Newer
Older
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
SMPDefsFlags[NN_pminsw] = false; // Packed Signed Integer Word Minimum
SMPDefsFlags[NN_pminub] = false; // Packed Unsigned Integer Byte Minimum
SMPDefsFlags[NN_pmovmskb] = false; // Move Byte Mask to Integer
SMPDefsFlags[NN_pmulhuw] = false; // Packed Multiply High Unsigned
SMPDefsFlags[NN_psadbw] = false; // Packed Sum of Absolute Differences
SMPDefsFlags[NN_pshufw] = false; // Packed Shuffle Word
SMPDefsFlags[NN_maskmovq] = false; // Byte Mask write
SMPDefsFlags[NN_movntps] = false; // Move Aligned Four Packed Single-FP Non Temporal
SMPDefsFlags[NN_movntq] = false; // Move 64 Bits Non Temporal
SMPDefsFlags[NN_prefetcht0] = false; // Prefetch to all cache levels
SMPDefsFlags[NN_prefetcht1] = false; // Prefetch to all cache levels
SMPDefsFlags[NN_prefetcht2] = false; // Prefetch to L2 cache
SMPDefsFlags[NN_prefetchnta] = false; // Prefetch to L1 cache
SMPDefsFlags[NN_sfence] = false; // Store Fence
// Pentium III Pseudo instructions
SMPDefsFlags[NN_cmpeqps] = false; // Packed Single-FP Compare EQ
SMPDefsFlags[NN_cmpltps] = false; // Packed Single-FP Compare LT
SMPDefsFlags[NN_cmpleps] = false; // Packed Single-FP Compare LE
SMPDefsFlags[NN_cmpunordps] = false; // Packed Single-FP Compare UNORD
SMPDefsFlags[NN_cmpneqps] = false; // Packed Single-FP Compare NOT EQ
SMPDefsFlags[NN_cmpnltps] = false; // Packed Single-FP Compare NOT LT
SMPDefsFlags[NN_cmpnleps] = false; // Packed Single-FP Compare NOT LE
SMPDefsFlags[NN_cmpordps] = false; // Packed Single-FP Compare ORDERED
SMPDefsFlags[NN_cmpeqss] = false; // Scalar Single-FP Compare EQ
SMPDefsFlags[NN_cmpltss] = false; // Scalar Single-FP Compare LT
SMPDefsFlags[NN_cmpless] = false; // Scalar Single-FP Compare LE
SMPDefsFlags[NN_cmpunordss] = false; // Scalar Single-FP Compare UNORD
SMPDefsFlags[NN_cmpneqss] = false; // Scalar Single-FP Compare NOT EQ
SMPDefsFlags[NN_cmpnltss] = false; // Scalar Single-FP Compare NOT LT
SMPDefsFlags[NN_cmpnless] = false; // Scalar Single-FP Compare NOT LE
SMPDefsFlags[NN_cmpordss] = false; // Scalar Single-FP Compare ORDERED
// AMD K7 instructions
// Revisit AMD if we port to it.
SMPDefsFlags[NN_pf2iw] = false; // Packed Floating-Point to Integer with Sign Extend
SMPDefsFlags[NN_pfnacc] = false; // Packed Floating-Point Negative Accumulate
SMPDefsFlags[NN_pfpnacc] = false; // Packed Floating-Point Mixed Positive-Negative Accumulate
SMPDefsFlags[NN_pi2fw] = false; // Packed 16-bit Integer to Floating-Point
SMPDefsFlags[NN_pswapd] = false; // Packed Swap Double Word
// Undocumented FP instructions (thanks to norbert.juffa@adm.com)
SMPDefsFlags[NN_fstp1] = false; // Alias of Store Real and Pop
SMPDefsFlags[NN_fxch4] = false; // Alias of Exchange Registers
SMPDefsFlags[NN_ffreep] = false; // Free Register and Pop
SMPDefsFlags[NN_fxch7] = false; // Alias of Exchange Registers
SMPDefsFlags[NN_fstp8] = false; // Alias of Store Real and Pop
SMPDefsFlags[NN_fstp9] = false; // Alias of Store Real and Pop
// Pentium 4 instructions
SMPDefsFlags[NN_addpd] = false; // Add Packed Double-Precision Floating-Point Values
SMPDefsFlags[NN_addsd] = false; // Add Scalar Double-Precision Floating-Point Values
SMPDefsFlags[NN_andnpd] = false; // Bitwise Logical AND NOT of Packed Double-Precision Floating-Point Values
SMPDefsFlags[NN_andpd] = false; // Bitwise Logical AND of Packed Double-Precision Floating-Point Values
SMPDefsFlags[NN_clflush] = false; // Flush Cache Line
SMPDefsFlags[NN_cmppd] = false; // Compare Packed Double-Precision Floating-Point Values
SMPDefsFlags[NN_cmpsd] = false; // Compare Scalar Double-Precision Floating-Point Values
SMPDefsFlags[NN_cvtdq2pd] = false; // Convert Packed Doubleword Integers to Packed Single-Precision Floating-Point Values
SMPDefsFlags[NN_cvtdq2ps] = false; // Convert Packed Doubleword Integers to Packed Double-Precision Floating-Point Values
SMPDefsFlags[NN_cvtpd2dq] = false; // Convert Packed Double-Precision Floating-Point Values to Packed Doubleword Integers
SMPDefsFlags[NN_cvtpd2pi] = false; // Convert Packed Double-Precision Floating-Point Values to Packed Doubleword Integers
SMPDefsFlags[NN_cvtpd2ps] = false; // Convert Packed Double-Precision Floating-Point Values to Packed Single-Precision Floating-Point Values
SMPDefsFlags[NN_cvtpi2pd] = false; // Convert Packed Doubleword Integers to Packed Double-Precision Floating-Point Values
SMPDefsFlags[NN_cvtps2dq] = false; // Convert Packed Single-Precision Floating-Point Values to Packed Doubleword Integers
SMPDefsFlags[NN_cvtps2pd] = false; // Convert Packed Single-Precision Floating-Point Values to Packed Double-Precision Floating-Point Values
SMPDefsFlags[NN_cvtsd2si] = false; // Convert Scalar Double-Precision Floating-Point Value to Doubleword Integer
SMPDefsFlags[NN_cvtsd2ss] = false; // Convert Scalar Double-Precision Floating-Point Value to Scalar Single-Precision Floating-Point Value
SMPDefsFlags[NN_cvtsi2sd] = false; // Convert Doubleword Integer to Scalar Double-Precision Floating-Point Value
SMPDefsFlags[NN_cvtss2sd] = false; // Convert Scalar Single-Precision Floating-Point Value to Scalar Double-Precision Floating-Point Value
SMPDefsFlags[NN_cvttpd2dq] = false; // Convert With Truncation Packed Double-Precision Floating-Point Values to Packed Doubleword Integers
SMPDefsFlags[NN_cvttpd2pi] = false; // Convert with Truncation Packed Double-Precision Floating-Point Values to Packed Doubleword Integers
SMPDefsFlags[NN_cvttps2dq] = false; // Convert With Truncation Packed Single-Precision Floating-Point Values to Packed Doubleword Integers
SMPDefsFlags[NN_cvttsd2si] = false; // Convert with Truncation Scalar Double-Precision Floating-Point Value to Doubleword Integer
SMPDefsFlags[NN_divpd] = false; // Divide Packed Double-Precision Floating-Point Values
SMPDefsFlags[NN_divsd] = false; // Divide Scalar Double-Precision Floating-Point Values
SMPDefsFlags[NN_lfence] = false; // Load Fence
SMPDefsFlags[NN_maskmovdqu] = false; // Store Selected Bytes of Double Quadword
SMPDefsFlags[NN_maxpd] = false; // Return Maximum Packed Double-Precision Floating-Point Values
SMPDefsFlags[NN_maxsd] = false; // Return Maximum Scalar Double-Precision Floating-Point Value
SMPDefsFlags[NN_mfence] = false; // Memory Fence
SMPDefsFlags[NN_minpd] = false; // Return Minimum Packed Double-Precision Floating-Point Values
SMPDefsFlags[NN_minsd] = false; // Return Minimum Scalar Double-Precision Floating-Point Value
SMPDefsFlags[NN_movapd] = false; // Move Aligned Packed Double-Precision Floating-Point Values
SMPDefsFlags[NN_movdq2q] = false; // Move Quadword from XMM to MMX Register
SMPDefsFlags[NN_movdqa] = false; // Move Aligned Double Quadword
SMPDefsFlags[NN_movdqu] = false; // Move Unaligned Double Quadword
SMPDefsFlags[NN_movhpd] = false; // Move High Packed Double-Precision Floating-Point Values
SMPDefsFlags[NN_movlpd] = false; // Move Low Packed Double-Precision Floating-Point Values
SMPDefsFlags[NN_movmskpd] = false; // Extract Packed Double-Precision Floating-Point Sign Mask
SMPDefsFlags[NN_movntdq] = false; // Store Double Quadword Using Non-Temporal Hint
SMPDefsFlags[NN_movnti] = false; // Store Doubleword Using Non-Temporal Hint
SMPDefsFlags[NN_movntpd] = false; // Store Packed Double-Precision Floating-Point Values Using Non-Temporal Hint
SMPDefsFlags[NN_movq2dq] = false; // Move Quadword from MMX to XMM Register
SMPDefsFlags[NN_movsd] = false; // Move Scalar Double-Precision Floating-Point Values
SMPDefsFlags[NN_movupd] = false; // Move Unaligned Packed Double-Precision Floating-Point Values
SMPDefsFlags[NN_mulpd] = false; // Multiply Packed Double-Precision Floating-Point Values
SMPDefsFlags[NN_mulsd] = false; // Multiply Scalar Double-Precision Floating-Point Values
SMPDefsFlags[NN_orpd] = false; // Bitwise Logical OR of Double-Precision Floating-Point Values
SMPDefsFlags[NN_paddq] = false; // Add Packed Quadword Integers
