Skip to content
Snippets Groups Projects
SMPDataFlowAnalysis.cpp 45.3 KiB
Newer Older
clc5q's avatar
clc5q committed
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000
//
// SMPDataFlowAnalysis.cpp
//
// This module performs the fundamental data flow analyses needed for the
//   SMP project (Software Memory Protection).
//

#include <vector>

#include <pro.h>
#include <ida.hpp>
#include <idp.hpp>
#include <allins.hpp>
#include <auto.hpp>
#include <bytes.hpp>
#include <funcs.hpp>
#include <intel.hpp>
#include <loader.hpp>
#include <lines.hpp>
#include <name.hpp>

#include "SMPDataFlowAnalysis.h"
#include "SMPStaticAnalyzer.h"

// Set to 1 for debugging output
#define SMP_DEBUG 1
#define SMP_DEBUG2 0   // verbose
#define SMP_DEBUG3 0   // verbose
#define SMP_DEBUG_CONTROLFLOW 0  // tells what processing stage is entered
#define SMP_DEBUG_XOR 0
#define SMP_DEBUG_CHUNKS 1  // tracking down tail chunks for functions

// Used for binary search by function number in SMPStaticAnalyzer.cpp
//  to trigger debugging output and find which instruction in which
//  function is causing a crash.
bool SMPBinaryDebug = false;

// Define instruction categories for data flow analysis.
static SMPitype DFACategory[NN_last+1];

static char *RegNames[R_of + 1] =
	{ "EAX", "ECX", "EDX", "EBX", "ESP", "EBP", "ESI", "EDI",
	  "R8", "R9", "R10", "R11", "R12", "R13", "R14", "R15",
	  "AL", "CL", "DL", "BL", "AH", "CH", "DH", "BH",
	  "SPL", "BPL", "SIL", "DIL", "EIP", "ES", "CS", "SS",
	  "DS", "FS", "GS", "CF", "ZF", "SF", "OF" 
	};

// Make the CF_CHG1 .. CF_CHG6 and CF_USE1..CF_USE6 macros more usable
//  by allowing us to pick them up with an array index.
static ulong DefMacros[UA_MAXOP] = {CF_CHG1, CF_CHG2, CF_CHG3, CF_CHG4, CF_CHG5, CF_CHG6};
static ulong UseMacros[UA_MAXOP] = {CF_USE1, CF_USE2, CF_USE3, CF_USE4, CF_USE5, CF_USE6};

// Text to be printed in each optimizing annotation explaining why
//  the annotation was emitted.
static char *OptExplanation[LAST_OPT_CATEGORY + 1] =
	{ "NoOpt", "NoMetaUpdate", "AlwaysNUM", "NUMVia2ndSrcIMMEDNUM",
	  "Always1stSrc", "1stSrcVia2ndSrcIMMEDNUM", "AlwaysPtr",
	  "AlwaysNUM", "AlwaysNUM", "NUMViaFPRegDest"
	};

// *****************************************************************
// Class DefOrUseList
// *****************************************************************

// Default constructor.
DefOrUseList::DefOrUseList(void) {
	return;
}

// Set a Def or Use into the list, along with its type.
void DefOrUseList::SetRef(op_t Ref, SMPOperandType Type) {
	this->Refs.push_back(Ref);
	this->Types.push_back(Type);
	return;
}

// Get a reference by index.
op_t DefOrUseList::GetRef(size_t index) const {
	return Refs[index];
}

SMPOperandType DefOrUseList::GetRefType(size_t index) const {
	return Types[index];
}

// *****************************************************************
// Class SMPInstr
// *****************************************************************

// Constructor for instruction.
SMPInstr::SMPInstr(ea_t addr) {
	this->address = addr;
	this->analyzed = false;
	this->JumpTarget = false;
	return;
}

// Is the instruction the type that terminates a basic block?
bool SMPInstr::IsBasicBlockTerminator() const {
	return ((type == JUMP) || (type == COND_BRANCH)
			|| (type == INDIR_JUMP) || (type == RETURN));
}

// Is the destination operand a memory reference?
bool SMPInstr::HasDestMemoryOperand(void) const {
	bool MemDest = false;
	for (size_t index = 0; index < Defs.GetSize(); ++index) {
		MemDest = ((Defs.GetRef(index).type == o_mem)
			|| (Defs.GetRef(index).type == o_phrase)
			|| (Defs.GetRef(index).type == o_displ));
		if (MemDest)
			break;
	}
	return MemDest;
} // end of SMPInstr::HasDestMemoryOperand()

// Is the destination operand a memory reference?
bool SMPInstr::HasSourceMemoryOperand(void) const {
	bool MemSrc = false;
	for (size_t index = 0; index < Uses.GetSize(); ++index) {
		MemSrc = ((Uses.GetRef(index).type == o_mem)
			|| (Uses.GetRef(index).type == o_phrase)
			|| (Uses.GetRef(index).type == o_displ));
		if (MemSrc)
			break;
	}
	return MemSrc;
} // end of SMPInstr::HasSourceMemoryOperand()

