta = %d in %s\n", this->AllocPointDelta, this->GetFuncName());
}
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
assert(0 > this->AllocPointDelta);
for (size_t i = 0; i < this->LocalVarTable.size(); ++i) {
assert(this->LocalVarTable.at(i).offset >= 0);
// Picture that AllocPointDelta is -200, MinStackDelta is -210, and
// the LocalVarTable[i].offset is +8 (i.e. 8 bytes above alloc point).
// Then base = 8 + (-200 - -210) = 8 + 10 = 18, the proper offset into
// the StackFrameMap.
size_t base = (size_t) (this->LocalVarTable.at(i).offset
+ (this->AllocPointDelta - this->MinStackDelta));
size_t limit = base + this->LocalVarTable.at(i).size;
if (limit > this->StackFrameMap.size()) {
msg("ERROR: base = %d limit = %d StackFrameMap size = %d\n", base, limit,
this->StackFrameMap.size());
}
assert(limit <= this->StackFrameMap.size());
for (size_t MapIndex = base; MapIndex < limit; ++MapIndex) {
this->StackFrameMap[MapIndex].VarPtr = &(this->LocalVarTable.at(i));
}
}
// Iterate through all instructions and record stack frame accesses in the StackFrameMap.
CurrInst = this->Instrs.begin();
#if SMP_USE_SSA_FNOP_MARKER
if (CurrInst->IsFloatNop())
++CurrInst; // skip marker instruction
for ( ; CurrInst != this->Instrs.end(); ++CurrInst) {
ea_t InstAddr = CurrInst->GetAddr();
sval_t sp_delta = get_spd(this->GetFuncInfo(), InstAddr);
if (0 < sp_delta) {
// Stack underflow; about to assert
msg("Stack underflow at %x %s sp_delta: %d\n", CurrInst->GetAddr(),
CurrInst->GetDisasm(), sp_delta);
}
assert(0 >= sp_delta);
ea_t offset;
size_t DataSize;
bool UsedFramePointer;
bool IndexedAccess;
bool SignedMove;
bool UnsignedMove;
if (CurrInst->HasDestMemoryOperand()) {
set<DefOrUse, LessDefUse>::iterator CurrDef;
for (CurrDef = CurrInst->GetFirstDef(); CurrDef != CurrInst->GetLastDef(); ++CurrDef) {
op_t TempOp = CurrDef->GetOp();
if (TempOp.type != o_phrase && TempOp.type != o_displ)
continue;
if (this->MDGetStackOffsetAndSize(CurrInst, TempOp, sp_delta, offset, DataSize, UsedFramePointer,
IndexedAccess, SignedMove, UnsignedMove)) {
assert(0 <= offset);
if (offset >= this->FuncInfo.frsize)
continue; // limit processing to outgoing args and locals
if ((offset + DataSize) > this->StackFrameMap.size()) {
msg("ERROR: offset = %d DataSize = %d FrameMapSize = %d\n",
offset, DataSize, this->StackFrameMap.size());
}
assert((offset + DataSize) <= this->StackFrameMap.size());
for (int j = 0; j < (int) DataSize; ++j) {
this->StackFrameMap[offset + j].Written = true;
this->StackFrameMap[offset + j].IndexedAccess = IndexedAccess;
if (!UsedFramePointer) {
this->StackFrameMap[offset + j].ESPRelativeAccess = true;
}
else {
this->StackFrameMap[offset + j].EBPRelativeAccess = true;
BitWidthMask = ComputeOperandBitWidthMask(TempOp, DataSize);
this->FineGrainedStackTable.at(offset).SizeInfo |= BitWidthMask;
this->FineGrainedStackTable.at(offset).SignMiscInfo |= FG_MASK_WRITTEN;
if (IndexedAccess) {
this->FineGrainedStackTable.at(offset).SignMiscInfo |= FG_MASK_INDEXED_ACCESS;
}
if (!UsedFramePointer) {
this->FineGrainedStackTable.at(offset).SignMiscInfo |= FG_MASK_SP_RELATIVE;
}
else {
this->FineGrainedStackTable.at(offset).SignMiscInfo |= FG_MASK_FP_RELATIVE;
}
// We will process the signedness of stores later, so that loads can take precedence
// over stores in determining signedness.
