Newer
Older
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
SMPDefsFlags[NN_setbe] = false; // Set Byte if Below or Equal (CF=1 | ZF=1)
SMPDefsFlags[NN_setc] = false; // Set Byte if Carry (CF=1)
SMPDefsFlags[NN_sete] = false; // Set Byte if Equal (ZF=1)
SMPDefsFlags[NN_setg] = false; // Set Byte if Greater (ZF=0 & SF=OF)
SMPDefsFlags[NN_setge] = false; // Set Byte if Greater or Equal (SF=OF)
SMPDefsFlags[NN_setl] = false; // Set Byte if Less (SF!=OF)
SMPDefsFlags[NN_setle] = false; // Set Byte if Less or Equal (ZF=1 | SF!=OF)
SMPDefsFlags[NN_setna] = false; // Set Byte if Not Above (CF=1 | ZF=1)
SMPDefsFlags[NN_setnae] = false; // Set Byte if Not Above or Equal (CF=1)
SMPDefsFlags[NN_setnb] = false; // Set Byte if Not Below (CF=0)
SMPDefsFlags[NN_setnbe] = false; // Set Byte if Not Below or Equal (CF=0 & ZF=0)
SMPDefsFlags[NN_setnc] = false; // Set Byte if Not Carry (CF=0)
SMPDefsFlags[NN_setne] = false; // Set Byte if Not Equal (ZF=0)
SMPDefsFlags[NN_setng] = false; // Set Byte if Not Greater (ZF=1 | SF!=OF)
SMPDefsFlags[NN_setnge] = false; // Set Byte if Not Greater or Equal (ZF=1)
SMPDefsFlags[NN_setnl] = false; // Set Byte if Not Less (SF=OF)
SMPDefsFlags[NN_setnle] = false; // Set Byte if Not Less or Equal (ZF=0 & SF=OF)
SMPDefsFlags[NN_setno] = false; // Set Byte if Not Overflow (OF=0)
SMPDefsFlags[NN_setnp] = false; // Set Byte if Not Parity (PF=0)
SMPDefsFlags[NN_setns] = false; // Set Byte if Not Sign (SF=0)
SMPDefsFlags[NN_setnz] = false; // Set Byte if Not Zero (ZF=0)
SMPDefsFlags[NN_seto] = false; // Set Byte if Overflow (OF=1)
SMPDefsFlags[NN_setp] = false; // Set Byte if Parity (PF=1)
SMPDefsFlags[NN_setpe] = false; // Set Byte if Parity Even (PF=1)
SMPDefsFlags[NN_setpo] = false; // Set Byte if Parity Odd (PF=0)
SMPDefsFlags[NN_sets] = false; // Set Byte if Sign (SF=1)
SMPDefsFlags[NN_setz] = false; // Set Byte if Zero (ZF=1)
SMPDefsFlags[NN_sgdt] = false; // Store Global Descriptor Table Register
SMPDefsFlags[NN_sidt] = false; // Store Interrupt Descriptor Table Register
SMPDefsFlags[NN_sldt] = false; // Store Local Descriptor Table Register
SMPDefsFlags[NN_str] = false; // Store Task Register
SMPDefsFlags[NN_wait] = false; // Wait until BUSY# Pin is Inactive (HIGH)
SMPDefsFlags[NN_xchg] = false; // Exchange Register/Memory with Register
SMPDefsFlags[NN_xlat] = false; // Table Lookup Translation
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
//
// 486 instructions
//
SMPDefsFlags[NN_bswap] = false; // Swap bytes in register
SMPDefsFlags[NN_invd] = false; // Invalidate Data Cache
SMPDefsFlags[NN_wbinvd] = false; // Invalidate Data Cache (write changes)
SMPDefsFlags[NN_invlpg] = false; // Invalidate TLB entry
//
// Pentium instructions
//
SMPDefsFlags[NN_rdmsr] = false; // Read Machine Status Register
SMPDefsFlags[NN_wrmsr] = false; // Write Machine Status Register
SMPDefsFlags[NN_cpuid] = false; // Get CPU ID
SMPDefsFlags[NN_rdtsc] = false; // Read Time Stamp Counter
