Skip to content
Snippets Groups Projects
SMPDataFlowAnalysis.cpp 131 KiB
Newer Older
1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386
SMPDefsFlags[NN_f2xm1] = false;               // 2^x - 1
SMPDefsFlags[NN_fyl2x] = false;               // Y * lg2(X)
SMPDefsFlags[NN_fyl2xp1] = false;             // Y * lg2(X+1)
SMPDefsFlags[NN_fldz] = false;                // Load +0.0
SMPDefsFlags[NN_fld1] = false;                // Load +1.0
SMPDefsFlags[NN_fldpi] = false;               // Load PI=3.14...
SMPDefsFlags[NN_fldl2t] = false;              // Load lg2(10)
SMPDefsFlags[NN_fldl2e] = false;              // Load lg2(e)
SMPDefsFlags[NN_fldlg2] = false;              // Load lg10(2)
SMPDefsFlags[NN_fldln2] = false;              // Load ln(2)
SMPDefsFlags[NN_finit] = false;               // Initialize Processor
SMPDefsFlags[NN_fninit] = false;              // Initialize Processor (no wait)
SMPDefsFlags[NN_fsetpm] = false;              // Set Protected Mode
SMPDefsFlags[NN_fldcw] = false;               // Load Control Word
SMPDefsFlags[NN_fstcw] = false;               // Store Control Word
SMPDefsFlags[NN_fnstcw] = false;              // Store Control Word (no wait)
SMPDefsFlags[NN_fstsw] = false;               // Store Status Word to memory or AX
SMPDefsFlags[NN_fnstsw] = false;              // Store Status Word (no wait) to memory or AX
SMPDefsFlags[NN_fclex] = false;               // Clear Exceptions
SMPDefsFlags[NN_fnclex] = false;              // Clear Exceptions (no wait)
SMPDefsFlags[NN_fstenv] = false;              // Store Environment
SMPDefsFlags[NN_fnstenv] = false;             // Store Environment (no wait)
SMPDefsFlags[NN_fldenv] = false;              // Load Environment
SMPDefsFlags[NN_fsave] = false;               // Save State
SMPDefsFlags[NN_fnsave] = false;              // Save State (no wait)
SMPDefsFlags[NN_frstor] = false;              // Restore State      
SMPDefsFlags[NN_fincstp] = false;             // Increment Stack Pointer
SMPDefsFlags[NN_fdecstp] = false;             // Decrement Stack Pointer
SMPDefsFlags[NN_ffree] = false;               // Free Register
SMPDefsFlags[NN_fnop] = false;                // No Operation
SMPDefsFlags[NN_feni] = false;                // (8087 only)
SMPDefsFlags[NN_fneni] = false;               // (no wait) (8087 only)
SMPDefsFlags[NN_fdisi] = false;               // (8087 only)
SMPDefsFlags[NN_fndisi] = false;              // (no wait) (8087 only)

//
//      80387 instructions
//

SMPDefsFlags[NN_fprem1] = false;              // Partial Remainder ( < half )
SMPDefsFlags[NN_fsincos] = false;             // t<-cos(st); st<-sin(st); push t
SMPDefsFlags[NN_fsin] = false;                // Sine
SMPDefsFlags[NN_fcos] = false;                // Cosine
SMPDefsFlags[NN_fucom] = false;               // Compare Unordered Real
SMPDefsFlags[NN_fucomp] = false;              // Compare Unordered Real and Pop
SMPDefsFlags[NN_fucompp] = false;             // Compare Unordered Real and Pop Twice

//
//      Instructions added 28.02.96
//

SMPDefsFlags[NN_svdc] = false;                // Save Register and Descriptor
SMPDefsFlags[NN_rsdc] = false;                // Restore Register and Descriptor
SMPDefsFlags[NN_svldt] = false;               // Save LDTR and Descriptor
SMPDefsFlags[NN_rsldt] = false;               // Restore LDTR and Descriptor
SMPDefsFlags[NN_svts] = false;                // Save TR and Descriptor
SMPDefsFlags[NN_rsts] = false;                // Restore TR and Descriptor
SMPDefsFlags[NN_icebp] = false;               // ICE Break Point

//
//      MMX instructions
//

SMPDefsFlags[NN_emms] = false;                // Empty MMX state
SMPDefsFlags[NN_movd] = false;                // Move 32 bits
SMPDefsFlags[NN_movq] = false;                // Move 64 bits
SMPDefsFlags[NN_packsswb] = false;            // Pack with Signed Saturation (Word->Byte)
SMPDefsFlags[NN_packssdw] = false;            // Pack with Signed Saturation (Dword->Word)
SMPDefsFlags[NN_packuswb] = false;            // Pack with Unsigned Saturation (Word->Byte)
SMPDefsFlags[NN_paddb] = false;               // Packed Add Byte
SMPDefsFlags[NN_paddw] = false;               // Packed Add Word
SMPDefsFlags[NN_paddd] = false;               // Packed Add Dword
SMPDefsFlags[NN_paddsb] = false;              // Packed Add with Saturation (Byte)
SMPDefsFlags[NN_paddsw] = false;              // Packed Add with Saturation (Word)
SMPDefsFlags[NN_paddusb] = false;             // Packed Add Unsigned with Saturation (Byte)
SMPDefsFlags[NN_paddusw] = false;             // Packed Add Unsigned with Saturation (Word)
SMPDefsFlags[NN_pand] = false;                // Bitwise Logical And
SMPDefsFlags[NN_pandn] = false;               // Bitwise Logical And Not
SMPDefsFlags[NN_pcmpeqb] = false;             // Packed Compare for Equal (Byte)
SMPDefsFlags[NN_pcmpeqw] = false;             // Packed Compare for Equal (Word)
SMPDefsFlags[NN_pcmpeqd] = false;             // Packed Compare for Equal (Dword)
SMPDefsFlags[NN_pcmpgtb] = false;             // Packed Compare for Greater Than (Byte)
SMPDefsFlags[NN_pcmpgtw] = false;             // Packed Compare for Greater Than (Word)
SMPDefsFlags[NN_pcmpgtd] = false;             // Packed Compare for Greater Than (Dword)
SMPDefsFlags[NN_pmaddwd] = false;             // Packed Multiply and Add
SMPDefsFlags[NN_pmulhw] = false;              // Packed Multiply High
SMPDefsFlags[NN_pmullw] = false;              // Packed Multiply Low
SMPDefsFlags[NN_por] = false;                 // Bitwise Logical Or
SMPDefsFlags[NN_psllw] = false;               // Packed Shift Left Logical (Word)
SMPDefsFlags[NN_pslld] = false;               // Packed Shift Left Logical (Dword)
SMPDefsFlags[NN_psllq] = false;               // Packed Shift Left Logical (Qword)
SMPDefsFlags[NN_psraw] = false;               // Packed Shift Right Arithmetic (Word)
SMPDefsFlags[NN_psrad] = false;               // Packed Shift Right Arithmetic (Dword)
SMPDefsFlags[NN_psrlw] = false;               // Packed Shift Right Logical (Word)
SMPDefsFlags[NN_psrld] = false;               // Packed Shift Right Logical (Dword)
SMPDefsFlags[NN_psrlq] = false;               // Packed Shift Right Logical (Qword)
SMPDefsFlags[NN_psubb] = false;               // Packed Subtract Byte
SMPDefsFlags[NN_psubw] = false;               // Packed Subtract Word
SMPDefsFlags[NN_psubd] = false;               // Packed Subtract Dword
SMPDefsFlags[NN_psubsb] = false;              // Packed Subtract with Saturation (Byte)
SMPDefsFlags[NN_psubsw] = false;              // Packed Subtract with Saturation (Word)
SMPDefsFlags[NN_psubusb] = false;             // Packed Subtract Unsigned with Saturation (Byte)
SMPDefsFlags[NN_psubusw] = false;             // Packed Subtract Unsigned with Saturation (Word)
SMPDefsFlags[NN_punpckhbw] = false;           // Unpack High Packed Data (Byte->Word)
SMPDefsFlags[NN_punpckhwd] = false;           // Unpack High Packed Data (Word->Dword)
SMPDefsFlags[NN_punpckhdq] = false;           // Unpack High Packed Data (Dword->Qword)
SMPDefsFlags[NN_punpcklbw] = false;           // Unpack Low Packed Data (Byte->Word)
SMPDefsFlags[NN_punpcklwd] = false;           // Unpack Low Packed Data (Word->Dword)
SMPDefsFlags[NN_punpckldq] = false;           // Unpack Low Packed Data (Dword->Qword)
SMPDefsFlags[NN_pxor] = false;                // Bitwise Logical Exclusive Or

//
//      Undocumented Deschutes processor instructions
//

SMPDefsFlags[NN_fxsave] = false;              // Fast save FP context        
SMPDefsFlags[NN_fxrstor] = false;             // Fast restore FP context     

//      Pentium II instructions

SMPDefsFlags[NN_sysexit] = false;             // Fast Transition from System Call Entry Point