// Does the instruction whose flags are in F have a numeric type
//   as the second source operand?
// NOTE: We can only analyze immediate values now, using a heuristic
//   that values in the range +/- 8K are numeric and others are
//   probably addresses. When data flow analyses are implemented,
//   we will be able to analyze many non-immediate operands.
#define IMMEDNUM_LOWER -8191
#define IMMEDNUM_UPPER 8191
bool SMPInstr::IsSecondSrcOperandNumeric(flags_t F) const {
	bool SecondOpImm = (SMPcmd.Operands[1].type == o_imm);
	signed long TempImm;

	if (SecondOpImm) {
		TempImm = (signed long) SMPcmd.Operands[1].value;
	}

#if SMP_DEBUG
	if (SecondOpImm && (0 > TempImm)) {
#if 0
		msg("Negative immediate: %d Hex: %x ASM: %s\n", TempImm,
			SMPcmd.Operands[1].value, disasm);
#endif
	}
	else if ((!SecondOpImm) && (SMPcmd.Operands[1].type == o_imm)) {
		msg("Problem with flags on immediate src operand: %s\n", disasm);
	}
#endif

	return (SecondOpImm && (TempImm > IMMEDNUM_LOWER)
		&& (TempImm < IMMEDNUM_UPPER));
} // end of SMPInstr::IsSecondSrcOperandNumeric()

// DEBUG Print DEF and/or USE for an operand.
void PrintDefUse(ulong feature, int OpNum) {
	// CF_ macros number the operands from 1 to 6, while OpNum
	//  is a 0 to 5 index into the insn_t.Operands[] array.
	switch (OpNum) {
		case 0:
			if (feature & CF_CHG1)
				msg(" DEF");
			if (feature & CF_USE1)
				msg(" USE");
			break;
		case 1:
			if (feature & CF_CHG2)
				msg(" DEF");
			if (feature & CF_USE2)
				msg(" USE");
			break;
		case 2:
			if (feature & CF_CHG3)
				msg(" DEF");
			if (feature & CF_USE3)
				msg(" USE");
			break;
		case 3:
			if (feature & CF_CHG4)
				msg(" DEF");
			if (feature & CF_USE4)
				msg(" USE");
			break;
		case 4:
			if (feature & CF_CHG5)
				msg(" DEF");
			if (feature & CF_USE5)
				msg(" USE");
			break;
		case 5:
			if (feature & CF_CHG6)
				msg(" DEF");
			if (feature & CF_USE6)
				msg(" USE");
			break;
	}
	return;
} // end PrintDefUse()

// DEBUG print SIB info for an operand.
void PrintSIB(op_t Opnd) {
	int BaseReg = sib_base(Opnd);
	short IndexReg = sib_index(Opnd);
	int ScaleFactor = sib_scale(Opnd);
#define NAME_LEN 5
	char BaseName[NAME_LEN] = {'N', 'o', 'n', 'e', '\0'};
	char IndexName[NAME_LEN] = {'N', 'o', 'n', 'e', '\0'};
	if (BaseReg != R_bp) { // SIB code for NO BASE REG
		qstrncpy(BaseName, RegNames[BaseReg], NAME_LEN - 1);
	}
	if (IndexReg != R_sp) { // SIB code for NO INDEX REG
		qstrncpy(IndexName, RegNames[IndexReg], NAME_LEN -1);
	}
	msg(" Base %s Index %s Scale %d", BaseName, IndexName, ScaleFactor);
} // end PrintSIB()

// DEBUG print operands for Inst.
void SMPInstr::PrintOperands() const {
	op_t Opnd;
	for (int i = 0; i < UA_MAXOP; ++i) {
		Opnd = SMPcmd.Operands[i];
		if (Opnd.type == o_void)
			continue;
		else if (Opnd.type == o_mem) {
			msg(" Operand %d : memory : addr: %x", i, Opnd.addr);
			PrintDefUse(features, i);
			if (Opnd.hasSIB) { // has SIB info
				PrintSIB(Opnd);
			}
		}
		else if (Opnd.type == o_phrase) {
			msg(" Operand %d : memory phrase :", i);
			PrintDefUse(features, i);
			if (Opnd.hasSIB) { // has SIB info
				PrintSIB(Opnd);
			}
			else { // no SIB info
				ushort BaseReg = Opnd.phrase;
				msg(" reg %s", RegNames[BaseReg]);
			}
			if (Opnd.addr != 0) {
				msg(" \n WARNING: addr for o_phrase type: %d\n", Opnd.addr);
			}
		}
		else if (Opnd.type == o_displ) {
			ea_t offset = Opnd.addr;
			PrintDefUse(features, i);
			if (Opnd.hasSIB) {
				PrintSIB(Opnd);
				msg(" displ %d", offset);
			}
			else {
				ushort BaseReg = Opnd.reg;
				msg(" Operand %d : memory displ : reg %s displ %d", i,
					RegNames[BaseReg], offset);
			}
		}
		else if (Opnd.type == o_reg) {
			msg(" Operand %d : register", i);
			msg(" regno: %d", Opnd.reg);
			PrintDefUse(features, i);
		}
		else if (Opnd.type == o_imm) {
			msg(" Operand %d : immed", i);
			PrintDefUse(features, i);
		}
		else if (Opnd.type == o_far) {
			msg(" Operand %d : FarPtrImmed", i);
			PrintDefUse(features, i);
		}
		else if (Opnd.type == o_near) {
			msg(" Operand %d : NearPtrImmed", i);
			PrintDefUse(features, i);
		}
		else {
			msg(" Operand %d : unknown", i);
			PrintDefUse(features, i);
		}
		if (!(Opnd.showed()))
			msg(" HIDDEN ");
	}
	msg(" \n");
	return;
} // end of SMPInstr::PrintOperands()