} // end if MDGetStackOffsetAndSize()
} // end for all DEFs
} // end if DestMemoryOperand
if (CurrInst->HasSourceMemoryOperand()) {
set<DefOrUse, LessDefUse>::iterator CurrUse;
for (CurrUse = CurrInst->GetFirstUse(); CurrUse != CurrInst->GetLastUse(); ++CurrUse) {
op_t TempOp = CurrUse->GetOp();
if (TempOp.type != o_phrase && TempOp.type != o_displ)
continue;
if (this->MDGetStackOffsetAndSize(CurrInst, TempOp, sp_delta, offset, DataSize, UsedFramePointer,
IndexedAccess, SignedMove, UnsignedMove)) {
assert(0 <= offset);
if (offset >= this->FuncInfo.frsize)
continue; // limit processing to outgoing args and locals
if ((offset + DataSize) > this->StackFrameMap.size()) {
msg("ERROR: offset = %d DataSize = %d FrameMapSize = %d\n",
offset, DataSize, this->StackFrameMap.size());
}
assert((offset + DataSize) <= this->StackFrameMap.size());
for (int j = 0; j < (int) DataSize; ++j) {
this->StackFrameMap[offset + j].Read = true;
this->StackFrameMap[offset + j].IndexedAccess |= IndexedAccess;
if (!UsedFramePointer)
this->StackFrameMap[offset + j].ESPRelativeAccess = true;
else
this->StackFrameMap[offset + j].EBPRelativeAccess = true;
}
BitWidthMask = ComputeOperandBitWidthMask(TempOp, DataSize);
this->FineGrainedStackTable.at(offset).SizeInfo |= BitWidthMask;
this->FineGrainedStackTable.at(offset).SignMiscInfo |= FG_MASK_READ;
if (IndexedAccess) {
this->FineGrainedStackTable.at(offset).SignMiscInfo |= FG_MASK_INDEXED_ACCESS;
}
if (!UsedFramePointer) {
this->FineGrainedStackTable.at(offset).SignMiscInfo |= FG_MASK_SP_RELATIVE;
}
else {
this->FineGrainedStackTable.at(offset).SignMiscInfo |= FG_MASK_FP_RELATIVE;
}
if (SignedMove) {
this->FineGrainedStackTable.at(offset).SignMiscInfo |= FG_MASK_SIGNED;
}
else if (UnsignedMove) {
this->FineGrainedStackTable.at(offset).SignMiscInfo |= FG_MASK_UNSIGNED;
}
} // end if MDGetStackOffsetAndSize()
} // end if SourceMemoryOperand
// NOTE: Detect taking the address of stack locations. **!!**
} // end for all instructions
// If function is a leaf function, set OutgoingArgsSize to zero and return.
if (this->IsLeaf()) {
this->OutgoingArgsSize = 0;
return;
}
// For non-leaf functions, set the OutgoingArgsSize to the write-only, ESP-relative
// region of the bottom of the StackFrameMap.
bool OutgoingArgsRegionFinished = false;
bool IndexedOutgoingArgs = false; // Any indexed accesses to outgoing args?
size_t FramePadSize = 0;
for (size_t MapIndex = 0; MapIndex < this->StackFrameMap.size(); ++MapIndex) {
// Some of the bottom of the stack frame might be below the local frame allocation.
// These are pushes that happened after allocation, etc. We skip over these
// locations and define the outgoing args region to start strictly at the bottom
// of the local frame allocation.
struct StackFrameEntry TempEntry = this->StackFrameMap.at(MapIndex);
if (DebugFlag) {
clc5q
committed
msg("StackFrameMap entry %d: offset: %ld Read: %d Written: %d ESP: %d EBP: %d\n",
MapIndex, TempEntry.offset, TempEntry.Read, TempEntry.Written,
TempEntry.ESPRelativeAccess, TempEntry.EBPRelativeAccess);
}
if (TempEntry.offset < this->AllocPointDelta)
continue;
if (OutgoingArgsRegionFinished) {
// We are just processing the stack frame padding.
if (!TempEntry.Read && !TempEntry.Written) {
// Could be stack frame padding.