//
// Pentium Pro instructions
//
SMPDefsFlags[NN_cmova] = false; // Move if Above (CF=0 & ZF=0)
SMPDefsFlags[NN_cmovb] = false; // Move if Below (CF=1)
SMPDefsFlags[NN_cmovbe] = false; // Move if Below or Equal (CF=1 | ZF=1)
SMPDefsFlags[NN_cmovg] = false; // Move if Greater (ZF=0 & SF=OF)
SMPDefsFlags[NN_cmovge] = false; // Move if Greater or Equal (SF=OF)
SMPDefsFlags[NN_cmovl] = false; // Move if Less (SF!=OF)
SMPDefsFlags[NN_cmovle] = false; // Move if Less or Equal (ZF=1 | SF!=OF)
SMPDefsFlags[NN_cmovnb] = false; // Move if Not Below (CF=0)
SMPDefsFlags[NN_cmovno] = false; // Move if Not Overflow (OF=0)
SMPDefsFlags[NN_cmovnp] = false; // Move if Not Parity (PF=0)
SMPDefsFlags[NN_cmovns] = false; // Move if Not Sign (SF=0)
SMPDefsFlags[NN_cmovnz] = false; // Move if Not Zero (ZF=0)
SMPDefsFlags[NN_cmovo] = false; // Move if Overflow (OF=1)
SMPDefsFlags[NN_cmovp] = false; // Move if Parity (PF=1)
SMPDefsFlags[NN_cmovs] = false; // Move if Sign (SF=1)
SMPDefsFlags[NN_cmovz] = false; // Move if Zero (ZF=1)
SMPDefsFlags[NN_fcmovb] = false; // Floating Move if Below
SMPDefsFlags[NN_fcmove] = false; // Floating Move if Equal
SMPDefsFlags[NN_fcmovbe] = false; // Floating Move if Below or Equal
SMPDefsFlags[NN_fcmovu] = false; // Floating Move if Unordered
SMPDefsFlags[NN_fcmovnb] = false; // Floating Move if Not Below
SMPDefsFlags[NN_fcmovne] = false; // Floating Move if Not Equal
SMPDefsFlags[NN_fcmovnbe] = false; // Floating Move if Not Below or Equal
SMPDefsFlags[NN_fcmovnu] = false; // Floating Move if Not Unordered
SMPDefsFlags[NN_rdpmc] = false; // Read Performance Monitor Counter
//
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
//
SMPDefsFlags[NN_fld] = false; // Load Real
SMPDefsFlags[NN_fst] = false; // Store Real
SMPDefsFlags[NN_fstp] = false; // Store Real and Pop
SMPDefsFlags[NN_fxch] = false; // Exchange Registers
SMPDefsFlags[NN_fild] = false; // Load Integer
SMPDefsFlags[NN_fist] = false; // Store Integer
SMPDefsFlags[NN_fistp] = false; // Store Integer and Pop
SMPDefsFlags[NN_fbld] = false; // Load BCD
SMPDefsFlags[NN_fbstp] = false; // Store BCD and Pop
SMPDefsFlags[NN_fadd] = false; // Add Real
SMPDefsFlags[NN_faddp] = false; // Add Real and Pop
SMPDefsFlags[NN_fiadd] = false; // Add Integer
SMPDefsFlags[NN_fsub] = false; // Subtract Real
SMPDefsFlags[NN_fsubp] = false; // Subtract Real and Pop
SMPDefsFlags[NN_fisub] = false; // Subtract Integer
SMPDefsFlags[NN_fsubr] = false; // Subtract Real Reversed
SMPDefsFlags[NN_fsubrp] = false; // Subtract Real Reversed and Pop
SMPDefsFlags[NN_fisubr] = false; // Subtract Integer Reversed
SMPDefsFlags[NN_fmul] = false; // Multiply Real
SMPDefsFlags[NN_fmulp] = false; // Multiply Real and Pop
SMPDefsFlags[NN_fimul] = false; // Multiply Integer
SMPDefsFlags[NN_fdiv] = false; // Divide Real
SMPDefsFlags[NN_fdivp] = false; // Divide Real and Pop
SMPDefsFlags[NN_fidiv] = false; // Divide Integer
