Skip to content
Snippets Groups Projects
SMPFunction.cpp 149 KiB
Newer Older
	if (DebugFlag) {
		this->Dump();
	}
	// One time only: Set the types of immediate values, flags register, stack and frame
	//  pointers, and floating point registers.
	if (FirstIter) {
		for (CurrInst = this->Instrs.begin(); CurrInst != this->Instrs.end(); ++CurrInst) {
			if (DebugFlag) {
				msg("SetImmedTypes for inst at %x: %s\n", CurrInst->GetAddr(), CurrInst->GetDisasm());
			}
			CurrInst->SetImmedTypes(this->UseFP);
	// Iterate until no more changes: set types in DEF and USE lists based on RTL
clc5q's avatar
clc5q committed
	//  operators and the instruction category, SSA DEF-USE chains, etc.
		do {
			changed = false;
			// Step one: Infer types within instructions, context free.
			// Step two, propagating DEF types to all USEs, happens within step one
			//  whenever a DEF type is set for the first time.
			for (CurrInst = this->Instrs.begin(); CurrInst != this->Instrs.end(); ++CurrInst) {
				if (DebugFlag) msg("Inferring types for %s\n", CurrInst->GetDisasm());
				NewChange = CurrInst->InferTypes();
				changed = (changed || NewChange);
			}
		} while (changed);
clc5q's avatar
clc5q committed
		if (DebugFlag) msg("Finished type inference steps 1 and 2.\n");
		// Step three: If all USEs of an SSA name have the same type, but the DEF has no
		//  type, then infer that the DEF must have the same type.
		this->TypedDefs = 0;
		this->UntypedDefs = 0;
		this->TypedPhiDefs = 0;
		this->UntypedPhiDefs = 0;
clc5q's avatar
clc5q committed
		for (CurrInst = this->Instrs.begin(); CurrInst != this->Instrs.end(); ++CurrInst) {
			// Find any DEF that still has type UNINIT.
			CurrDef = CurrInst->GetFirstDef();
			while (CurrDef != CurrInst->GetLastDef()) {
				// Set erase() and insert() are needed to change types of DEFs, so
				//  get hold of the next iterator value now.
				NextDef = CurrDef;
				++NextDef;
				if (UNINIT != CurrDef->GetType()) {
					++(this->TypedDefs);
				}
				else {
					++(this->UntypedDefs);
clc5q's avatar
clc5q committed
					op_t DefOp = CurrDef->GetOp();
					if (MDIsIndirectMemoryOpnd(DefOp, this->UseFP)
						|| (o_mem == DefOp.type)
						|| ((o_reg != DefOp.type) && UnsafeFunc)) {
						// Don't want to infer along DEF-USE chains for indirect
						//  memory accesses until we have alias analysis.
						++CurrDef;
						continue;
					}
clc5q's avatar
clc5q committed
					ea_t DefAddr = CurrInst->GetAddr();
					// Call inference method based on whether it is a block-local
					//  name or a global name.
					if (CurrInst->GetBlock()->IsLocalName(DefOp)) {
						set<op_t, LessOp>::iterator NameIter;
						NameIter = CurrInst->GetBlock()->FindLocalName(DefOp);
						assert(CurrInst->GetBlock()->GetLastLocalName() != NameIter);
						unsigned int LocIndex = ExtractGlobalIndex(*NameIter);
						NewChange = CurrInst->GetBlock()->InferLocalDefType(DefOp, LocIndex, DefAddr);
						if (NewChange) {
							--(this->UntypedDefs);
							++(this->TypedDefs);
						}
clc5q's avatar
clc5q committed
						changed = (changed || NewChange);
					}
					else {
						// global name
						bool CallInst = ((CALL == CurrInst->GetDataFlowType())
							|| (INDIR_CALL == CurrInst->GetDataFlowType()));
						SMPOperandType DefType = UNINIT;
						DefType = this->InferGlobalDefType(DefOp,
							CurrDef->GetSSANum(), CurrInst->GetBlock(), CallInst);
						if (IsNotEqType(UNINIT, DefType)) {
							CurrDef = CurrInst->SetDefType(DefOp, DefType);
							--(this->UntypedDefs);
							++(this->TypedDefs);
							NewChange = true;
clc5q's avatar
clc5q committed
						changed = (changed || NewChange);
					}
				}
				CurrDef = NextDef;
			} // end while all DEFs in the DEF set
		} // end for all instructions
		if (DebugFlag) msg("Finished type inference step 3.\n");
		if (!changed) { // Check for Phi function DEFs that are still UNINIT
			for (CurrBlock = this->Blocks.begin(); CurrBlock != this->Blocks.end(); ++CurrBlock) {
				changed |= CurrBlock->InferAllPhiDefTypes();
			}
		}
		if (DebugFlag) msg("Finished unconditional phi type inference.\n");

#if SMP_CONDITIONAL_TYPE_PROPAGATION
		if (!changed) { // Try conditional type propagation
			changed |= this->ConditionalTypePropagation();
			if (DebugFlag)
				msg("changed = %d after conditional type propagation.\n", changed);
		}
#endif

	} while (changed);