// Print out the destination operand list for the instruction, given
//  the OptCategory for the instruction as a hint.
char * SMPInstr::DestString(int OptType) {
	static char DestList[MAXSTR];
	if (OptType != 7) {
		if (SMPcmd.Operands[0].type != o_reg) {
			msg("Problem: destination operand not memory and not reg: %d %d %s \n",
				SMPcmd.Operands[0].type, SMPcmd.Operands[1].type, disasm);
		}
		else {
			ushort DestReg = SMPcmd.Operands[0].reg;
			qstrncpy(DestList, RegNames[DestReg],
					1 + strlen(RegNames[DestReg]));
#if 1
			qstrncat(DestList, " ZZ ", MAXSTR);
#endif
			return DestList;
		}
	}
	else { // OptType 7 could have one or two destinations.
		// NOTE: FIX later. Currently a clone of code above.     **
#if SMP_DEBUG3
		msg("OptType 7: %s\n", disasm);
		PrintOperands();
#endif
		if (SMPcmd.Operands[0].type != o_reg) {
			msg("Problem: destination operand not memory and not reg: %d %d %s\n",
				SMPcmd.Operands[0].type, SMPcmd.Operands[1].type, disasm);
		}
		else {
			ushort DestReg = SMPcmd.Operands[0].reg;
			qstrncpy(DestList, RegNames[DestReg],
					1 + strlen(RegNames[DestReg]));
#if 1
			qstrncat(DestList, " ZZ ", MAXSTR);
#endif
			return DestList;
		}
	}
	DestList[0] = '\0';
	return DestList;
} // end of SMPInstr::DestString()

// Equality operator for SMPInstr. Key field is address.
int SMPInstr::operator==(const SMPInstr &rhs) const {
	if (this->address != rhs.GetAddr())
		return 0;
	else
		return 1;
}

// Inequality operator for SMPInstr. Key field is address.
int SMPInstr::operator!=(const SMPInstr &rhs) const {
	return (this->address != rhs.GetAddr());
}

// Less than operator for sorting SMPInstr lists. Key field is address.
int SMPInstr::operator<(const SMPInstr &rhs) const {
	return (this->address < rhs.GetAddr());
}

// Get optimization category for instruction
int SMPInstr::GetOptType(void) const {
	return OptType;
}

// Is this instruction the one that allocates space on the
//  stack for the local variables of size LocSize?
bool SMPInstr::MDIsFrameAllocInstr(asize_t LocSize) const {
	// The frame allocating instruction should look like:
	//   sub esp,48   or   add esp,-64   etc.
	if ((SMPcmd.itype == NN_sub) || (SMPcmd.itype == NN_add)) {
		if (Defs.GetRef(0).is_reg(R_sp)) {
			// We know that an addition or subtraction is being
			//  performed on the stack pointer. This should not be
			//  possible within the prologue except at the stack
			//  frame allocation instruction, so return true. We
			//  could be more robust in this analysis in the future. **!!**
			// CAUTION: If a compiler allocates 64 bytes for locals
			//  and 16 bytes for outgoing arguments in a single
			//  instruction:  sub esp,80
			//  you cannot insist on finding sub esp,LocSize
			return true;
		}
	}
	return false;
} // end of SMPInstr::MDIsFrameAllocInstr()

// Is this instruction in the epilogue the one that deallocates the local
//  vars region of the stack frame?
bool SMPInstr::MDIsFrameDeallocInstr(bool UseFP, asize_t LocalVarsSize) const {
	// The usual compiler idiom for the prologue on x86 is to
	//  deallocate the local var space with:   mov esp,ebp
	//  It could be  add esp,constant.  We can be tricked by
	//  add esp,constant when the constant is just the stack
	//  adjustment after a call. We will have to insist that
	//  the immediate operand have at least the value of
	//  LocalVarsSize for this second form, and that UseFP be true
	//  for the first form.
	if (UseFP && (this->SMPcmd.itype == NN_mov)
		&& (this->Defs.GetRef(0).is_reg(R_sp))
		&& (this->Uses.GetRef(0).is_reg(R_bp)))
		return true;
	else if ((this->SMPcmd.itype == NN_add)
		&& (this->Defs.GetRef(0).is_reg(R_sp))
		&& (this->Uses.GetRef(1).is_imm((uval_t) LocalVarsSize)))
		return true;
	else if ((this->SMPcmd.itype == NN_add)
		&& (this->Defs.GetRef(0).is_reg(R_sp))
		&& (this->Uses.GetRef(1).type == o_imm)) {
		msg("Used imprecise LocalVarsSize to find dealloc instr.\n");
		return true;
	}
	else
		return false;
} // end of SMPInstr::MDIsFrameDeallocInstr()