//      3DNow! instructions

SMPDefsFlags[NN_pavgusb] = false;             // Packed 8-bit Unsigned Integer Averaging
SMPDefsFlags[NN_pfadd] = false;               // Packed Floating-Point Addition
SMPDefsFlags[NN_pfsub] = false;               // Packed Floating-Point Subtraction
SMPDefsFlags[NN_pfsubr] = false;              // Packed Floating-Point Reverse Subtraction
SMPDefsFlags[NN_pfacc] = false;               // Packed Floating-Point Accumulate
SMPDefsFlags[NN_pfcmpge] = false;             // Packed Floating-Point Comparison, Greater or Equal
SMPDefsFlags[NN_pfcmpgt] = false;             // Packed Floating-Point Comparison, Greater
SMPDefsFlags[NN_pfcmpeq] = false;             // Packed Floating-Point Comparison, Equal
SMPDefsFlags[NN_pfmin] = false;               // Packed Floating-Point Minimum
SMPDefsFlags[NN_pfmax] = false;               // Packed Floating-Point Maximum
SMPDefsFlags[NN_pi2fd] = false;               // Packed 32-bit Integer to Floating-Point
SMPDefsFlags[NN_pf2id] = false;               // Packed Floating-Point to 32-bit Integer
SMPDefsFlags[NN_pfrcp] = false;               // Packed Floating-Point Reciprocal Approximation
SMPDefsFlags[NN_pfrsqrt] = false;             // Packed Floating-Point Reciprocal Square Root Approximation
SMPDefsFlags[NN_pfmul] = false;               // Packed Floating-Point Multiplication
SMPDefsFlags[NN_pfrcpit1] = false;            // Packed Floating-Point Reciprocal First Iteration Step
SMPDefsFlags[NN_pfrsqit1] = false;            // Packed Floating-Point Reciprocal Square Root First Iteration Step
SMPDefsFlags[NN_pfrcpit2] = false;            // Packed Floating-Point Reciprocal Second Iteration Step
SMPDefsFlags[NN_pmulhrw] = false;             // Packed Floating-Point 16-bit Integer Multiply with rounding
SMPDefsFlags[NN_femms] = false;               // Faster entry/exit of the MMX or floating-point state
SMPDefsFlags[NN_prefetch] = false;            // Prefetch at least a 32-byte line into L1 data cache
SMPDefsFlags[NN_prefetchw] = false;           // Prefetch processor cache line into L1 data cache (mark as modified)


//      Pentium III instructions

SMPDefsFlags[NN_addps] = false;               // Packed Single-FP Add
SMPDefsFlags[NN_addss] = false;               // Scalar Single-FP Add
SMPDefsFlags[NN_andnps] = false;              // Bitwise Logical And Not for Single-FP
SMPDefsFlags[NN_andps] = false;               // Bitwise Logical And for Single-FP
SMPDefsFlags[NN_cmpps] = false;               // Packed Single-FP Compare
SMPDefsFlags[NN_cmpss] = false;               // Scalar Single-FP Compare
SMPDefsFlags[NN_cvtpi2ps] = false;            // Packed signed INT32 to Packed Single-FP conversion
SMPDefsFlags[NN_cvtps2pi] = false;            // Packed Single-FP to Packed INT32 conversion
SMPDefsFlags[NN_cvtsi2ss] = false;            // Scalar signed INT32 to Single-FP conversion
SMPDefsFlags[NN_cvtss2si] = false;            // Scalar Single-FP to signed INT32 conversion
SMPDefsFlags[NN_cvttps2pi] = false;           // Packed Single-FP to Packed INT32 conversion (truncate)
SMPDefsFlags[NN_cvttss2si] = false;           // Scalar Single-FP to signed INT32 conversion (truncate)
SMPDefsFlags[NN_divps] = false;               // Packed Single-FP Divide
SMPDefsFlags[NN_divss] = false;               // Scalar Single-FP Divide
SMPDefsFlags[NN_ldmxcsr] = false;             // Load Streaming SIMD Extensions Technology Control/Status Register
SMPDefsFlags[NN_maxps] = false;               // Packed Single-FP Maximum
SMPDefsFlags[NN_maxss] = false;               // Scalar Single-FP Maximum
SMPDefsFlags[NN_minps] = false;               // Packed Single-FP Minimum
SMPDefsFlags[NN_minss] = false;               // Scalar Single-FP Minimum
SMPDefsFlags[NN_movaps] = false;              // Move Aligned Four Packed Single-FP  
SMPDefsFlags[NN_movhlps] = false;             // Move High to Low Packed Single-FP
SMPDefsFlags[NN_movhps] = false;              // Move High Packed Single-FP
SMPDefsFlags[NN_movlhps] = false;             // Move Low to High Packed Single-FP
SMPDefsFlags[NN_movlps] = false;              // Move Low Packed Single-FP
SMPDefsFlags[NN_movmskps] = false;            // Move Mask to Register
SMPDefsFlags[NN_movss] = false;               // Move Scalar Single-FP
SMPDefsFlags[NN_movups] = false;              // Move Unaligned Four Packed Single-FP
SMPDefsFlags[NN_mulps] = false;               // Packed Single-FP Multiply
SMPDefsFlags[NN_mulss] = false;               // Scalar Single-FP Multiply
SMPDefsFlags[NN_orps] = false;                // Bitwise Logical OR for Single-FP Data
SMPDefsFlags[NN_rcpps] = false;               // Packed Single-FP Reciprocal
SMPDefsFlags[NN_rcpss] = false;               // Scalar Single-FP Reciprocal
SMPDefsFlags[NN_rsqrtps] = false;             // Packed Single-FP Square Root Reciprocal
SMPDefsFlags[NN_rsqrtss] = false;             // Scalar Single-FP Square Root Reciprocal
SMPDefsFlags[NN_shufps] = false;              // Shuffle Single-FP
SMPDefsFlags[NN_sqrtps] = false;              // Packed Single-FP Square Root
SMPDefsFlags[NN_sqrtss] = false;              // Scalar Single-FP Square Root
SMPDefsFlags[NN_stmxcsr] = false;             // Store Streaming SIMD Extensions Technology Control/Status Register 
SMPDefsFlags[NN_subps] = false;               // Packed Single-FP Subtract
SMPDefsFlags[NN_subss] = false;               // Scalar Single-FP Subtract
SMPDefsFlags[NN_unpckhps] = false;            // Unpack High Packed Single-FP Data
SMPDefsFlags[NN_unpcklps] = false;            // Unpack Low Packed Single-FP Data
SMPDefsFlags[NN_xorps] = false;               // Bitwise Logical XOR for Single-FP Data
SMPDefsFlags[NN_pavgb] = false;               // Packed Average (Byte)
SMPDefsFlags[NN_pavgw] = false;               // Packed Average (Word)
SMPDefsFlags[NN_pextrw] = false;              // Extract Word
SMPDefsFlags[NN_pinsrw] = false;              // Insert Word
SMPDefsFlags[NN_pmaxsw] = false;              // Packed Signed Integer Word Maximum
SMPDefsFlags[NN_pmaxub] = false;              // Packed Unsigned Integer Byte Maximum
SMPDefsFlags[NN_pminsw] = false;              // Packed Signed Integer Word Minimum
SMPDefsFlags[NN_pminub] = false;              // Packed Unsigned Integer Byte Minimum
SMPDefsFlags[NN_pmovmskb] = false;            // Move Byte Mask to Integer
SMPDefsFlags[NN_pmulhuw] = false;             // Packed Multiply High Unsigned
SMPDefsFlags[NN_psadbw] = false;              // Packed Sum of Absolute Differences
SMPDefsFlags[NN_pshufw] = false;              // Packed Shuffle Word
SMPDefsFlags[NN_maskmovq] = false;            // Byte Mask write  
SMPDefsFlags[NN_movntps] = false;             // Move Aligned Four Packed Single-FP Non Temporal
SMPDefsFlags[NN_movntq] = false;              // Move 64 Bits Non Temporal   
SMPDefsFlags[NN_prefetcht0] = false;          // Prefetch to all cache levels
SMPDefsFlags[NN_prefetcht1] = false;          // Prefetch to all cache levels
SMPDefsFlags[NN_prefetcht2] = false;          // Prefetch to L2 cache
SMPDefsFlags[NN_prefetchnta] = false;         // Prefetch to L1 cache
SMPDefsFlags[NN_sfence] = false;              // Store Fence

// Pentium III Pseudo instructions

SMPDefsFlags[NN_cmpeqps] = false;             // Packed Single-FP Compare EQ
SMPDefsFlags[NN_cmpltps] = false;             // Packed Single-FP Compare LT
SMPDefsFlags[NN_cmpleps] = false;             // Packed Single-FP Compare LE
SMPDefsFlags[NN_cmpunordps] = false;          // Packed Single-FP Compare UNORD
SMPDefsFlags[NN_cmpneqps] = false;            // Packed Single-FP Compare NOT EQ
SMPDefsFlags[NN_cmpnltps] = false;            // Packed Single-FP Compare NOT LT
SMPDefsFlags[NN_cmpnleps] = false;            // Packed Single-FP Compare NOT LE
SMPDefsFlags[NN_cmpordps] = false;            // Packed Single-FP Compare ORDERED
SMPDefsFlags[NN_cmpeqss] = false;             // Scalar Single-FP Compare EQ
SMPDefsFlags[NN_cmpltss] = false;             // Scalar Single-FP Compare LT
SMPDefsFlags[NN_cmpless] = false;             // Scalar Single-FP Compare LE
SMPDefsFlags[NN_cmpunordss] = false;          // Scalar Single-FP Compare UNORD
SMPDefsFlags[NN_cmpneqss] = false;            // Scalar Single-FP Compare NOT EQ
SMPDefsFlags[NN_cmpnltss] = false;            // Scalar Single-FP Compare NOT LT
SMPDefsFlags[NN_cmpnless] = false;            // Scalar Single-FP Compare NOT LE
SMPDefsFlags[NN_cmpordss] = false;            // Scalar Single-FP Compare ORDERED

