Newer
Older
// Perform live variable analysis on all blocks in the function.
// See chapter 9 of Cooper/Torczon, Engineering a Compiler, for the algorithm.
void SMPFunction::LiveVariableAnalysis(void) {
list<SMPBasicBlock>::iterator CurrBlock;
#if SMP_DEBUG_DATAFLOW
msg("LiveVariableAnalysis for %s\n", this->GetFuncName());
bool DebugFlag = (0 == strcmp("__ieee754_pow", this->GetFuncName()));
#endif
for (CurrBlock = this->Blocks.begin(); CurrBlock != this->Blocks.end(); ++CurrBlock) {
// Initialize the Killed and UpwardExposed sets for each block.
CurrBlock->InitKilledExposed();
}
bool changed;
// Iterate over each block, updating LiveOut sets until no more changes are made.
// NOTE: LVA is more efficient when computed over a reverse post-order list of blocks
// from the inverted CFG. We have an RPO list from the forward CFG, so it is just as
// good to simply iterate through the blocks in layout order.
#if 1
do {
changed = false;
for (CurrBlock = this->Blocks.begin(); CurrBlock != this->Blocks.end(); ++CurrBlock) {
changed |= CurrBlock->UpdateLiveOut();
}
} while (changed);
#else // Use reverse postorder
do {
changed = false;
for (size_t index = 0; index < this->RPOBlocks.size(); ++index) {
CurrBlock = this->RPOBlocks[index];
changed |= CurrBlock->UpdateLiveOut();
}
} while (changed);
#if SMP_USE_SSA_FNOP_MARKER
// Create DEFs in the marker instruction for all names in the LiveInSet
// of the first block. These are the names for the function that
// would otherwise look like USEs of uninitialized variables later.
// Note that the LiveVariableAnalysis work does not actually populate
// a LiveInSet for the first block, so we simulate it with its
// dataflow equation, UpExposed union (LiveOut minus VarKill).
set<op_t, LessOp>::iterator UpExposedIter, LiveOutIter;
list<SMPInstr>::iterator MarkerInst = this->Instrs.begin();
for (UpExposedIter = this->Blocks.begin()->GetFirstUpExposed();
UpExposedIter != this->Blocks.begin()->GetLastUpExposed();
++UpExposedIter) {
// Add DEF with SSANum of 0.
MarkerInst->AddDef(*UpExposedIter, UNINIT, 0);
// Add to the VarKill set.
this->Blocks.begin()->AddVarKill(*UpExposedIter);
}
for (LiveOutIter = this->Blocks.begin()->GetFirstLiveOut();
LiveOutIter != this->Blocks.begin()->GetLastLiveOut();
++LiveOutIter) {
if (!(this->Blocks.begin()->IsVarKill(*LiveOutIter))) {
// Add DEF with SSANum of 0.
MarkerInst->AddDef(*LiveOutIter, UNINIT, 0);
// Add to the VarKill set.
this->Blocks.begin()->AddVarKill(*LiveOutIter);
}
}
#endif
#if SMP_DEBUG_DATAFLOW
if (DebugFlag) msg("Exiting LiveVariableAnalysis\n");
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
#endif
return;
} // end of SMPFunction::LiveVariableAnalysis()
// Return the IDom index that is the end of the intersection prefix of the Dom sets of
// the two blocks designated by the RPO numbers passed in.
// See Cooper & Torczon, "Engineering a Compiler" 1st edition figure 9.8.
int SMPFunction::IntersectDoms(int block1, int block2) const {
int finger1 = block1;
int finger2 = block2;
while (finger1 != finger2) {
while (finger1 > finger2)
finger1 = this->IDom.at(finger1);
while (finger2 > finger1)
finger2 = this->IDom.at(finger2);
}
return finger1;
} // end of SMPFunction::IntersectDoms()
// Compute immediate dominators of all blocks into IDom[] vector.
void SMPFunction::ComputeIDoms(void) {
bool DebugFlag = false;
#if SMP_DEBUG_DATAFLOW
DebugFlag = (0 == strcmp("__ieee754_pow", this->GetFuncName()));
if (DebugFlag) msg("Entered ComputeIDoms\n");
#endif
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
// Initialize the IDom[] vector to uninitialized values for all blocks.
this->IDom.reserve(this->BlockCount);
this->IDom.assign(this->BlockCount, SMP_BLOCKNUM_UNINIT);
if (DebugFlag) msg("BlockCount = %d\n", this->BlockCount);
this->IDom[0] = 0; // Start block dominated only by itself
bool changed;
do {
changed = false;
for (size_t RPONum = 1; RPONum < (size_t) this->BlockCount; ++RPONum) {
if (DebugFlag) msg("RPONum %d\n", RPONum);
if (DebugFlag) {
msg("RPOBlocks vector size: %d\n", this->RPOBlocks.size());
for (size_t index = 0; index < this->RPOBlocks.size(); ++index) {
msg("RPOBlocks entry %d is %d\n", index, RPOBlocks[index]->GetNumber());
}
}
list<SMPBasicBlock>::iterator CurrBlock = this->RPOBlocks.at(RPONum);
// if (DebugFlag) msg("CurrBlock: %x\n", CurrBlock._Ptr);
list<list<SMPBasicBlock>::iterator>::iterator CurrPred;
// Initialize NewIdom to the first processed predecessor of block RPONum.
int NewIdom = SMP_BLOCKNUM_UNINIT;
for (CurrPred = CurrBlock->GetFirstPred(); CurrPred != CurrBlock->GetLastPred(); ++CurrPred) {
int PredNum = (*CurrPred)->GetNumber();
if (DebugFlag) msg("Pred: %d\n", PredNum);
// **!!** See comment below about unreachable blocks.
if (SMP_BLOCKNUM_UNINIT == PredNum)
continue;
int PredIDOM = this->IDom.at(PredNum);
if (DebugFlag) msg("Pred IDom: %d\n", PredIDOM);
if (SMP_BLOCKNUM_UNINIT != PredIDOM) {
NewIdom = PredNum;
if (NewIdom == SMP_BLOCKNUM_UNINIT) {
msg("Failure on NewIdom in ComputeIDoms for %s\n", this->GetFuncName());
if (this->HasIndirectJumps()) {
// Might be reachable only through indirect jumps.