// MACHINE DEPENDENT: Is instruction a return instruction?
bool SMPInstr::MDIsReturnInstr(void) const {
	return ((SMPcmd.itype == NN_retn) || (SMPcmd.itype == NN_retf));
}

// MACHINE DEPENDENT: Is instruction a POP instruction?
#define FIRST_POP_INST   NN_pop
#define LAST_POP_INST    NN_popfq
bool SMPInstr::MDIsPopInstr(void) const {
	return ((SMPcmd.itype >= FIRST_POP_INST)
			&& (SMPcmd.itype <= LAST_POP_INST));
}

// MACHINE DEPENDENT: Is instruction a PUSH instruction?
#define FIRST_PUSH_INST   NN_push
#define LAST_PUSH_INST    NN_pushfq
bool SMPInstr::MDIsPushInstr(void) const {
	return ((SMPcmd.itype >= FIRST_PUSH_INST)
			&& (SMPcmd.itype <= LAST_PUSH_INST));
}

// Analyze the instruction and its operands.
void SMPInstr::Analyze(void) {
	if (this->analyzed)
		return;

	// Fill cmd structure with disassembly of instr
	ua_ana0(this->address);
	// Get the instr disassembly text.
	(void) generate_disasm_line(this->address, this->disasm, sizeof(this->disasm) - 1);
	// Remove interactive color-coding tags.
	tag_remove(this->disasm, this->disasm, 0);
	// Copy cmd to member variable SMPcmd.
	this->SMPcmd = cmd;
	// Get the canonical features into member variables features.
	this->features = cmd.get_canon_feature();

	// Record what type of instruction this is, simplified for the needs
	//  of data flow and type analysis.
	this->type = DFACategory[cmd.itype];
	// Record optimization category.
	this->OptType = OptCategory[cmd.itype];

	// Build the DEF and USE lists for the instruction.
	this->BuildSMPDefUseLists();
	// Fix up machine dependent quirks in the def and use lists.
	this->MDFixupDefUseLists();

	// Determine whether the instruction is a jump target by looking
	//  at its cross references and seeing if it has "TO" code xrefs.
	xrefblk_t xrefs;
	for (bool ok = xrefs.first_to(this->address, XREF_FAR); ok; ok = xrefs.next_to()) {
		if ((xrefs.from != 0) && (xrefs.iscode)) {
			this->JumpTarget = true;
			break;
		}
	}

	this->analyzed = true;
	return;
} // end of SMPInstr::Analyze()

// Fill the Defs and Uses private data members.
void SMPInstr::BuildSMPDefUseLists(void) {
	size_t OpNum;
	
	// Start with the Defs.
	for (OpNum = 0; OpNum < UA_MAXOP; ++OpNum) {
		if (this->features & DefMacros[OpNum]) { // DEF
			this->Defs.SetRef(this->SMPcmd.Operands[OpNum]);
		}
	} // end for (OpNum = 0; ...)

	// Now, do the Uses. Uses have special case operations, because
	//  any memory operand could have register uses in the addressing
	//  expression, and we must create Uses for those registers. For
	//  example:  mov eax,[ebx + esi*2 + 044Ch]
	//  This is a two-operand instruction with one def: eax. But
	//  there are three uses: [ebx + esi*2 + 044Ch], ebx, and esi.
	//  The first use is an op_t of type o_phrase (memory phrase),
	//  which can be copied from cmd.Operands[1]. Likewise, we just
	//  copy cmd.Operands[0] into the defs list. However, we must create
	//  op_t types for register ebx and register esi and append them
	//  to the Uses list. This is handled by the machine dependent
	//  method MDFixupDefUseLists().
	for (OpNum = 0; OpNum < UA_MAXOP; ++OpNum) {
		if (this->features & UseMacros[OpNum]) { // USE
			this->Uses.SetRef(this->SMPcmd.Operands[OpNum]);
		}
	} // end for (OpNum = 0; ...)

	return;
} // end of SMPInstr::BuildSMPDefUseLists()

// Perform machine dependent ad hoc fixes to the def and use lists.
//  For example, some multiply and divide instructions in x86 implicitly
//  use and/or define register EDX. For memory phrase examples, see comment
//  in BuildSMPDefUseLists().
void SMPInstr::MDFixupDefUseLists(void) {
	return;
}