// AMD K7 instructions

// Revisit AMD if we port to it.
SMPDefsFlags[NN_pf2iw] = false;               // Packed Floating-Point to Integer with Sign Extend
SMPDefsFlags[NN_pfnacc] = false;              // Packed Floating-Point Negative Accumulate
SMPDefsFlags[NN_pfpnacc] = false;             // Packed Floating-Point Mixed Positive-Negative Accumulate
SMPDefsFlags[NN_pi2fw] = false;               // Packed 16-bit Integer to Floating-Point
SMPDefsFlags[NN_pswapd] = false;              // Packed Swap Double Word

// Undocumented FP instructions (thanks to norbert.juffa@adm.com)

SMPDefsFlags[NN_fstp1] = false;               // Alias of Store Real and Pop
SMPDefsFlags[NN_fxch4] = false;               // Alias of Exchange Registers
SMPDefsFlags[NN_ffreep] = false;              // Free Register and Pop
SMPDefsFlags[NN_fxch7] = false;               // Alias of Exchange Registers
SMPDefsFlags[NN_fstp8] = false;               // Alias of Store Real and Pop
SMPDefsFlags[NN_fstp9] = false;               // Alias of Store Real and Pop

// Pentium 4 instructions

SMPDefsFlags[NN_addpd] = false;               // Add Packed Double-Precision Floating-Point Values
SMPDefsFlags[NN_addsd] = false;               // Add Scalar Double-Precision Floating-Point Values
SMPDefsFlags[NN_andnpd] = false;              // Bitwise Logical AND NOT of Packed Double-Precision Floating-Point Values
SMPDefsFlags[NN_andpd] = false;               // Bitwise Logical AND of Packed Double-Precision Floating-Point Values
SMPDefsFlags[NN_clflush] = false;             // Flush Cache Line
SMPDefsFlags[NN_cmppd] = false;               // Compare Packed Double-Precision Floating-Point Values
SMPDefsFlags[NN_cmpsd] = false;               // Compare Scalar Double-Precision Floating-Point Values
SMPDefsFlags[NN_cvtdq2pd] = false;            // Convert Packed Doubleword Integers to Packed Single-Precision Floating-Point Values
SMPDefsFlags[NN_cvtdq2ps] = false;            // Convert Packed Doubleword Integers to Packed Double-Precision Floating-Point Values
SMPDefsFlags[NN_cvtpd2dq] = false;            // Convert Packed Double-Precision Floating-Point Values to Packed Doubleword Integers
SMPDefsFlags[NN_cvtpd2pi] = false;            // Convert Packed Double-Precision Floating-Point Values to Packed Doubleword Integers
SMPDefsFlags[NN_cvtpd2ps] = false;            // Convert Packed Double-Precision Floating-Point Values to Packed Single-Precision Floating-Point Values
SMPDefsFlags[NN_cvtpi2pd] = false;            // Convert Packed Doubleword Integers to Packed Double-Precision Floating-Point Values
SMPDefsFlags[NN_cvtps2dq] = false;            // Convert Packed Single-Precision Floating-Point Values to Packed Doubleword Integers
SMPDefsFlags[NN_cvtps2pd] = false;            // Convert Packed Single-Precision Floating-Point Values to Packed Double-Precision Floating-Point Values
SMPDefsFlags[NN_cvtsd2si] = false;            // Convert Scalar Double-Precision Floating-Point Value to Doubleword Integer
SMPDefsFlags[NN_cvtsd2ss] = false;            // Convert Scalar Double-Precision Floating-Point Value to Scalar Single-Precision Floating-Point Value
SMPDefsFlags[NN_cvtsi2sd] = false;            // Convert Doubleword Integer to Scalar Double-Precision Floating-Point Value
SMPDefsFlags[NN_cvtss2sd] = false;            // Convert Scalar Single-Precision Floating-Point Value to Scalar Double-Precision Floating-Point Value
SMPDefsFlags[NN_cvttpd2dq] = false;           // Convert With Truncation Packed Double-Precision Floating-Point Values to Packed Doubleword Integers
SMPDefsFlags[NN_cvttpd2pi] = false;           // Convert with Truncation Packed Double-Precision Floating-Point Values to Packed Doubleword Integers
SMPDefsFlags[NN_cvttps2dq] = false;           // Convert With Truncation Packed Single-Precision Floating-Point Values to Packed Doubleword Integers
SMPDefsFlags[NN_cvttsd2si] = false;           // Convert with Truncation Scalar Double-Precision Floating-Point Value to Doubleword Integer
SMPDefsFlags[NN_divpd] = false;               // Divide Packed Double-Precision Floating-Point Values
SMPDefsFlags[NN_divsd] = false;               // Divide Scalar Double-Precision Floating-Point Values
SMPDefsFlags[NN_lfence] = false;              // Load Fence
SMPDefsFlags[NN_maskmovdqu] = false;          // Store Selected Bytes of Double Quadword 
SMPDefsFlags[NN_maxpd] = false;               // Return Maximum Packed Double-Precision Floating-Point Values
SMPDefsFlags[NN_maxsd] = false;               // Return Maximum Scalar Double-Precision Floating-Point Value
SMPDefsFlags[NN_mfence] = false;              // Memory Fence
SMPDefsFlags[NN_minpd] = false;               // Return Minimum Packed Double-Precision Floating-Point Values
SMPDefsFlags[NN_minsd] = false;               // Return Minimum Scalar Double-Precision Floating-Point Value
SMPDefsFlags[NN_movapd] = false;              // Move Aligned Packed Double-Precision Floating-Point Values 
SMPDefsFlags[NN_movdq2q] = false;             // Move Quadword from XMM to MMX Register
SMPDefsFlags[NN_movdqa] = false;              // Move Aligned Double Quadword  
SMPDefsFlags[NN_movdqu] = false;              // Move Unaligned Double Quadword  
SMPDefsFlags[NN_movhpd] = false;              // Move High Packed Double-Precision Floating-Point Values 
SMPDefsFlags[NN_movlpd] = false;              // Move Low Packed Double-Precision Floating-Point Values 
SMPDefsFlags[NN_movmskpd] = false;            // Extract Packed Double-Precision Floating-Point Sign Mask
SMPDefsFlags[NN_movntdq] = false;             // Store Double Quadword Using Non-Temporal Hint
SMPDefsFlags[NN_movnti] = false;              // Store Doubleword Using Non-Temporal Hint
SMPDefsFlags[NN_movntpd] = false;             // Store Packed Double-Precision Floating-Point Values Using Non-Temporal Hint
SMPDefsFlags[NN_movq2dq] = false;             // Move Quadword from MMX to XMM Register
SMPDefsFlags[NN_movsd] = false;               // Move Scalar Double-Precision Floating-Point Values
SMPDefsFlags[NN_movupd] = false;              // Move Unaligned Packed Double-Precision Floating-Point Values
SMPDefsFlags[NN_mulpd] = false;               // Multiply Packed Double-Precision Floating-Point Values
SMPDefsFlags[NN_mulsd] = false;               // Multiply Scalar Double-Precision Floating-Point Values
SMPDefsFlags[NN_orpd] = false;                // Bitwise Logical OR of Double-Precision Floating-Point Values
SMPDefsFlags[NN_paddq] = false;               // Add Packed Quadword Integers
SMPDefsFlags[NN_pause] = false;               // Spin Loop Hint
SMPDefsFlags[NN_pmuludq] = false;             // Multiply Packed Unsigned Doubleword Integers
SMPDefsFlags[NN_pshufd] = false;              // Shuffle Packed Doublewords
SMPDefsFlags[NN_pshufhw] = false;             // Shuffle Packed High Words
SMPDefsFlags[NN_pshuflw] = false;             // Shuffle Packed Low Words
SMPDefsFlags[NN_pslldq] = false;              // Shift Double Quadword Left Logical
SMPDefsFlags[NN_psrldq] = false;              // Shift Double Quadword Right Logical
SMPDefsFlags[NN_psubq] = false;               // Subtract Packed Quadword Integers
SMPDefsFlags[NN_punpckhqdq] = false;          // Unpack High Data
SMPDefsFlags[NN_punpcklqdq] = false;          // Unpack Low Data
SMPDefsFlags[NN_shufpd] = false;              // Shuffle Packed Double-Precision Floating-Point Values
SMPDefsFlags[NN_sqrtpd] = false;              // Compute Square Roots of Packed Double-Precision Floating-Point Values
SMPDefsFlags[NN_sqrtsd] = false;              // Compute Square Rootof Scalar Double-Precision Floating-Point Value
SMPDefsFlags[NN_subpd] = false;               // Subtract Packed Double-Precision Floating-Point Values
SMPDefsFlags[NN_subsd] = false;               // Subtract Scalar Double-Precision Floating-Point Values
SMPDefsFlags[NN_unpckhpd] = false;            // Unpack and Interleave High Packed Double-Precision Floating-Point Values
SMPDefsFlags[NN_unpcklpd] = false;            // Unpack and Interleave Low Packed Double-Precision Floating-Point Values
SMPDefsFlags[NN_xorpd] = false;               // Bitwise Logical OR of Double-Precision Floating-Point Values


// AMD syscall/sysret instructions  NOTE: not AMD, found in Intel manual


// AMD64 instructions    NOTE: not AMD, found in Intel manual

SMPDefsFlags[NN_swapgs] = false;              // Exchange GS base with KernelGSBase MSR

// New Pentium instructions (SSE3)

SMPDefsFlags[NN_movddup] = false;             // Move One Double-FP and Duplicate
SMPDefsFlags[NN_movshdup] = false;            // Move Packed Single-FP High and Duplicate
SMPDefsFlags[NN_movsldup] = false;            // Move Packed Single-FP Low and Duplicate

// Missing AMD64 instructions  NOTE: also found in Intel manual

SMPDefsFlags[NN_movsxd] = false;              // Move with Sign-Extend Doubleword