NewIdom = 0; // make it dominated by entry block
}
}
assert(NewIdom != SMP_BLOCKNUM_UNINIT);
// Loop through all predecessors of block RPONum except block NewIdom.
// Set NewIdom to the intersection of its Dom set and the Doms set of
// each predecessor that has had its Doms set computed.
for (CurrPred = CurrBlock->GetFirstPred(); CurrPred != CurrBlock->GetLastPred(); ++CurrPred) {
int PredNum = (*CurrPred)->GetNumber();
if (DebugFlag) msg("PredNum: %d\n", PredNum);
// **!!** We could avoid failure on unreachable basic blocks
// by executing a continue statement if PredNum is -1. Long term solution
// is to prune out unreachable basic blocks.
if (PredNum == SMP_BLOCKNUM_UNINIT)
continue;
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
int PredIDOM = this->IDom.at(PredNum);
if (DebugFlag) msg("PredIDOM: %d\n", PredIDOM);
if ((SMP_BLOCKNUM_UNINIT == PredIDOM) || (NewIdom == PredIDOM)) {
// Skip predecessors that have uncomputed Dom sets, or are the
// current NewIdom.
continue;
}
if (DebugFlag) msg("Old NewIdom value: %d\n", NewIdom);
NewIdom = this->IntersectDoms(PredNum, NewIdom);
if (DebugFlag) msg("New NewIdom value: %d\n", NewIdom);
}
// If NewIdom is not the value currently in vector IDom[], update the
// vector entry and set changed to true.
if (NewIdom != this->IDom.at(RPONum)) {
if (DebugFlag) msg("IDOM changed from %d to %d\n", this->IDom.at(RPONum), NewIdom);
this->IDom[RPONum] = NewIdom;
changed = true;
}
}
} while (changed);
return;
} // end of SMPFunction::ComputeIDoms()
// Compute dominance frontier sets for each block.
void SMPFunction::ComputeDomFrontiers(void) {
list<SMPBasicBlock>::iterator CurrBlock;
list<SMPBasicBlock>::iterator RunnerBlock;
for (CurrBlock = this->Blocks.begin(); CurrBlock != this->Blocks.end(); ++CurrBlock) {
// We look only at join points in the CFG, as per Cooper/Torczon chapter 9.
if (1 < CurrBlock->GetNumPreds()) { // join point; more than 1 predecessor
int runner;
list<list<SMPBasicBlock>::iterator>::iterator CurrPred;
for (CurrPred = CurrBlock->GetFirstPred(); CurrPred != CurrBlock->GetLastPred(); ++CurrPred) {
// For each predecessor, we run up the IDom[] vector and add CurrBlock to the
// DomFrontier for all blocks that are between CurrPred and IDom[CurrBlock],
// not including IDom[CurrBlock] itself.
runner = (*CurrPred)->GetNumber();
while (runner != this->IDom.at(CurrBlock->GetNumber())) {
// Cooper/Harvey/Kennedy paper does not quite agree with the later
// text by Cooper/Torczon. Text says that the start node has no IDom
// in the example on pages 462-463, but it shows an IDOM for the
// root node in Figure 9.9 of value == itself. The first edition text
// on p.463 seems correct, as the start node dominates every node and
// thus should have no dominance frontier.
if (SMP_TOP_BLOCK == runner)
break;
RunnerBlock = this->RPOBlocks.at(runner);
RunnerBlock->AddToDomFrontier(CurrBlock->GetNumber());
runner = this->IDom.at(runner);
}
} // end for all predecessors
} // end if join point
} // end for all blocks
return;
} // end of SMPFunction::ComputeDomFrontiers()
// Compute the GlobalNames set, which includes all operands that are used in more than
// one basic block. It is the union of all UpExposedSets of all blocks.
void SMPFunction::ComputeGlobalNames(void) {
set<op_t, LessOp>::iterator SetIter;
list<SMPBasicBlock>::iterator CurrBlock;
unsigned int index = 0;
if (this->Blocks.size() < 2)
return; // cannot have global names if there is only one block
bool DebugFlag = false;
#if SMP_DEBUG_DATAFLOW
DebugFlag = (0 == strcmp("__ieee754_pow", this->GetFuncName()));
#endif
for (CurrBlock = this->Blocks.begin(); CurrBlock != this->Blocks.end(); ++CurrBlock) {
for (SetIter = CurrBlock->GetFirstUpExposed(); SetIter != CurrBlock->GetLastUpExposed(); ++SetIter) {
op_t TempOp = *SetIter;
// The GlobalNames set will have the complete collection of operands that we are
// going to number in our SSA computations. We now assign an operand number
// within the op_t structure for each, so that we can index into the
// BlocksUsedIn[] vector, for example. This operand number is not to be
// confused with SSA numbers.
// We use the operand number field op_t.n for the lower 8 bits, and the offset
// fields op_t.offb:op_t.offo for the upper 16 bits. We are overwriting IDA
// values here, but operands in the data flow analysis sets should never be
// inserted back into the program anyway.