	// Record the meet of all register types that reach RETURN instructions.
	this->MDFindReturnTypes();
	return;
} // end of SMPFunction::InferTypes()
// Apply the profiler information to this function once we've infered everything we can about it.
void SMPFunction::ApplyProfilerInformation(ProfilerInformation* pi)
{
	assert(pi);
	SetIsSpeculative(true);	

	list<SMPInstr>::iterator CurrInst;
	set<DefOrUse, LessDefUse>::iterator CurrDef, NextDef;
	
	bool DebugFlag = false;
#if SMP_DEBUG_TYPE_INFERENCE
	DebugFlag |= (0 == strcmp("dohanoi", this->GetFuncName()));
#endif

	// for each instruction in this function 
	for (CurrInst = this->Instrs.begin(); CurrInst != this->Instrs.end(); ++CurrInst) 
	{
		// lookup whether a load at this instruction was profiled as always numeric 
		InstructionInformation* ii=pi->GetInfo( CurrInst->GetAddr());
		if(ii && DebugFlag)
			msg("Found instruction information for %x\n", CurrInst->GetAddr());
		if(ii && ii->isNumeric())
		{
			msg("Found instruction information for %x and it's numeric!\n", CurrInst->GetAddr());
			CurrInst->UpdateMemLoadTypes((SMPOperandType)(NUMERIC|PROF_BASE));
		}

		// lookup whether this instruction has been profiled as an indirect call
		set<ea_t> indirect_call_targets=pi->GetIndirectCallTargets(CurrInst->GetAddr());

		for ( set<ea_t>::iterator ict_iter=indirect_call_targets.begin();
			ict_iter!=indirect_call_targets.end();
			ict_iter++ )
		{
			ea_t target=*ict_iter;
			if(vector_exists(target, IndirectCallTargets))
				IndirectCallTargets.push_back(target);
			if(vector_exists(target,AllCallTargets))
				AllCallTargets.push_back(target);


		}

	}
}	// end of SMPFunction::ApplyProfilerInformation

clc5q's avatar
clc5q committed
// For the UNINIT type DEF DefOp, see if all its USEs have
//  a single type. If so, set the DEF to that type and return type,
//  else return UNINIT.
SMPOperandType SMPFunction::InferGlobalDefType(op_t DefOp, int SSANum, SMPBasicBlock *DefBlock, bool CallInst) {
	bool DebugFlag = false;
	bool FoundNumeric = false;
	bool FoundPointer = false;
	bool FoundUnknown = false;
	bool FoundUninit = false;

#if SMP_DEBUG_TYPE_INFERENCE
	DebugFlag |= (0 == strcmp("mem_init", this->GetFuncName()));
clc5q's avatar
clc5q committed

	if (DebugFlag) {
		msg("InferGlobalDefType for SSANum %d of ", SSANum);
		PrintOperand(DefOp);
		msg("\n");
	}

	list<SMPInstr>::iterator InstIter;

	assert(0 <= SSANum);
	set<DefOrUse, LessDefUse>::iterator CurrUse;
	// Go through all instructions in the function and find the instructions
clc5q's avatar
clc5q committed
	//  that have USEs of DefOp with SSANum. If all USEs in the chain have
	//  a single type (other than UNINIT), change the DEF type to match the
	//  USE type and set changed to true.
clc5q's avatar
clc5q committed
	bool FirstUseSeen = false;
	SMPOperandType UseType = UNINIT;
	SMPOperandType PtrType = UNINIT;
clc5q's avatar
clc5q committed
	for (InstIter = this->Instrs.begin(); InstIter != this->Instrs.end(); ++InstIter) {
		CurrUse = InstIter->FindUse(DefOp);
		if (CurrUse != InstIter->GetLastUse()) { // found a USE of DefOp
			if (CurrUse->GetSSANum() == SSANum) { // matched SSA number
				if (!FirstUseSeen) {
					FirstUseSeen = true;
				}
				UseType = CurrUse->GetType();
				FoundNumeric |= (IsNumeric(UseType));
				FoundUnknown |= (IsUnknown(UseType));
				FoundUninit |= (IsEqType(UNINIT, UseType));
				if (IsDataPtr(UseType)) {
					if (FoundPointer) {
						if (IsNotEqType(PtrType, UseType)) {
clc5q's avatar
clc5q committed
#if SMP_DEBUG_TYPE_INFERENCE
							msg("WARNING: Differing ptr types in global chain:");
							msg(" Prev: %d Current: %d %s\n", PtrType, UseType,
								InstIter->GetDisasm());
clc5q's avatar
clc5q committed
#endif
							PtrType = POINTER;
						}
					}
					else {
						FoundPointer = true;
						PtrType = UseType;
					}
clc5q's avatar
clc5q committed
				}
			} // end if matched SSA #
		} // end if found a USE of DefOp
clc5q's avatar
clc5q committed
	} // end for all instructions