// SSE3 instructions

SMPDefsFlags[NN_addsubpd] = false;            // Add /Sub packed DP FP numbers
SMPDefsFlags[NN_addsubps] = false;            // Add /Sub packed SP FP numbers
SMPDefsFlags[NN_haddpd] = false;              // Add horizontally packed DP FP numbers
SMPDefsFlags[NN_haddps] = false;              // Add horizontally packed SP FP numbers
SMPDefsFlags[NN_hsubpd] = false;              // Sub horizontally packed DP FP numbers
SMPDefsFlags[NN_hsubps] = false;              // Sub horizontally packed SP FP numbers
SMPDefsFlags[NN_monitor] = false;             // Set up a linear address range to be monitored by hardware
SMPDefsFlags[NN_mwait] = false;               // Wait until write-back store performed within the range specified by the MONITOR instruction
SMPDefsFlags[NN_fisttp] = false;              // Store ST in intXX (chop) and pop
SMPDefsFlags[NN_lddqu] = false;               // Load unaligned integer 128-bit

// SSSE3 instructions

SMPDefsFlags[NN_psignb] = false;              // Packed SIGN Byte
SMPDefsFlags[NN_psignw] = false;              // Packed SIGN Word
SMPDefsFlags[NN_psignd] = false;              // Packed SIGN Doubleword
SMPDefsFlags[NN_pshufb] = false;              // Packed Shuffle Bytes
SMPDefsFlags[NN_pmulhrsw] = false;            // Packed Multiply High with Round and Scale
SMPDefsFlags[NN_pmaddubsw] = false;           // Multiply and Add Packed Signed and Unsigned Bytes
SMPDefsFlags[NN_phsubsw] = false;             // Packed Horizontal Subtract and Saturate
SMPDefsFlags[NN_phaddsw] = false;             // Packed Horizontal Add and Saturate
SMPDefsFlags[NN_phaddw] = false;              // Packed Horizontal Add Word
SMPDefsFlags[NN_phaddd] = false;              // Packed Horizontal Add Doubleword
SMPDefsFlags[NN_phsubw] = false;              // Packed Horizontal Subtract Word
SMPDefsFlags[NN_phsubd] = false;              // Packed Horizontal Subtract Doubleword
SMPDefsFlags[NN_palignr] = false;             // Packed Align Right
SMPDefsFlags[NN_pabsb] = false;               // Packed Absolute Value Byte
SMPDefsFlags[NN_pabsw] = false;               // Packed Absolute Value Word
SMPDefsFlags[NN_pabsd] = false;               // Packed Absolute Value Doubleword

// VMX instructions

SMPDefsFlags[NN_last] = false;

  return;

} // end InitSMPDefsFlags()

// Initialize the SMPUsesFlags[] array to define how we emit
//   optimizing annotations.
void InitSMPUsesFlags(void) {
	// Default value is false. Few instructions use the flags.
	(void) memset(SMPUsesFlags, false, sizeof(SMPUsesFlags));

SMPUsesFlags[NN_null] = true;            // Unknown Operation
#if 1
SMPUsesFlags[NN_aaa] = true;                 // ASCII adjust after addition
SMPUsesFlags[NN_aas] = true;				 // ASCII adjust after subtraction
#endif
SMPUsesFlags[NN_adc] = true;                 // Add with Carry
SMPUsesFlags[NN_cmps] = true;                // Compare Strings (uses DF direction flag)
SMPUsesFlags[NN_into] = true;                // Call to Interrupt Procedure if Overflow Flag = 1
SMPUsesFlags[NN_ja] = true;                  // Jump if Above (CF=0 & ZF=0)
SMPUsesFlags[NN_jae] = true;                 // Jump if Above or Equal (CF=0)
SMPUsesFlags[NN_jb] = true;                  // Jump if Below (CF=1)
SMPUsesFlags[NN_jbe] = true;                 // Jump if Below or Equal (CF=1 | ZF=1)
SMPUsesFlags[NN_jc] = true;                  // Jump if Carry (CF=1)
SMPUsesFlags[NN_jcxz] = true;                // Jump if CX is 0
SMPUsesFlags[NN_jecxz] = true;               // Jump if ECX is 0
SMPUsesFlags[NN_jrcxz] = true;               // Jump if RCX is 0
SMPUsesFlags[NN_je] = true;                  // Jump if Equal (ZF=1)
SMPUsesFlags[NN_jg] = true;                  // Jump if Greater (ZF=0 & SF=OF)
SMPUsesFlags[NN_jge] = true;                 // Jump if Greater or Equal (SF=OF)
SMPUsesFlags[NN_jl] = true;                  // Jump if Less (SF!=OF)
SMPUsesFlags[NN_jle] = true;                 // Jump if Less or Equal (ZF=1 | SF!=OF)
SMPUsesFlags[NN_jna] = true;                 // Jump if Not Above (CF=1 | ZF=1)
SMPUsesFlags[NN_jnae] = true;                // Jump if Not Above or Equal (CF=1)
SMPUsesFlags[NN_jnb] = true;                 // Jump if Not Below (CF=0)
SMPUsesFlags[NN_jnbe] = true;                // Jump if Not Below or Equal (CF=0 & ZF=0)
SMPUsesFlags[NN_jnc] = true;                 // Jump if Not Carry (CF=0)
SMPUsesFlags[NN_jne] = true;                 // Jump if Not Equal (ZF=0)
SMPUsesFlags[NN_jng] = true;                 // Jump if Not Greater (ZF=1 | SF!=OF)
SMPUsesFlags[NN_jnge] = true;                // Jump if Not Greater or Equal (ZF=1)
SMPUsesFlags[NN_jnl] = true;                 // Jump if Not Less (SF=OF)
SMPUsesFlags[NN_jnle] = true;                // Jump if Not Less or Equal (ZF=0 & SF=OF)
SMPUsesFlags[NN_jno] = true;                 // Jump if Not Overflow (OF=0)
SMPUsesFlags[NN_jnp] = true;                 // Jump if Not Parity (PF=0)
SMPUsesFlags[NN_jns] = true;                 // Jump if Not Sign (SF=0)
SMPUsesFlags[NN_jnz] = true;                 // Jump if Not Zero (ZF=0)
SMPUsesFlags[NN_jo] = true;                  // Jump if Overflow (OF=1)
SMPUsesFlags[NN_jp] = true;                  // Jump if Parity (PF=1)
SMPUsesFlags[NN_jpe] = true;                 // Jump if Parity Even (PF=1)
SMPUsesFlags[NN_jpo] = true;                 // Jump if Parity Odd  (PF=0)
SMPUsesFlags[NN_js] = true;                  // Jump if Sign (SF=1)
SMPUsesFlags[NN_jz] = true;                  // Jump if Zero (ZF=1)
SMPUsesFlags[NN_lahf] = true;                // Load Flags into AH Register
SMPUsesFlags[NN_loopwe] = true;              // Loop while CX != 0 and ZF=1
SMPUsesFlags[NN_loope] = true;               // Loop while rCX != 0 and ZF=1
SMPUsesFlags[NN_loopde] = true;              // Loop while ECX != 0 and ZF=1
SMPUsesFlags[NN_loopqe] = true;              // Loop while RCX != 0 and ZF=1
SMPUsesFlags[NN_loopwne] = true;             // Loop while CX != 0 and ZF=0
SMPUsesFlags[NN_loopne] = true;              // Loop while rCX != 0 and ZF=0
SMPUsesFlags[NN_loopdne] = true;             // Loop while ECX != 0 and ZF=0
SMPUsesFlags[NN_loopqne] = true;             // Loop while RCX != 0 and ZF=0
clc5q's avatar
clc5q committed
SMPUsesFlags[NN_movs] = true;                // Move Byte(s) from String to String
SMPUsesFlags[NN_pushfw] = true;              // Push Flags Register onto the Stack
SMPUsesFlags[NN_pushf] = true;               // Push Flags Register onto the Stack
SMPUsesFlags[NN_pushfd] = true;              // Push Flags Register onto the Stack (use32)
SMPUsesFlags[NN_pushfq] = true;              // Push Flags Register onto the Stack (use64)
SMPUsesFlags[NN_repe] = true;                // Repeat String Operation while ZF=1
SMPUsesFlags[NN_repne] = true;               // Repeat String Operation while ZF=0
SMPUsesFlags[NN_sahf] = true;                // Store AH into Flags Register
SMPUsesFlags[NN_shl] = true;                 // Shift Logical Left
SMPUsesFlags[NN_shr] = true;                 // Shift Logical Right
SMPUsesFlags[NN_sbb] = true;                 // Integer Subtraction with Borrow
SMPUsesFlags[NN_scas] = true;                // Compare String (uses DF direction flag)
SMPUsesFlags[NN_seta] = true;                // Set Byte if Above (CF=0 & ZF=0)
SMPUsesFlags[NN_setae] = true;               // Set Byte if Above or Equal (CF=0)
SMPUsesFlags[NN_setb] = true;                // Set Byte if Below (CF=1)
SMPUsesFlags[NN_setbe] = true;               // Set Byte if Below or Equal (CF=1 | ZF=1)
SMPUsesFlags[NN_setc] = true;                // Set Byte if Carry (CF=1)
SMPUsesFlags[NN_sete] = true;                // Set Byte if Equal (ZF=1)
SMPUsesFlags[NN_setg] = true;                // Set Byte if Greater (ZF=0 & SF=OF)
SMPUsesFlags[NN_setge] = true;               // Set Byte if Greater or Equal (SF=OF)
SMPUsesFlags[NN_setl] = true;                // Set Byte if Less (SF!=OF)
SMPUsesFlags[NN_setle] = true;               // Set Byte if Less or Equal (ZF=1 | SF!=OF)
SMPUsesFlags[NN_setna] = true;               // Set Byte if Not Above (CF=1 | ZF=1)
SMPUsesFlags[NN_setnae] = true;              // Set Byte if Not Above or Equal (CF=1)
SMPUsesFlags[NN_setnb] = true;               // Set Byte if Not Below (CF=0)
SMPUsesFlags[NN_setnbe] = true;              // Set Byte if Not Below or Equal (CF=0 & ZF=0)
SMPUsesFlags[NN_setnc] = true;               // Set Byte if Not Carry (CF=0)
SMPUsesFlags[NN_setne] = true;               // Set Byte if Not Equal (ZF=0)
SMPUsesFlags[NN_setng] = true;               // Set Byte if Not Greater (ZF=1 | SF!=OF)
SMPUsesFlags[NN_setnge] = true;              // Set Byte if Not Greater or Equal (ZF=1)
SMPUsesFlags[NN_setnl] = true;               // Set Byte if Not Less (SF=OF)
SMPUsesFlags[NN_setnle] = true;              // Set Byte if Not Less or Equal (ZF=0 & SF=OF)
SMPUsesFlags[NN_setno] = true;               // Set Byte if Not Overflow (OF=0)
SMPUsesFlags[NN_setnp] = true;               // Set Byte if Not Parity (PF=0)
SMPUsesFlags[NN_setns] = true;               // Set Byte if Not Sign (SF=0)
SMPUsesFlags[NN_setnz] = true;               // Set Byte if Not Zero (ZF=0)
SMPUsesFlags[NN_seto] = true;                // Set Byte if Overflow (OF=1)
SMPUsesFlags[NN_setp] = true;                // Set Byte if Parity (PF=1)
SMPUsesFlags[NN_setpe] = true;               // Set Byte if Parity Even (PF=1)
SMPUsesFlags[NN_setpo] = true;               // Set Byte if Parity Odd  (PF=0)
SMPUsesFlags[NN_sets] = true;                // Set Byte if Sign (SF=1)
SMPUsesFlags[NN_setz] = true;                // Set Byte if Zero (ZF=1)
SMPUsesFlags[NN_stos] = true;                // Store String