++FramePadSize;
}
else {
break; // No more padding region
}
}
clc5q
committed
else if (TempEntry.Read || TempEntry.EBPRelativeAccess || !TempEntry.Written
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
|| !TempEntry.ESPRelativeAccess) {
OutgoingArgsRegionFinished = true;
if (!TempEntry.Read && !TempEntry.Written) {
// Could be stack frame padding.
++FramePadSize;
}
else {
break; // No padding region
}
}
else {
this->OutgoingArgsSize++;
if (TempEntry.IndexedAccess) {
IndexedOutgoingArgs = true;
}
}
}
// If any outgoing arg was accessed using an index register, then we don't know how high
// the index register value went. It could potentially consume the so-called padding
// region, which might be just the region we did not detect direct accesses to because
// the accesses were indirect. To be safe, we expand the outgoing args region to fill
// the padding region above it in this indexed access case.
if (IndexedOutgoingArgs) {
this->OutgoingArgsSize += FramePadSize;
// Sometimes we encounter unused stack space above the outgoing args. Lump this space
// in with the outgoing args. We detect this by noting when the outgoing args space
// has only partially used the space assigned to a local var.
// NOTE: This is usually just stack padding to maintain stack alignment. It could
// also be the case that the lowest local variable is accessed indirectly and we missed
// seeing its address taken, in which case it would be unsound to lump it into the
// outgoing args region. We might want to create a local var called STACKPAD
// to occupy this space.
if ((0 < this->OutgoingArgsSize) && (this->OutgoingArgsSize < this->FuncInfo.frsize)) {
long MapIndex = (this->AllocPointDelta - this->MinStackDelta);
assert(0 <= MapIndex);
MapIndex += (((long) this->OutgoingArgsSize) - 1);
struct StackFrameEntry TempEntry = this->StackFrameMap.at((size_t) MapIndex);
clc5q
committed
if (NULL == TempEntry.VarPtr) { // Gap in stack frame; IDA 6.0
msg("Gap in stack frame: %s\n", this->FuncName);
}
else if (this->OutgoingArgsSize < (TempEntry.VarPtr->offset + TempEntry.VarPtr->size)) {
clc5q
committed
#if SMP_DEBUG_FRAMEFIXUP
msg("OutGoingArgsSize = %d", this->OutgoingArgsSize);
clc5q
committed
#endif
this->OutgoingArgsSize = TempEntry.VarPtr->offset + TempEntry.VarPtr->size;
clc5q
committed
#if SMP_DEBUG_FRAMEFIXUP
msg(" adjusted to %d\n", this->OutgoingArgsSize);
clc5q
committed
#endif
return;
} // end of SMPFunction::FindOutgoingArgsSize()
// If TempOp reads or writes to a stack location, return the offset (relative to the initial
// stack pointer value) and the size in bytes of the data access. Also return whether the
// access was frame-pointer-relative, and whether signedness can be inferred due to a load
// from the stack being zero-extended or sign-extended.
// NOTE: TempOp must be of type o_displ or o_phrase, as no other operand type could be a
// stack memory access.
// sp_delta is the stack pointer delta of the current instruction, relative to the initial
// stack pointer value for the function.
// Return true if a stack memory access was found in TempOp, false otherwise.
bool SMPFunction::MDGetStackOffsetAndSize(list<SMPInstr>::iterator Instr, op_t TempOp, sval_t sp_delta, ea_t &offset, size_t &DataSize, bool &FP,
bool & Indexed, bool &Signed, bool &Unsigned) {
clc5q
committed
int BaseReg;
int IndexReg;
ushort ScaleFactor;
int SignedOffset;
assert((o_displ == TempOp.type) || (o_phrase == TempOp.type));
clc5q
committed
MDExtractAddressFields(TempOp, BaseReg, IndexReg, ScaleFactor, offset);
clc5q
committed
if (TempOp.type == o_phrase) {
assert(offset == 0); // implicit zero, as in [esp] ==> [esp+0]
SignedOffset = (int) offset; // avoid sign errors during adjustment arithmetic
if ((BaseReg == R_sp) || (IndexReg == R_sp)) {
// ESP-relative constant offset
SignedOffset += sp_delta; // base offsets from entry ESP value
SignedOffset -= this->MinStackDelta; // convert to StackFrameMap index
offset = (ea_t) SignedOffset;
if (0 > SignedOffset) {
// Consider asserting here.