	// Now, we need to check the phi functions and see if there are Phi USEs of the DefOp.
	set<SMPPhiFunction, LessPhi>::iterator UsePhi;
	for (BlockNum = 0; BlockNum < (size_t) this->BlockCount; ++BlockNum) {
		UsePhi = this->RPOBlocks.at(BlockNum)->FindPhi(DefOp);
		if (UsePhi != this->RPOBlocks.at(BlockNum)->GetLastPhi()) {
			// Found phi function for DefOp. See if we can find a USE
			//  with USE SSANum corresponding to our DEF SSANum.
			for (size_t PhiIndex = 0; PhiIndex < UsePhi->GetPhiListSize(); ++PhiIndex) {
				if (UsePhi->GetUseSSANum(PhiIndex) == SSANum) {
					// We have a Phi USE that matches our DEF.
					if (!FirstUseSeen) {
						FirstUseSeen = true;
					UseType = UsePhi->GetUseType(PhiIndex);
					FoundNumeric |= (IsNumeric(UseType));
					FoundUnknown |= (IsUnknown(UseType));
					FoundUninit |= (IsEqType(UNINIT, UseType));
					if (IsDataPtr(UseType)) {
						if (FoundPointer) {
							if (IsNotEqType(PtrType, UseType)) {
clc5q's avatar
clc5q committed
								;
#if SMP_DEBUG_TYPE_INFERENCE
								msg("WARNING: Differing ptr types in global chain at Phi:");
								msg(" Prev: %d Current: %d BlockNum: %d\n",
									PtrType, UseType, BlockNum);
clc5q's avatar
clc5q committed
#endif
							}
							PtrType = POINTER;
						}
						else {
							FoundPointer = true;
							PtrType = UseType;
						}
				} // end if matched SSA #
			} // end for all Phi USEs
		} // end if found matching Phi function for DefOp
	} // end for all block numbers in the function
	if (FirstUseSeen) {
		// Do we have a consistent type?
		// If we see any definite POINTER uses, we must set the DEF
		//  to type POINTER or a refinement of it.
		if (FoundPointer)
			UseType = PtrType;
		else if (FoundNumeric && !FoundUninit && !FoundUnknown)
			UseType = NUMERIC;
		else
			return UNINIT; // no POINTER, but no consistent type
clc5q's avatar
clc5q committed
		assert(UNINIT != UseType);
		if (DebugFlag) msg("Inferring global DEF of type %d\n", UseType);
		return UseType;
clc5q's avatar
clc5q committed
	}
	else { // not FirstUseSeen
		// If the block returns, then the DEFs could be used in the caller.
		if (!(DefBlock->HasReturn())) {
			UseType = UNINIT;
			// We probably want to set the DEF type to NUMERIC if there are no uses.
			//  Have to check these cases out manually in the *.asm first.  **!!**
clc5q's avatar
clc5q committed
			//  If they are memory DEFs, we cannot optimize, so we might want to see
			//  if we can find a reg DEF with no USEs here. We also want to exclude
			//  warning messages for the caller-saved reg DEFs generated for CALLs.
			if ((o_reg == DefOp.type) && (!CallInst)) {
				;
#if SMP_WARN_UNUSED_DEFS
				msg("WARNING: global DEF with no USEs for SSANum %d DefOp: ",
					SSANum);
clc5q's avatar
clc5q committed
				PrintOperand(DefOp);
				msg("\n");
clc5q's avatar
clc5q committed
			}
clc5q's avatar
clc5q committed
	}
	return UseType;
clc5q's avatar
clc5q committed
} // end of SMPFunction::InferGlobalDefType()

#define SMP_SIMPLE_CONDITIONAL_TYPE_PROPAGATION 1
#if SMP_SIMPLE_CONDITIONAL_TYPE_PROPAGATION
// The simple form of conditional type propagation observes that we
//  simply need to apply the meet operator over Phi function USEs and
//  then propagate any DEF type changes using PropagateGlobalDefType().
//  The outermost iteration over all type inference methods in InferTypes()
//  will take care of all the propagation that is handled by the work list
//  processing in the textbook algorithm.
// Iteration convergence might be slower in the simple approach, but the code
//  is much simpler to debug.
bool SMPFunction::ConditionalTypePropagation(void) {
	bool changed = false;
	list<SMPBasicBlock>::iterator CurrBlock;
	vector<list<SMPBasicBlock>::iterator>::iterator CurrRPO;
	set<SMPPhiFunction, LessPhi>::iterator CurrPhi;

	for (CurrRPO = this->RPOBlocks.begin(); CurrRPO != this->RPOBlocks.end(); ++CurrRPO) {
		CurrBlock = *CurrRPO;
		SMPOperandType MeetType;
		for (CurrPhi = CurrBlock->GetFirstPhi(); CurrPhi != CurrBlock->GetLastPhi(); ++CurrPhi) {
			MeetType = CurrPhi->ConditionalMeetType();
			// Here we use a straight equality test, not our macros,
			//  because we consider it a change if the MeetType is
			//  profiler derived and the DEFType is not.
			if (MeetType == CurrPhi->GetDefType())
				continue;
			// Change the DEF type to the MeetType and propagate.
			op_t DefOp = CurrPhi->GetAnyOp();
			CurrPhi = CurrBlock->SetPhiDefType(DefOp, MeetType);
			changed = true;
			this->ResetProcessedBlocks();
			changed |= CurrBlock->PropagateGlobalDefType(DefOp,
				MeetType, CurrPhi->GetDefSSANum());
		} // end for all phi functions in the current block
	} // end for all blocks

	return changed;
} // end of SMPFunction::ConditionalTypePropagation()

#else  // not SMP_SIMPLE_CONDITIONAL_TYPE_PROPAGATION

// Apply the SCC (Sparse Conditional Constant) propagation algorithm to
//  propagate types starting from unresolved Phi DEFs.
bool SMPFunction::ConditionalTypePropagation(void) {
	bool changed = false;