//
//      486 instructions
//

//
//      Pentium instructions
//

SMPUsesFlags[NN_cpuid] = true;               // Get CPU ID
SMPUsesFlags[NN_cmpxchg8b] = true;           // Compare and Exchange Eight Bytes

//
//      Pentium Pro instructions
//

SMPUsesFlags[NN_cmova] = true;               // Move if Above (CF=0 & ZF=0)
SMPUsesFlags[NN_cmovb] = true;               // Move if Below (CF=1)
SMPUsesFlags[NN_cmovbe] = true;              // Move if Below or Equal (CF=1 | ZF=1)
SMPUsesFlags[NN_cmovg] = true;               // Move if Greater (ZF=0 & SF=OF)
SMPUsesFlags[NN_cmovge] = true;              // Move if Greater or Equal (SF=OF)
SMPUsesFlags[NN_cmovl] = true;               // Move if Less (SF!=OF)
SMPUsesFlags[NN_cmovle] = true;              // Move if Less or Equal (ZF=1 | SF!=OF)
SMPUsesFlags[NN_cmovnb] = true;              // Move if Not Below (CF=0)
SMPUsesFlags[NN_cmovno] = true;              // Move if Not Overflow (OF=0)
SMPUsesFlags[NN_cmovnp] = true;              // Move if Not Parity (PF=0)
SMPUsesFlags[NN_cmovns] = true;              // Move if Not Sign (SF=0)
SMPUsesFlags[NN_cmovnz] = true;              // Move if Not Zero (ZF=0)
SMPUsesFlags[NN_cmovo] = true;               // Move if Overflow (OF=1)
SMPUsesFlags[NN_cmovp] = true;               // Move if Parity (PF=1)
SMPUsesFlags[NN_cmovs] = true;               // Move if Sign (SF=1)
SMPUsesFlags[NN_cmovz] = true;               // Move if Zero (ZF=1)
SMPUsesFlags[NN_fcmovb] = true;              // Floating Move if Below          
SMPUsesFlags[NN_fcmove] = true;              // Floating Move if Equal          
SMPUsesFlags[NN_fcmovbe] = true;             // Floating Move if Below or Equal 
SMPUsesFlags[NN_fcmovu] = true;              // Floating Move if Unordered      
SMPUsesFlags[NN_fcmovnb] = true;             // Floating Move if Not Below      
SMPUsesFlags[NN_fcmovne] = true;             // Floating Move if Not Equal      
SMPUsesFlags[NN_fcmovnbe] = true;            // Floating Move if Not Below or Equal
SMPUsesFlags[NN_fcmovnu] = true;             // Floating Move if Not Unordered     

//
//


//
//      80387 instructions
//


//
//      Instructions added 28.02.96
//

SMPUsesFlags[NN_setalc] = true;              // Set AL to Carry Flag      

//
//      MMX instructions
//


//
//      Undocumented Deschutes processor instructions
//


//      Pentium II instructions


//      3DNow! instructions


//      Pentium III instructions


// Pentium III Pseudo instructions


// AMD K7 instructions

// Revisit AMD if we port to it.

// Undocumented FP instructions (thanks to norbert.juffa@adm.com)

// Pentium 4 instructions



// AMD syscall/sysret instructions  NOTE: not AMD, found in Intel manual

// AMD64 instructions    NOTE: not AMD, found in Intel manual


// New Pentium instructions (SSE3)


// Missing AMD64 instructions  NOTE: also found in Intel manual


// SSE3 instructions


// SSSE3 instructions


// VMX instructions


SMPUsesFlags[NN_last] = false;

  return;

} // end InitSMPUsesFlags()


// Initialize the SMPTypeCategory[] array to define how we infer
//   numeric or pointer operand types for optimizing annotations.
void InitTypeCategory(void) {
	// Default category is 0, no type inference without knowing context.
	(void) memset(SMPTypeCategory, 0, sizeof(SMPTypeCategory));
	// Category 1 instructions have no valid inferences about their operand
	//  types that can be drawn, but will need no mmStrata instrumentation
	//  and are irrelevant to our type system.
	// Category 2 instructions always have a result type of 'n' (number).
	// Category 3 instructions have a result type of 'n' (number)
	//  whenever the second source operand is an operand of type 'n'.
	//  NOTE: MOV is the only current example, and this will take some thought if 
    //   other examples arise.
	// Category 4 instructions have a result type identical to the 1st source operand type.
	//  NOTE: This is currently set for single-operand instructions such as
	//   INC, DEC. As a result, these are treated pretty much as if
	//   they were category 1 instructions, as there is no metadata update,
	//   even if the operand is a memory operand.
	//   If new instructions are added to this category that are not single
	//   operand and do require some updating, the category should be split.
	// Category 5 instructions have a result type identical to the 1st source operand
	//  type whenever the 2nd source operand is an operand of type 'n'.
	// Category 6 instructions always have a result type of 'p' (pointer).
	// Category 7 instructions are category 2 instructions with two destinations,
	//  such as multiply and divide instructions that affect EDX:EAX. There are
	//  forms of these instructions that only have one destination, so they have
	//  to be distinguished via the operand info.
    // Category 8 instructions implicitly write a numeric value to EDX:EAX, but
    //  EDX and EAX are not listed as operands. RDTSC, RDPMC, RDMSR, and other
    //  instructions that copy machine registers into EDX:EAX are category 8.
    // Category 9 instructions are floating point instructions that either
    //  have a memory destination (treat as category 13) or a FP reg destination
    //  (treat as category 1, as FP regs are always 'n' and ignored in our system).
	// Category 10 instructions have 'n' results if the sources are all 'n'; they
	//  have 'p' results if the sources are all 'p'; and we cannot infer the type
	//  of the result if the sources are of mixed types. Bitwise OR and AND are
	//  examples.
	// Category 11 instructions need to have their types and locations on the stack
	//  frame tracked, e.g. push and pop instructions. No direct type inference.
	// Category 12 instructions are similar to category 10, except that we do not
	//  output 'n' annotations when all sources are 'n'; rather, the instruction can
	//  be simply ignored (not instrumented by mmStrata) in that case. Conditional
	//  exchange instructions are examples; we do or do not
1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000
	//  move a numeric value into a register that already has numeric metadata.
	// Category 13 instructions imply that their memory destination is 'n'.
	// Category 14 instructions imply that their reg or memory source operand is 'n';
	//  if source is not memory, they are category 1 (inferences, but no instrumentation).
	// Category 15 instructions always have 'n' source AND destination operands;
	//  if addressed using indexed addressing, they are a subset of category 0
	//  (must be instrumented by mmStrata to keep index in bounds), else they are
	//  a subset of category 14 (numeric memory source if any, no instrumentation).

	// NOTE: The Memory Monitor SDT needs just three categories, corresponding
	//  to categories 0, 1, and all others. For all categories > 1, the
	//  annotation should tell the SDT exactly how to update its metadata.
	//  For example, a division instruction will write type 'n' (NUM) as
	//  the metadata for result registers EDX:EAX. So, the annotation should
	//  list 'n', EDX, EAX, and a terminator of '/'. CWD (convert word to
	//  doubleword) should have a list of 'n', EAX, '/'.