SMPDefsFlags[NN_fdivr] = false; // Divide Real Reversed
SMPDefsFlags[NN_fdivrp] = false; // Divide Real Reversed and Pop
SMPDefsFlags[NN_fidivr] = false; // Divide Integer Reversed
SMPDefsFlags[NN_fsqrt] = false; // Square Root
SMPDefsFlags[NN_fscale] = false; // Scale: st(0) <- st(0) * 2^st(1)
SMPDefsFlags[NN_fprem] = false; // Partial Remainder
SMPDefsFlags[NN_frndint] = false; // Round to Integer
SMPDefsFlags[NN_fxtract] = false; // Extract exponent and significand
SMPDefsFlags[NN_fabs] = false; // Absolute value
SMPDefsFlags[NN_fchs] = false; // Change Sign
SMPDefsFlags[NN_ficom] = false; // Compare Integer
SMPDefsFlags[NN_ficomp] = false; // Compare Integer and Pop
SMPDefsFlags[NN_ftst] = false; // Test
SMPDefsFlags[NN_fxam] = false; // Examine
SMPDefsFlags[NN_fptan] = false; // Partial tangent
SMPDefsFlags[NN_fpatan] = false; // Partial arctangent
SMPDefsFlags[NN_f2xm1] = false; // 2^x - 1
SMPDefsFlags[NN_fyl2x] = false; // Y * lg2(X)
SMPDefsFlags[NN_fyl2xp1] = false; // Y * lg2(X+1)
SMPDefsFlags[NN_fldz] = false; // Load +0.0
SMPDefsFlags[NN_fld1] = false; // Load +1.0
SMPDefsFlags[NN_fldpi] = false; // Load PI=3.14...
SMPDefsFlags[NN_fldl2t] = false; // Load lg2(10)
SMPDefsFlags[NN_fldl2e] = false; // Load lg2(e)
SMPDefsFlags[NN_fldlg2] = false; // Load lg10(2)
SMPDefsFlags[NN_fldln2] = false; // Load ln(2)
SMPDefsFlags[NN_finit] = false; // Initialize Processor
SMPDefsFlags[NN_fninit] = false; // Initialize Processor (no wait)
SMPDefsFlags[NN_fsetpm] = false; // Set Protected Mode
SMPDefsFlags[NN_fldcw] = false; // Load Control Word
SMPDefsFlags[NN_fstcw] = false; // Store Control Word
SMPDefsFlags[NN_fnstcw] = false; // Store Control Word (no wait)
SMPDefsFlags[NN_fstsw] = false; // Store Status Word to memory or AX
SMPDefsFlags[NN_fnstsw] = false; // Store Status Word (no wait) to memory or AX
SMPDefsFlags[NN_fclex] = false; // Clear Exceptions
SMPDefsFlags[NN_fnclex] = false; // Clear Exceptions (no wait)
SMPDefsFlags[NN_fstenv] = false; // Store Environment
SMPDefsFlags[NN_fnstenv] = false; // Store Environment (no wait)
SMPDefsFlags[NN_fldenv] = false; // Load Environment
SMPDefsFlags[NN_fsave] = false; // Save State
SMPDefsFlags[NN_fnsave] = false; // Save State (no wait)
SMPDefsFlags[NN_frstor] = false; // Restore State
SMPDefsFlags[NN_fincstp] = false; // Increment Stack Pointer
SMPDefsFlags[NN_fdecstp] = false; // Decrement Stack Pointer
SMPDefsFlags[NN_ffree] = false; // Free Register
SMPDefsFlags[NN_fnop] = false; // No Operation
SMPDefsFlags[NN_feni] = false; // (8087 only)
SMPDefsFlags[NN_fneni] = false; // (no wait) (8087 only)
SMPDefsFlags[NN_fdisi] = false; // (8087 only)
SMPDefsFlags[NN_fndisi] = false; // (no wait) (8087 only)
//
// 80387 instructions
//
SMPDefsFlags[NN_fprem1] = false; // Partial Remainder ( < half )
SMPDefsFlags[NN_fsincos] = false; // t<-cos(st); st<-sin(st); push t
SMPDefsFlags[NN_fsin] = false; // Sine
SMPDefsFlags[NN_fcos] = false; // Cosine