SetGlobalIndex(&TempOp, index);
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
#if SMP_DEBUG_DATAFLOW
msg("Global Name: ");
PrintListOperand(TempOp);
#endif
set<op_t, LessOp>::iterator AlreadyInSet;
pair<set<op_t, LessOp>::iterator, bool> InsertResult;
InsertResult = this->GlobalNames.insert(TempOp);
if (!InsertResult.second) {
// Already in GlobalNames, so don't assign an index number.
;
#if SMP_DEBUG_DATAFLOW
msg(" already in GlobalNames.\n");
#endif
}
else {
++index;
#if SMP_DEBUG_DATAFLOW
msg(" inserted as index %d\n", ExtractGlobalIndex(TempOp));
#endif
}
} // for each upward exposed item in the current block
} // for each basic block
assert(16777215 >= this->GlobalNames.size()); // index fits in 24 bits
return;
} // end of SMPFunction::ComputeGlobalNames()
// For each item in GlobalNames, record the blocks that DEF the item.
void SMPFunction::ComputeBlocksDefinedIn(void) {
// Loop through all basic blocks and examine all DEFs. For Global DEFs, record
// the block number in BlocksDefinedIn. The VarKillSet records DEFs without
// having to examine every instruction.
list<SMPBasicBlock>::iterator CurrBlock;
this->BlocksDefinedIn.clear();
for (size_t i = 0; i < this->GlobalNames.size(); ++i) {
list<int> TempList;
this->BlocksDefinedIn.push_back(TempList);
}
#if SMP_DEBUG_DATAFLOW
msg("Number of GlobalNames: %d\n", this->GlobalNames.size());
msg("Size of BlocksDefinedIn: %d\n", this->BlocksDefinedIn.size());
#endif
for (CurrBlock = this->Blocks.begin(); CurrBlock != this->Blocks.end(); ++CurrBlock) {
set<op_t, LessOp>::iterator KillIter;
for (KillIter = CurrBlock->GetFirstVarKill(); KillIter != CurrBlock->GetLastVarKill(); ++KillIter) {
// If killed item is not a block-local item (it is global), record it.
set<op_t, LessOp>::iterator NameIter = this->GlobalNames.find(*KillIter);
if (NameIter != this->GlobalNames.end()) { // found in GlobalNames set
// We have a kill of a global name. Get index from three 8-bit fields.
unsigned int index = ExtractGlobalIndex(*NameIter);
if (index >= this->GlobalNames.size()) {
// We are about to assert false.
msg("ComputeBlocksDefinedIn: Bad index: %d limit: %d\n", index,
this->GlobalNames.size());
msg("Block number %d\n", CurrBlock->GetNumber());
msg("Killed item: ");
PrintListOperand(*KillIter);
msg("\n");
msg("This is a fatal error.\n");
}
assert(index < this->GlobalNames.size());
// index is a valid subscript for the BlocksDefinedIn vector. Push the
// current block number onto the list of blocks that define this global name.
this->BlocksDefinedIn[index].push_back(CurrBlock->GetNumber());
}
}
}
return;
} // end of SMPFunction::ComputeBlocksDefinedIn()
// Compute the phi functions at the entry point of each basic block that is a join point.
void SMPFunction::InsertPhiFunctions(void) {
set<op_t, LessOp>::iterator NameIter;
list<int> WorkList; // list of block numbers
bool DebugFlag = false;
#if SMP_DEBUG_DATAFLOW
DebugFlag = (0 == strcmp("__ieee754_pow", this->GetFuncName()));
#endif
if (DebugFlag) msg("GlobalNames size: %d\n", this->GlobalNames.size());
for (NameIter = this->GlobalNames.begin(); NameIter != this->GlobalNames.end(); ++NameIter) {
int CurrNameIndex = (int) (ExtractGlobalIndex(*NameIter));
if (DebugFlag) msg("CurrNameIndex: %d\n", CurrNameIndex);
#if 0
DebugFlag = (DebugFlag && (6 == CurrNameIndex));
#endif
// Initialize the work list to all blocks that define the current name.
WorkList.clear();
list<int>::iterator WorkIter;
for (WorkIter = this->BlocksDefinedIn.at((size_t) CurrNameIndex).begin();
WorkIter != this->BlocksDefinedIn.at((size_t) CurrNameIndex).end();
++WorkIter) {
WorkList.push_back(*WorkIter);
}
// Iterate through the work list, inserting phi functions for the current name
// into all the blocks in the dominance frontier of each work list block.
// Insert into the work list each block that had a phi function added.
while (!WorkList.empty()) {
#if SMP_DEBUG_DATAFLOW
msg("WorkList size: %d\n", WorkList.size());
list<int>::iterator WorkIter = WorkList.begin();
while (WorkIter != WorkList.end()) {
set<int>::iterator DomFrontIter;
#if SMP_DEBUG_DATAFLOW
msg("WorkIter: %d\n", *WorkIter);
#endif
if (DebugFlag && (*WorkIter > this->BlockCount)) {
msg("ERROR: WorkList block # %d out of range.\n", *WorkIter);
}
list<SMPBasicBlock>::iterator WorkBlock = this->RPOBlocks[*WorkIter];
for (DomFrontIter = WorkBlock->GetFirstDomFrontier();
DomFrontIter != WorkBlock->GetLastDomFrontier();
++DomFrontIter) {
#if SMP_DEBUG_DATAFLOW
msg("DomFront: %d\n", *DomFrontIter);
#endif
if (DebugFlag && (*DomFrontIter > this->BlockCount)) {
msg("ERROR: DomFront block # %d out of range.\n", *DomFrontIter);
}
list<SMPBasicBlock>::iterator PhiBlock = this->RPOBlocks[*DomFrontIter];
// Before inserting a phi function for the current name in *PhiBlock,
// see if the current name is LiveIn for *PhiBlock. If not, there
// is no need for the phi function. This check is what makes the SSA
// a fully pruned SSA.
if (PhiBlock->IsLiveIn(*NameIter)) {
size_t NumPreds = PhiBlock->GetNumPreds();
DefOrUse CurrRef(*NameIter);
SMPPhiFunction CurrPhi(CurrNameIndex, CurrRef);
for (size_t NumCopies = 0; NumCopies < NumPreds; ++NumCopies) {
CurrPhi.PushBack(CurrRef); // inputs to phi
}
if (PhiBlock->AddPhi(CurrPhi)) {
// If not already in Phi set, new phi function was inserted.