msg("ERROR: Negative offset in MDGetStackOffsetAndSize for inst dump: \n");
Instr->Dump();
}
// Get size of data written
DataSize = GetOpDataSize(TempOp);
FP = false;
Indexed = ((BaseReg != R_none) && (IndexReg != R_none)); // two regs used
unsigned short opcode = Instr->GetCmd().itype;
Unsigned = (opcode == NN_movzx);
Signed = (opcode == NN_movsx);
return true;
}
else if (this->UseFP && ((BaseReg == R_bp) || (IndexReg == R_bp))) {
SignedOffset -= this->FuncInfo.frregs; // base offsets from entry ESP value
SignedOffset -= this->MinStackDelta; // convert to StackFrameMap index
offset = (ea_t) SignedOffset;
if (0 > SignedOffset) {
// Consider asserting here.
msg("ERROR: Negative offset in MDGetStackOffsetAndSize for inst dump: \n");
Instr->Dump();
}
DataSize = GetOpDataSize(TempOp);
FP = true;
Indexed = ((BaseReg != R_none) && (IndexReg != R_none)); // two regs used
unsigned short opcode = Instr->GetCmd().itype;
Unsigned = (opcode == NN_movzx);
Signed = (opcode == NN_movsx);
return true;
}
else {
return false;
}
} // end of SMPFunction::MDGetStackOffsetAndSize()
// Return fine grained stack entry for stack op TempOp from instruction at InstAddr
bool SMPFunction::MDGetFGStackLocInfo(ea_t InstAddr, op_t TempOp, struct FineGrainedInfo &FGEntry) {
int BaseReg;
int IndexReg;
ushort ScaleFactor;
ea_t offset;
int SignedOffset;
assert((o_displ == TempOp.type) || (o_phrase == TempOp.type));
MDExtractAddressFields(TempOp, BaseReg, IndexReg, ScaleFactor, offset);
sval_t sp_delta = get_spd(this->GetFuncInfo(), InstAddr);
SignedOffset = (int) offset;
if (TempOp.type == o_phrase) {
assert(SignedOffset == 0); // implicit zero, as in [esp] ==> [esp+0]
}
if ((BaseReg == R_sp) || (IndexReg == R_sp)) {
// ESP-relative constant offset
SignedOffset += sp_delta; // base offsets from entry ESP value
SignedOffset -= this->MinStackDelta; // convert to StackFrameMap index
}
else if (this->UseFP && ((BaseReg == R_bp) || (IndexReg == R_bp))) {
SignedOffset -= this->FuncInfo.frregs; // base offsets from entry ESP value
SignedOffset -= this->MinStackDelta; // convert to StackFrameMap index
}
else {
return false;
}
// We did not return false, so we should have a good offset. Use it to
// pass back the fine grained stack table entry for that offset.