SMPDefsFlags[NN_fucom] = false; // Compare Unordered Real
SMPDefsFlags[NN_fucomp] = false; // Compare Unordered Real and Pop
SMPDefsFlags[NN_fucompp] = false; // Compare Unordered Real and Pop Twice
//
// Instructions added 28.02.96
//
SMPDefsFlags[NN_svdc] = false; // Save Register and Descriptor
SMPDefsFlags[NN_rsdc] = false; // Restore Register and Descriptor
SMPDefsFlags[NN_svldt] = false; // Save LDTR and Descriptor
SMPDefsFlags[NN_rsldt] = false; // Restore LDTR and Descriptor
SMPDefsFlags[NN_svts] = false; // Save TR and Descriptor
SMPDefsFlags[NN_rsts] = false; // Restore TR and Descriptor
SMPDefsFlags[NN_icebp] = false; // ICE Break Point
//
// MMX instructions
//
SMPDefsFlags[NN_emms] = false; // Empty MMX state
SMPDefsFlags[NN_movd] = false; // Move 32 bits
SMPDefsFlags[NN_movq] = false; // Move 64 bits
SMPDefsFlags[NN_packsswb] = false; // Pack with Signed Saturation (Word->Byte)
SMPDefsFlags[NN_packssdw] = false; // Pack with Signed Saturation (Dword->Word)
SMPDefsFlags[NN_packuswb] = false; // Pack with Unsigned Saturation (Word->Byte)
SMPDefsFlags[NN_paddb] = false; // Packed Add Byte
SMPDefsFlags[NN_paddw] = false; // Packed Add Word
SMPDefsFlags[NN_paddd] = false; // Packed Add Dword
SMPDefsFlags[NN_paddsb] = false; // Packed Add with Saturation (Byte)
SMPDefsFlags[NN_paddsw] = false; // Packed Add with Saturation (Word)
SMPDefsFlags[NN_paddusb] = false; // Packed Add Unsigned with Saturation (Byte)
SMPDefsFlags[NN_paddusw] = false; // Packed Add Unsigned with Saturation (Word)
SMPDefsFlags[NN_pand] = false; // Bitwise Logical And
SMPDefsFlags[NN_pandn] = false; // Bitwise Logical And Not
SMPDefsFlags[NN_pcmpeqb] = false; // Packed Compare for Equal (Byte)
SMPDefsFlags[NN_pcmpeqw] = false; // Packed Compare for Equal (Word)
SMPDefsFlags[NN_pcmpeqd] = false; // Packed Compare for Equal (Dword)
SMPDefsFlags[NN_pcmpgtb] = false; // Packed Compare for Greater Than (Byte)
SMPDefsFlags[NN_pcmpgtw] = false; // Packed Compare for Greater Than (Word)
SMPDefsFlags[NN_pcmpgtd] = false; // Packed Compare for Greater Than (Dword)
SMPDefsFlags[NN_pmaddwd] = false; // Packed Multiply and Add
SMPDefsFlags[NN_pmulhw] = false; // Packed Multiply High
SMPDefsFlags[NN_pmullw] = false; // Packed Multiply Low
SMPDefsFlags[NN_por] = false; // Bitwise Logical Or
SMPDefsFlags[NN_psllw] = false; // Packed Shift Left Logical (Word)
SMPDefsFlags[NN_pslld] = false; // Packed Shift Left Logical (Dword)
SMPDefsFlags[NN_psllq] = false; // Packed Shift Left Logical (Qword)
SMPDefsFlags[NN_psraw] = false; // Packed Shift Right Arithmetic (Word)
SMPDefsFlags[NN_psrad] = false; // Packed Shift Right Arithmetic (Dword)
SMPDefsFlags[NN_psrlw] = false; // Packed Shift Right Logical (Word)
SMPDefsFlags[NN_psrld] = false; // Packed Shift Right Logical (Dword)
SMPDefsFlags[NN_psrlq] = false; // Packed Shift Right Logical (Qword)
SMPDefsFlags[NN_psubb] = false; // Packed Subtract Byte