// Emit annotations for constants used as ptr offsets from EBP or
//  ESP into the stack frame. Only pay attention to EBP-relative
//  offsets if EBP is being used as a frame pointer (UseFP == true).
void SMPInstr::AnnotateStackConstants(bool UseFP, FILE *AnnotFile) {
	op_t Opnd;
#if 0
	if ((this->address == 0x8048409) || (this->address == 0x81488a1)) {
		msg("PROBLEM INSTRUCTION: \n");
		this->PrintOperands();
	}
#endif
	for (int i = 0; i < UA_MAXOP; ++i) {
		Opnd = SMPcmd.Operands[i];
		if (Opnd.type == o_displ) {
			ea_t offset = Opnd.addr;
			if (Opnd.hasSIB) {
				int BaseReg = sib_base(Opnd);
				short IndexReg = sib_index(Opnd);
				if (BaseReg == R_sp) { // EBP cannot be BaseReg in SIB
					// ESP-relative constant offset
					qfprintf(AnnotFile,
							"%x %d PTRIMMEDESP STACK %d %s\n",
							SMPcmd.ea, SMPcmd.size, offset, disasm);
				}
				else if (IndexReg == R_bp) { // ESP cannot be IndexReg
					// EBP-relative constant offset
					qfprintf(AnnotFile,
							"%x %d PTRIMMEDEBP STACK %d %s\n",
							SMPcmd.ea, SMPcmd.size, offset, disasm);
				}
			}
			else { // no SIB
				ushort BaseReg = Opnd.reg;
				if (BaseReg == R_sp) {
					// ESP-relative constant offset
					qfprintf(AnnotFile,
							"%x %d PTRIMMEDESP STACK %d %s\n",
							SMPcmd.ea, SMPcmd.size, offset, disasm);
				}
				else if (BaseReg == R_bp) {
					// EBP-relative constant offset
					qfprintf(AnnotFile,
							"%x %d PTRIMMEDEBP STACK %d %s\n",
							SMPcmd.ea, SMPcmd.size, offset, disasm);
				}
			} // end if (Opnd.hasSIB) ... else ...
		} // end if (Opnd.type == o_displ) 
		else if (Opnd.type == o_phrase) {
			ea_t offset = 0; // mmStrata thinks [esp] is [esp+0]
			if (Opnd.hasSIB) {
				int BaseReg = sib_base(Opnd);
				short IndexReg = sib_index(Opnd);
				if (BaseReg == R_sp) { // EBP cannot be BaseReg in SIB
					// ESP-relative constant offset
					qfprintf(AnnotFile,
							"%x %d PTRIMMEDESP STACK %d %s\n",
							SMPcmd.ea, SMPcmd.size, offset, disasm);
				}
				else if (IndexReg == R_bp) { // ESP cannot be IndexReg
					// EBP-relative constant offset
					qfprintf(AnnotFile,
							"%x %d PTRIMMEDEBP STACK %d %s\n",
							SMPcmd.ea, SMPcmd.size, offset, disasm);
				}
			}
			else { // Something like [ecx]
				ushort BaseReg = Opnd.reg;
				if (BaseReg == R_sp) {
					// ESP-relative constant offset
					qfprintf(AnnotFile,
							"%x %d PTRIMMEDESP STACK %d %s\n",
							SMPcmd.ea, SMPcmd.size, offset, disasm);
				}
				else if (BaseReg == R_bp) {
					// EBP-relative constant offset
					qfprintf(AnnotFile,
							"%x %d PTRIMMEDEBP STACK %d %s\n",
							SMPcmd.ea, SMPcmd.size, offset, disasm);
				}
			} // end if (Opnd.hasSIB) ... else ...
		} // end else if (Opnd.type == o_phrase)
	} // end for all operands
	return;
} // end of SMPInstr::AnnotateStackConstants()

// *****************************************************************
// Class SMPBasicBlock
// *****************************************************************

// Constructor
SMPBasicBlock::SMPBasicBlock(list<SMPInstr>::iterator First, list<SMPInstr>::iterator Last) {
	this->FirstInstr = First;
	this->LastInstr = Last;
	this->IndirectJump = false;
	this->Returns = false;
	this->SharedTailChunk = false;
}

// Analyze basic block and fill data members.
void SMPBasicBlock::Analyze() {
	if (LastInstr->GetDataFlowType() == INDIR_JUMP) {
		this->IndirectJump = true;
	}
	else if (LastInstr->MDIsReturnInstr()) {
		this->Returns = true;
	}
} // end of SMPBasicBlock::Analyze()

// *****************************************************************
// Class SMPFunction
// *****************************************************************

// Constructor
SMPFunction::SMPFunction(func_t *Info) {
	this->FuncInfo = Info;
	IndirectCalls = false;
	return;
}

// Figure out the different regions of the stack frame, and find the
//  instructions that allocate and deallocate the local variables space
//  on the stack frame.
// The stack frame info will be used to emit stack
//  annotations when Analyze() reaches the stack allocation
//  instruction that sets aside space for local vars.
// Set the address of the instruction at which these
//  annotations should be emitted. This should normally
//  be an instruction such as:  sub esp,48
//  However, for a function with no local variables at all,
//  we will need to determine which instruction should be
//  considered to be the final instruction of the function
//  prologue and return its address.
// Likewise, we find the stack deallocating instruction in
//  the function epilogue.
void SMPFunction::SetStackFrameInfo(void) {
	bool FoundAllocInstr = false;
	bool FoundDeallocInstr = false;

	// The sizes of the three regions of the stack frame other than the
	//  return address are stored in the function structure.
	this->LocalVarsSize = this->FuncInfo->frsize;
	this->CalleeSavedRegsSize = this->FuncInfo->frregs;
	this->IncomingArgsSize = this->FuncInfo->argsize;

	// The return address size can be obtained in a machine independent
	//  way by calling get_frame_retsize(). 
	this->RetAddrSize = get_frame_retsize(this->FuncInfo);