SMPTypeCategory[NN_null] = 0;            // Unknown Operation
SMPTypeCategory[NN_aaa] = 2;                 // ASCII Adjust after Addition
SMPTypeCategory[NN_aad] = 2;                 // ASCII Adjust AX before Division
SMPTypeCategory[NN_aam] = 2;                 // ASCII Adjust AX after Multiply
SMPTypeCategory[NN_aas] = 2;                 // ASCII Adjust AL after Subtraction
SMPTypeCategory[NN_adc] = 5;                 // Add with Carry
SMPTypeCategory[NN_add] = 5;                 // Add
SMPTypeCategory[NN_and] = 10;                 // Logical AND
SMPTypeCategory[NN_arpl] = 1;                // Adjust RPL Field of Selector
SMPTypeCategory[NN_bound] = 1;               // Check Array Index Against Bounds
SMPTypeCategory[NN_bsf] = 2;                 // Bit Scan Forward
SMPTypeCategory[NN_bsr] = 2;                 // Bit Scan Reverse
SMPTypeCategory[NN_bt] = 2;                  // Bit Test
SMPTypeCategory[NN_btc] = 2;                 // Bit Test and Complement
SMPTypeCategory[NN_btr] = 2;                 // Bit Test and Reset
SMPTypeCategory[NN_bts] = 2;                 // Bit Test and Set
SMPTypeCategory[NN_call] = 1;                // Call Procedure
SMPTypeCategory[NN_callfi] = 1;              // Indirect Call Far Procedure
SMPTypeCategory[NN_callni] = 1;              // Indirect Call Near Procedure
SMPTypeCategory[NN_cbw] = 2;                 // AL -> AX (with sign)            ** No ops?
SMPTypeCategory[NN_cwde] = 2;                // AX -> EAX (with sign)           **
SMPTypeCategory[NN_cdqe] = 2;                // EAX -> RAX (with sign)          **
SMPTypeCategory[NN_clc] = 1;                 // Clear Carry Flag
SMPTypeCategory[NN_cld] = 1;                 // Clear Direction Flag
SMPTypeCategory[NN_cli] = 1;                 // Clear Interrupt Flag
SMPTypeCategory[NN_clts] = 1;                // Clear Task-Switched Flag in CR0
SMPTypeCategory[NN_cmc] = 1;                 // Complement Carry Flag
SMPTypeCategory[NN_cmp] = 1;                 // Compare Two Operands
SMPTypeCategory[NN_cmps] = 14;                // Compare Strings
SMPTypeCategory[NN_cwd] = 2;                 // AX -> DX:AX (with sign)
SMPTypeCategory[NN_cdq] = 2;                 // EAX -> EDX:EAX (with sign)
SMPTypeCategory[NN_cqo] = 2;                 // RAX -> RDX:RAX (with sign)
SMPTypeCategory[NN_daa] = 2;                 // Decimal Adjust AL after Addition
SMPTypeCategory[NN_das] = 2;                 // Decimal Adjust AL after Subtraction
SMPTypeCategory[NN_dec] = 4;                 // Decrement by 1
SMPTypeCategory[NN_div] = 7;                 // Unsigned Divide
SMPTypeCategory[NN_enterw] = 0;              // Make Stack Frame for Procedure Parameters  **
SMPTypeCategory[NN_enter] = 0;               // Make Stack Frame for Procedure Parameters  **
SMPTypeCategory[NN_enterd] = 0;              // Make Stack Frame for Procedure Parameters  **
SMPTypeCategory[NN_enterq] = 0;              // Make Stack Frame for Procedure Parameters  **
SMPTypeCategory[NN_hlt] = 0;                 // Halt
SMPTypeCategory[NN_idiv] = 7;                // Signed Divide
SMPTypeCategory[NN_imul] = 7;                // Signed Multiply
SMPTypeCategory[NN_in] = 0;                  // Input from Port                         **
SMPTypeCategory[NN_inc] = 4;                 // Increment by 1
SMPTypeCategory[NN_ins] = 2;                 // Input Byte(s) from Port to String       **
SMPTypeCategory[NN_int] = 1;                 // Call to Interrupt Procedure
SMPTypeCategory[NN_into] = 1;                // Call to Interrupt Procedure if Overflow Flag = 1
SMPTypeCategory[NN_int3] = 1;                // Trap to Debugger
SMPTypeCategory[NN_iretw] = 1;               // Interrupt Return
SMPTypeCategory[NN_iret] = 1;                // Interrupt Return
SMPTypeCategory[NN_iretd] = 1;               // Interrupt Return (use32)
SMPTypeCategory[NN_iretq] = 1;               // Interrupt Return (use64)
SMPTypeCategory[NN_ja] = 1;                  // Jump if Above (CF=0 & ZF=0)
SMPTypeCategory[NN_jae] = 1;                 // Jump if Above or Equal (CF=0)
SMPTypeCategory[NN_jb] = 1;                  // Jump if Below (CF=1)
SMPTypeCategory[NN_jbe] = 1;                 // Jump if Below or Equal (CF=1 | ZF=1)
SMPTypeCategory[NN_jc] = 1;                  // Jump if Carry (CF=1)
SMPTypeCategory[NN_jcxz] = 1;                // Jump if CX is 0
SMPTypeCategory[NN_jecxz] = 1;               // Jump if ECX is 0
SMPTypeCategory[NN_jrcxz] = 1;               // Jump if RCX is 0
SMPTypeCategory[NN_je] = 1;                  // Jump if Equal (ZF=1)
SMPTypeCategory[NN_jg] = 1;                  // Jump if Greater (ZF=0 & SF=OF)
SMPTypeCategory[NN_jge] = 1;                 // Jump if Greater or Equal (SF=OF)
SMPTypeCategory[NN_jl] = 1;                  // Jump if Less (SF!=OF)
SMPTypeCategory[NN_jle] = 1;                 // Jump if Less or Equal (ZF=1 | SF!=OF)
SMPTypeCategory[NN_jna] = 1;                 // Jump if Not Above (CF=1 | ZF=1)
SMPTypeCategory[NN_jnae] = 1;                // Jump if Not Above or Equal (CF=1)
SMPTypeCategory[NN_jnb] = 1;                 // Jump if Not Below (CF=0)
SMPTypeCategory[NN_jnbe] = 1;                // Jump if Not Below or Equal (CF=0 & ZF=0)
SMPTypeCategory[NN_jnc] = 1;                 // Jump if Not Carry (CF=0)
SMPTypeCategory[NN_jne] = 1;                 // Jump if Not Equal (ZF=0)
SMPTypeCategory[NN_jng] = 1;                 // Jump if Not Greater (ZF=1 | SF!=OF)
SMPTypeCategory[NN_jnge] = 1;                // Jump if Not Greater or Equal (ZF=1)
SMPTypeCategory[NN_jnl] = 1;                 // Jump if Not Less (SF=OF)
SMPTypeCategory[NN_jnle] = 1;                // Jump if Not Less or Equal (ZF=0 & SF=OF)
SMPTypeCategory[NN_jno] = 1;                 // Jump if Not Overflow (OF=0)
SMPTypeCategory[NN_jnp] = 1;                 // Jump if Not Parity (PF=0)
SMPTypeCategory[NN_jns] = 1;                 // Jump if Not Sign (SF=0)
SMPTypeCategory[NN_jnz] = 1;                 // Jump if Not Zero (ZF=0)
SMPTypeCategory[NN_jo] = 1;                  // Jump if Overflow (OF=1)
SMPTypeCategory[NN_jp] = 1;                  // Jump if Parity (PF=1)
SMPTypeCategory[NN_jpe] = 1;                 // Jump if Parity Even (PF=1)
SMPTypeCategory[NN_jpo] = 1;                 // Jump if Parity Odd  (PF=0)
SMPTypeCategory[NN_js] = 1;                  // Jump if Sign (SF=1)
SMPTypeCategory[NN_jz] = 1;                  // Jump if Zero (ZF=1)
SMPTypeCategory[NN_jmp] = 1;                 // Jump
SMPTypeCategory[NN_jmpfi] = 1;               // Indirect Far Jump
SMPTypeCategory[NN_jmpni] = 1;               // Indirect Near Jump
SMPTypeCategory[NN_jmpshort] = 1;            // Jump Short (not used)
SMPTypeCategory[NN_lahf] = 2;                // Load Flags into AH Register
SMPTypeCategory[NN_lar] = 2;                 // Load Access Rights Byte
SMPTypeCategory[NN_lea] = 0;                 // Load Effective Address           **
SMPTypeCategory[NN_leavew] = 0;              // High Level Procedure Exit        **
SMPTypeCategory[NN_leave] = 0;               // High Level Procedure Exit        **
SMPTypeCategory[NN_leaved] = 0;              // High Level Procedure Exit        **
SMPTypeCategory[NN_leaveq] = 0;              // High Level Procedure Exit        **
SMPTypeCategory[NN_lgdt] = 0;                // Load Global Descriptor Table Register
SMPTypeCategory[NN_lidt] = 0;                // Load Interrupt Descriptor Table Register
SMPTypeCategory[NN_lgs] = 6;                 // Load Full Pointer to GS:xx
SMPTypeCategory[NN_lss] = 6;                 // Load Full Pointer to SS:xx
SMPTypeCategory[NN_lds] = 6;                 // Load Full Pointer to DS:xx
SMPTypeCategory[NN_les] = 6;                 // Load Full Pointer to ES:xx
SMPTypeCategory[NN_lfs] = 6;                 // Load Full Pointer to FS:xx
SMPTypeCategory[NN_lldt] = 0;                // Load Local Descriptor Table Register
SMPTypeCategory[NN_lmsw] = 1;                // Load Machine Status Word
SMPTypeCategory[NN_lock] = 1;                // Assert LOCK# Signal Prefix
SMPTypeCategory[NN_lods] = 0;                // Load String
SMPTypeCategory[NN_loopw] = 1;               // Loop while ECX != 0
SMPTypeCategory[NN_loop] = 1;                // Loop while CX != 0