	// Collections of Phi functions and instructions that have a DEF
	//  with type UNINIT for the current global name.
	map<int, set<SMPPhiFunction, LessPhi>::iterator> UninitDEFPhis;
	vector<list<SMPInstr>::iterator> UninitDEFInsts;

	// Work lists of Phi functions and instructions that need to be processed
	//  according to the SCC algorithm.
	list<map<int, set<SMPPhiFunction, LessPhi>::iterator>::iterator> PhiWorkList;
	list<vector<list<SMPInstr>::iterator>::iterator> InstWorkList;

	// Iterate through all global names that are either (1) registers
	//  or (2) stack locations in SAFE functions.
	set<op_t, LessOp>::iterator CurrGlob;
	for (CurrGlob = this->GetFirstGlobalName(); CurrGlob != this->GetLastGlobalName(); ++CurrGlob) {
		op_t GlobalOp = *CurrGlob;
		list<SMPBasicBlock>::iterator CurrBlock;
		vector<list<SMPBasicBlock>::iterator>::iterator CurrRPO;
		if (MDIsIndirectMemoryOpnd(GlobalOp, this->UseFP))
			continue; // need alias analysis to process indirect accesses
		if ((GlobalOp.type != o_reg)
			&& (!((this->ReturnAddrStatus == FUNC_SAFE) && MDIsStackAccessOpnd(GlobalOp, this->UseFP))))
			continue; // not register, not safe stack access

		// Set up a map (indexed by SSANum) of iterators to Phi functions
		//  for the current global name that have UNINIT as the Phi DEF type.
		UninitDEFPhis.clear();
		UninitDEFInsts.clear();
		for (CurrRPO = this->RPOBlocks.begin(); CurrRPO != this->RPOBlocks.end(); ++CurrRPO) {
			CurrBlock = *CurrRPO;
			set<SMPPhiFunction, LessPhi>::iterator CurrPhi;
			CurrPhi = CurrBlock->FindPhi(GlobalOp);
			if (CurrPhi != CurrBlock->GetLastPhi()) {
				// Found Phi function for current global name.
				if (IsEqType(CurrPhi->GetDefType(), UNINIT)) {
					// Phi DEF is UNINIT; add Phi to the map.
					pair<int, set<SMPPhiFunction, LessPhi>::iterator> TempPair(CurrPhi->GetDefSSANum(), CurrPhi);
					bool Inserted = false;
					map<int, set<SMPPhiFunction, LessPhi>::iterator>::iterator WhereIns;
					pair<map<int, set<SMPPhiFunction, LessPhi>::iterator>::iterator, bool> Result(WhereIns, Inserted);
					Result = UninitDEFPhis.insert(TempPair);
					assert(Result.second == true);
				}
			}
		} // end for all blocks

		// If any Phi DEF had UNINIT as its type, set up a vector of
		//  iterators to instructions that have UNINIT as the DEF type
		//  for the current global name.
		if (UninitDEFPhis.empty())
			continue;
		list<SMPInstr>::iterator CurrInst;
		for (CurrInst = this->Instrs.begin(); CurrInst != this->Instrs.end(); ++CurrInst) {
			set<DefOrUse, LessDefUse>::iterator CurrDef = CurrInst->FindDef(GlobalOp);
			if (CurrDef != CurrInst->GetLastDef()) {
				// Found DEF of current global name.
				if (IsEqType(UNINIT, CurrDef->GetType())) {
					UninitDEFInsts.push_back(CurrInst);
				}
			}
		} // end for all instructions

		// Put all UNINIT Phi DEFs that have at least one USE
		//  that is not UNINIT onto the PhiWorkList.
		map<int, set<SMPPhiFunction, LessPhi>::iterator>::iterator CurrUnPhi;
		for (CurrUnPhi = UninitDEFPhis.begin(); CurrUnPhi != UninitDEFPhis.end(); ++CurrUnPhi) {
			pair<int, set<SMPPhiFunction, LessPhi>::iterator> PhiDefPair(*CurrUnPhi);
			if (PhiDefPair.second->HasTypedUses()) {
				PhiWorkList.push_back(CurrUnPhi);
			}
		}