SMPDefsFlags[NN_psubw] = false; // Packed Subtract Word
SMPDefsFlags[NN_psubd] = false; // Packed Subtract Dword
SMPDefsFlags[NN_psubsb] = false; // Packed Subtract with Saturation (Byte)
SMPDefsFlags[NN_psubsw] = false; // Packed Subtract with Saturation (Word)
SMPDefsFlags[NN_psubusb] = false; // Packed Subtract Unsigned with Saturation (Byte)
SMPDefsFlags[NN_psubusw] = false; // Packed Subtract Unsigned with Saturation (Word)
SMPDefsFlags[NN_punpckhbw] = false; // Unpack High Packed Data (Byte->Word)
SMPDefsFlags[NN_punpckhwd] = false; // Unpack High Packed Data (Word->Dword)
SMPDefsFlags[NN_punpckhdq] = false; // Unpack High Packed Data (Dword->Qword)
SMPDefsFlags[NN_punpcklbw] = false; // Unpack Low Packed Data (Byte->Word)
SMPDefsFlags[NN_punpcklwd] = false; // Unpack Low Packed Data (Word->Dword)
SMPDefsFlags[NN_punpckldq] = false; // Unpack Low Packed Data (Dword->Qword)
SMPDefsFlags[NN_pxor] = false; // Bitwise Logical Exclusive Or
//
// Undocumented Deschutes processor instructions
//
SMPDefsFlags[NN_fxsave] = false; // Fast save FP context
SMPDefsFlags[NN_fxrstor] = false; // Fast restore FP context
// Pentium II instructions
SMPDefsFlags[NN_sysexit] = false; // Fast Transition from System Call Entry Point
// 3DNow! instructions
SMPDefsFlags[NN_pavgusb] = false; // Packed 8-bit Unsigned Integer Averaging
SMPDefsFlags[NN_pfadd] = false; // Packed Floating-Point Addition
SMPDefsFlags[NN_pfsub] = false; // Packed Floating-Point Subtraction
SMPDefsFlags[NN_pfsubr] = false; // Packed Floating-Point Reverse Subtraction
SMPDefsFlags[NN_pfacc] = false; // Packed Floating-Point Accumulate
SMPDefsFlags[NN_pfcmpge] = false; // Packed Floating-Point Comparison, Greater or Equal
SMPDefsFlags[NN_pfcmpgt] = false; // Packed Floating-Point Comparison, Greater
SMPDefsFlags[NN_pfcmpeq] = false; // Packed Floating-Point Comparison, Equal
SMPDefsFlags[NN_pfmin] = false; // Packed Floating-Point Minimum
SMPDefsFlags[NN_pfmax] = false; // Packed Floating-Point Maximum
SMPDefsFlags[NN_pi2fd] = false; // Packed 32-bit Integer to Floating-Point
SMPDefsFlags[NN_pf2id] = false; // Packed Floating-Point to 32-bit Integer
SMPDefsFlags[NN_pfrcp] = false; // Packed Floating-Point Reciprocal Approximation
SMPDefsFlags[NN_pfrsqrt] = false; // Packed Floating-Point Reciprocal Square Root Approximation
SMPDefsFlags[NN_pfmul] = false; // Packed Floating-Point Multiplication
SMPDefsFlags[NN_pfrcpit1] = false; // Packed Floating-Point Reciprocal First Iteration Step
SMPDefsFlags[NN_pfrsqit1] = false; // Packed Floating-Point Reciprocal Square Root First Iteration Step
SMPDefsFlags[NN_pfrcpit2] = false; // Packed Floating-Point Reciprocal Second Iteration Step
SMPDefsFlags[NN_pmulhrw] = false; // Packed Floating-Point 16-bit Integer Multiply with rounding
SMPDefsFlags[NN_femms] = false; // Faster entry/exit of the MMX or floating-point state
SMPDefsFlags[NN_prefetch] = false; // Prefetch at least a 32-byte line into L1 data cache