if ((0 > SignedOffset) || (SignedOffset >= (int) this->FineGrainedStackTable.size())) {
if (this->OutgoingArgsComputed) {
msg("ERROR: FG stack table index out of range in MDGetFGStackLocInfo at %x\n", InstAddr);
}
FGEntry.SignMiscInfo = 0;
FGEntry.SizeInfo = 0;
}
else {
FGEntry = this->FineGrainedStackTable.at((size_t) SignedOffset);
}
return true;
} // end of SMPFunction::MDGetFGStackLocInfo()
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
// Return true if we update fine grained stack entry for stack op TempOp from instruction at InstAddr
bool SMPFunction::MDUpdateFGStackLocInfo(ea_t InstAddr, op_t TempOp, struct FineGrainedInfo NewFG) {
int BaseReg;
int IndexReg;
ushort ScaleFactor;
ea_t offset;
int SignedOffset;
struct FineGrainedInfo OldFG, UnionFG;
assert((o_displ == TempOp.type) || (o_phrase == TempOp.type));
MDExtractAddressFields(TempOp, BaseReg, IndexReg, ScaleFactor, offset);
sval_t sp_delta = get_spd(this->GetFuncInfo(), InstAddr);
SignedOffset = (int) offset;
if (TempOp.type == o_phrase) {
assert(SignedOffset == 0); // implicit zero, as in [esp] ==> [esp+0]
}
if ((BaseReg == R_sp) || (IndexReg == R_sp)) {
// ESP-relative constant offset
SignedOffset += sp_delta; // base offsets from entry ESP value
SignedOffset -= this->MinStackDelta; // convert to StackFrameMap index
}
else if (this->UseFP && ((BaseReg == R_bp) || (IndexReg == R_bp))) {
SignedOffset -= this->FuncInfo.frregs; // base offsets from entry ESP value
SignedOffset -= this->MinStackDelta; // convert to StackFrameMap index
}
else {
return false;
}
// We did not return false, so we should have a good offset. Use it to
// retrieve the fine grained stack table entry for that offset.
if ((0 > SignedOffset) || (SignedOffset >= (int) this->FineGrainedStackTable.size())) {
if (this->OutgoingArgsComputed) {
msg("ERROR: FG stack table index out of range in MDGetFGStackLocInfo at %x\n", InstAddr);
}
return false;
}
else if (this->OutgoingArgsComputed && (((size_t)SignedOffset) < this->OutgoingArgsSize)) {
// We don't want to update the outgoing args region, as it will not be consistent
// over multiple function calls. NOTE: We could fine tune this by seeing if we
// call mutliple target functions or not; if only one, then outgoing args region
// would be consistent in the absence of varargs targets.
return false;
}
else {
OldFG = this->FineGrainedStackTable.at((size_t) SignedOffset);
UnionFG.SignMiscInfo = OldFG.SignMiscInfo | NewFG.SignMiscInfo;
UnionFG.SizeInfo = OldFG.SizeInfo | NewFG.SizeInfo;
if ((OldFG.SignMiscInfo != UnionFG.SignMiscInfo) || (OldFG.SizeInfo != UnionFG.SizeInfo)) {
// The signs they are a-changin'. Or maybe the sizes.
this->FineGrainedStackTable.at(SignedOffset).SignMiscInfo |= NewFG.SignMiscInfo;
this->FineGrainedStackTable.at(SignedOffset).SizeInfo |= NewFG.SizeInfo;
}
}
return true;
} // end of SMPFunction::MDUpdateFGStackLocInfo()
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
// retrieve DEF addr from GlobalDefAddrBySSA or return BADADDR
ea_t SMPFunction::GetGlobalDefAddr(op_t DefOp, int SSANum) {
map<int, ea_t>::iterator DefAddrMapIter;
map<int, ea_t>::iterator MapResult;
ea_t DefAddr = BADADDR; // BADADDR means we did not find it
int HashedName = HashGlobalNameAndSSA(DefOp, SSANum);
MapResult = this->GlobalDefAddrBySSA.find(HashedName);
if (MapResult != this->GlobalDefAddrBySSA.end()) { // Found it.
DefAddr = (ea_t) MapResult->second;
}
return DefAddr;
} // end of SMPFunction::GetGlobalDefAddr()
// Retrieve block iterator for InstAddr from InstBlockMap; assert if failure
list<SMPBasicBlock>::iterator SMPFunction::GetBlockFromInstAddr(ea_t InstAddr) {
map<ea_t, list<SMPBasicBlock>::iterator>::iterator MapEntry;
MapEntry = this->InstBlockMap.find(InstAddr);
assert(MapEntry != this->InstBlockMap.end());
return MapEntry->second;
}
// Given block # and PhiDef op_t and SSANum, return the Phi iterator or assert.
set<SMPPhiFunction, LessPhi>::iterator SMPFunction::GetPhiIterForPhiDef(size_t BlockNumber, op_t DefOp, int SSANum) {
list<SMPBasicBlock>::iterator DefBlock = this->RPOBlocks.at(BlockNumber);
set<SMPPhiFunction, LessPhi>::iterator PhiIter = DefBlock->FindPhi(DefOp);
assert(PhiIter != DefBlock->GetLastPhi());
return PhiIter;
}
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
// Is DestOp within the outgoing args area? Assume it must be an ESP-relative
// DEF operand in order to be a write to the outgoing args area.