SMPDefsFlags[NN_pause] = false; // Spin Loop Hint
SMPDefsFlags[NN_pmuludq] = false; // Multiply Packed Unsigned Doubleword Integers
SMPDefsFlags[NN_pshufd] = false; // Shuffle Packed Doublewords
SMPDefsFlags[NN_pshufhw] = false; // Shuffle Packed High Words
SMPDefsFlags[NN_pshuflw] = false; // Shuffle Packed Low Words
SMPDefsFlags[NN_pslldq] = false; // Shift Double Quadword Left Logical
SMPDefsFlags[NN_psrldq] = false; // Shift Double Quadword Right Logical
SMPDefsFlags[NN_psubq] = false; // Subtract Packed Quadword Integers
SMPDefsFlags[NN_punpckhqdq] = false; // Unpack High Data
SMPDefsFlags[NN_punpcklqdq] = false; // Unpack Low Data
SMPDefsFlags[NN_shufpd] = false; // Shuffle Packed Double-Precision Floating-Point Values
SMPDefsFlags[NN_sqrtpd] = false; // Compute Square Roots of Packed Double-Precision Floating-Point Values
SMPDefsFlags[NN_sqrtsd] = false; // Compute Square Rootof Scalar Double-Precision Floating-Point Value
SMPDefsFlags[NN_subpd] = false; // Subtract Packed Double-Precision Floating-Point Values
SMPDefsFlags[NN_subsd] = false; // Subtract Scalar Double-Precision Floating-Point Values
SMPDefsFlags[NN_unpckhpd] = false; // Unpack and Interleave High Packed Double-Precision Floating-Point Values
SMPDefsFlags[NN_unpcklpd] = false; // Unpack and Interleave Low Packed Double-Precision Floating-Point Values
SMPDefsFlags[NN_xorpd] = false; // Bitwise Logical OR of Double-Precision Floating-Point Values
// AMD syscall/sysret instructions NOTE: not AMD, found in Intel manual
// AMD64 instructions NOTE: not AMD, found in Intel manual
SMPDefsFlags[NN_swapgs] = false; // Exchange GS base with KernelGSBase MSR
// New Pentium instructions (SSE3)
SMPDefsFlags[NN_movddup] = false; // Move One Double-FP and Duplicate
SMPDefsFlags[NN_movshdup] = false; // Move Packed Single-FP High and Duplicate
SMPDefsFlags[NN_movsldup] = false; // Move Packed Single-FP Low and Duplicate
// Missing AMD64 instructions NOTE: also found in Intel manual
SMPDefsFlags[NN_movsxd] = false; // Move with Sign-Extend Doubleword
// SSE3 instructions
SMPDefsFlags[NN_addsubpd] = false; // Add /Sub packed DP FP numbers
SMPDefsFlags[NN_addsubps] = false; // Add /Sub packed SP FP numbers
SMPDefsFlags[NN_haddpd] = false; // Add horizontally packed DP FP numbers
SMPDefsFlags[NN_haddps] = false; // Add horizontally packed SP FP numbers
SMPDefsFlags[NN_hsubpd] = false; // Sub horizontally packed DP FP numbers
SMPDefsFlags[NN_hsubps] = false; // Sub horizontally packed SP FP numbers
SMPDefsFlags[NN_monitor] = false; // Set up a linear address range to be monitored by hardware
SMPDefsFlags[NN_mwait] = false; // Wait until write-back store performed within the range specified by the MONITOR instruction
SMPDefsFlags[NN_fisttp] = false; // Store ST in intXX (chop) and pop
SMPDefsFlags[NN_lddqu] = false; // Load unaligned integer 128-bit
// SSSE3 instructions
SMPDefsFlags[NN_psignb] = false; // Packed SIGN Byte
SMPDefsFlags[NN_psignw] = false; // Packed SIGN Word
SMPDefsFlags[NN_psignd] = false; // Packed SIGN Doubleword
SMPDefsFlags[NN_pshufb] = false; // Packed Shuffle Bytes
SMPDefsFlags[NN_pmulhrsw] = false; // Packed Multiply High with Round and Scale
SMPDefsFlags[NN_pmaddubsw] = false; // Multiply and Add Packed Signed and Unsigned Bytes
SMPDefsFlags[NN_phsubsw] = false; // Packed Horizontal Subtract and Saturate
SMPDefsFlags[NN_phaddsw] = false; // Packed Horizontal Add and Saturate
SMPDefsFlags[NN_phaddw] = false; // Packed Horizontal Add Word
SMPDefsFlags[NN_phaddd] = false; // Packed Horizontal Add Doubleword
SMPDefsFlags[NN_phsubw] = false; // Packed Horizontal Subtract Word
SMPDefsFlags[NN_phsubd] = false; // Packed Horizontal Subtract Doubleword
SMPDefsFlags[NN_palignr] = false; // Packed Align Right
SMPDefsFlags[NN_pabsb] = false; // Packed Absolute Value Byte
SMPDefsFlags[NN_pabsw] = false; // Packed Absolute Value Word
SMPDefsFlags[NN_pabsd] = false; // Packed Absolute Value Doubleword
// VMX instructions
SMPDefsFlags[NN_ud2] = false; // Undefined Instruction
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
// Added with x86-64
SMPDefsFlags[NN_rdtscp] = false; // Read Time-Stamp Counter and Processor ID
// Geode LX 3DNow! extensions
SMPDefsFlags[NN_pfrcpv] = false; // Reciprocal Approximation for a Pair of 32-bit Floats
SMPDefsFlags[NN_pfrsqrtv] = false; // Reciprocal Square Root Approximation for a Pair of 32-bit Floats
// SSE2 pseudoinstructions
SMPDefsFlags[NN_cmpeqpd] = false; // Packed Double-FP Compare EQ
SMPDefsFlags[NN_cmpltpd] = false; // Packed Double-FP Compare LT
SMPDefsFlags[NN_cmplepd] = false; // Packed Double-FP Compare LE
SMPDefsFlags[NN_cmpunordpd] = false; // Packed Double-FP Compare UNORD
SMPDefsFlags[NN_cmpneqpd] = false; // Packed Double-FP Compare NOT EQ
SMPDefsFlags[NN_cmpnltpd] = false; // Packed Double-FP Compare NOT LT
SMPDefsFlags[NN_cmpnlepd] = false; // Packed Double-FP Compare NOT LE
SMPDefsFlags[NN_cmpordpd] = false; // Packed Double-FP Compare ORDERED
SMPDefsFlags[NN_cmpeqsd] = false; // Scalar Double-FP Compare EQ
SMPDefsFlags[NN_cmpltsd] = false; // Scalar Double-FP Compare LT
SMPDefsFlags[NN_cmplesd] = false; // Scalar Double-FP Compare LE
SMPDefsFlags[NN_cmpunordsd] = false; // Scalar Double-FP Compare UNORD
SMPDefsFlags[NN_cmpneqsd] = false; // Scalar Double-FP Compare NOT EQ
SMPDefsFlags[NN_cmpnltsd] = false; // Scalar Double-FP Compare NOT LT
SMPDefsFlags[NN_cmpnlesd] = false; // Scalar Double-FP Compare NOT LE
SMPDefsFlags[NN_cmpordsd] = false; // Scalar Double-FP Compare ORDERED
// SSSE4.1 instructions
SMPDefsFlags[NN_blendpd] = false; // Blend Packed Double Precision Floating-Point Values
SMPDefsFlags[NN_blendps] = false; // Blend Packed Single Precision Floating-Point Values
SMPDefsFlags[NN_blendvpd] = false; // Variable Blend Packed Double Precision Floating-Point Values
SMPDefsFlags[NN_blendvps] = false; // Variable Blend Packed Single Precision Floating-Point Values
SMPDefsFlags[NN_dppd] = false; // Dot Product of Packed Double Precision Floating-Point Values
SMPDefsFlags[NN_dpps] = false; // Dot Product of Packed Single Precision Floating-Point Values
SMPDefsFlags[NN_extractps] = 2; // Extract Packed Single Precision Floating-Point Value
SMPDefsFlags[NN_insertps] = false; // Insert Packed Single Precision Floating-Point Value
SMPDefsFlags[NN_movntdqa] = false; // Load Double Quadword Non-Temporal Aligned Hint
SMPDefsFlags[NN_mpsadbw] = false; // Compute Multiple Packed Sums of Absolute Difference
SMPDefsFlags[NN_packusdw] = false; // Pack with Unsigned Saturation
SMPDefsFlags[NN_pblendvb] = false; // Variable Blend Packed Bytes
SMPDefsFlags[NN_pblendw] = false; // Blend Packed Words
SMPDefsFlags[NN_pcmpeqq] = false; // Compare Packed Qword Data for Equal
SMPDefsFlags[NN_pextrb] = false; // Extract Byte
SMPDefsFlags[NN_pextrd] = false; // Extract Dword
SMPDefsFlags[NN_pextrq] = false; // Extract Qword
SMPDefsFlags[NN_phminposuw] = false; // Packed Horizontal Word Minimum
SMPDefsFlags[NN_pinsrb] = false; // Insert Byte
SMPDefsFlags[NN_pinsrd] = false; // Insert Dword
SMPDefsFlags[NN_pinsrq] = false; // Insert Qword
SMPDefsFlags[NN_pmaxsb] = false; // Maximum of Packed Signed Byte Integers
SMPDefsFlags[NN_pmaxsd] = false; // Maximum of Packed Signed Dword Integers
SMPDefsFlags[NN_pmaxud] = false; // Maximum of Packed Unsigned Dword Integers
SMPDefsFlags[NN_pmaxuw] = false; // Maximum of Packed Word Integers
SMPDefsFlags[NN_pminsb] = false; // Minimum of Packed Signed Byte Integers
SMPDefsFlags[NN_pminsd] = false; // Minimum of Packed Signed Dword Integers
SMPDefsFlags[NN_pminud] = false; // Minimum of Packed Unsigned Dword Integers
SMPDefsFlags[NN_pminuw] = false; // Minimum of Packed Word Integers
SMPDefsFlags[NN_pmovsxbw] = false; // Packed Move with Sign Extend
SMPDefsFlags[NN_pmovsxbd] = false; // Packed Move with Sign Extend
SMPDefsFlags[NN_pmovsxbq] = false; // Packed Move with Sign Extend
SMPDefsFlags[NN_pmovsxwd] = false; // Packed Move with Sign Extend