		// Iterate until both work lists are empty:
		while (!(PhiWorkList.empty() && InstWorkList.empty())) {
			// Process Phi items first.
			while (!PhiWorkList.empty()) {
				// If applying the meet operator over the Phi USE types
				//  would produce a new DEF type, change the DEF type and
				//  propagate it, adding Phi functions and instructions that
				//  received the propagated type to their respective work lists.
				map<int, set<SMPPhiFunction, LessPhi>::iterator>::iterator MapIter;
				MapIter = PhiWorkList.front();
				PhiWorkList.pop_front();  // remove from work list
				pair<int, set<SMPPhiFunction, LessPhi>::iterator> PhiDefPair;
				PhiDefPair.first = MapIter->first;
				PhiDefPair.second = MapIter->second;
				set<SMPPhiFunction, LessPhi>::iterator CurrPhi = PhiDefPair.second;
				SMPOperandType MeetType = CurrPhi->ConditionalMeetType();
				// Here we use a straight equality test, not our macros,
				//  because we consider it a change if the MeetType is
				//  profiler derived and the DEFType is not.
				if (MeetType == CurrPhi->GetDefType())
					continue;
				// At this point, we need to set the DEFType to the MeetType
				//  and propagate the change. We have a map of all the
				//  critical Phi functions for this global name, as well
				//  as a vector of the relevant instructions for this name.
				CurrPhi->SetDefType(MeetType);
				changed = true;
				int DefSSANum = CurrPhi->GetDefSSANum();
				map<int, set<SMPPhiFunction, LessPhi>::iterator>::iterator PhiIter;
				vector<list<SMPInstr>::iterator>::iterator InstIter;
				// Propagate to Phi functions first.
				for (PhiIter = UninitDEFPhis.begin(); PhiIter != UninitDEFPhis.end(); ++PhiIter) {
					if (DefSSANum == PhiIter->first)
						continue;  // Skip the Phi that we just changed
					for (size_t index = 0; index < PhiIter->second->GetPhiListSize(); ++index) {
						if (DefSSANum == PhiIter->second->GetUseSSANum(index)) {
							// Matched SSA # to USE. Propagate new type.
							PhiIter->second->SetRefType(index, MeetType);
							// Add this phi function to the work list.
							PhiWorkList.push_back(PhiIter);
						}
					}
				}
#define SMP_COND_TYPE_PROP_TO_INSTS 0
#if SMP_COND_TYPE_PROP_TO_INSTS
				// Propagate to instructions with uninit DEFs of global name.
				//  The idea is that the instructions that hold up type propagation
				//  are the ones that USE and then DEF the same global name.
				//  For example, "increment EAX" has to know the type of
				//  the USE of EAX in order to set the type of the DEF.
#endif
			} // end while the PhiWorkList is not empty
#if SMP_COND_TYPE_PROP_TO_INSTS
			// The PhiWorkList is empty at this point, so process
			//  instructions on the InstWorkList.
#endif
		} // end while both work lists are not empty

	} // end for all global names
	return changed;
} // end of SMPFunction::ConditionalTypePropagation()
#endif  // end if SMP_SIMPLE_CONDITIONAL_TYPE_PROPAGATION else ...

// Emit all annotations for the function, including all per-instruction
//  annotations.
void SMPFunction::EmitAnnotations(FILE *AnnotFile) {
	// Emit annotation for the function as a whole.
	if (this->StaticFunc) {
		qfprintf(AnnotFile,	"%10x %6d FUNC LOCAL  %s ", this->FuncInfo.startEA,
			this->Size, this->FuncName);
	}
	else {
		qfprintf(AnnotFile,	"%10x %6d FUNC GLOBAL %s ", this->FuncInfo.startEA,
			this->Size, this->FuncName);
	}
	switch (this->ReturnAddrStatus)
	{
		case FUNC_UNKNOWN:
		{
			qfprintf(AnnotFile, "FUNC_UNKNOWN ");
			break;
		}
		case FUNC_SAFE:
		{
			qfprintf(AnnotFile, "FUNC_SAFE ");
			break;
		}
		case FUNC_UNSAFE:
		{
			qfprintf(AnnotFile, "FUNC_UNSAFE ");
			break;
		}
		default:
			assert(0);	
	}
	if (this->UseFP) {
		qfprintf(AnnotFile, "USEFP ");
	}
	else {
		qfprintf(AnnotFile, "NOFP ");
	}
	if (this->FuncInfo.does_return()) {
		qfprintf(AnnotFile, "RET ");
		qfprintf(AnnotFile, "NORET ");
#ifdef SMP_DEBUG_FUNC
	if (this->IsLeaf())
		qfprintf(AnnotFile, "FUNC_LEAF ");
	// store the return address
	qfprintf(AnnotFile,"%10x ", this->FuncInfo.endEA - 1);
#endif
	qfprintf(AnnotFile, "\n");
jdh8d's avatar
jdh8d committed
	// Emit annotations about how to restore register values
	qfprintf(AnnotFile, "%10x %6d FUNC FRAMERESTORE ", this->FuncInfo.startEA, 0);
jdh8d's avatar
jdh8d committed
	for(int i=R_ax; i<=R_di; i++)
	{
		qfprintf(AnnotFile, "%d %d %d ", i, this->SavedRegLoc[i], this->ReturnRegTypes[i]);
	}
	qfprintf(AnnotFile, "ZZ\n");

	qfprintf(AnnotFile, "%10x %6d FUNC MMSAFENESS ", this->FuncInfo.startEA, 0);
clc5q's avatar
clc5q committed
	if (!IsSpecSafe())
		qfprintf(AnnotFile, "UNSAFE\n");
clc5q's avatar
clc5q committed
	else if (!IsSafe())
		qfprintf(AnnotFile, "SPECSAFE\n");
clc5q's avatar
clc5q committed
	else {
		assert(IsSafe());
		qfprintf(AnnotFile, "SAFE\n");
	}

	// Loop through all instructions in the function.
	// Output optimization annotations for those
	//  instructions that do not require full computation
	//  of their memory metadata by the Memory Monitor SDT.
	list<SMPInstr>::iterator CurrInst;
	bool AllocSeen = false; // Reached LocalVarsAllocInstr yet?
	bool DeallocTrigger = false;
	for (CurrInst = Instrs.begin(); CurrInst != Instrs.end(); ++CurrInst) {