SMPTypeCategory[NN_loopd] = 1;               // Loop while ECX != 0
SMPTypeCategory[NN_loopq] = 1;               // Loop while RCX != 0
SMPTypeCategory[NN_loopwe] = 1;              // Loop while CX != 0 and ZF=1
SMPTypeCategory[NN_loope] = 1;               // Loop while rCX != 0 and ZF=1
SMPTypeCategory[NN_loopde] = 1;              // Loop while ECX != 0 and ZF=1
SMPTypeCategory[NN_loopqe] = 1;              // Loop while RCX != 0 and ZF=1
SMPTypeCategory[NN_loopwne] = 1;             // Loop while CX != 0 and ZF=0
SMPTypeCategory[NN_loopne] = 1;              // Loop while rCX != 0 and ZF=0
SMPTypeCategory[NN_loopdne] = 1;             // Loop while ECX != 0 and ZF=0
SMPTypeCategory[NN_loopqne] = 1;             // Loop while RCX != 0 and ZF=0
SMPTypeCategory[NN_lsl] = 6;                 // Load Segment Limit
SMPTypeCategory[NN_ltr] = 1;                 // Load Task Register
SMPTypeCategory[NN_mov] = 3;                 // Move Data
SMPTypeCategory[NN_movsp] = 3;               // Move to/from Special Registers
SMPTypeCategory[NN_movs] = 0;                // Move Byte(s) from String to String
SMPTypeCategory[NN_movsx] = 3;               // Move with Sign-Extend
SMPTypeCategory[NN_movzx] = 3;               // Move with Zero-Extend
SMPTypeCategory[NN_mul] = 7;                 // Unsigned Multiplication of AL or AX
SMPTypeCategory[NN_neg] = 2;                 // Two's Complement Negation
SMPTypeCategory[NN_nop] = 1;                 // No Operation
SMPTypeCategory[NN_not] = 2;                 // One's Complement Negation
SMPTypeCategory[NN_or] = 10;                  // Logical Inclusive OR
SMPTypeCategory[NN_out] = 0;                 // Output to Port
SMPTypeCategory[NN_outs] = 0;                // Output Byte(s) to Port
SMPTypeCategory[NN_pop] = 11;                 // Pop a word from the Stack
SMPTypeCategory[NN_popaw] = 11;               // Pop all General Registers
SMPTypeCategory[NN_popa] = 11;                // Pop all General Registers
SMPTypeCategory[NN_popad] = 11;               // Pop all General Registers (use32)
SMPTypeCategory[NN_popaq] = 11;               // Pop all General Registers (use64)
SMPTypeCategory[NN_popfw] = 11;               // Pop Stack into Flags Register         **
SMPTypeCategory[NN_popf] = 11;                // Pop Stack into Flags Register         **
SMPTypeCategory[NN_popfd] = 11;               // Pop Stack into Eflags Register        **
SMPTypeCategory[NN_popfq] = 11;               // Pop Stack into Rflags Register        **
SMPTypeCategory[NN_push] = 11;                // Push Operand onto the Stack
SMPTypeCategory[NN_pushaw] = 11;              // Push all General Registers
SMPTypeCategory[NN_pusha] = 11;               // Push all General Registers
SMPTypeCategory[NN_pushad] = 11;              // Push all General Registers (use32)
SMPTypeCategory[NN_pushaq] = 11;              // Push all General Registers (use64)
SMPTypeCategory[NN_pushfw] = 11;              // Push Flags Register onto the Stack
SMPTypeCategory[NN_pushf] = 11;               // Push Flags Register onto the Stack
SMPTypeCategory[NN_pushfd] = 11;              // Push Flags Register onto the Stack (use32)
SMPTypeCategory[NN_pushfq] = 11;              // Push Flags Register onto the Stack (use64)
SMPTypeCategory[NN_rcl] = 2;                 // Rotate Through Carry Left
SMPTypeCategory[NN_rcr] = 2;                 // Rotate Through Carry Right
SMPTypeCategory[NN_rol] = 2;                 // Rotate Left
SMPTypeCategory[NN_ror] = 2;                 // Rotate Right
SMPTypeCategory[NN_rep] = 0;                 // Repeat String Operation
SMPTypeCategory[NN_repe] = 0;                // Repeat String Operation while ZF=1
SMPTypeCategory[NN_repne] = 0;               // Repeat String Operation while ZF=0
SMPTypeCategory[NN_retn] = 0;                // Return Near from Procedure
SMPTypeCategory[NN_retf] = 0;                // Return Far from Procedure
SMPTypeCategory[NN_sahf] = 14;                // Store AH into Flags Register
SMPTypeCategory[NN_sal] = 2;                 // Shift Arithmetic Left
SMPTypeCategory[NN_sar] = 2;                 // Shift Arithmetic Right
SMPTypeCategory[NN_shl] = 2;                 // Shift Logical Left
SMPTypeCategory[NN_shr] = 2;                 // Shift Logical Right
SMPTypeCategory[NN_sbb] = 5;                 // Integer Subtraction with Borrow
SMPTypeCategory[NN_scas] = 14;                // Compare String
SMPTypeCategory[NN_seta] = 2;                // Set Byte if Above (CF=0 & ZF=0)
SMPTypeCategory[NN_setae] = 2;               // Set Byte if Above or Equal (CF=0)
SMPTypeCategory[NN_setb] = 2;                // Set Byte if Below (CF=1)
SMPTypeCategory[NN_setbe] = 2;               // Set Byte if Below or Equal (CF=1 | ZF=1)
SMPTypeCategory[NN_setc] = 2;                // Set Byte if Carry (CF=1)
SMPTypeCategory[NN_sete] = 2;                // Set Byte if Equal (ZF=1)
SMPTypeCategory[NN_setg] = 2;                // Set Byte if Greater (ZF=0 & SF=OF)
SMPTypeCategory[NN_setge] = 2;               // Set Byte if Greater or Equal (SF=OF)
SMPTypeCategory[NN_setl] = 2;                // Set Byte if Less (SF!=OF)
SMPTypeCategory[NN_setle] = 2;               // Set Byte if Less or Equal (ZF=1 | SF!=OF)
SMPTypeCategory[NN_setna] = 2;               // Set Byte if Not Above (CF=1 | ZF=1)
SMPTypeCategory[NN_setnae] = 2;              // Set Byte if Not Above or Equal (CF=1)
SMPTypeCategory[NN_setnb] = 2;               // Set Byte if Not Below (CF=0)
SMPTypeCategory[NN_setnbe] = 2;              // Set Byte if Not Below or Equal (CF=0 & ZF=0)
SMPTypeCategory[NN_setnc] = 2;               // Set Byte if Not Carry (CF=0)
SMPTypeCategory[NN_setne] = 2;               // Set Byte if Not Equal (ZF=0)
SMPTypeCategory[NN_setng] = 2;               // Set Byte if Not Greater (ZF=1 | SF!=OF)
SMPTypeCategory[NN_setnge] = 2;              // Set Byte if Not Greater or Equal (ZF=1)
SMPTypeCategory[NN_setnl] = 2;               // Set Byte if Not Less (SF=OF)
SMPTypeCategory[NN_setnle] = 2;              // Set Byte if Not Less or Equal (ZF=0 & SF=OF)
SMPTypeCategory[NN_setno] = 2;               // Set Byte if Not Overflow (OF=0)
SMPTypeCategory[NN_setnp] = 2;               // Set Byte if Not Parity (PF=0)
SMPTypeCategory[NN_setns] = 2;               // Set Byte if Not Sign (SF=0)
SMPTypeCategory[NN_setnz] = 2;               // Set Byte if Not Zero (ZF=0)
SMPTypeCategory[NN_seto] = 2;                // Set Byte if Overflow (OF=1)
SMPTypeCategory[NN_setp] = 2;                // Set Byte if Parity (PF=1)
SMPTypeCategory[NN_setpe] = 2;               // Set Byte if Parity Even (PF=1)
SMPTypeCategory[NN_setpo] = 2;               // Set Byte if Parity Odd  (PF=0)
SMPTypeCategory[NN_sets] = 2;                // Set Byte if Sign (SF=1)
SMPTypeCategory[NN_setz] = 2;                // Set Byte if Zero (ZF=1)
SMPTypeCategory[NN_sgdt] = 0;                // Store Global Descriptor Table Register
SMPTypeCategory[NN_sidt] = 0;                // Store Interrupt Descriptor Table Register
SMPTypeCategory[NN_shld] = 2;                // Double Precision Shift Left
SMPTypeCategory[NN_shrd] = 2;                // Double Precision Shift Right
SMPTypeCategory[NN_sldt] = 6;                // Store Local Descriptor Table Register
SMPTypeCategory[NN_smsw] = 2;                // Store Machine Status Word
SMPTypeCategory[NN_stc] = 1;                 // Set Carry Flag
SMPTypeCategory[NN_std] = 1;                 // Set Direction Flag
SMPTypeCategory[NN_sti] = 1;                 // Set Interrupt Flag
SMPTypeCategory[NN_stos] = 0;                // Store String
SMPTypeCategory[NN_str] = 6;                 // Store Task Register
SMPTypeCategory[NN_sub] = 5;                 // Integer Subtraction
SMPTypeCategory[NN_test] = 1;                // Logical Compare
SMPTypeCategory[NN_verr] = 1;                // Verify a Segment for Reading
SMPTypeCategory[NN_verw] = 1;                // Verify a Segment for Writing
SMPTypeCategory[NN_wait] = 1;                // Wait until BUSY# Pin is Inactive (HIGH)
SMPTypeCategory[NN_xchg] = 12;                // Exchange Register/Memory with Register
SMPTypeCategory[NN_xlat] = 0;                // Table Lookup Translation
SMPTypeCategory[NN_xor] = 2;                 // Logical Exclusive OR