SMPDefsFlags[NN_pmovsxwq] = false; // Packed Move with Sign Extend
SMPDefsFlags[NN_pmovsxdq] = false; // Packed Move with Sign Extend
SMPDefsFlags[NN_pmovzxbw] = false; // Packed Move with Zero Extend
SMPDefsFlags[NN_pmovzxbd] = false; // Packed Move with Zero Extend
SMPDefsFlags[NN_pmovzxbq] = false; // Packed Move with Zero Extend
SMPDefsFlags[NN_pmovzxwd] = false; // Packed Move with Zero Extend
SMPDefsFlags[NN_pmovzxwq] = false; // Packed Move with Zero Extend
SMPDefsFlags[NN_pmovzxdq] = false; // Packed Move with Zero Extend
SMPDefsFlags[NN_pmuldq] = false; // Multiply Packed Signed Dword Integers
SMPDefsFlags[NN_pmulld] = false; // Multiply Packed Signed Dword Integers and Store Low Result
SMPDefsFlags[NN_roundpd] = false; // Round Packed Double Precision Floating-Point Values
SMPDefsFlags[NN_roundps] = false; // Round Packed Single Precision Floating-Point Values
SMPDefsFlags[NN_roundsd] = false; // Round Scalar Double Precision Floating-Point Values
SMPDefsFlags[NN_roundss] = false; // Round Scalar Single Precision Floating-Point Values
// SSSE4.2 instructions
SMPDefsFlags[NN_crc32] = false; // Accumulate CRC32 Value
SMPDefsFlags[NN_pcmpgtq] = false; // Compare Packed Data for Greater Than
// AMD SSE4a instructions
SMPDefsFlags[NN_extrq] = false; // Extract Field From Register
SMPDefsFlags[NN_insertq] = false; // Insert Field
SMPDefsFlags[NN_movntsd] = false; // Move Non-Temporal Scalar Double-Precision Floating-Point
SMPDefsFlags[NN_movntss] = false; // Move Non-Temporal Scalar Single-Precision Floating-Point
// xsave/xrstor instructions
SMPDefsFlags[NN_xgetbv] = false; // Get Value of Extended Control Register
SMPDefsFlags[NN_xrstor] = false; // Restore Processor Extended States
SMPDefsFlags[NN_xsave] = false; // Save Processor Extended States
SMPDefsFlags[NN_xsetbv] = false; // Set Value of Extended Control Register
// Intel Safer Mode Extensions (SMX)
// AMD-V Virtualization ISA Extension
SMPDefsFlags[NN_invlpga] = false; // Invalidate TLB Entry in a Specified ASID
SMPDefsFlags[NN_skinit] = false; // Secure Init and Jump with Attestation
SMPDefsFlags[NN_vmexit] = false; // Stop Executing Guest, Begin Executing Host
SMPDefsFlags[NN_vmload] = false; // Load State from VMCB
SMPDefsFlags[NN_vmmcall] = false; // Call VMM
SMPDefsFlags[NN_vmrun] = false; // Run Virtual Machine
SMPDefsFlags[NN_vmsave] = false; // Save State to VMCB
// VMX+ instructions
SMPDefsFlags[NN_invept] = false; // Invalidate Translations Derived from EPT
SMPDefsFlags[NN_invvpid] = false; // Invalidate Translations Based on VPID
// Intel Atom instructions
SMPDefsFlags[NN_movbe] = false; // Move Data After Swapping Bytes
// Intel AES instructions
SMPDefsFlags[NN_aesenc] = false; // Perform One Round of an AES Encryption Flow
SMPDefsFlags[NN_aesenclast] = false; // Perform the Last Round of an AES Encryption Flow
SMPDefsFlags[NN_aesdec] = false; // Perform One Round of an AES Decryption Flow
SMPDefsFlags[NN_aesdeclast] = false; // Perform the Last Round of an AES Decryption Flow
SMPDefsFlags[NN_aesimc] = false; // Perform the AES InvMixColumn Transformation
SMPDefsFlags[NN_aeskeygenassist] = false; // AES Round Key Generation Assist
// Carryless multiplication
SMPDefsFlags[NN_pclmulqdq] = false; // Carry-Less Multiplication Quadword
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
// Returns modified by operand size prefixes
SMPDefsFlags[NN_retnw] = false; // Return Near from Procedure (use16)
SMPDefsFlags[NN_retnd] = false; // Return Near from Procedure (use32)
SMPDefsFlags[NN_retnq] = false; // Return Near from Procedure (use64)
SMPDefsFlags[NN_retfw] = false; // Return Far from Procedure (use16)
SMPDefsFlags[NN_retfd] = false; // Return Far from Procedure (use32)
SMPDefsFlags[NN_retfq] = false; // Return Far from Procedure (use64)
// RDRAND support
// new GPR instructions
SMPDefsFlags[NN_mulx] = false; // Unsigned Multiply Without Affecting Flags
SMPDefsFlags[NN_pdep] = false; // Parallel Bits Deposit
SMPDefsFlags[NN_pext] = false; // Parallel Bits Extract
SMPDefsFlags[NN_rorx] = false; // Rotate Right Logical Without Affecting Flags
SMPDefsFlags[NN_sarx] = false; // Shift Arithmetically Right Without Affecting Flags
SMPDefsFlags[NN_shlx] = false; // Shift Logically Left Without Affecting Flags
SMPDefsFlags[NN_shrx] = false; // Shift Logically Right Without Affecting Flags
SMPDefsFlags[NN_xsaveopt] = false; // Save Processor Extended States Optimized
SMPDefsFlags[NN_invpcid] = false; // Invalidate Processor Context ID
SMPDefsFlags[NN_rdseed] = false; // Read Random Seed
SMPDefsFlags[NN_rdfsbase] = false; // Read FS Segment Base
SMPDefsFlags[NN_rdgsbase] = false; // Read GS Segment Base
SMPDefsFlags[NN_wrfsbase] = false; // Write FS Segment Base
SMPDefsFlags[NN_wrgsbase] = false; // Write GS Segment Base
// new AVX instructions
SMPDefsFlags[NN_vaddpd] = false; // Add Packed Double-Precision Floating-Point Values
SMPDefsFlags[NN_vaddps] = false; // Packed Single-FP Add
SMPDefsFlags[NN_vaddsd] = false; // Add Scalar Double-Precision Floating-Point Values
SMPDefsFlags[NN_vaddss] = false; // Scalar Single-FP Add
SMPDefsFlags[NN_vaddsubpd] = false; // Add /Sub packed DP FP numbers
SMPDefsFlags[NN_vaddsubps] = false; // Add /Sub packed SP FP numbers
SMPDefsFlags[NN_vaesdec] = false; // Perform One Round of an AES Decryption Flow
SMPDefsFlags[NN_vaesdeclast] = false; // Perform the Last Round of an AES Decryption Flow
SMPDefsFlags[NN_vaesenc] = false; // Perform One Round of an AES Encryption Flow
SMPDefsFlags[NN_vaesenclast] = false; // Perform the Last Round of an AES Encryption Flow
SMPDefsFlags[NN_vaesimc] = false; // Perform the AES InvMixColumn Transformation
SMPDefsFlags[NN_vaeskeygenassist] = false; // AES Round Key Generation Assist
SMPDefsFlags[NN_vandnpd] = false; // Bitwise Logical AND NOT of Packed Double-Precision Floating-Point Values
SMPDefsFlags[NN_vandnps] = false; // Bitwise Logical And Not for Single-FP
SMPDefsFlags[NN_vandpd] = false; // Bitwise Logical AND of Packed Double-Precision Floating-Point Values
SMPDefsFlags[NN_vandps] = false; // Bitwise Logical And for Single-FP
SMPDefsFlags[NN_vblendpd] = false; // Blend Packed Double Precision Floating-Point Values
SMPDefsFlags[NN_vblendps] = false; // Blend Packed Single Precision Floating-Point Values
SMPDefsFlags[NN_vblendvpd] = false; // Variable Blend Packed Double Precision Floating-Point Values
SMPDefsFlags[NN_vblendvps] = false; // Variable Blend Packed Single Precision Floating-Point Values
SMPDefsFlags[NN_vbroadcastf128] = false; // Broadcast 128 Bits of Floating-Point Data
SMPDefsFlags[NN_vbroadcasti128] = false; // Broadcast 128 Bits of Integer Data
SMPDefsFlags[NN_vbroadcastsd] = false; // Broadcast Double-Precision Floating-Point Element
SMPDefsFlags[NN_vbroadcastss] = false; // Broadcast Single-Precision Floating-Point Element
SMPDefsFlags[NN_vcmppd] = false; // Compare Packed Double-Precision Floating-Point Values
SMPDefsFlags[NN_vcmpps] = false; // Packed Single-FP Compare
SMPDefsFlags[NN_vcmpsd] = false; // Compare Scalar Double-Precision Floating-Point Values
SMPDefsFlags[NN_vcmpss] = false; // Scalar Single-FP Compare
SMPDefsFlags[NN_vcomisd] = false; // Compare Scalar Ordered Double-Precision Floating-Point Values and Set EFLAGS
SMPDefsFlags[NN_vcomiss] = false; // Scalar Ordered Single-FP Compare and Set EFLAGS
SMPDefsFlags[NN_vcvtdq2pd] = false; // Convert Packed Doubleword Integers to Packed Single-Precision Floating-Point Values
SMPDefsFlags[NN_vcvtdq2ps] = false; // Convert Packed Doubleword Integers to Packed Double-Precision Floating-Point Values
SMPDefsFlags[NN_vcvtpd2dq] = false; // Convert Packed Double-Precision Floating-Point Values to Packed Doubleword Integers
SMPDefsFlags[NN_vcvtpd2ps] = false; // Convert Packed Double-Precision Floating-Point Values to Packed Single-Precision Floating-Point Values