	// IDA Pro has trouble with functions that do not have any local
	//  variables. Unfortunately, the C library has plenty of these
	//  functions. IDA usually claims that frregs is zero and frsize
	//  is N, when the values should have been reversed. We can attempt
	//  to detect this and fix it.
	bool FrameInfoFixed = this->MDFixFrameInfo();

#define SMP_DEBUG_FRAMEFIXUP 1
#if SMP_DEBUG_FRAMEFIXUP
	if (FrameInfoFixed) {
		msg("Fixed stack frame size info: %s\n", this->FuncName);
		SMPBasicBlock CurrBlock = this->Blocks.front();
		msg("First basic block:\n");
		for (list<SMPInstr>::iterator CurrInstr = CurrBlock.GetFirstInstr();
			CurrInstr != CurrBlock.GetLastInstr();
			++CurrInstr) {
			msg("%s\n", CurrInstr->GetDisasm());
		}
		msg("%s\n", CurrBlock.GetLastInstr()->GetDisasm());
	}
#endif

	// Now, if LocalVarsSize is not zero, we need to find the instruction
	//  in the function prologue that allocates space on the stack for
	//  local vars. This code could be made more robust in the future
	//  by matching LocalVarsSize to the immediate value in the allocation
	//  instruction. However, IDA Pro is sometimes a little off on this
	//  number, claiming 4 bytes for functions with no locals at all,
	//  assigning the 4 bytes used for a callee-saved register to the
	//  local vars space and then claiming 0 bytes for callee-saved
	//  registers. **!!**
	if (0 < this->LocalVarsSize) {
		for (list<SMPInstr>::iterator CurrInstr = this->Instrs.begin();
			CurrInstr != this->Instrs.end();
			++CurrInstr) {
			ea_t addr = CurrInstr->GetAddr();

			// Keep the most recent instruction in the DeallocInstr
			//  in case we reach the return without seeing a dealloc.
			if (!FoundDeallocInstr) {
				this->LocalVarsDeallocInstr = addr;
			}

			if (!FoundAllocInstr
				&& CurrInstr->MDIsFrameAllocInstr(this->LocalVarsSize)) {
				this->LocalVarsAllocInstr = addr;
				FoundAllocInstr = true;
			}
			else if (FoundAllocInstr) {
				// We can now start searching for the DeallocInstr.
				if (CurrInstr->MDIsFrameDeallocInstr(UseFP, this->LocalVarsSize)) {
					// Keep saving the most recent addr that looks
					//  like the DeallocInstr until we reach the
					//  end of the function. Last one to look like
					//  it is used as the DeallocInstr.
					this->LocalVarsDeallocInstr = addr;
					FoundDeallocInstr = true;
				}
			}
		} // end for (list<SMPInstr>::iterator CurrInstr ... )
		if (!FoundAllocInstr) {
			// Could not find the frame allocating instruction.  Bad.
			// Emit diagnostic and use the first instruction in the
			// function.
			msg("ERROR: Could not find stack frame allocation in %s\n",
				FuncName);
			msg("LocalVarsSize: %d  SavedRegsSize: %d ArgsSize: %d\n",
				LocalVarsSize, CalleeSavedRegsSize, IncomingArgsSize);
			this->LocalVarsAllocInstr = this->FuncInfo->startEA;
		}
		if (!FoundDeallocInstr) {
			// Could not find the frame deallocating instruction.  Bad.
			// Emit diagnostic and use the last instruction in the
			// function.
			msg("ERROR: Could not find stack frame deallocation in %s\n",
				FuncName);
		}
	}
	// else LocalVarsSize was zero, meaning that we need to search 
	//  for the end of the function prologue code and emit stack frame
	//  annotations from that address (i.e. this method returns that
	//  address). We will approximate this by finding the end of the
	//  sequence of PUSH instructions at the beginning of the function.
	//  The last PUSH instruction should be the last callee-save-reg
	//  instruction. We can make this more robust in the future by
	//  making sure that we do not count a PUSH of anything other than
	//  a register. **!!**
	// NOTE: 2nd prologue instr is usually mov ebp,esp
	// THE ASSUMPTION THAT WE HAVE ONLY PUSH INSTRUCTIONS BEFORE
	// THE ALLOCATING INSTR IS ONLY TRUE WHEN LOCALVARSSIZE == 0;
	else {
		ea_t SaveAddr = FuncInfo->startEA;
		for (list<SMPInstr>::iterator CurrInstr = this->Instrs.begin();
			CurrInstr != this->Instrs.end();
			++CurrInstr) {
			insn_t CurrCmd = CurrInstr->GetCmd();
			ea_t addr = CurrInstr->GetAddr();
			if (CurrCmd.itype == NN_push)
				SaveAddr = addr;
			else
				break;
		}
		this->LocalVarsAllocInstr = SaveAddr;
		this->LocalVarsDeallocInstr = 0;
	} // end if (LocalVarsSize > 0) ... else ...