bool SMPFunction::WritesToOutgoingArgs(op_t DestOp) {
bool OutArgWrite = false;
int BaseReg, IndexReg;
ushort ScaleFactor;
ea_t offset;
if (this->IsLeaf())
return false;
MDExtractAddressFields(DestOp, BaseReg, IndexReg, ScaleFactor, offset);
if ((BaseReg != R_sp) && (IndexReg != R_sp))
return false;
if (((BaseReg == R_sp) && (IndexReg != R_none))
|| ((IndexReg == R_sp) && (BaseReg != R_none))
|| (0 < ScaleFactor)) {
msg("WARNING: WritesToOutgoingArgs called with indexed write.");
PrintOperand(DestOp);
return false;
}
if (!this->OutgoingArgsComputed) {
OutArgWrite = true; // be conservative
}
else {
OutArgWrite = (offset < this->OutgoingArgsSize);
}
return OutArgWrite;
} // end of SMPFunction::WritesToOutgoingArgs()
// Is DestOp a direct memory access above the local vars frame?
bool SMPFunction::WritesAboveLocalFrame(op_t DestOp) {
bool InArgWrite = false;
int BaseReg, IndexReg;
ushort ScaleFactor;
ea_t offset;
MDExtractAddressFields(DestOp, BaseReg, IndexReg, ScaleFactor, offset);
bool ESPrelative = (BaseReg == R_sp) || (IndexReg == R_sp);
bool EBPrelative = this->UseFP && ((BaseReg == R_bp) || (IndexReg == R_bp));
if (!(ESPrelative || EBPrelative))
return false;
if (((IndexReg != R_none) && (BaseReg != R_none))
|| (0 < ScaleFactor)) {
msg("WARNING: WritesAboveLocalFrame called with indexed write.");
PrintOperand(DestOp);
return false;
}
InArgWrite = (ESPrelative && (SignedOffset > ((long) this->LocalVarsSize)))
|| (EBPrelative && (SignedOffset > 0));
return InArgWrite;
}// end of SMPFunction::WritesAboveLocalFrame()
// Is DestOp an indexed write above the local vars frame?
bool SMPFunction::IndexedWritesAboveLocalFrame(op_t DestOp)
{
bool InArgWrite = false;
int BaseReg, IndexReg;
ushort ScaleFactor;
ea_t offset;
MDExtractAddressFields(DestOp, BaseReg, IndexReg, ScaleFactor, offset);
bool ESPrelative = (BaseReg == R_sp) || (IndexReg == R_sp);
bool EBPrelative = this->UseFP && ((BaseReg == R_bp) || (IndexReg == R_bp));
if (!(ESPrelative || EBPrelative))
return false;
InArgWrite = (ESPrelative && (offset > this->LocalVarsSize))
|| (EBPrelative && (offset > 0));
return InArgWrite;
} // end of SMPFunction::IndexedWritesAboveLocalFrame
// Find evidence of calls to alloca(), which appear as stack space allocations (i.e.
// subtractions from the stack pointer) AFTER the local frame allocation instruction
// for this function.
// Return true if such an allocation is found and false otherwise.
bool SMPFunction::FindAlloca(void) {
list<SMPInstr>::iterator CurrInst = this->Instrs.begin();
#if SMP_USE_SSA_FNOP_MARKER
++CurrInst; // skip marker instruction
for ( ; CurrInst != this->Instrs.end(); ++CurrInst) {
if ((CurrInst->GetAddr() > this->LocalVarsAllocInstr) && CurrInst->MDIsFrameAllocInstr()) {
return true;
}
}
return false;
} // end of SMPFunction::FindAlloca()
// Emit the annotations describing the regions of the stack frame.