SMPDefsFlags[NN_vcvtph2ps] = false; // Convert 16-bit FP Values to Single-Precision FP Values
SMPDefsFlags[NN_vcvtps2dq] = false; // Convert Packed Single-Precision Floating-Point Values to Packed Doubleword Integers
SMPDefsFlags[NN_vcvtps2pd] = false; // Convert Packed Single-Precision Floating-Point Values to Packed Double-Precision Floating-Point Values
SMPDefsFlags[NN_vcvtps2ph] = false; // Convert Single-Precision FP value to 16-bit FP value
SMPDefsFlags[NN_vcvtsd2si] = false; // Convert Scalar Double-Precision Floating-Point Value to Doubleword Integer
SMPDefsFlags[NN_vcvtsd2ss] = false; // Convert Scalar Double-Precision Floating-Point Value to Scalar Single-Precision Floating-Point Value
SMPDefsFlags[NN_vcvtsi2sd] = false; // Convert Doubleword Integer to Scalar Double-Precision Floating-Point Value
SMPDefsFlags[NN_vcvtsi2ss] = false; // Scalar signed INT32 to Single-FP conversion
SMPDefsFlags[NN_vcvtss2sd] = false; // Convert Scalar Single-Precision Floating-Point Value to Scalar Double-Precision Floating-Point Value
SMPDefsFlags[NN_vcvtss2si] = false; // Scalar Single-FP to signed INT32 conversion
SMPDefsFlags[NN_vcvttpd2dq] = false; // Convert With Truncation Packed Double-Precision Floating-Point Values to Packed Doubleword Integers
SMPDefsFlags[NN_vcvttps2dq] = false; // Convert With Truncation Packed Single-Precision Floating-Point Values to Packed Doubleword Integers
SMPDefsFlags[NN_vcvttsd2si] = false; // Convert with Truncation Scalar Double-Precision Floating-Point Value to Doubleword Integer
SMPDefsFlags[NN_vcvttss2si] = false; // Scalar Single-FP to signed INT32 conversion (truncate)
SMPDefsFlags[NN_vdivpd] = false; // Divide Packed Double-Precision Floating-Point Values
SMPDefsFlags[NN_vdivps] = false; // Packed Single-FP Divide
SMPDefsFlags[NN_vdivsd] = false; // Divide Scalar Double-Precision Floating-Point Values
SMPDefsFlags[NN_vdivss] = false; // Scalar Single-FP Divide
SMPDefsFlags[NN_vdppd] = false; // Dot Product of Packed Double Precision Floating-Point Values
SMPDefsFlags[NN_vdpps] = false; // Dot Product of Packed Single Precision Floating-Point Values
SMPDefsFlags[NN_vextractf128] = false; // Extract Packed Floating-Point Values
SMPDefsFlags[NN_vextracti128] = false; // Extract Packed Integer Values
SMPDefsFlags[NN_vextractps] = false; // Extract Packed Floating-Point Values
SMPDefsFlags[NN_vfmadd132pd] = false; // Fused Multiply-Add of Packed Double-Precision Floating-Point Values
SMPDefsFlags[NN_vfmadd132ps] = false; // Fused Multiply-Add of Packed Single-Precision Floating-Point Values
SMPDefsFlags[NN_vfmadd132sd] = false; // Fused Multiply-Add of Scalar Double-Precision Floating-Point Values
SMPDefsFlags[NN_vfmadd132ss] = false; // Fused Multiply-Add of Scalar Single-Precision Floating-Point Values
SMPDefsFlags[NN_vfmadd213pd] = false; // Fused Multiply-Add of Packed Double-Precision Floating-Point Values
SMPDefsFlags[NN_vfmadd213ps] = false; // Fused Multiply-Add of Packed Single-Precision Floating-Point Values
SMPDefsFlags[NN_vfmadd213sd] = false; // Fused Multiply-Add of Scalar Double-Precision Floating-Point Values
SMPDefsFlags[NN_vfmadd213ss] = false; // Fused Multiply-Add of Scalar Single-Precision Floating-Point Values
SMPDefsFlags[NN_vfmadd231pd] = false; // Fused Multiply-Add of Packed Double-Precision Floating-Point Values
SMPDefsFlags[NN_vfmadd231ps] = false; // Fused Multiply-Add of Packed Single-Precision Floating-Point Values
SMPDefsFlags[NN_vfmadd231sd] = false; // Fused Multiply-Add of Scalar Double-Precision Floating-Point Values
SMPDefsFlags[NN_vfmadd231ss] = false; // Fused Multiply-Add of Scalar Single-Precision Floating-Point Values
SMPDefsFlags[NN_vfmaddsub132pd] = false; // Fused Multiply-Alternating Add/Subtract of Packed Double-Precision Floating-Point Values
SMPDefsFlags[NN_vfmaddsub132ps] = false; // Fused Multiply-Alternating Add/Subtract of Packed Single-Precision Floating-Point Values
SMPDefsFlags[NN_vfmaddsub213pd] = false; // Fused Multiply-Alternating Add/Subtract of Packed Double-Precision Floating-Point Values
SMPDefsFlags[NN_vfmaddsub213ps] = false; // Fused Multiply-Alternating Add/Subtract of Packed Single-Precision Floating-Point Values
SMPDefsFlags[NN_vfmaddsub231pd] = false; // Fused Multiply-Alternating Add/Subtract of Packed Double-Precision Floating-Point Values
SMPDefsFlags[NN_vfmaddsub231ps] = false; // Fused Multiply-Alternating Add/Subtract of Packed Single-Precision Floating-Point Values
SMPDefsFlags[NN_vfmsub132pd] = false; // Fused Multiply-Subtract of Packed Double-Precision Floating-Point Values
SMPDefsFlags[NN_vfmsub132ps] = false; // Fused Multiply-Subtract of Packed Single-Precision Floating-Point Values
SMPDefsFlags[NN_vfmsub132sd] = false; // Fused Multiply-Subtract of Scalar Double-Precision Floating-Point Values
SMPDefsFlags[NN_vfmsub132ss] = false; // Fused Multiply-Subtract of Scalar Single-Precision Floating-Point Values
SMPDefsFlags[NN_vfmsub213pd] = false; // Fused Multiply-Subtract of Packed Double-Precision Floating-Point Values
SMPDefsFlags[NN_vfmsub213ps] = false; // Fused Multiply-Subtract of Packed Single-Precision Floating-Point Values
SMPDefsFlags[NN_vfmsub213sd] = false; // Fused Multiply-Subtract of Scalar Double-Precision Floating-Point Values
SMPDefsFlags[NN_vfmsub213ss] = false; // Fused Multiply-Subtract of Scalar Single-Precision Floating-Point Values
SMPDefsFlags[NN_vfmsub231pd] = false; // Fused Multiply-Subtract of Packed Double-Precision Floating-Point Values
SMPDefsFlags[NN_vfmsub231ps] = false; // Fused Multiply-Subtract of Packed Single-Precision Floating-Point Values
SMPDefsFlags[NN_vfmsub231sd] = false; // Fused Multiply-Subtract of Scalar Double-Precision Floating-Point Values
SMPDefsFlags[NN_vfmsub231ss] = false; // Fused Multiply-Subtract of Scalar Single-Precision Floating-Point Values
SMPDefsFlags[NN_vfmsubadd132pd] = false; // Fused Multiply-Alternating Subtract/Add of Packed Double-Precision Floating-Point Values
SMPDefsFlags[NN_vfmsubadd132ps] = false; // Fused Multiply-Alternating Subtract/Add of Packed Single-Precision Floating-Point Values
SMPDefsFlags[NN_vfmsubadd213pd] = false; // Fused Multiply-Alternating Subtract/Add of Packed Double-Precision Floating-Point Values
SMPDefsFlags[NN_vfmsubadd213ps] = false; // Fused Multiply-Alternating Subtract/Add of Packed Single-Precision Floating-Point Values
SMPDefsFlags[NN_vfmsubadd231pd] = false; // Fused Multiply-Alternating Subtract/Add of Packed Double-Precision Floating-Point Values
SMPDefsFlags[NN_vfmsubadd231ps] = false; // Fused Multiply-Alternating Subtract/Add of Packed Single-Precision Floating-Point Values
SMPDefsFlags[NN_vfnmadd132pd] = false; // Fused Negative Multiply-Add of Packed Double-Precision Floating-Point Values
SMPDefsFlags[NN_vfnmadd132ps] = false; // Fused Negative Multiply-Add of Packed Single-Precision Floating-Point Values
SMPDefsFlags[NN_vfnmadd132sd] = false; // Fused Negative Multiply-Add of Scalar Double-Precision Floating-Point Values
SMPDefsFlags[NN_vfnmadd132ss] = false; // Fused Negative Multiply-Add of Scalar Single-Precision Floating-Point Values
SMPDefsFlags[NN_vfnmadd213pd] = false; // Fused Negative Multiply-Add of Packed Double-Precision Floating-Point Values
SMPDefsFlags[NN_vfnmadd213ps] = false; // Fused Negative Multiply-Add of Packed Single-Precision Floating-Point Values
SMPDefsFlags[NN_vfnmadd213sd] = false; // Fused Negative Multiply-Add of Scalar Double-Precision Floating-Point Values
SMPDefsFlags[NN_vfnmadd213ss] = false; // Fused Negative Multiply-Add of Scalar Single-Precision Floating-Point Values
SMPDefsFlags[NN_vfnmadd231pd] = false; // Fused Negative Multiply-Add of Packed Double-Precision Floating-Point Values
SMPDefsFlags[NN_vfnmadd231ps] = false; // Fused Negative Multiply-Add of Packed Single-Precision Floating-Point Values
SMPDefsFlags[NN_vfnmadd231sd] = false; // Fused Negative Multiply-Add of Scalar Double-Precision Floating-Point Values