//
//      486 instructions
//

SMPTypeCategory[NN_cmpxchg] = 12;             // Compare and Exchange
SMPTypeCategory[NN_bswap] = 1;               // Swap bytes in register
SMPTypeCategory[NN_xadd] = 12;                // t<-dest; dest<-src+dest; src<-t
SMPTypeCategory[NN_invd] = 1;                // Invalidate Data Cache
SMPTypeCategory[NN_wbinvd] = 1;              // Invalidate Data Cache (write changes)
SMPTypeCategory[NN_invlpg] = 1;              // Invalidate TLB entry

//
//      Pentium instructions
//

SMPTypeCategory[NN_rdmsr] = 8;               // Read Machine Status Register
SMPTypeCategory[NN_wrmsr] = 1;               // Write Machine Status Register
SMPTypeCategory[NN_cpuid] = 8;               // Get CPU ID
SMPTypeCategory[NN_cmpxchg8b] = 12;           // Compare and Exchange Eight Bytes
SMPTypeCategory[NN_rdtsc] = 8;               // Read Time Stamp Counter
SMPTypeCategory[NN_rsm] = 1;                 // Resume from System Management Mode

//
//      Pentium Pro instructions
//

SMPTypeCategory[NN_cmova] = 12;               // Move if Above (CF=0 & ZF=0)
SMPTypeCategory[NN_cmovb] = 12;               // Move if Below (CF=1)
SMPTypeCategory[NN_cmovbe] = 12;              // Move if Below or Equal (CF=1 | ZF=1)
SMPTypeCategory[NN_cmovg] = 12;               // Move if Greater (ZF=0 & SF=OF)
SMPTypeCategory[NN_cmovge] = 12;              // Move if Greater or Equal (SF=OF)
SMPTypeCategory[NN_cmovl] = 12;               // Move if Less (SF!=OF)
SMPTypeCategory[NN_cmovle] = 12;              // Move if Less or Equal (ZF=1 | SF!=OF)
SMPTypeCategory[NN_cmovnb] = 12;              // Move if Not Below (CF=0)
SMPTypeCategory[NN_cmovno] = 12;              // Move if Not Overflow (OF=0)
SMPTypeCategory[NN_cmovnp] = 12;              // Move if Not Parity (PF=0)
SMPTypeCategory[NN_cmovns] = 12;              // Move if Not Sign (SF=0)
SMPTypeCategory[NN_cmovnz] = 12;              // Move if Not Zero (ZF=0)
SMPTypeCategory[NN_cmovo] = 12;               // Move if Overflow (OF=1)
SMPTypeCategory[NN_cmovp] = 12;               // Move if Parity (PF=1)
SMPTypeCategory[NN_cmovs] = 12;               // Move if Sign (SF=1)
SMPTypeCategory[NN_cmovz] = 12;               // Move if Zero (ZF=1)
SMPTypeCategory[NN_fcmovb] = 1;              // Floating Move if Below          
SMPTypeCategory[NN_fcmove] = 1;              // Floating Move if Equal          
SMPTypeCategory[NN_fcmovbe] = 1;             // Floating Move if Below or Equal 
SMPTypeCategory[NN_fcmovu] = 1;              // Floating Move if Unordered      
SMPTypeCategory[NN_fcmovnb] = 1;             // Floating Move if Not Below      
SMPTypeCategory[NN_fcmovne] = 1;             // Floating Move if Not Equal      
SMPTypeCategory[NN_fcmovnbe] = 1;            // Floating Move if Not Below or Equal
SMPTypeCategory[NN_fcmovnu] = 1;             // Floating Move if Not Unordered     
SMPTypeCategory[NN_fcomi] = 1;               // FP Compare, result in EFLAGS
SMPTypeCategory[NN_fucomi] = 1;              // FP Unordered Compare, result in EFLAGS
SMPTypeCategory[NN_fcomip] = 1;              // FP Compare, result in EFLAGS, pop stack
SMPTypeCategory[NN_fucomip] = 1;             // FP Unordered Compare, result in EFLAGS, pop stack
SMPTypeCategory[NN_rdpmc] = 8;               // Read Performance Monitor Counter

//
//      FPP instructions
//

SMPTypeCategory[NN_fld] = 14;                 // Load Real             ** Infer src is 'n'
SMPTypeCategory[NN_fst] = 9;                 // Store Real            
SMPTypeCategory[NN_fstp] = 9;                // Store Real and Pop   
SMPTypeCategory[NN_fxch] = 1;                // Exchange Registers
SMPTypeCategory[NN_fild] = 14;                // Load Integer          ** Infer src is 'n'
SMPTypeCategory[NN_fist] = 13;                // Store Integer
SMPTypeCategory[NN_fistp] = 13;               // Store Integer and Pop
SMPTypeCategory[NN_fbld] = 1;                // Load BCD
SMPTypeCategory[NN_fbstp] = 13;               // Store BCD and Pop
SMPTypeCategory[NN_fadd] = 14;                // Add Real
SMPTypeCategory[NN_faddp] = 14;               // Add Real and Pop
SMPTypeCategory[NN_fiadd] = 14;               // Add Integer
SMPTypeCategory[NN_fsub] = 14;                // Subtract Real
SMPTypeCategory[NN_fsubp] = 14;               // Subtract Real and Pop
SMPTypeCategory[NN_fisub] = 14;               // Subtract Integer
SMPTypeCategory[NN_fsubr] = 14;               // Subtract Real Reversed
SMPTypeCategory[NN_fsubrp] = 14;              // Subtract Real Reversed and Pop
SMPTypeCategory[NN_fisubr] = 14;              // Subtract Integer Reversed
SMPTypeCategory[NN_fmul] = 14;                // Multiply Real
SMPTypeCategory[NN_fmulp] = 14;               // Multiply Real and Pop
SMPTypeCategory[NN_fimul] = 14;               // Multiply Integer
SMPTypeCategory[NN_fdiv] = 14;                // Divide Real
SMPTypeCategory[NN_fdivp] = 14;               // Divide Real and Pop
SMPTypeCategory[NN_fidiv] = 14;               // Divide Integer
SMPTypeCategory[NN_fdivr] = 14;               // Divide Real Reversed
SMPTypeCategory[NN_fdivrp] = 14;              // Divide Real Reversed and Pop
SMPTypeCategory[NN_fidivr] = 14;              // Divide Integer Reversed
SMPTypeCategory[NN_fsqrt] = 1;               // Square Root
SMPTypeCategory[NN_fscale] = 1;              // Scale:  st(0) <- st(0) * 2^st(1)
SMPTypeCategory[NN_fprem] = 1;               // Partial Remainder
SMPTypeCategory[NN_frndint] = 1;             // Round to Integer
SMPTypeCategory[NN_fxtract] = 1;             // Extract exponent and significand
SMPTypeCategory[NN_fabs] = 1;                // Absolute value
SMPTypeCategory[NN_fchs] = 1;                // Change Sign
SMPTypeCategory[NN_fcom] = 1;                // Compare Real
SMPTypeCategory[NN_fcomp] = 1;               // Compare Real and Pop
SMPTypeCategory[NN_fcompp] = 1;              // Compare Real and Pop Twice
SMPTypeCategory[NN_ficom] = 1;               // Compare Integer
SMPTypeCategory[NN_ficomp] = 1;              // Compare Integer and Pop
SMPTypeCategory[NN_ftst] = 1;                // Test
SMPTypeCategory[NN_fxam] = 1;                // Examine
SMPTypeCategory[NN_fptan] = 1;               // Partial tangent
SMPTypeCategory[NN_fpatan] = 1;              // Partial arctangent
SMPTypeCategory[NN_f2xm1] = 1;               // 2^x - 1
SMPTypeCategory[NN_fyl2x] = 1;               // Y * lg2(X)
SMPTypeCategory[NN_fyl2xp1] = 1;             // Y * lg2(X+1)
SMPTypeCategory[NN_fldz] = 1;                // Load +0.0
SMPTypeCategory[NN_fld1] = 1;                // Load +1.0
SMPTypeCategory[NN_fldpi] = 1;               // Load PI=3.14...
SMPTypeCategory[NN_fldl2t] = 1;              // Load lg2(10)
SMPTypeCategory[NN_fldl2e] = 1;              // Load lg2(e)
SMPTypeCategory[NN_fldlg2] = 1;              // Load lg10(2)
SMPTypeCategory[NN_fldln2] = 1;              // Load ln(2)
SMPTypeCategory[NN_finit] = 1;               // Initialize Processor
SMPTypeCategory[NN_fninit] = 1;              // Initialize Processor (no wait)
SMPTypeCategory[NN_fsetpm] = 1;              // Set Protected Mode
SMPTypeCategory[NN_fldcw] = 14;               // Load Control Word
SMPTypeCategory[NN_fstcw] = 13;               // Store Control Word
SMPTypeCategory[NN_fnstcw] = 13;              // Store Control Word (no wait)
SMPTypeCategory[NN_fstsw] = 2;               // Store Status Word to memory or AX
SMPTypeCategory[NN_fnstsw] = 2;              // Store Status Word (no wait) to memory or AX
SMPTypeCategory[NN_fclex] = 1;               // Clear Exceptions
SMPTypeCategory[NN_fnclex] = 1;              // Clear Exceptions (no wait)
SMPTypeCategory[NN_fstenv] = 13;              // Store Environment