void SMPFunction::EmitStackFrameAnnotations(FILE *AnnotFile, list<SMPInstr>::iterator Instr) {
ea_t addr = Instr->GetAddr();
#if 0
if (0 < IncomingArgsSize) {
qfprintf(AnnotFile, "%10x %6d INARGS STACK esp + %d %s \n",
addr, IncomingArgsSize,
(LocalVarsSize + CalleeSavedRegsSize + RetAddrSize),
Instr->GetDisasm());
}
#endif
if (0 < RetAddrSize) {
qfprintf(AnnotFile, "%10x %6d MEMORYHOLE STACK esp + %d ReturnAddress \n",
addr, RetAddrSize, (LocalVarsSize + CalleeSavedRegsSize));
}
if (0 < CalleeSavedRegsSize) {
qfprintf(AnnotFile, "%10x %6d MEMORYHOLE STACK esp + %d CalleeSavedRegs \n",
addr, CalleeSavedRegsSize, LocalVarsSize);
if (0 < LocalVarsSize) {
unsigned long ParentReferentID = DataReferentID++;
clc5q
committed
qfprintf(AnnotFile, "%10x %6d DATAREF STACK %ld esp + %d PARENT LocalFrame LOCALFRAME\n",
addr, LocalVarsSize, ParentReferentID, 0);
#if SMP_COMPUTE_STACK_GRANULARITY
if (this->AnalyzedSP && !this->CallsAlloca && (BADADDR != this->LocalVarsAllocInstr)) {
// We can only fine-grain the stack frame if we were able to analyze the stack
if (this->OutgoingArgsSize > 0) {
clc5q
committed
qfprintf(AnnotFile, "%10x %6d DATAREF STACK %ld esp + %d CHILDOF %ld OFFSET %d OutArgsRegion OUTARGS\n",
addr, this->OutgoingArgsSize, DataReferentID, 0, ParentReferentID, 0);
++DataReferentID;
#if SMP_DEBUG_STACK_GRANULARITY
msg("LocalVarTable of size %d for function %s\n", this->LocalVarTable.size(),
this->GetFuncName());
for (size_t i = 0; i < this->LocalVarTable.size(); ++i) {
#if SMP_DEBUG_STACK_GRANULARITY
msg("Entry %d offset %d size %d name %s\n", i, this->LocalVarTable[i].offset,
this->LocalVarTable[i].size, this->LocalVarTable[i].VarName);
// Don't emit annotations for incoming or outgoing args or anything else
// above or below the current local frame.
if ((this->LocalVarTable[i].offset >= (long) this->FuncInfo.frsize)
|| (this->LocalVarTable[i].offset < (long) this->OutgoingArgsSize))
continue;
clc5q
committed
qfprintf(AnnotFile, "%10x %6d DATAREF STACK %ld esp + %ld CHILDOF %ld OFFSET %ld LOCALVAR %s \n",
addr, this->LocalVarTable[i].size, DataReferentID,
this->LocalVarTable[i].offset, ParentReferentID,
this->LocalVarTable[i].offset, this->LocalVarTable[i].VarName);
++DataReferentID;
} // end if (this->AnalyzedSP and not Alloca .... )
} // end if (0 < LocalVarsSize)
return;
} // end of SMPFunction::EmitStackFrameAnnotations()
// Main data flow analysis driver. Goes through the function and
// fills all objects for instructions, basic blocks, and the function
// itself.
void SMPFunction::Analyze(void) {
clc5q
committed
bool FoundAllCallers = false;
list<SMPInstr>::iterator FirstInBlock = this->Instrs.end();
// For starting a basic block
list<SMPInstr>::iterator LastInBlock = this->Instrs.end();
// Terminating a basic block
#if SMP_DEBUG_CONTROLFLOW
msg("Entering SMPFunction::Analyze.\n");
#endif
// Get some basic info from the FuncInfo structure.
this->Size = this->FuncInfo.endEA - this->FuncInfo.startEA;
this->UseFP = (0 != (this->FuncInfo.flags & (FUNC_FRAME | FUNC_BOTTOMBP)));
this->StaticFunc = (0 != (this->FuncInfo.flags & FUNC_STATIC));
this->LibFunc = (0 != (this->FuncInfo.flags & FUNC_LIB));
get_func_name(this->FuncInfo.startEA, this->FuncName,
sizeof(this->FuncName) - 1);
this->BlockCount = 0;
this->AnalyzedSP = this->FuncInfo.analyzed_sp();
#if SMP_DEBUG_CONTROLFLOW
msg("SMPFunction::Analyze: got basic info.\n");
#endif
// Cycle through all chunks that belong to the function.