SMPDefsFlags[NN_vfnmadd231ss] = false; // Fused Negative Multiply-Add of Scalar Single-Precision Floating-Point Values
SMPDefsFlags[NN_vfnmsub132pd] = false; // Fused Negative Multiply-Subtract of Packed Double-Precision Floating-Point Values
SMPDefsFlags[NN_vfnmsub132ps] = false; // Fused Negative Multiply-Subtract of Packed Single-Precision Floating-Point Values
SMPDefsFlags[NN_vfnmsub132sd] = false; // Fused Negative Multiply-Subtract of Scalar Double-Precision Floating-Point Values
SMPDefsFlags[NN_vfnmsub132ss] = false; // Fused Negative Multiply-Subtract of Scalar Single-Precision Floating-Point Values
SMPDefsFlags[NN_vfnmsub213pd] = false; // Fused Negative Multiply-Subtract of Packed Double-Precision Floating-Point Values
SMPDefsFlags[NN_vfnmsub213ps] = false; // Fused Negative Multiply-Subtract of Packed Single-Precision Floating-Point Values
SMPDefsFlags[NN_vfnmsub213sd] = false; // Fused Negative Multiply-Subtract of Scalar Double-Precision Floating-Point Values
SMPDefsFlags[NN_vfnmsub213ss] = false; // Fused Negative Multiply-Subtract of Scalar Single-Precision Floating-Point Values
SMPDefsFlags[NN_vfnmsub231pd] = false; // Fused Negative Multiply-Subtract of Packed Double-Precision Floating-Point Values
SMPDefsFlags[NN_vfnmsub231ps] = false; // Fused Negative Multiply-Subtract of Packed Single-Precision Floating-Point Values
SMPDefsFlags[NN_vfnmsub231sd] = false; // Fused Negative Multiply-Subtract of Scalar Double-Precision Floating-Point Values
SMPDefsFlags[NN_vfnmsub231ss] = false; // Fused Negative Multiply-Subtract of Scalar Single-Precision Floating-Point Values
SMPDefsFlags[NN_vgatherdps] = false; // Gather Packed SP FP Values Using Signed Dword Indices
SMPDefsFlags[NN_vgatherdpd] = false; // Gather Packed DP FP Values Using Signed Dword Indices
SMPDefsFlags[NN_vgatherqps] = false; // Gather Packed SP FP Values Using Signed Qword Indices
SMPDefsFlags[NN_vgatherqpd] = false; // Gather Packed DP FP Values Using Signed Qword Indices
SMPDefsFlags[NN_vhaddpd] = false; // Add horizontally packed DP FP numbers
SMPDefsFlags[NN_vhaddps] = false; // Add horizontally packed SP FP numbers
SMPDefsFlags[NN_vhsubpd] = false; // Sub horizontally packed DP FP numbers
SMPDefsFlags[NN_vhsubps] = false; // Sub horizontally packed SP FP numbers
SMPDefsFlags[NN_vinsertf128] = false; // Insert Packed Floating-Point Values
SMPDefsFlags[NN_vinserti128] = false; // Insert Packed Integer Values
SMPDefsFlags[NN_vinsertps] = false; // Insert Packed Single Precision Floating-Point Value
SMPDefsFlags[NN_vlddqu] = false; // Load Unaligned Packed Integer Values
SMPDefsFlags[NN_vldmxcsr] = false; // Load Streaming SIMD Extensions Technology Control/Status Register
SMPDefsFlags[NN_vmaskmovdqu] = false; // Store Selected Bytes of Double Quadword with NT Hint
SMPDefsFlags[NN_vmaskmovpd] = false; // Conditionally Load Packed Double-Precision Floating-Point Values
SMPDefsFlags[NN_vmaskmovps] = false; // Conditionally Load Packed Single-Precision Floating-Point Values
SMPDefsFlags[NN_vmaxpd] = false; // Return Maximum Packed Double-Precision Floating-Point Values
SMPDefsFlags[NN_vmaxps] = false; // Packed Single-FP Maximum
SMPDefsFlags[NN_vmaxsd] = false; // Return Maximum Scalar Double-Precision Floating-Point Value
SMPDefsFlags[NN_vmaxss] = false; // Scalar Single-FP Maximum
SMPDefsFlags[NN_vminpd] = false; // Return Minimum Packed Double-Precision Floating-Point Values
SMPDefsFlags[NN_vminps] = false; // Packed Single-FP Minimum
SMPDefsFlags[NN_vminsd] = false; // Return Minimum Scalar Double-Precision Floating-Point Value
SMPDefsFlags[NN_vminss] = false; // Scalar Single-FP Minimum
SMPDefsFlags[NN_vmovapd] = false; // Move Aligned Packed Double-Precision Floating-Point Values
SMPDefsFlags[NN_vmovaps] = false; // Move Aligned Four Packed Single-FP
SMPDefsFlags[NN_vmovd] = false; // Move 32 bits
SMPDefsFlags[NN_vmovddup] = false; // Move One Double-FP and Duplicate
SMPDefsFlags[NN_vmovdqa] = false; // Move Aligned Double Quadword
SMPDefsFlags[NN_vmovdqu] = false; // Move Unaligned Double Quadword
SMPDefsFlags[NN_vmovhlps] = false; // Move High to Low Packed Single-FP
SMPDefsFlags[NN_vmovhpd] = false; // Move High Packed Double-Precision Floating-Point Values
SMPDefsFlags[NN_vmovhps] = false; // Move High Packed Single-FP
SMPDefsFlags[NN_vmovlhps] = false; // Move Low to High Packed Single-FP
SMPDefsFlags[NN_vmovlpd] = false; // Move Low Packed Double-Precision Floating-Point Values
SMPDefsFlags[NN_vmovlps] = false; // Move Low Packed Single-FP
SMPDefsFlags[NN_vmovmskpd] = false; // Extract Packed Double-Precision Floating-Point Sign Mask
SMPDefsFlags[NN_vmovmskps] = false; // Move Mask to Register
SMPDefsFlags[NN_vmovntdq] = false; // Store Double Quadword Using Non-Temporal Hint
SMPDefsFlags[NN_vmovntdqa] = false; // Load Double Quadword Non-Temporal Aligned Hint
SMPDefsFlags[NN_vmovntpd] = false; // Store Packed Double-Precision Floating-Point Values Using Non-Temporal Hint
SMPDefsFlags[NN_vmovntps] = false; // Move Aligned Four Packed Single-FP Non Temporal
SMPDefsFlags[NN_vmovntsd] = false; // Move Non-Temporal Scalar Double-Precision Floating-Point
SMPDefsFlags[NN_vmovntss] = false; // Move Non-Temporal Scalar Single-Precision Floating-Point
SMPDefsFlags[NN_vmovq] = false; // Move 64 bits
SMPDefsFlags[NN_vmovsd] = false; // Move Scalar Double-Precision Floating-Point Values
SMPDefsFlags[NN_vmovshdup] = false; // Move Packed Single-FP High and Duplicate
SMPDefsFlags[NN_vmovsldup] = false; // Move Packed Single-FP Low and Duplicate
SMPDefsFlags[NN_vmovss] = false; // Move Scalar Single-FP
SMPDefsFlags[NN_vmovupd] = false; // Move Unaligned Packed Double-Precision Floating-Point Values
SMPDefsFlags[NN_vmovups] = false; // Move Unaligned Four Packed Single-FP
SMPDefsFlags[NN_vmpsadbw] = false; // Compute Multiple Packed Sums of Absolute Difference
SMPDefsFlags[NN_vmulpd] = false; // Multiply Packed Double-Precision Floating-Point Values
SMPDefsFlags[NN_vmulps] = false; // Packed Single-FP Multiply
SMPDefsFlags[NN_vmulsd] = false; // Multiply Scalar Double-Precision Floating-Point Values
SMPDefsFlags[NN_vmulss] = false; // Scalar Single-FP Multiply
SMPDefsFlags[NN_vorpd] = false; // Bitwise Logical OR of Double-Precision Floating-Point Values
SMPDefsFlags[NN_vorps] = false; // Bitwise Logical OR for Single-FP Data
SMPDefsFlags[NN_vpabsb] = false; // Packed Absolute Value Byte
SMPDefsFlags[NN_vpabsd] = false; // Packed Absolute Value Doubleword
SMPDefsFlags[NN_vpabsw] = false; // Packed Absolute Value Word
SMPDefsFlags[NN_vpackssdw] = false; // Pack with Signed Saturation (Dword->Word)
SMPDefsFlags[NN_vpacksswb] = false; // Pack with Signed Saturation (Word->Byte)
SMPDefsFlags[NN_vpackusdw] = false; // Pack with Unsigned Saturation
SMPDefsFlags[NN_vpackuswb] = false; // Pack with Unsigned Saturation (Word->Byte)
SMPDefsFlags[NN_vpaddb] = false; // Packed Add Byte
SMPDefsFlags[NN_vpaddd] = false; // Packed Add Dword
SMPDefsFlags[NN_vpaddq] = false; // Add Packed Quadword Integers
SMPDefsFlags[NN_vpaddsb] = false; // Packed Add with Saturation (Byte)
SMPDefsFlags[NN_vpaddsw] = false; // Packed Add with Saturation (Word)
SMPDefsFlags[NN_vpaddusb] = false; // Packed Add Unsigned with Saturation (Byte)
SMPDefsFlags[NN_vpaddusw] = false; // Packed Add Unsigned with Saturation (Word)
SMPDefsFlags[NN_vpaddw] = false; // Packed Add Word
SMPDefsFlags[NN_vpalignr] = false; // Packed Align Right
SMPDefsFlags[NN_vpand] = false; // Bitwise Logical And
SMPDefsFlags[NN_vpandn] = false; // Bitwise Logical And Not
SMPDefsFlags[NN_vpavgb] = false; // Packed Average (Byte)
SMPDefsFlags[NN_vpavgw] = false; // Packed Average (Word)
SMPDefsFlags[NN_vpblendd] = false; // Blend Packed Dwords
SMPDefsFlags[NN_vpblendvb] = false; // Variable Blend Packed Bytes
SMPDefsFlags[NN_vpblendw] = false; // Blend Packed Words
SMPDefsFlags[NN_vpbroadcastb] = false; // Broadcast a Byte Integer