WorkList.push_back(PhiBlock->GetNumber());
#if SMP_DEBUG_DATAFLOW
msg("Added phi for name %d at top of block %d\n", CurrNameIndex, PhiBlock->GetNumber());
#endif
}
}
else {
if (DebugFlag) {
msg("Global %d not LiveIn for block %d\n", CurrNameIndex, PhiBlock->GetNumber());
}
}
} // end for all blocks in the dominance frontier
// Remove current block number from the work list
if (DebugFlag) {
msg("Removing block %d from work list.\n", *WorkIter);
}
WorkIter = WorkList.erase(WorkIter);
} // end for all block numbers in the work list
} // end while the work list is not empty
if (DebugFlag) msg("WorkList empty.\n");
} // end for all elements of the GlobalNames set
return;
} // end of SMPFunction::InsertPhiFunctions()
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
// Build the dominator tree.
void SMPFunction::BuildDominatorTree(void) {
size_t index;
// First, fill the DomTree vector with the parent numbers filled in and the child lists
// left empty.
for (index = 0; index < this->IDom.size(); ++index) {
pair<int, list<int> > DomTreeEntry;
DomTreeEntry.first = this->IDom.at(index);
DomTreeEntry.second.clear();
this->DomTree.push_back(DomTreeEntry);
}
// Now, push the children onto the appropriate lists.
for (index = 0; index < this->IDom.size(); ++index) {
// E.g. if block 5 has block 3 as a parent, then we fetch the number 3
// using the expression this->DomTree.at(index).first, which was just
// initialized in the previous loop. Then we go to DomTree entry 3 and push
// the number 5 on its child list.
int parent = this->DomTree.at(index).first;
if (parent != index) // block can dominate itself, but not in DomTree!
this->DomTree.at(parent).second.push_back((int) index);
}
return;
} // end of SMPFunction::BuildDominatorTree()
// Helper for SSA subscript renumbering: return the next SSA number for the global name
// and increment the SSACounter to prepare the next number. Push the returned number onto
// the SSAStack for the global name.
int SMPFunction::SSANewNumber(size_t GlobNameIndex) {
int Subscript = this->SSACounter.at(GlobNameIndex);
++(this->SSACounter[GlobNameIndex]);
this->SSAStack[GlobNameIndex].push_back(Subscript);
return Subscript;
} // end of SMPFunction::SSANewNumber()
// Main helper for SSA subscript renumbering. Renumber within block throughout its phi
// functions, then its DEFs and USEs, then its phi successors. Recurse then on all
// successors in the dominator tree.
void SMPFunction::SSARename(int BlockNumber) {
assert(0 <= BlockNumber);
assert(BlockNumber < this->BlockCount);
list<SMPBasicBlock>::iterator CurrBlock = this->RPOBlocks.at((size_t) BlockNumber);
bool DumpFlag = false;
#if SMP_DEBUG_DATAFLOW
DumpFlag |= (0 == strcmp("main", this->GetFuncName()));
DumpFlag |= (0 == strcmp("dohanoi", this->GetFuncName()));
DumpFlag |= (0 == strcmp("image_to_texture", this->GetFuncName()));
#endif
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
if (DumpFlag) msg("Entered SSARename for block number %d\n", BlockNumber);
// For each phi function at the top of the block, rename the DEF of the phi function
// using SSANewNumber() on the global name index.
set<SMPPhiFunction, LessPhi>::iterator CurrPhi;
list<SMPPhiFunction> TempPhiList;
int GlobalNameIndex;
for (CurrPhi = CurrBlock->GetFirstPhi(); CurrPhi != CurrBlock->GetLastPhi(); ++CurrPhi) {
GlobalNameIndex = CurrPhi->GetIndex();
assert(0 <= GlobalNameIndex);
int NewSSANum = this->SSANewNumber((size_t) GlobalNameIndex);
#if 0
// g++ is a pain in the neck and won't allow changes to the set item
// through CurrPhi, which it types as a const iterator, so this next line does
// not compile in g++.
CurrPhi->SetSSADef(NewSSANum);
#else
SMPPhiFunction TempPhi = (*CurrPhi);
TempPhi.SetSSADef(NewSSANum);
TempPhiList.push_back(TempPhi);
#endif
}
// Go back through the Phi function set and replace the items that need to be updated.
// Thank you g++ for being a pain.
list<SMPPhiFunction>::iterator TempIter;
for (TempIter = TempPhiList.begin(); TempIter != TempPhiList.end(); ++TempIter) {
// Use the op_t from the first phi use, because they are all the same.
bool Erased = CurrBlock->ErasePhi(TempIter->GetPhiRef(0).GetOp());
assert(Erased);
// Now we can add back the phi function that had the DEF SSA number changed.
bool Added = CurrBlock->AddPhi(*TempIter);
assert(Added);
}
TempPhiList.clear();
if (DumpFlag) msg("Processed phi functions at top.\n");
// For each instruction in the block, rename all global USEs and then all global DEFs.
list<list<SMPInstr>::iterator>::iterator CurrInst;
for (CurrInst = CurrBlock->GetFirstInstr(); CurrInst != CurrBlock->GetLastInstr(); ++CurrInst) {
set<DefOrUse, LessDefUse>::iterator CurrUse = (*CurrInst)->GetFirstUse();
while (CurrUse != (*CurrInst)->GetLastUse()) {
// See if Use is a global name.
set<op_t, LessOp>::iterator GlobIter = this->GlobalNames.find(CurrUse->GetOp());
if (GlobIter != this->GlobalNames.end()) { // found it
unsigned int GlobIndex = ExtractGlobalIndex(*GlobIter);
if (GlobIndex > this->SSAStack.size()) {
// Get some debug info out to the log file before we crash.
msg("Bad GlobIndex: %d\n", GlobIndex);
msg("Error in function %s\n", this->GetFuncName());
exit(EXIT_FAILURE);
}
// Set the SSA number for this use to the top of stack SSA # (back())
int NewSSANum;
if (this->SSAStack.at(GlobIndex).empty()) {
// No top of stack entry to read.