#if SMP_USE_SSA_FNOP_MARKER
		if (this->Instrs.begin() == CurrInst)
			continue;  // skip marker instruction
#endif

		ea_t addr = CurrInst->GetAddr();
		qfprintf(AnnotFile, "%10x %6d INSTR BELONGTO %x \n", addr, 0, GetStartAddr());
		if (this->LocalVarsAllocInstr == addr) {
			AllocSeen = true;
			if (this->NeedsStackReferent)
				this->EmitStackFrameAnnotations(AnnotFile, CurrInst);
				int OptType = CurrInst->GetOptType(); 
				if (5 == OptType) { // ADD or SUB
					// Prevent mmStrata from extending the caller's stack frame
					//  to include the new allocation.
					qfprintf(AnnotFile, "%10x %6d INSTR LOCAL SafeFrameAlloc %s \n",
						addr, -1, CurrInst->GetDisasm());
				}
				else if (CurrInst->MDIsPushInstr()) {
					qfprintf(AnnotFile, "%10x %6d INSTR LOCAL NoWarn %s \n",
						addr, -3, CurrInst->GetDisasm());
				}
		}
		// If this is the instruction which deallocated space
		//  for local variables, we set a flag to remind us to 
		//  emit an annotation on the next instruction.
		// mmStrata wants the instruction AFTER the
		//  deallocating instruction, so that it processes
		//  the deallocation after it happens. It inserts
		//  instrumentation before an instruction, not
		//  after, so it will insert the deallocating
		//  instrumentation before the first POP of callee-saved regs,
		//  if there are any, or before the return, otherwise.
		if (addr == this->LocalVarsDeallocInstr) {
			DeallocTrigger = true;
		}
		else if (DeallocTrigger) { // Time for annotation
			qfprintf(AnnotFile,	"%10x %6d DEALLOC STACK esp - %d %s\n", addr,
				LocalVarsSize, LocalVarsSize, CurrInst->GetDisasm());
			DeallocTrigger = false;
		}

		if (this->HasGoodRTLs()) {
			CurrInst->EmitTypeAnnotations(this->UseFP, AllocSeen, this->NeedsStackReferent, AnnotFile);
			CurrInst->EmitAnnotations(this->UseFP, AllocSeen, this->NeedsStackReferent, AnnotFile);
		if (CurrInst->MDIsReturnInstr() && this->GetReturnAddressStatus() == FUNC_SAFE )
			CurrInst->EmitSafeReturn(AnnotFile);
	}  // end for all instructions
	return;
} // end of SMPFunction::EmitAnnotations()

// Debug output dump.
void SMPFunction::Dump(void) {
	list<SMPBasicBlock>::iterator CurrBlock;
	msg("Debug dump for function: %s\n", this->GetFuncName());
	msg("UseFP: %d  LocalVarsAllocInstr: %x\n", this->UseFP,
		this->LocalVarsAllocInstr);
	for (size_t index = 0; index < this->IDom.size(); ++index) {
		msg("IDOM for %d: %d\n", index, this->IDom.at(index));
	}
	for (size_t index = 0; index < this->DomTree.size(); ++index) {
		msg("DomTree for %d: ", index);
		list<int>::iterator DomIter;
		for (DomIter = this->DomTree.at(index).second.begin();
			DomIter != this->DomTree.at(index).second.end();
			++DomIter) {
				msg("%d ", *DomIter);
		}
		msg("\n");
	}
	msg("Global names: \n");
	set<op_t, LessOp>::iterator NameIter;
	for (NameIter = this->GlobalNames.begin(); NameIter != this->GlobalNames.end(); ++NameIter) {
		msg("index: %d ", ExtractGlobalIndex(*NameIter));
		PrintListOperand(*NameIter);
		msg("\n");
	}
	msg("Blocks each name is defined in: \n");
	for (size_t index = 0; index < this->BlocksDefinedIn.size(); ++index) {
		msg("Name index: %d Blocks: ", index);
		list<int>::iterator BlockIter;
		for (BlockIter = this->BlocksDefinedIn.at(index).begin();
			BlockIter != this->BlocksDefinedIn.at(index).end();
			++BlockIter) {
			msg("%d ", *BlockIter);
		}
		msg("\n");
	}
	for (CurrBlock = this->Blocks.begin(); CurrBlock != this->Blocks.end(); ++CurrBlock) {
		// Dump out the function number and data flow sets before the instructions.
		CurrBlock->Dump();
	}
	msg("End of debug dump for function: %s\n", this->GetFuncName());
	return;
} // end of SMPFunction::Dump()


// Analyzes the function to see if the return address can be marked as safe 
void SMPFunction::MarkFunctionSafe() {
clc5q's avatar
clc5q committed
#if SMP_DEBUG_FUNC
clc5q's avatar
clc5q committed
	msg(" Analyzing function %s and isLeaf = %d \n ", this->GetFuncName(), this->IsLeaf());
	bool HasStackPointerCopy = false;
	bool HasStackPointerPush = false;
	bool HasIndirectGlobalWrite = false;
	bool WritesAboveLocalFrame = false;		// Direct writes about local frame
	bool WritesAboveLocalFrameIndirect = false;	// Indirect writes about local frame
	bool HasIndexedStackWrite = false;
	bool HasIndirectWrite = false;
	if (!this->DirectCallTargets.empty()
		&& !this->IndirectCallTargets.empty()) {
		HasCallTargets = true;