SMPDefsFlags[NN_vpbroadcastd] = false; // Broadcast a Dword Integer
SMPDefsFlags[NN_vpbroadcastq] = false; // Broadcast a Qword Integer
SMPDefsFlags[NN_vpbroadcastw] = false; // Broadcast a Word Integer
SMPDefsFlags[NN_vpclmulqdq] = false; // Carry-Less Multiplication Quadword
SMPDefsFlags[NN_vpcmpeqb] = false; // Packed Compare for Equal (Byte)
SMPDefsFlags[NN_vpcmpeqd] = false; // Packed Compare for Equal (Dword)
SMPDefsFlags[NN_vpcmpeqq] = false; // Compare Packed Qword Data for Equal
SMPDefsFlags[NN_vpcmpeqw] = false; // Packed Compare for Equal (Word)
SMPDefsFlags[NN_vpcmpestri] = false; // Packed Compare Explicit Length Strings, Return Index
SMPDefsFlags[NN_vpcmpestrm] = false; // Packed Compare Explicit Length Strings, Return Mask
SMPDefsFlags[NN_vpcmpgtb] = false; // Packed Compare for Greater Than (Byte)
SMPDefsFlags[NN_vpcmpgtd] = false; // Packed Compare for Greater Than (Dword)
SMPDefsFlags[NN_vpcmpgtq] = false; // Compare Packed Data for Greater Than
SMPDefsFlags[NN_vpcmpgtw] = false; // Packed Compare for Greater Than (Word)
SMPDefsFlags[NN_vpcmpistri] = false; // Packed Compare Implicit Length Strings, Return Index
SMPDefsFlags[NN_vpcmpistrm] = false; // Packed Compare Implicit Length Strings, Return Mask
SMPDefsFlags[NN_vperm2f128] = false; // Permute Floating-Point Values
SMPDefsFlags[NN_vperm2i128] = false; // Permute Integer Values
SMPDefsFlags[NN_vpermd] = false; // Full Doublewords Element Permutation
SMPDefsFlags[NN_vpermilpd] = false; // Permute Double-Precision Floating-Point Values
SMPDefsFlags[NN_vpermilps] = false; // Permute Single-Precision Floating-Point Values
SMPDefsFlags[NN_vpermpd] = false; // Permute Double-Precision Floating-Point Elements
SMPDefsFlags[NN_vpermps] = false; // Permute Single-Precision Floating-Point Elements
SMPDefsFlags[NN_vpermq] = false; // Qwords Element Permutation
SMPDefsFlags[NN_vpextrb] = false; // Extract Byte
SMPDefsFlags[NN_vpextrd] = false; // Extract Dword
SMPDefsFlags[NN_vpextrq] = false; // Extract Qword
SMPDefsFlags[NN_vpextrw] = false; // Extract Word
SMPDefsFlags[NN_vpgatherdd] = false; // Gather Packed Dword Values Using Signed Dword Indices
SMPDefsFlags[NN_vpgatherdq] = false; // Gather Packed Qword Values Using Signed Dword Indices
SMPDefsFlags[NN_vpgatherqd] = false; // Gather Packed Dword Values Using Signed Qword Indices
SMPDefsFlags[NN_vpgatherqq] = false; // Gather Packed Qword Values Using Signed Qword Indices
SMPDefsFlags[NN_vphaddd] = false; // Packed Horizontal Add Doubleword
SMPDefsFlags[NN_vphaddsw] = false; // Packed Horizontal Add and Saturate
SMPDefsFlags[NN_vphaddw] = false; // Packed Horizontal Add Word
SMPDefsFlags[NN_vphminposuw] = false; // Packed Horizontal Word Minimum
SMPDefsFlags[NN_vphsubd] = false; // Packed Horizontal Subtract Doubleword
SMPDefsFlags[NN_vphsubsw] = false; // Packed Horizontal Subtract and Saturate
SMPDefsFlags[NN_vphsubw] = false; // Packed Horizontal Subtract Word
SMPDefsFlags[NN_vpinsrb] = false; // Insert Byte
SMPDefsFlags[NN_vpinsrd] = false; // Insert Dword
SMPDefsFlags[NN_vpinsrq] = false; // Insert Qword
SMPDefsFlags[NN_vpinsrw] = false; // Insert Word
SMPDefsFlags[NN_vpmaddubsw] = false; // Multiply and Add Packed Signed and Unsigned Bytes
SMPDefsFlags[NN_vpmaddwd] = false; // Packed Multiply and Add
SMPDefsFlags[NN_vpmaskmovd] = false; // Conditionally Store Dword Values Using Mask
SMPDefsFlags[NN_vpmaskmovq] = false; // Conditionally Store Qword Values Using Mask
SMPDefsFlags[NN_vpmaxsb] = false; // Maximum of Packed Signed Byte Integers
SMPDefsFlags[NN_vpmaxsd] = false; // Maximum of Packed Signed Dword Integers
SMPDefsFlags[NN_vpmaxsw] = false; // Packed Signed Integer Word Maximum
SMPDefsFlags[NN_vpmaxub] = false; // Packed Unsigned Integer Byte Maximum
SMPDefsFlags[NN_vpmaxud] = false; // Maximum of Packed Unsigned Dword Integers
SMPDefsFlags[NN_vpmaxuw] = false; // Maximum of Packed Word Integers
SMPDefsFlags[NN_vpminsb] = false; // Minimum of Packed Signed Byte Integers
SMPDefsFlags[NN_vpminsd] = false; // Minimum of Packed Signed Dword Integers
SMPDefsFlags[NN_vpminsw] = false; // Packed Signed Integer Word Minimum
SMPDefsFlags[NN_vpminub] = false; // Packed Unsigned Integer Byte Minimum
SMPDefsFlags[NN_vpminud] = false; // Minimum of Packed Unsigned Dword Integers
SMPDefsFlags[NN_vpminuw] = false; // Minimum of Packed Word Integers
SMPDefsFlags[NN_vpmovmskb] = false; // Move Byte Mask to Integer
SMPDefsFlags[NN_vpmovsxbd] = false; // Packed Move with Sign Extend
SMPDefsFlags[NN_vpmovsxbq] = false; // Packed Move with Sign Extend
SMPDefsFlags[NN_vpmovsxbw] = false; // Packed Move with Sign Extend
SMPDefsFlags[NN_vpmovsxdq] = false; // Packed Move with Sign Extend
SMPDefsFlags[NN_vpmovsxwd] = false; // Packed Move with Sign Extend
SMPDefsFlags[NN_vpmovsxwq] = false; // Packed Move with Sign Extend
SMPDefsFlags[NN_vpmovzxbd] = false; // Packed Move with Zero Extend
SMPDefsFlags[NN_vpmovzxbq] = false; // Packed Move with Zero Extend
SMPDefsFlags[NN_vpmovzxbw] = false; // Packed Move with Zero Extend
SMPDefsFlags[NN_vpmovzxdq] = false; // Packed Move with Zero Extend
SMPDefsFlags[NN_vpmovzxwd] = false; // Packed Move with Zero Extend
SMPDefsFlags[NN_vpmovzxwq] = false; // Packed Move with Zero Extend
SMPDefsFlags[NN_vpmuldq] = false; // Multiply Packed Signed Dword Integers
SMPDefsFlags[NN_vpmulhrsw] = false; // Packed Multiply High with Round and Scale
SMPDefsFlags[NN_vpmulhuw] = false; // Packed Multiply High Unsigned
SMPDefsFlags[NN_vpmulhw] = false; // Packed Multiply High
SMPDefsFlags[NN_vpmulld] = false; // Multiply Packed Signed Dword Integers and Store Low Result
SMPDefsFlags[NN_vpmullw] = false; // Packed Multiply Low
SMPDefsFlags[NN_vpmuludq] = false; // Multiply Packed Unsigned Doubleword Integers
SMPDefsFlags[NN_vpor] = false; // Bitwise Logical Or
SMPDefsFlags[NN_vpsadbw] = false; // Packed Sum of Absolute Differences
SMPDefsFlags[NN_vpshufb] = false; // Packed Shuffle Bytes
SMPDefsFlags[NN_vpshufd] = false; // Shuffle Packed Doublewords
SMPDefsFlags[NN_vpshufhw] = false; // Shuffle Packed High Words
SMPDefsFlags[NN_vpshuflw] = false; // Shuffle Packed Low Words
SMPDefsFlags[NN_vpsignb] = false; // Packed SIGN Byte
SMPDefsFlags[NN_vpsignd] = false; // Packed SIGN Doubleword
SMPDefsFlags[NN_vpsignw] = false; // Packed SIGN Word
SMPDefsFlags[NN_vpslld] = false; // Packed Shift Left Logical (Dword)
SMPDefsFlags[NN_vpslldq] = false; // Shift Double Quadword Left Logical
SMPDefsFlags[NN_vpsllq] = false; // Packed Shift Left Logical (Qword)
SMPDefsFlags[NN_vpsllvd] = false; // Variable Bit Shift Left Logical (Dword)
SMPDefsFlags[NN_vpsllvq] = false; // Variable Bit Shift Left Logical (Qword)
SMPDefsFlags[NN_vpsllw] = false; // Packed Shift Left Logical (Word)
SMPDefsFlags[NN_vpsrad] = false; // Packed Shift Right Arithmetic (Dword)
SMPDefsFlags[NN_vpsravd] = false; // Variable Bit Shift Right Arithmetic
SMPDefsFlags[NN_vpsraw] = false; // Packed Shift Right Arithmetic (Word)
SMPDefsFlags[NN_vpsrld] = false; // Packed Shift Right Logical (Dword)
SMPDefsFlags[NN_vpsrldq] = false; // Shift Double Quadword Right Logical (Qword)
SMPDefsFlags[NN_vpsrlq] = false; // Packed Shift Right Logical (Qword)
SMPDefsFlags[NN_vpsrlvd] = false; // Variable Bit Shift Right Logical (Dword)
SMPDefsFlags[NN_vpsrlvq] = false; // Variable Bit Shift Right Logical (Qword)
SMPDefsFlags[NN_vpsrlw] = false; // Packed Shift Right Logical (Word)
SMPDefsFlags[NN_vpsubb] = false; // Packed Subtract Byte
SMPDefsFlags[NN_vpsubd] = false; // Packed Subtract Dword
SMPDefsFlags[NN_vpsubq] = false; // Subtract Packed Quadword Integers
SMPDefsFlags[NN_vpsubsb] = false; // Packed Subtract with Saturation (Byte)
SMPDefsFlags[NN_vpsubsw] = false; // Packed Subtract with Saturation (Word)
SMPDefsFlags[NN_vpsubusb] = false; // Packed Subtract Unsigned with Saturation (Byte)
SMPDefsFlags[NN_vpsubusw] = false; // Packed Subtract Unsigned with Saturation (Word)