#if SMP_DEBUG_UNINITIALIZED_SSA_NAMES
if (!(*CurrInst)->MDIsPopInstr() && (o_reg == GlobIter->type)) {
// POP uses the stack offset and generates spurious
// uninitialized variable messages for [esp+0].
msg("WARNING: function %s : Use of uninitialized variable: ",
this->GetFuncName());
msg(" Variable: ");
PrintListOperand(*GlobIter);
msg(" Block number: %d Address: %x Instruction: %s\n", BlockNumber,
(*CurrInst)->GetAddr(), (*CurrInst)->GetDisasm());
}
#endif
NewSSANum = SMP_SSA_UNINIT;
}
else {
NewSSANum = this->SSAStack.at(GlobIndex).back();
}
CurrUse = (*CurrInst)->SetUseSSA(CurrUse->GetOp(), NewSSANum);
} // end for all USEs
set<DefOrUse, LessDefUse>::iterator CurrDef = (*CurrInst)->GetFirstDef();
while (CurrDef != (*CurrInst)->GetLastDef()) {
// See if Def is a global name.
set<op_t, LessOp>::iterator GlobIter = this->GlobalNames.find(CurrDef->GetOp());
if (GlobIter != this->GlobalNames.end()) { // found it
unsigned int GlobIndex = ExtractGlobalIndex(*GlobIter);
// Set the SSA number for this DEF to the SSANewNumber top of stack
CurrDef = (*CurrInst)->SetDefSSA(CurrDef->GetOp(), this->SSANewNumber(GlobIndex));
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
} // end for all DEFs
} // end for all instructions
if (DumpFlag) msg("Processed all instructions.\n");
// For all control flow graph (not dominator tree) successors, fill in the current
// (outgoing) SSA number in the corresponding USE slot in the phi function, for all
// global names appearing in phi functions.
list<list<SMPBasicBlock>::iterator>::iterator SuccIter;
for (SuccIter = CurrBlock->GetFirstSucc(); SuccIter != CurrBlock->GetLastSucc(); ++SuccIter) {
// What position in the Preds list of this successor is CurrBlock?
int ListPos = (*SuccIter)->GetPredPosition(BlockNumber);
assert(0 <= ListPos);
// Go through all phi functions in this successor. At ListPos position in the
// incoming arguments for that phi function, set the SSA number to the SSA number
// in the top of stack entry for the global name associated with that phi function.
set<SMPPhiFunction, LessPhi>::iterator CurrPhi;
for (CurrPhi = (*SuccIter)->GetFirstPhi(); CurrPhi != (*SuccIter)->GetLastPhi(); ++CurrPhi) {
int GlobIndex = CurrPhi->GetIndex();
int CurrSSA;
if (this->SSAStack.at(GlobIndex).empty()) {
// No top of stack entry to read.
#if SMP_DEBUG_UNINITIALIZED_SSA_NAMES
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
msg("WARNING: function %s : Path to use of uninitialized variable: ",
this->GetFuncName());
msg(" Variable: ");
PrintListOperand(CurrPhi->GetAnyOp());
msg(" Block number: %d Successor block number: %d\n", BlockNumber,
(*SuccIter)->GetNumber());
#endif
CurrSSA = SMP_SSA_UNINIT;
}
else {
CurrSSA = this->SSAStack.at(GlobIndex).back(); // fetch from top of stack
}
#if 0
// g++ is a pain in the neck and won't allow changes to the set item
// through CurrPhi, which it types as a const iterator, so this next line does
// not compile in g++. C++ does not know how to distinguish between changing
// the field that ordering is based on, and other fields, so g++ has to be
// strict, I guess.
CurrPhi->SetSSARef(ListPos, CurrSSA);
#else
SMPPhiFunction TempPhi = (*CurrPhi);
TempPhi.SetSSARef(ListPos, CurrSSA);
TempPhiList.push_back(TempPhi);
if (DumpFlag && (BlockNumber >= 3) && (BlockNumber <= 4)) {
msg("BlockNumber: %d ListPos: %d\n", BlockNumber, ListPos);
}
#endif
} // end for all phi functions in successor
// Go back through the Phi function set and replace the items that need to be updated.