SMPDefsFlags[NN_prefetchw] = false; // Prefetch processor cache line into L1 data cache (mark as modified)
// Pentium III instructions
SMPDefsFlags[NN_addps] = false; // Packed Single-FP Add
SMPDefsFlags[NN_addss] = false; // Scalar Single-FP Add
SMPDefsFlags[NN_andnps] = false; // Bitwise Logical And Not for Single-FP
SMPDefsFlags[NN_andps] = false; // Bitwise Logical And for Single-FP
SMPDefsFlags[NN_cmpps] = false; // Packed Single-FP Compare
SMPDefsFlags[NN_cmpss] = false; // Scalar Single-FP Compare
SMPDefsFlags[NN_cvtpi2ps] = false; // Packed signed INT32 to Packed Single-FP conversion
SMPDefsFlags[NN_cvtps2pi] = false; // Packed Single-FP to Packed INT32 conversion
SMPDefsFlags[NN_cvtsi2ss] = false; // Scalar signed INT32 to Single-FP conversion
SMPDefsFlags[NN_cvtss2si] = false; // Scalar Single-FP to signed INT32 conversion
SMPDefsFlags[NN_cvttps2pi] = false; // Packed Single-FP to Packed INT32 conversion (truncate)
SMPDefsFlags[NN_cvttss2si] = false; // Scalar Single-FP to signed INT32 conversion (truncate)
SMPDefsFlags[NN_divps] = false; // Packed Single-FP Divide
SMPDefsFlags[NN_divss] = false; // Scalar Single-FP Divide
SMPDefsFlags[NN_ldmxcsr] = false; // Load Streaming SIMD Extensions Technology Control/Status Register
SMPDefsFlags[NN_maxps] = false; // Packed Single-FP Maximum
SMPDefsFlags[NN_maxss] = false; // Scalar Single-FP Maximum
SMPDefsFlags[NN_minps] = false; // Packed Single-FP Minimum
SMPDefsFlags[NN_minss] = false; // Scalar Single-FP Minimum
SMPDefsFlags[NN_movaps] = false; // Move Aligned Four Packed Single-FP
SMPDefsFlags[NN_movhlps] = false; // Move High to Low Packed Single-FP
SMPDefsFlags[NN_movhps] = false; // Move High Packed Single-FP
SMPDefsFlags[NN_movlhps] = false; // Move Low to High Packed Single-FP
SMPDefsFlags[NN_movlps] = false; // Move Low Packed Single-FP
SMPDefsFlags[NN_movmskps] = false; // Move Mask to Register
SMPDefsFlags[NN_movss] = false; // Move Scalar Single-FP
SMPDefsFlags[NN_movups] = false; // Move Unaligned Four Packed Single-FP
SMPDefsFlags[NN_mulps] = false; // Packed Single-FP Multiply
SMPDefsFlags[NN_mulss] = false; // Scalar Single-FP Multiply
SMPDefsFlags[NN_orps] = false; // Bitwise Logical OR for Single-FP Data
SMPDefsFlags[NN_rcpps] = false; // Packed Single-FP Reciprocal
SMPDefsFlags[NN_rcpss] = false; // Scalar Single-FP Reciprocal
SMPDefsFlags[NN_rsqrtps] = false; // Packed Single-FP Square Root Reciprocal
SMPDefsFlags[NN_rsqrtss] = false; // Scalar Single-FP Square Root Reciprocal
SMPDefsFlags[NN_shufps] = false; // Shuffle Single-FP
SMPDefsFlags[NN_sqrtps] = false; // Packed Single-FP Square Root
SMPDefsFlags[NN_sqrtss] = false; // Scalar Single-FP Square Root
SMPDefsFlags[NN_stmxcsr] = false; // Store Streaming SIMD Extensions Technology Control/Status Register
SMPDefsFlags[NN_subps] = false; // Packed Single-FP Subtract
SMPDefsFlags[NN_subss] = false; // Scalar Single-FP Subtract