SMPDefsFlags[NN_vpsubw] = false; // Packed Subtract Word
SMPDefsFlags[NN_vptest] = false; // Logical Compare
SMPDefsFlags[NN_vpunpckhbw] = false; // Unpack High Packed Data (Byte->Word)
SMPDefsFlags[NN_vpunpckhdq] = false; // Unpack High Packed Data (Dword->Qword)
SMPDefsFlags[NN_vpunpckhqdq] = false; // Unpack High Packed Data (Qword->Xmmword)
SMPDefsFlags[NN_vpunpckhwd] = false; // Unpack High Packed Data (Word->Dword)
SMPDefsFlags[NN_vpunpcklbw] = false; // Unpack Low Packed Data (Byte->Word)
SMPDefsFlags[NN_vpunpckldq] = false; // Unpack Low Packed Data (Dword->Qword)
SMPDefsFlags[NN_vpunpcklqdq] = false; // Unpack Low Packed Data (Qword->Xmmword)
SMPDefsFlags[NN_vpunpcklwd] = false; // Unpack Low Packed Data (Word->Dword)
SMPDefsFlags[NN_vpxor] = false; // Bitwise Logical Exclusive Or
SMPDefsFlags[NN_vrcpps] = false; // Packed Single-FP Reciprocal
SMPDefsFlags[NN_vrcpss] = false; // Scalar Single-FP Reciprocal
SMPDefsFlags[NN_vroundpd] = false; // Round Packed Double Precision Floating-Point Values
SMPDefsFlags[NN_vroundps] = false; // Round Packed Single Precision Floating-Point Values
SMPDefsFlags[NN_vroundsd] = false; // Round Scalar Double Precision Floating-Point Values
SMPDefsFlags[NN_vroundss] = false; // Round Scalar Single Precision Floating-Point Values
SMPDefsFlags[NN_vrsqrtps] = false; // Packed Single-FP Square Root Reciprocal
SMPDefsFlags[NN_vrsqrtss] = false; // Scalar Single-FP Square Root Reciprocal
SMPDefsFlags[NN_vshufpd] = false; // Shuffle Packed Double-Precision Floating-Point Values
SMPDefsFlags[NN_vshufps] = false; // Shuffle Single-FP
SMPDefsFlags[NN_vsqrtpd] = false; // Compute Square Roots of Packed Double-Precision Floating-Point Values
SMPDefsFlags[NN_vsqrtps] = false; // Packed Single-FP Square Root
SMPDefsFlags[NN_vsqrtsd] = false; // Compute Square Rootof Scalar Double-Precision Floating-Point Value
SMPDefsFlags[NN_vsqrtss] = false; // Scalar Single-FP Square Root
SMPDefsFlags[NN_vstmxcsr] = false; // Store Streaming SIMD Extensions Technology Control/Status Register
SMPDefsFlags[NN_vsubpd] = false; // Subtract Packed Double-Precision Floating-Point Values
SMPDefsFlags[NN_vsubps] = false; // Packed Single-FP Subtract
SMPDefsFlags[NN_vsubsd] = false; // Subtract Scalar Double-Precision Floating-Point Values
SMPDefsFlags[NN_vsubss] = false; // Scalar Single-FP Subtract
SMPDefsFlags[NN_vtestpd] = false; // Packed Double-Precision Floating-Point Bit Test
SMPDefsFlags[NN_vtestps] = false; // Packed Single-Precision Floating-Point Bit Test
SMPDefsFlags[NN_vucomisd] = false; // Unordered Compare Scalar Ordered Double-Precision Floating-Point Values and Set EFLAGS
SMPDefsFlags[NN_vucomiss] = false; // Scalar Unordered Single-FP Compare and Set EFLAGS
SMPDefsFlags[NN_vunpckhpd] = false; // Unpack and Interleave High Packed Double-Precision Floating-Point Values
SMPDefsFlags[NN_vunpckhps] = false; // Unpack High Packed Single-FP Data
SMPDefsFlags[NN_vunpcklpd] = false; // Unpack and Interleave Low Packed Double-Precision Floating-Point Values
SMPDefsFlags[NN_vunpcklps] = false; // Unpack Low Packed Single-FP Data
SMPDefsFlags[NN_vxorpd] = false; // Bitwise Logical OR of Double-Precision Floating-Point Values
SMPDefsFlags[NN_vxorps] = false; // Bitwise Logical XOR for Single-FP Data
SMPDefsFlags[NN_vzeroall] = false; // Zero All YMM Registers
SMPDefsFlags[NN_vzeroupper] = false; // Zero Upper Bits of YMM Registers
// Transactional Synchronization Extensions
SMPDefsFlags[NN_xabort] = false; // Transaction Abort
SMPDefsFlags[NN_xbegin] = false; // Transaction Begin
SMPDefsFlags[NN_xend] = false; // Transaction End
SMPDefsFlags[NN_xtest] = false; // Test If In Transactional Execution
// Virtual PC synthetic instructions
SMPDefsFlags[NN_vmgetinfo] = false; // Virtual PC - Get VM Information
SMPDefsFlags[NN_vmsetinfo] = false; // Virtual PC - Set VM Information
SMPDefsFlags[NN_vmdxdsbl] = false; // Virtual PC - Disable Direct Execution
SMPDefsFlags[NN_vmdxenbl] = false; // Virtual PC - Enable Direct Execution
SMPDefsFlags[NN_vmcpuid] = false; // Virtual PC - Virtualized CPU Information
SMPDefsFlags[NN_vmhlt] = false; // Virtual PC - Halt
SMPDefsFlags[NN_vmsplaf] = false; // Virtual PC - Spin Lock Acquisition Failed
SMPDefsFlags[NN_vmpushfd] = false; // Virtual PC - Push virtualized flags register
SMPDefsFlags[NN_vmpopfd] = false; // Virtual PC - Pop virtualized flags register
SMPDefsFlags[NN_vmcli] = false; // Virtual PC - Clear Interrupt Flag
SMPDefsFlags[NN_vmsti] = false; // Virtual PC - Set Interrupt Flag
SMPDefsFlags[NN_vmiretd] = false; // Virtual PC - Return From Interrupt
SMPDefsFlags[NN_vmsgdt] = false; // Virtual PC - Store Global Descriptor Table
SMPDefsFlags[NN_vmsidt] = false; // Virtual PC - Store Interrupt Descriptor Table
SMPDefsFlags[NN_vmsldt] = false; // Virtual PC - Store Local Descriptor Table
SMPDefsFlags[NN_vmstr] = false; // Virtual PC - Store Task Register
SMPDefsFlags[NN_vmsdte] = false; // Virtual PC - Store to Descriptor Table Entry
SMPDefsFlags[NN_vpcext] = false; // Virtual PC - ISA extension
SMPDefsFlags[NN_last] = false;
return;
} // end InitSMPDefsFlags()
// Initialize the SMPUsesFlags[] array to define how we emit
// optimizing annotations.
void InitSMPUsesFlags(void) {
// Default value is false. Few instructions use the flags.
(void) memset(SMPUsesFlags, false, sizeof(SMPUsesFlags));
SMPUsesFlags[NN_null] = true; // Unknown Operation
clc5q
committed
SMPUsesFlags[NN_aaa] = true; // ASCII adjust after addition
SMPUsesFlags[NN_aas] = true; // ASCII adjust after subtraction
SMPUsesFlags[NN_adc] = true; // Add with Carry
SMPUsesFlags[NN_cmps] = true; // Compare Strings (uses DF direction flag)
SMPUsesFlags[NN_daa] = true; // Decimal Adjust AL after Addition
SMPUsesFlags[NN_das] = true; // Decimal Adjust AL after Subtraction
SMPUsesFlags[NN_ins] = true; // Input Byte(s) from Port to String
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
SMPUsesFlags[NN_into] = true; // Call to Interrupt Procedure if Overflow Flag = 1
SMPUsesFlags[NN_ja] = true; // Jump if Above (CF=0 & ZF=0)
SMPUsesFlags[NN_jae] = true; // Jump if Above or Equal (CF=0)
SMPUsesFlags[NN_jb] = true; // Jump if Below (CF=1)
SMPUsesFlags[NN_jbe] = true; // Jump if Below or Equal (CF=1 | ZF=1)
SMPUsesFlags[NN_jc] = true; // Jump if Carry (CF=1)
SMPUsesFlags[NN_jcxz] = true; // Jump if CX is 0
SMPUsesFlags[NN_jecxz] = true; // Jump if ECX is 0
SMPUsesFlags[NN_jrcxz] = true; // Jump if RCX is 0
SMPUsesFlags[NN_je] = true; // Jump if Equal (ZF=1)
SMPUsesFlags[NN_jg] = true; // Jump if Greater (ZF=0 & SF=OF)
SMPUsesFlags[NN_jge] = true; // Jump if Greater or Equal (SF=OF)
SMPUsesFlags[NN_jl] = true; // Jump if Less (SF!=OF)
SMPUsesFlags[NN_jle] = true; // Jump if Less or Equal (ZF=1 | SF!=OF)
SMPUsesFlags[NN_jna] = true; // Jump if Not Above (CF=1 | ZF=1)
SMPUsesFlags[NN_jnae] = true; // Jump if Not Above or Equal (CF=1)
SMPUsesFlags[NN_jnb] = true; // Jump if Not Below (CF=0)
SMPUsesFlags[NN_jnbe] = true; // Jump if Not Below or Equal (CF=0 & ZF=0)
SMPUsesFlags[NN_jnc] = true; // Jump if Not Carry (CF=0)
SMPUsesFlags[NN_jne] = true; // Jump if Not Equal (ZF=0)
SMPUsesFlags[NN_jng] = true; // Jump if Not Greater (ZF=1 | SF!=OF)
SMPUsesFlags[NN_jnge] = true; // Jump if Not Greater or Equal (ZF=1)
SMPUsesFlags[NN_jnl] = true; // Jump if Not Less (SF=OF)
SMPUsesFlags[NN_jnle] = true; // Jump if Not Less or Equal (ZF=0 & SF=OF)
SMPUsesFlags[NN_jno] = true; // Jump if Not Overflow (OF=0)
SMPUsesFlags[NN_jnp] = true; // Jump if Not Parity (PF=0)
SMPUsesFlags[NN_jns] = true; // Jump if Not Sign (SF=0)
SMPUsesFlags[NN_jnz] = true; // Jump if Not Zero (ZF=0)
SMPUsesFlags[NN_jo] = true; // Jump if Overflow (OF=1)
SMPUsesFlags[NN_jp] = true; // Jump if Parity (PF=1)
SMPUsesFlags[NN_jpe] = true; // Jump if Parity Even (PF=1)
SMPUsesFlags[NN_jpo] = true; // Jump if Parity Odd (PF=0)
SMPUsesFlags[NN_js] = true; // Jump if Sign (SF=1)
SMPUsesFlags[NN_jz] = true; // Jump if Zero (ZF=1)