clc5q
committed
func_tail_iterator_t FuncTail(this->GetFuncInfo());
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
size_t ChunkCounter = 0;
for (bool ChunkOK = FuncTail.main(); ChunkOK; ChunkOK = FuncTail.next()) {
const area_t &CurrChunk = FuncTail.chunk();
++ChunkCounter;
if (1 < ChunkCounter) {
this->SharedChunks = true;
#if SMP_DEBUG_CHUNKS
msg("Found tail chunk for %s at %x\n", this->FuncName, CurrChunk.startEA);
#endif
}
// Build the instruction and block lists for the function.
for (ea_t addr = CurrChunk.startEA; addr < CurrChunk.endEA;
addr = get_item_end(addr)) {
flags_t InstrFlags = getFlags(addr);
if (isHead(InstrFlags) && isCode(InstrFlags)) {
SMPInstr CurrInst = SMPInstr(addr);
// Fill in the instruction data members.
#if SMP_DEBUG_CONTROLFLOW
msg("SMPFunction::Analyze: calling CurrInst::Analyze.\n");
#endif
CurrInst.Analyze();
if (SMPBinaryDebug) {
msg("Disasm: %s \n", CurrInst.GetDisasm());
}
#if SMP_USE_SSA_FNOP_MARKER
if (this->Instrs.empty()) {
// First instruction in function. We want to create a pseudo-instruction
// at the top of the function that can hold SSA DEFs for LiveIn names
// to the function. We use a floating point no-op as the pseudo-inst.
// The code address is one less than the start address of the function.
SMPInstr MarkerInst = SMPInstr(addr - 1);
MarkerInst.AnalyzeMarker();
assert(FirstInBlock == this->Instrs.end());
this->Instrs.push_back(MarkerInst);
}
#endif
if (this->AnalyzedSP) {
// Audit the IDA SP analysis.
clc5q
committed
sval_t sp_delta = get_spd(this->GetFuncInfo(), addr);
// sp_delta is difference between current value of stack pointer
// and value of the stack pointer coming into the function. It
// is updated AFTER each instruction. Thus, it should not get back
// above zero (e.g. to +4) until after a return instruction.
if (sp_delta > 0) {
// Stack pointer has underflowed, according to IDA's analysis,
// which is probably incorrect.
this->AnalyzedSP = false;
msg("Resetting AnalyzedSP to false for %s\n", this->GetFuncName());
msg("Underflowing instruction: %s sp_delta: %d\n", CurrInst.GetDisasm(),
sp_delta);
}
else if (sp_delta == 0) {
// Search for tail calls.
if (CurrInst.IsBranchToFarChunk()) {
// After the stack has been restored to the point at which
// we are ready to return, we instead find a jump to a
// far chunk. This is the classic tail call optimization:
// the return statement has been replaced with a jump to
// another function, which will return not to this function,
// but to the caller of this function.
CurrInst.SetTailCall();
msg("Found tail call at %x from %s: %s\n", addr, this->GetFuncName(),
CurrInst.GetDisasm());
}
}
clc5q
committed
// Find all functions that call the current function.
xrefblk_t CurrXrefs;
if (!FoundAllCallers) {
for (bool ok = CurrXrefs.first_to(CurrInst.GetAddr(), XREF_ALL);
ok;
ok = CurrXrefs.next_to()) {
if ((CurrXrefs.from != 0) && (CurrXrefs.iscode)) {
// Make sure it is not a fall-through. Must be a
// control-flow instruction of some sort, including
// direct or indirect calls or tail calls.
SMPInstr CallInst(CurrXrefs.from);
CallInst.Analyze();
SMPitype CallType = CallInst.GetDataFlowType();
if ((COND_BRANCH <= CallType) && (RETURN >= CallType)) {
// Found a caller, with its call address in CurrXrefs.from
this->AddCallSource(CurrXrefs.from);
}