#if SMP_USE_SWITCH_TABLE_INFO
	if (this->UnresolvedIndirectJumps) {
#else
	if (this->IndirectJumps) {
clc5q's avatar
clc5q committed
#if SMP_DEBUG_FUNC
		msg("Function %s marked as unsafe due to indirect jumps\n", this->GetFuncName());
#endif
	}
	list<SMPInstr>::iterator Instructions;

	// while processing the stack pointer writes the prologue code for
	// saving frame register and allcating local variables needs to be
	// handled
	bool SaveEBP = false;
	bool XferESPtoEBP = false;
	for (Instructions = Instrs.begin(); Instructions != Instrs.end();	Instructions++) {

#if SMP_USE_SSA_FNOP_MARKER
		if (this->Instrs.begin() == Instructions)
			continue;  // skip marker instruction
#endif

clc5q's avatar
clc5q committed
#if SMP_VERBOSE_DEBUG_FUNC 
		msg(" Total number of defs for this instruction %d\n", Instructions->NumDefs());
#endif
		if (!SaveEBP) { // still looking for "push ebp"
			if (Instructions->MDIsPushInstr() && Instructions->GetCmd().Operands[0].is_reg(R_bp)) {
				SaveEBP = true;
				continue;
			}
		}
		else if (!XferESPtoEBP) { // found "push ebp", looking for "mov ebp,esp"
			insn_t CurrCmd = Instructions->GetCmd();
			if ((CurrCmd.itype == NN_mov)
					&& (Instructions->GetFirstDef()->GetOp().is_reg(R_bp))
					&& (Instructions->GetFirstUse()->GetOp().is_reg(R_sp))) {
				XferESPtoEBP = true;
				continue;
			}
		}
		ea_t address = Instructions->GetAddr();
		if (address == this->LocalVarsAllocInstr ||
		    address == this->LocalVarsDeallocInstr)
			continue;

		if (Instructions->MDIsStackPointerCopy(this->UseFP)) {
clc5q's avatar
clc5q committed
#if SMP_DEBUG_FUNC 
			msg(" Function %s marked as unsafe due to stack pointer copy \n ", this->GetFuncName());
			msg("%s %x \n", (Instructions)->GetDisasm(), (Instructions)->GetAddr());
#endif
		}
		if (Instructions->MDIsPushInstr()) {
			// not exactly sure how to handle this instruction
			// for the moment if its a push on a esp or usefp & ebp
			// mark as unsafe
			if (Instructions->GetCmd().Operands[0].is_reg(R_sp) || 	 
clc5q's avatar
clc5q committed
					(this->UseFP && Instructions->GetCmd().Operands[0].is_reg(R_bp))) {
clc5q's avatar
clc5q committed
#if SMP_DEBUG_FUNC 
				msg(" Function %s marked as unsafe due to push on ebp or esp outside of function header \n", this->GetFuncName());	
				msg("%s %x\n", (Instructions)->GetDisasm(), (Instructions)->GetAddr());
#endif
			}
			continue;
		}
		if (Instructions->MDIsPopInstr()) {
			// ignore pops for the moment
			 continue;
		}
		set<DefOrUse, LessDefUse>::iterator setIterator;
		for (setIterator = Instructions->GetFirstDef(); setIterator != Instructions->GetLastDef(); setIterator++) {
			op_t Operand = setIterator->GetOp();
clc5q's avatar
clc5q committed
			if (Operand.type == o_mem) {
				// now o_mem can have sib byte as well, as
				// reported by IDA. Check if the base reg is R_none
				// and index reg is R_none. If they are, then this is
				// a direct global write and can be marked safe.
				MDExtractAddressFields(Operand, BaseReg, IndexReg, ScaleFactor, offset);
clc5q's avatar
clc5q committed
				if ((BaseReg == R_none) && (IndexReg == R_none)) {
clc5q's avatar
clc5q committed
				else {
					HasIndirectGlobalWrite = true;
				}
clc5q's avatar
clc5q committed
			else if (Operand.type == o_displ) {
				MDExtractAddressFields(Operand, BaseReg, IndexReg, ScaleFactor, offset);
				bool FramePointerRelative = (this->UseFP && (BaseReg == R_bp));
				bool StackPointerRelative = (BaseReg == R_sp);
				if (StackPointerRelative || FramePointerRelative) {
						bool tempWritesAboveLocalFrame = this->WritesAboveLocalFrame(Operand);
clc5q's avatar
clc5q committed
						WritesAboveLocalFrame |= tempWritesAboveLocalFrame;
#if SMP_DEBUG_FUNC 
clc5q's avatar
clc5q committed
						if (tempWritesAboveLocalFrame) {
							msg(" Function %s marked as unsafe due to direct write above loc "
								"variables offset=%x  loc=%x\n ", this->GetFuncName(), 
								offset, this->LocalVarsSize);	
							msg("Write above local frame in %s : offset: %d ",
								this->GetFuncName(), offset);
							msg("LocalVarsSize: %d OutgoingArgsSize: %d frsize: %d frregs: %d",
								this->LocalVarsSize, this->OutgoingArgsSize, 
								this->FuncInfo.frsize, this->FuncInfo.frregs);
							Instructions->Dump();
						}
#endif
clc5q's avatar
clc5q committed
					else {
						bool tempWritesAboveLocalFrameIndirect = this->IndexedWritesAboveLocalFrame(Operand);