SMPUsesFlags[NN_lahf] = true; // Load Flags into AH Register
SMPUsesFlags[NN_lods] = true; // Load String
SMPUsesFlags[NN_loopwe] = true; // Loop while CX != 0 and ZF=1
SMPUsesFlags[NN_loope] = true; // Loop while rCX != 0 and ZF=1
SMPUsesFlags[NN_loopde] = true; // Loop while ECX != 0 and ZF=1
SMPUsesFlags[NN_loopqe] = true; // Loop while RCX != 0 and ZF=1
SMPUsesFlags[NN_loopwne] = true; // Loop while CX != 0 and ZF=0
SMPUsesFlags[NN_loopne] = true; // Loop while rCX != 0 and ZF=0
SMPUsesFlags[NN_loopdne] = true; // Loop while ECX != 0 and ZF=0
SMPUsesFlags[NN_loopqne] = true; // Loop while RCX != 0 and ZF=0
SMPUsesFlags[NN_movs] = true; // Move String (uses flags if REP prefix)
SMPUsesFlags[NN_outs] = true; // Output Byte(s) to Port
SMPUsesFlags[NN_pushfw] = true; // Push Flags Register onto the Stack
SMPUsesFlags[NN_pushf] = true; // Push Flags Register onto the Stack
SMPUsesFlags[NN_pushfd] = true; // Push Flags Register onto the Stack (use32)
SMPUsesFlags[NN_pushfq] = true; // Push Flags Register onto the Stack (use64)
SMPUsesFlags[NN_rcl] = true; // Rotate Through Carry Left
SMPUsesFlags[NN_rcr] = true; // Rotate Through Carry Right
SMPUsesFlags[NN_repe] = true; // Repeat String Operation while ZF=1
SMPUsesFlags[NN_repne] = true; // Repeat String Operation while ZF=0
SMPUsesFlags[NN_sbb] = true; // Integer Subtraction with Borrow
SMPUsesFlags[NN_scas] = true; // Compare String (uses DF direction flag)
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
SMPUsesFlags[NN_seta] = true; // Set Byte if Above (CF=0 & ZF=0)
SMPUsesFlags[NN_setae] = true; // Set Byte if Above or Equal (CF=0)
SMPUsesFlags[NN_setb] = true; // Set Byte if Below (CF=1)
SMPUsesFlags[NN_setbe] = true; // Set Byte if Below or Equal (CF=1 | ZF=1)
SMPUsesFlags[NN_setc] = true; // Set Byte if Carry (CF=1)
SMPUsesFlags[NN_sete] = true; // Set Byte if Equal (ZF=1)
SMPUsesFlags[NN_setg] = true; // Set Byte if Greater (ZF=0 & SF=OF)
SMPUsesFlags[NN_setge] = true; // Set Byte if Greater or Equal (SF=OF)
SMPUsesFlags[NN_setl] = true; // Set Byte if Less (SF!=OF)
SMPUsesFlags[NN_setle] = true; // Set Byte if Less or Equal (ZF=1 | SF!=OF)
SMPUsesFlags[NN_setna] = true; // Set Byte if Not Above (CF=1 | ZF=1)
SMPUsesFlags[NN_setnae] = true; // Set Byte if Not Above or Equal (CF=1)
SMPUsesFlags[NN_setnb] = true; // Set Byte if Not Below (CF=0)
SMPUsesFlags[NN_setnbe] = true; // Set Byte if Not Below or Equal (CF=0 & ZF=0)
SMPUsesFlags[NN_setnc] = true; // Set Byte if Not Carry (CF=0)
SMPUsesFlags[NN_setne] = true; // Set Byte if Not Equal (ZF=0)
SMPUsesFlags[NN_setng] = true; // Set Byte if Not Greater (ZF=1 | SF!=OF)
SMPUsesFlags[NN_setnge] = true; // Set Byte if Not Greater or Equal (ZF=1)
SMPUsesFlags[NN_setnl] = true; // Set Byte if Not Less (SF=OF)
SMPUsesFlags[NN_setnle] = true; // Set Byte if Not Less or Equal (ZF=0 & SF=OF)
SMPUsesFlags[NN_setno] = true; // Set Byte if Not Overflow (OF=0)
SMPUsesFlags[NN_setnp] = true; // Set Byte if Not Parity (PF=0)
SMPUsesFlags[NN_setns] = true; // Set Byte if Not Sign (SF=0)
SMPUsesFlags[NN_setnz] = true; // Set Byte if Not Zero (ZF=0)
SMPUsesFlags[NN_seto] = true; // Set Byte if Overflow (OF=1)
SMPUsesFlags[NN_setp] = true; // Set Byte if Parity (PF=1)
SMPUsesFlags[NN_setpe] = true; // Set Byte if Parity Even (PF=1)
SMPUsesFlags[NN_setpo] = true; // Set Byte if Parity Odd (PF=0)
SMPUsesFlags[NN_sets] = true; // Set Byte if Sign (SF=1)
SMPUsesFlags[NN_setz] = true; // Set Byte if Zero (ZF=1)
SMPUsesFlags[NN_stos] = true; // Store String
//
// 486 instructions
//
//
// Pentium instructions
//
clc5q
committed
#if 0
SMPUsesFlags[NN_cpuid] = true; // Get CPU ID
SMPUsesFlags[NN_cmpxchg8b] = true; // Compare and Exchange Eight Bytes
clc5q
committed
#endif
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
//
// Pentium Pro instructions
//
SMPUsesFlags[NN_cmova] = true; // Move if Above (CF=0 & ZF=0)
SMPUsesFlags[NN_cmovb] = true; // Move if Below (CF=1)
SMPUsesFlags[NN_cmovbe] = true; // Move if Below or Equal (CF=1 | ZF=1)
SMPUsesFlags[NN_cmovg] = true; // Move if Greater (ZF=0 & SF=OF)
SMPUsesFlags[NN_cmovge] = true; // Move if Greater or Equal (SF=OF)
SMPUsesFlags[NN_cmovl] = true; // Move if Less (SF!=OF)
SMPUsesFlags[NN_cmovle] = true; // Move if Less or Equal (ZF=1 | SF!=OF)
SMPUsesFlags[NN_cmovnb] = true; // Move if Not Below (CF=0)
SMPUsesFlags[NN_cmovno] = true; // Move if Not Overflow (OF=0)
SMPUsesFlags[NN_cmovnp] = true; // Move if Not Parity (PF=0)
SMPUsesFlags[NN_cmovns] = true; // Move if Not Sign (SF=0)
SMPUsesFlags[NN_cmovnz] = true; // Move if Not Zero (ZF=0)
SMPUsesFlags[NN_cmovo] = true; // Move if Overflow (OF=1)
SMPUsesFlags[NN_cmovp] = true; // Move if Parity (PF=1)
SMPUsesFlags[NN_cmovs] = true; // Move if Sign (SF=1)
SMPUsesFlags[NN_cmovz] = true; // Move if Zero (ZF=1)
SMPUsesFlags[NN_fcmovb] = true; // Floating Move if Below
SMPUsesFlags[NN_fcmove] = true; // Floating Move if Equal
SMPUsesFlags[NN_fcmovbe] = true; // Floating Move if Below or Equal
SMPUsesFlags[NN_fcmovu] = true; // Floating Move if Unordered
SMPUsesFlags[NN_fcmovnb] = true; // Floating Move if Not Below
SMPUsesFlags[NN_fcmovne] = true; // Floating Move if Not Equal
SMPUsesFlags[NN_fcmovnbe] = true; // Floating Move if Not Below or Equal
SMPUsesFlags[NN_fcmovnu] = true; // Floating Move if Not Unordered
//
clc5q
committed
// FPP instructions
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
//
//
// 80387 instructions
//
//
// Instructions added 28.02.96
//
SMPUsesFlags[NN_setalc] = true; // Set AL to Carry Flag
//
// MMX instructions
//
//
// Undocumented Deschutes processor instructions
//
// Pentium II instructions
// 3DNow! instructions
// Pentium III instructions
// Pentium III Pseudo instructions
// AMD K7 instructions
// Revisit AMD if we port to it.
// Undocumented FP instructions (thanks to norbert.juffa@adm.com)
// Pentium 4 instructions
// AMD syscall/sysret instructions NOTE: not AMD, found in Intel manual
// AMD64 instructions NOTE: not AMD, found in Intel manual
// New Pentium instructions (SSE3)
// Missing AMD64 instructions NOTE: also found in Intel manual
// SSE3 instructions
// SSSE3 instructions
// VMX instructions
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
// Added with x86-64
// Geode LX 3DNow! extensions
// SSE2 pseudoinstructions
// SSSE4.1 instructions
// SSSE4.2 instructions
// AMD SSE4a instructions
// xsave/xrstor instructions
// Intel Safer Mode Extensions (SMX)
// AMD-V Virtualization ISA Extension
// VMX+ instructions
// Intel Atom instructions
// Intel AES instructions
// Carryless multiplication
// Returns modified by operand size prefixes
// RDRAND support
// new GPR instructions
SMPUsesFlags[NN_adcx] = true; // Unsigned Integer Addition of Two Operands with Carry Flag
SMPUsesFlags[NN_adox] = true; // Unsigned Integer Addition of Two Operands with Overflow Flag
// new AVX instructions
// Transactional Synchronization Extensions
// Virtual PC synthetic instructions
SMPUsesFlags[NN_last] = false;
return;
} // end InitSMPUsesFlags()
// Initialize the SMPTypeCategory[] array to define how we infer
// numeric or pointer operand types for optimizing annotations.
void InitTypeCategory(void) {
// Default category is 0, no type inference without knowing context.
(void) memset(SMPTypeCategory, 0, sizeof(SMPTypeCategory));
// Category 1 instructions will need no mmStrata instrumentation
// and are irrelevant to our type system, so we do not attempt
// to make type inferences. Many of these operate on numeric
// operands such as floating point or MMX/SSE registers. mmStrata
// assumes that such registers are always numeric, so we do not
// need annotations informing mmStrata that FP/MMX/SSE regs are numeric.
// Category 2 instructions always have a result type of 'n' (number).
// Category 3 instructions have a result type of 'n' (number)
// whenever the second source operand is an operand of type 'n'.