// Thank you g++ for being a pain.
for (TempIter = TempPhiList.begin(); TempIter != TempPhiList.end(); ++TempIter) {
if (DumpFlag && (BlockNumber >= 3) && (BlockNumber <= 4)) {
msg("Special before phi dump:\n");
set<SMPPhiFunction, LessPhi>::iterator FoundPhi;
FoundPhi = (*SuccIter)->FindPhi(TempIter->GetAnyOp());
FoundPhi->Dump();
}
// Use the op_t from the first phi use, because they are all the same.
bool Erased = (*SuccIter)->ErasePhi(TempIter->GetPhiRef(0).GetOp());
assert(Erased);
// Now we can add back the phi function that had one SSA number changed.
bool Added = (*SuccIter)->AddPhi(*TempIter);
assert(Added);
if (DumpFlag && (BlockNumber >= 3) && (BlockNumber <= 4)) {
msg("Special after phi dump:\n");
set<SMPPhiFunction, LessPhi>::iterator FoundPhi;
FoundPhi = (*SuccIter)->FindPhi(TempIter->GetAnyOp());
FoundPhi->Dump();
}
}
TempPhiList.clear();
} // end for all successors of CurrBlock
if (DumpFlag) msg("Processed successor phi functions.\n");
// For each successor in the dominator tree, recurse.
list<int>::iterator ChildIter;
for (ChildIter = this->DomTree[BlockNumber].second.begin();
ChildIter != this->DomTree[BlockNumber].second.end();
++ChildIter) {
this->SSARename(*ChildIter);
}
if (DumpFlag) msg("Finished recursion.\n");
// Pop off all SSAStack entries pushed during this block. I.e. for each global name,
// pop its SSAStack once per DEF and once per phi function in this block.
for (CurrPhi = CurrBlock->GetFirstPhi(); CurrPhi != CurrBlock->GetLastPhi(); ++CurrPhi) {
GlobalNameIndex = CurrPhi->GetIndex();
this->SSAStack.at((size_t) GlobalNameIndex).pop_back();
}
if (DumpFlag) msg("Popped off entries due to phi functions.\n");
for (CurrInst = CurrBlock->GetFirstInstr(); CurrInst != CurrBlock->GetLastInstr(); ++CurrInst) {
set<DefOrUse, LessDefUse>::iterator CurrDef;
for (CurrDef = (*CurrInst)->GetFirstDef(); CurrDef !=(*CurrInst)->GetLastDef(); ++CurrDef) {
// See if DEF is a global name.
set<op_t, LessOp>::iterator GlobIter = this->GlobalNames.find(CurrDef->GetOp());
if (GlobIter != this->GlobalNames.end()) { // found it
unsigned int GlobIndex = ExtractGlobalIndex(*GlobIter);
this->SSAStack.at((size_t) GlobIndex).pop_back();
}
} // end for all DEFs
} // end for all instructions
if (DumpFlag) msg("Popped off entries due to instructions.\n");
return;
} // end of SMPFunction::SSARename()
// Main driver of SSA subscript renumbering.
void SMPFunction::SSARenumber(void) {
if (0 >= this->GlobalNames.size())
return; // no names to renumber
// Initialize stacks and counters of SSA numbers.
size_t GlobIndex;
for (GlobIndex = 0; GlobIndex < this->GlobalNames.size(); ++GlobIndex) {
list<int> DummyList;
this->SSACounter.push_back(0);
this->SSAStack.push_back(DummyList);
}
// Recurse through the dominator tree starting with node 0.
this->SSARename(0);
} // end of SMPFunction::SSARenumber()
// Main driver for the type inference system.
void SMPFunction::InferTypes(void) {
// The type inference system is an iteration over four analysis steps, until
// a fixed point is reached:
// 1) Within an instruction, set types of operators based on the operator type,
// the operand types, and the instruction type category, and propagate the
// type of the SMP_ASSIGN operator to its DEF.
// 2) Propagate the type of a DEF along its SSA chain to all USEs of that SSA name.
// 3) If all USEs of an SSA name have the same type, but the DEF has no type,
// 4) If all references to a memory location have the same type, mark that memory
// location as having that type.
//
// The type inference system will mark DEFs and USEs in each instruction's DEF and USE
// sets with an inferred type. This inference USEs is not conclusive for other USEs
// outside of that instruction. For example, a pointer could be read in from memory
// and used as a pointer, then hashed using an arithmetic operation. If the arithmetic
// operation always treats its source operands as NUMERIC and produces a NUMERIC
// result, e.g. SMP_BITWISE_XOR, then the USE of that pointer is NUMERIC within
// this xor instruction. If the DEF at the beginning of the SSA chain for the pointer
// is eventually marked as POINTER, then all USEs in the chain will be marked POINTER
// as well (see step 2 above). This inconsistency along the USE chain is perfectly
// acceptable in our type system. It is immportant to mark the USEs according to how
// we observe them being used, because consistent USEs will propagate back up to
// the DEF in step 3 above.
bool changed;
bool UnsafeFunc = (FUNC_SAFE != this->ReturnAddrStatus);
bool DebugFlag = false;
#if SMP_DEBUG_TYPE_INFERENCE
DebugFlag |= (0 == strcmp("weightadj", this->GetFuncName()));
#endif
set<DefOrUse, LessDefUse>::iterator CurrDef;
set<DefOrUse, LessDefUse>::iterator NextDef;
list<SMPBasicBlock>::iterator CurrBlock;
if (DebugFlag) {
this->Dump();
}
// One time only: Set the types of immediate values, flags register, stack and frame
// pointers, and floating point registers.
for (CurrInst = this->Instrs.begin(); CurrInst != this->Instrs.end(); ++CurrInst) {
if (DebugFlag) {
msg("SetImmedTypes for inst at %x: %s\n", CurrInst->GetAddr(), CurrInst->GetDisasm());
}
CurrInst->SetImmedTypes(this->UseFP);
// Iterate until no more changes: set types in DEF and USE lists based on RTL
// operators and the instruction category, SSA DEF-USE chains, etc.
do {
changed = false;
// Step one: Infer types within instructions, context free.