#if 0
	// Now we need to do the corresponding operations from the
	//  end of the function to find the DeallocInstr in the
	//  function epilogue. Because there is no addition to the
	//  stack pointer to deallocate the local vars region, the
	//  function epilogue will consist of (optional) pops of
	//  callee-saved regs, followed by the return instruction.
	//  Working backwards, we should find a return and then 
	//  stop when we do not find any more pops.
	if (0 >= LocalVarsSize) {
		this->LocalVarsDeallocInstr = NULL;
	}
	else {
		SaveAddr = FuncInfo->endEA - 1;
		bool FoundRet = false;
		do {
			ea_t addr = get_item_head(SaveAddr);
			flags_t InstrFlags = getFlags(addr);
			if (isCode(addr) && isHead(addr)) {
				ua_ana0(addr);
				if (!FoundRet) { // Just starting out.
					if (MDIsReturnInstr(cmd)) {
						FoundRet = true;
						SaveAddr = addr - 1;
					}
					else {
						msg("ERROR: Last instruction not a return.\n");
					}
				}
				else { // Should be 0 or more POPs before the return.
					if (MDIsPopInstr(cmd)) {
						SaveAddr = addr - 1;
					}
					else if (FrameAllocInstr(cmd, this->LocalVarsSize)) {
						this->LocalVarsDeallocInstr = addr;
					}
					else {
						msg("ERROR: Frame deallocation not prior to POPs.\n");
						this->LocalVarsDeallocInstr = SaveAddr + 1;
					}
				} // end if (!FoundRet) ... else ...
			}
			else {
				--SaveAddr;
			} // end if (isCode(addr) && isHead(addr))
		} while (NULL == this->LocalVarsDeallocInstr);
	} // end if (0 >= this->LocalVarsSize)
#endif // 0
	return;
} // end of SMPFunction::SetStackFrameInfo()

// IDA Pro has trouble with functions that do not have any local
//  variables. Unfortunately, the C library has plenty of these
//  functions. IDA usually claims that frregs is zero and frsize
//  is N, when the values should have been reversed. We can attempt
//  to detect this and fix it.
// Fixing means we will update the data members LocalVarsSize and
//  CalleeSavedRegsSize.
bool SMPFunction::MDFixFrameInfo(void) {
	// Does this function fit the problem pattern, with zero for saved
	//  regs and nonzero for local vars?
	if ((LocalVarsSize == 0) || (CalleeSavedRegsSize != 0))
		return false;

	// Iterate through the first basic block in the function. If we find
	//  a frame allocating Instr in it, then we have local vars. If not,
	//  we don't, and LocalVarsSize should have been zero, not
	//  CalleeSavedRegsSize, so swap them.
	SMPBasicBlock CurrBlock = this->Blocks.front();
	for (list<SMPInstr>::iterator CurrInstr = CurrBlock.GetFirstInstr();
		CurrInstr != CurrBlock.GetLastInstr();  // LastInstr is jump anyway
		++CurrInstr) {
			if (CurrInstr->MDIsFrameAllocInstr(LocalVarsSize))
				return false;
	}
	// We did not find a stack frame allocation instruction in the first
	//  basic block, yet CalleeSavedRegsSize is zero and LocalVarsSize
	//  is not zero. Swap them.
	this->CalleeSavedRegsSize = (ushort) this->LocalVarsSize;
	this->LocalVarsSize = 0;
	return true;
} // end of SMPFunction::MDFixFrameInfo()

// Emit the annotations describing the regions of the stack frame.
void SMPFunction::EmitStackFrameAnnotations(FILE *AnnotFile, list<SMPInstr>::iterator Instr) {
	ea_t addr = Instr->GetAddr();

	if (0 < IncomingArgsSize)
		qfprintf(AnnotFile, "%x %d INARGS STACK esp + %d %s \n",
				addr, IncomingArgsSize,
				(LocalVarsSize + CalleeSavedRegsSize + RetAddrSize),
				Instr->GetDisasm());
	if (0 < RetAddrSize)
		qfprintf(AnnotFile, "%x %d MEMORYHOLE STACK esp + %d ReturnAddress \n",
				addr, RetAddrSize, (LocalVarsSize + CalleeSavedRegsSize));
	if (0 < CalleeSavedRegsSize)
		qfprintf(AnnotFile, "%x %d MEMORYHOLE STACK esp + %d CalleeSavedRegs \n",
				addr, CalleeSavedRegsSize, LocalVarsSize);
	if (0 < LocalVarsSize)
		qfprintf(AnnotFile, "%x %d LOCALFRAME STACK esp + %d LocalVars \n",
				addr, LocalVarsSize, 0);
	return;
} // end of SMPFunction::EmitStackFrameAnnotations() 

// Main data flow analysis driver. Goes through the function and
//  fills all objects for instructions, basic blocks, and the function
//  itself.
void SMPFunction::Analyze(void) {
	list<SMPInstr>::iterator FirstInBlock = this->Instrs.end();
	   // For starting a basic block
	list<SMPInstr>::iterator LastInBlock = this->Instrs.end();
	   // Terminating a basic block

#if SMP_DEBUG_CONTROLFLOW
	msg("Entering SMPFunction::Analyze.\n");
#endif

	// Get some basic info from the FuncInfo structure.
	this->Size = this->FuncInfo->endEA - this->FuncInfo->startEA;
	this->UseFP = (0 != (this->FuncInfo->flags & (FUNC_FRAME | FUNC_BOTTOMBP)));
	this->StaticFunc = (0 != (this->FuncInfo->flags & FUNC_STATIC));
	get_func_name(this->FuncInfo->startEA, this->FuncName,
		sizeof(this->FuncName) - 1);