						/* seperate indirect writes to this frame from indirect writes to another frame */
clc5q's avatar
clc5q committed
						if (tempWritesAboveLocalFrameIndirect) {
							WritesAboveLocalFrameIndirect = true;
clc5q's avatar
clc5q committed
#if SMP_DEBUG_FUNC 
							msg(" Function %s marked as unsafe due to indexed stack write above "
								"loc variable offset\n", this->GetFuncName());	
							msg("%s %x\n", (Instructions)->GetDisasm(), (Instructions)->GetAddr());
clc5q's avatar
clc5q committed
#endif
clc5q's avatar
clc5q committed
						else {
							HasIndexedStackWrite = true;
clc5q's avatar
clc5q committed
#if SMP_DEBUG_FUNC 
							msg(" Function %s marked as unsafe due to indexed stack write\n", 
								this->GetFuncName());	
							msg("%s %x\n", (Instructions)->GetDisasm(), (Instructions)->GetAddr());
clc5q's avatar
clc5q committed
				else {
					/* check whether there is profiler information for this indirect reference */
			else if (Operand.type == o_phrase)	
			{
				// so phrase is of the form [BASE_REG + IND ]
				// if the index register is missing just make sure that
				// the displacement is below stack frame top
				MDExtractAddressFields(Operand, BaseReg, IndexReg, ScaleFactor, offset);
				// check the base reg
				// if index reg is used mark as unsafe 
clc5q's avatar
clc5q committed
				if ((BaseReg == R_sp || (this->UseFP && BaseReg == R_bp))) {
					if (IndexReg == R_none) {
						/* addressing mode is *esp or *ebp */
						continue;
					}
					else {
						HasIndexedStackWrite = true;
#if SMP_DEBUG_FUNC 
						msg(" Function %s marked as unsafe due to indexed stack write\n", this->GetFuncName());	
						msg("%s %x\n", (Instructions)->GetDisasm(), (Instructions)->GetAddr());
#endif
					}
clc5q's avatar
clc5q committed
				else {
					/* check whether there is profiler information for this indirect reference */
			// else not memory, and we don't care.
		} // end for all DEFs in current instruction
	} // end for all instructions
	// For mmStrata bounds checking of the stack frame, we don't care
	//  about indirect writes unless they are to the stack.
	bool Unsafe = (HasStackPointerCopy || HasStackPointerPush 
		|| HasIndexedStackWrite || this->SharedChunks
		|| this->UnresolvedIndirectJumps || this->UnresolvedIndirectCalls);

	bool SpecUnsafe = (HasStackPointerCopy || HasStackPointerPush 
		|| HasIndexedStackWrite || this->SharedChunks
		|| this->UnresolvedIndirectJumps);
	this->SpecSafeFunc = (!SpecUnsafe);

	this->WritesAboveRA = WritesAboveLocalFrameIndirect;
	this->SafeCallee = (!Unsafe) && (!WritesAboveLocalFrameIndirect) && this->AnalyzedSP;
	this->SpecSafeCallee = (!SpecUnsafe) && (!WritesAboveLocalFrameIndirect) && this->AnalyzedSP;
	this->NeedsStackReferent = Unsafe;
	this->SpecNeedsStackReferent = SpecUnsafe;

	if (Unsafe || WritesAboveLocalFrame || WritesAboveLocalFrameIndirect || HasIndirectGlobalWrite 
		|| HasIndirectWrite || (!this->AnalyzedSP)) {
clc5q's avatar
clc5q committed
#if SMP_DEBUG_FUNC
		msg("UNSAFE function %s ", this->GetFuncName());
		msg("StackPtrCopy: %d StackPtrPush: %d IndirectGlobal: %d ",
			HasStackPointerCopy, HasStackPointerPush, HasIndirectGlobalWrite);
		msg("WritesAboveFrame: %d IndirectStack: %d IndirectWrite: %d ",
			WritesAboveLocalFrame, HasIndexedStackWrite, HasIndirectWrite);
		msg("AnalyzedSP: %d UnresolvedCalls: %d UnresolvedJumps: %d SharedChunks: %d IsLeaf: %d\n",
			this->AnalyzedSP, this->UnresolvedIndirectCalls, this->UnresolvedIndirectJumps,
clc5q's avatar
clc5q committed
#endif
clc5q's avatar
clc5q committed
	if (ReturnAddrStatus == FUNC_SAFE)
		msg("Function %s is SAFE\n", GetFuncName());
clc5q's avatar
clc5q committed
	else if (ReturnAddrStatus == FUNC_SAFE)
		msg("Function %s is UNSAFE\n", GetFuncName());
clc5q's avatar
clc5q committed
	else if (ReturnAddrStatus == FUNC_SAFE)
		msg("Function %s is UNKNOWN\n", GetFuncName());

clc5q's avatar
clc5q committed
	if (!Unsafe) 
		msg("Function %s is mmSAFE\n", GetFuncName());
	else 
		msg("Function %s is mmUNSAFE\n", GetFuncName());

clc5q's avatar
clc5q committed
	if (!SpecUnsafe) 
		msg("Function %s is Speculatively mmSAFE\n", GetFuncName());
	else 
		msg("Function %s is Speculatively mmUNSAFE\n", GetFuncName());

#endif
} // end of SMPFunction::MarkFunctionSafe()