// Step two, propagating DEF types to all USEs, happens within step one
// whenever a DEF type is set for the first time.
for (CurrInst = this->Instrs.begin(); CurrInst != this->Instrs.end(); ++CurrInst) {
if (DebugFlag) msg("Inferring types for %s\n", CurrInst->GetDisasm());
NewChange = CurrInst->InferTypes();
changed = (changed || NewChange);
}
} while (changed);
if (DebugFlag) msg("Finished type inference steps 1 and 2.\n");
// Step three: If all USEs of an SSA name have the same type, but the DEF has no
// type, then infer that the DEF must have the same type.
this->TypedDefs = 0;
this->UntypedDefs = 0;
clc5q
committed
this->TypedPhiDefs = 0;
this->UntypedPhiDefs = 0;
for (CurrInst = this->Instrs.begin(); CurrInst != this->Instrs.end(); ++CurrInst) {
// Find any DEF that still has type UNINIT.
CurrDef = CurrInst->GetFirstDef();
while (CurrDef != CurrInst->GetLastDef()) {
// Set erase() and insert() are needed to change types of DEFs, so
// get hold of the next iterator value now.
NextDef = CurrDef;
++NextDef;
if (UNINIT != CurrDef->GetType()) {
++(this->TypedDefs);
}
else {
++(this->UntypedDefs);
if (MDIsIndirectMemoryOpnd(DefOp, this->UseFP)
|| (o_mem == DefOp.type)
|| ((o_reg != DefOp.type) && UnsafeFunc)) {
// Don't want to infer along DEF-USE chains for indirect
// memory accesses until we have alias analysis.
++CurrDef;
continue;
}
ea_t DefAddr = CurrInst->GetAddr();
// Call inference method based on whether it is a block-local
// name or a global name.
if (CurrInst->GetBlock()->IsLocalName(DefOp)) {
set<op_t, LessOp>::iterator NameIter;
NameIter = CurrInst->GetBlock()->FindLocalName(DefOp);
assert(CurrInst->GetBlock()->GetLastLocalName() != NameIter);
unsigned int LocIndex = ExtractGlobalIndex(*NameIter);
NewChange = CurrInst->GetBlock()->InferLocalDefType(DefOp, LocIndex, DefAddr);
if (NewChange) {
--(this->UntypedDefs);
++(this->TypedDefs);
}
changed = (changed || NewChange);
}
else {
// global name
bool CallInst = ((CALL == CurrInst->GetDataFlowType())
|| (INDIR_CALL == CurrInst->GetDataFlowType()));
SMPOperandType DefType = UNINIT;
DefType = this->InferGlobalDefType(DefOp,
CurrDef->GetSSANum(), CurrInst->GetBlock(), CallInst);
if (IsNotEqType(UNINIT, DefType)) {
CurrDef = CurrInst->SetDefType(DefOp, DefType);
--(this->UntypedDefs);
++(this->TypedDefs);
changed = (changed || NewChange);
}
}
CurrDef = NextDef;
} // end while all DEFs in the DEF set
} // end for all instructions
if (DebugFlag) msg("Finished type inference step 3.\n");
if (!changed) { // Check for Phi function DEFs that are still UNINIT
for (CurrBlock = this->Blocks.begin(); CurrBlock != this->Blocks.end(); ++CurrBlock) {
changed |= CurrBlock->InferAllPhiDefTypes();
}
}
if (DebugFlag) msg("Finished unconditional phi type inference.\n");
#if SMP_CONDITIONAL_TYPE_PROPAGATION
if (!changed) { // Try conditional type propagation
changed |= this->ConditionalTypePropagation();
if (DebugFlag)
msg("changed = %d after conditional type propagation.\n", changed);
}
#endif
} while (changed);
return;
} // end of SMPFunction::InferTypes()
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
// Apply the profiler information to this function once we've infered everything we can about it.
void SMPFunction::ApplyProfilerInformation(ProfilerInformation* pi)
{
assert(pi);
SetIsSpeculative(true);
list<SMPInstr>::iterator CurrInst;
set<DefOrUse, LessDefUse>::iterator CurrDef, NextDef;
bool DebugFlag = false;
#if SMP_DEBUG_TYPE_INFERENCE
DebugFlag |= (0 == strcmp("dohanoi", this->GetFuncName()));
#endif
for (CurrInst = this->Instrs.begin(); CurrInst != this->Instrs.end(); ++CurrInst)
{
InstructionInformation* ii=pi->GetInfo( CurrInst->GetAddr());
if(ii && DebugFlag)
msg("Found instruction information for %x\n", CurrInst->GetAddr());
if(ii && ii->isNumeric())
{
msg("Found instruction information for %x and it's numeric!\n", CurrInst->GetAddr());
CurrInst->UpdateMemLoadTypes((SMPOperandType)(NUMERIC|PROF_BASE));
}
}
} // end of SMPFunction::ApplyProfilerInformation
// For the UNINIT type DEF DefOp, see if all its USEs have
// a single type. If so, set the DEF to that type and return type,
// else return UNINIT.
SMPOperandType SMPFunction::InferGlobalDefType(op_t DefOp, int SSANum, SMPBasicBlock *DefBlock, bool CallInst) {
bool DebugFlag = false;
bool FoundNumeric = false;
bool FoundPointer = false;
bool FoundUnknown = false;
bool FoundUninit = false;
#if SMP_DEBUG_TYPE_INFERENCE
DebugFlag |= (0 == strcmp("mem_init", this->GetFuncName()));
if (DebugFlag) {
msg("InferGlobalDefType for SSANum %d of ", SSANum);
PrintOperand(DefOp);
msg("\n");
}
list<SMPInstr>::iterator InstIter;
assert(0 <= SSANum);
set<DefOrUse, LessDefUse>::iterator CurrUse;
// Go through all instructions in the function and find the instructions
// that have USEs of DefOp with SSANum. If all USEs in the chain have
// a single type (other than UNINIT), change the DEF type to match the
// USE type and set changed to true.