#if SMP_DEBUG_CONTROLFLOW
	msg("SMPFunction::Analyze: got basic info.\n");
#endif

	// Cycle through all chunks that belong to the function.
	func_tail_iterator_t FuncTail(this->FuncInfo);
	size_t ChunkCounter = 0;
	for (bool ChunkOK = FuncTail.main(); ChunkOK; ChunkOK = FuncTail.next()) {
		const area_t &CurrChunk = FuncTail.chunk();
		++ChunkCounter;
#if SMP_DEBUG_CHUNKS
		if (1 < ChunkCounter)
			msg("Found tail chunk for %s\n", this->FuncName);
#endif
		// Build the instruction and block lists for the function.
		for (ea_t addr = CurrChunk.startEA; addr < CurrChunk.endEA;
			addr = get_item_end(addr)) {
			flags_t InstrFlags = getFlags(addr);
			if (isHead(InstrFlags) && isCode(InstrFlags)) {
				SMPInstr CurrInst = SMPInstr(addr);
				// Fill in the instruction data members.
	#if SMP_DEBUG_CONTROLFLOW
				msg("SMPFunction::Analyze: calling CurrInst::Analyze.\n");
	#endif
				CurrInst.Analyze();
				if (SMPBinaryDebug) {
					msg("Disasm:  %s \n", CurrInst.GetDisasm());
				}
				if (CurrInst.GetDataFlowType() == INDIR_CALL)
					this->IndirectCalls = true;

				// Before we insert the instruction into the instruction
				//  list, determine if it is a jump target that does not
				//  follow a basic block terminator. This is the special case
				//  of a CASE in a SWITCH that falls through into another
				//  CASE, for example. The first sequence of statements
				//  was not terminated by a C "break;" statement, so it
				//  looks like straight line code, but there is an entry
				//  point at the beginning of the second CASE sequence and
				//  we have to split basic blocks at the entry point.
				if ((FirstInBlock != this->Instrs.end())
					&& CurrInst.IsJumpTarget()) {
	#if SMP_DEBUG_CONTROLFLOW
					msg("SMPFunction::Analyze: hit special jump target case.\n");
	#endif
					LastInBlock = --(this->Instrs.end());
					SMPBasicBlock CurrBlock = SMPBasicBlock(FirstInBlock,
						LastInBlock);
					CurrBlock.Analyze();
					// If not the first chunk in the function, it is a shared
					//  tail chunk.
					if (ChunkCounter > 1) {
						CurrBlock.SetShared();
					}
					FirstInBlock = this->Instrs.end();
					LastInBlock = this->Instrs.end();
					this->Blocks.push_back(CurrBlock);
				}

	#if SMP_DEBUG_CONTROLFLOW
		msg("SMPFunction::Analyze: putting CurrInst on list.\n");
	#endif
				// Insert instruction at end of list.
				this->Instrs.push_back(CurrInst);
				
				// Find basic block leaders and terminators.
				if (FirstInBlock == this->Instrs.end()) {
	#if SMP_DEBUG_CONTROLFLOW
		msg("SMPFunction::Analyze: setting FirstInBlock.\n");
	#endif
					FirstInBlock = --(this->Instrs.end());
				}
				if (CurrInst.IsBasicBlockTerminator()) {
	#if SMP_DEBUG_CONTROLFLOW
		msg("SMPFunction::Analyze: found block terminator.\n");
	#endif
					LastInBlock = --(this->Instrs.end());
					SMPBasicBlock CurrBlock = SMPBasicBlock(FirstInBlock, LastInBlock);
					CurrBlock.Analyze();
					// If not the first chunk in the function, it is a shared
					//  tail chunk.
					if (ChunkCounter > 1) {
						CurrBlock.SetShared();
					}
					FirstInBlock = this->Instrs.end();
					LastInBlock = this->Instrs.end();
					this->Blocks.push_back(CurrBlock);
				}
			} // end if (isHead(InstrFlags) && isCode(InstrFlags)
		} // end for (ea_t addr = FuncInfo->startEA; ... )

		// Handle the special case in which a function does not terminate
		//  with a return instruction or any other basic block terminator.
		//  Sometimes IDA Pro sees a call to a NORET function and decides
		//  to not include the dead code after it in the function. That
		//  dead code includes the return instruction, so the function no
		//  longer includes a return instruction and terminates with a CALL.
		if (FirstInBlock != this->Instrs.end()) {
			LastInBlock = --(this->Instrs.end());
			SMPBasicBlock CurrBlock = SMPBasicBlock(FirstInBlock, LastInBlock);
			CurrBlock.Analyze();
			// If not the first chunk in the function, it is a shared
			//  tail chunk.
			if (ChunkCounter > 1) {
				CurrBlock.SetShared();
			}
			FirstInBlock = this->Instrs.end();
			LastInBlock = this->Instrs.end();
			this->Blocks.push_back(CurrBlock);
		}