SMPOperandType UseType = UNINIT;
SMPOperandType PtrType = UNINIT;
for (InstIter = this->Instrs.begin(); InstIter != this->Instrs.end(); ++InstIter) {
CurrUse = InstIter->FindUse(DefOp);
if (CurrUse != InstIter->GetLastUse()) { // found a USE of DefOp
if (CurrUse->GetSSANum() == SSANum) { // matched SSA number
if (!FirstUseSeen) {
FirstUseSeen = true;
}
UseType = CurrUse->GetType();
FoundNumeric |= (IsNumeric(UseType));
FoundUnknown |= (IsUnknown(UseType));
FoundUninit |= (IsEqType(UNINIT, UseType));
if (IsDataPtr(UseType)) {
if (FoundPointer) {
if (IsNotEqType(PtrType, UseType)) {
msg("WARNING: Differing ptr types in global chain:");
msg(" Prev: %d Current: %d %s\n", PtrType, UseType,
InstIter->GetDisasm());
}
PtrType = POINTER;
}
else {
FoundPointer = true;
PtrType = UseType;
}
} // end if matched SSA #
} // end if found a USE of DefOp
// Now, we need to check the phi functions and see if there are Phi USEs of the DefOp.
set<SMPPhiFunction, LessPhi>::iterator UsePhi;
size_t BlockNum;
for (BlockNum = 0; BlockNum < (size_t) this->BlockCount; ++BlockNum) {
UsePhi = this->RPOBlocks.at(BlockNum)->FindPhi(DefOp);
if (UsePhi != this->RPOBlocks.at(BlockNum)->GetLastPhi()) {
// Found phi function for DefOp. See if we can find a USE
// with USE SSANum corresponding to our DEF SSANum.
for (size_t PhiIndex = 0; PhiIndex < UsePhi->GetPhiListSize(); ++PhiIndex) {
if (UsePhi->GetUseSSANum(PhiIndex) == SSANum) {
// We have a Phi USE that matches our DEF.
if (!FirstUseSeen) {
FirstUseSeen = true;
UseType = UsePhi->GetUseType(PhiIndex);
FoundNumeric |= (IsNumeric(UseType));
FoundUnknown |= (IsUnknown(UseType));
FoundUninit |= (IsEqType(UNINIT, UseType));
if (IsDataPtr(UseType)) {
if (FoundPointer) {
if (IsNotEqType(PtrType, UseType)) {
msg("WARNING: Differing ptr types in global chain at Phi:");
msg(" Prev: %d Current: %d BlockNum: %d\n",
PtrType, UseType, BlockNum);
}
PtrType = POINTER;
}
else {
FoundPointer = true;
PtrType = UseType;
}
} // end if matched SSA #
} // end for all Phi USEs
} // end if found matching Phi function for DefOp
} // end for all block numbers in the function
if (FirstUseSeen) {
// Do we have a consistent type?
// If we see any definite POINTER uses, we must set the DEF
// to type POINTER or a refinement of it.
if (FoundPointer)
UseType = PtrType;
else if (FoundNumeric && !FoundUninit && !FoundUnknown)
UseType = NUMERIC;
else
return UNINIT; // no POINTER, but no consistent type
assert(UNINIT != UseType);
if (DebugFlag) msg("Inferring global DEF of type %d\n", UseType);
else { // not FirstUseSeen
// If the block returns, then the DEFs could be used in the caller.
if (!(DefBlock->HasReturn())) {
UseType = UNINIT;
// We probably want to set the DEF type to NUMERIC if there are no uses.
// Have to check these cases out manually in the *.asm first. **!!**
// If they are memory DEFs, we cannot optimize, so we might want to see
// if we can find a reg DEF with no USEs here. We also want to exclude
// warning messages for the caller-saved reg DEFs generated for CALLs.
if ((o_reg == DefOp.type) && (!CallInst)) {
;
#if SMP_WARN_UNUSED_DEFS
msg("WARNING: global DEF with no USEs for SSANum %d DefOp: ",
SSANum);
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
#define SMP_SIMPLE_CONDITIONAL_TYPE_PROPAGATION 1
#if SMP_SIMPLE_CONDITIONAL_TYPE_PROPAGATION
// The simple form of conditional type propagation observes that we
// simply need to apply the meet operator over Phi function USEs and
// then propagate any DEF type changes using PropagateGlobalDefType().
// The outermost iteration over all type inference methods in InferTypes()
// will take care of all the propagation that is handled by the work list
// processing in the textbook algorithm.
// Iteration convergence might be slower in the simple approach, but the code
// is much simpler to debug.
bool SMPFunction::ConditionalTypePropagation(void) {
bool changed = false;
list<SMPBasicBlock>::iterator CurrBlock;
vector<list<SMPBasicBlock>::iterator>::iterator CurrRPO;
set<SMPPhiFunction, LessPhi>::iterator CurrPhi;
for (CurrRPO = this->RPOBlocks.begin(); CurrRPO != this->RPOBlocks.end(); ++CurrRPO) {
CurrBlock = *CurrRPO;
SMPOperandType MeetType;
for (CurrPhi = CurrBlock->GetFirstPhi(); CurrPhi != CurrBlock->GetLastPhi(); ++CurrPhi) {
MeetType = CurrPhi->ConditionalMeetType();
// Here we use a straight equality test, not our macros,
// because we consider it a change if the MeetType is
// profiler derived and the DEFType is not.
if (MeetType == CurrPhi->GetDefType())
continue;
// Change the DEF type to the MeetType and propagate.
op_t DefOp = CurrPhi->GetAnyOp();
CurrPhi = CurrBlock->SetPhiDefType(DefOp, MeetType);
changed = true;
this->ResetProcessedBlocks();
changed |= CurrBlock->PropagateGlobalDefType(DefOp,
MeetType, CurrPhi->GetDefSSANum());