SMPDefsFlags[NN_unpckhps] = false; // Unpack High Packed Single-FP Data
SMPDefsFlags[NN_unpcklps] = false; // Unpack Low Packed Single-FP Data
SMPDefsFlags[NN_xorps] = false; // Bitwise Logical XOR for Single-FP Data
SMPDefsFlags[NN_pavgb] = false; // Packed Average (Byte)
SMPDefsFlags[NN_pavgw] = false; // Packed Average (Word)
SMPDefsFlags[NN_pextrw] = false; // Extract Word
SMPDefsFlags[NN_pinsrw] = false; // Insert Word
SMPDefsFlags[NN_pmaxsw] = false; // Packed Signed Integer Word Maximum
SMPDefsFlags[NN_pmaxub] = false; // Packed Unsigned Integer Byte Maximum
SMPDefsFlags[NN_pminsw] = false; // Packed Signed Integer Word Minimum
SMPDefsFlags[NN_pminub] = false; // Packed Unsigned Integer Byte Minimum
SMPDefsFlags[NN_pmovmskb] = false; // Move Byte Mask to Integer
SMPDefsFlags[NN_pmulhuw] = false; // Packed Multiply High Unsigned
SMPDefsFlags[NN_psadbw] = false; // Packed Sum of Absolute Differences
SMPDefsFlags[NN_pshufw] = false; // Packed Shuffle Word
SMPDefsFlags[NN_maskmovq] = false; // Byte Mask write
SMPDefsFlags[NN_movntps] = false; // Move Aligned Four Packed Single-FP Non Temporal
SMPDefsFlags[NN_movntq] = false; // Move 64 Bits Non Temporal
SMPDefsFlags[NN_prefetcht0] = false; // Prefetch to all cache levels
SMPDefsFlags[NN_prefetcht1] = false; // Prefetch to all cache levels
SMPDefsFlags[NN_prefetcht2] = false; // Prefetch to L2 cache
SMPDefsFlags[NN_prefetchnta] = false; // Prefetch to L1 cache
SMPDefsFlags[NN_sfence] = false; // Store Fence
// Pentium III Pseudo instructions
SMPDefsFlags[NN_cmpeqps] = false; // Packed Single-FP Compare EQ
SMPDefsFlags[NN_cmpltps] = false; // Packed Single-FP Compare LT
SMPDefsFlags[NN_cmpleps] = false; // Packed Single-FP Compare LE
SMPDefsFlags[NN_cmpunordps] = false; // Packed Single-FP Compare UNORD
SMPDefsFlags[NN_cmpneqps] = false; // Packed Single-FP Compare NOT EQ
SMPDefsFlags[NN_cmpnltps] = false; // Packed Single-FP Compare NOT LT
SMPDefsFlags[NN_cmpnleps] = false; // Packed Single-FP Compare NOT LE
SMPDefsFlags[NN_cmpordps] = false; // Packed Single-FP Compare ORDERED
SMPDefsFlags[NN_cmpeqss] = false; // Scalar Single-FP Compare EQ
SMPDefsFlags[NN_cmpltss] = false; // Scalar Single-FP Compare LT
SMPDefsFlags[NN_cmpless] = false; // Scalar Single-FP Compare LE
SMPDefsFlags[NN_cmpunordss] = false; // Scalar Single-FP Compare UNORD
SMPDefsFlags[NN_cmpneqss] = false; // Scalar Single-FP Compare NOT EQ
SMPDefsFlags[NN_cmpnltss] = false; // Scalar Single-FP Compare NOT LT
SMPDefsFlags[NN_cmpnless] = false; // Scalar Single-FP Compare NOT LE
SMPDefsFlags[NN_cmpordss] = false; // Scalar Single-FP Compare ORDERED
// AMD K7 instructions
// Revisit AMD if we port to it.
SMPDefsFlags[NN_pf2iw] = false; // Packed Floating-Point to Integer with Sign Extend
SMPDefsFlags[NN_pfnacc] = false; // Packed Floating-Point Negative Accumulate
SMPDefsFlags[NN_pfpnacc] = false; // Packed Floating-Point Mixed Positive-Negative Accumulate
SMPDefsFlags[NN_pi2fw] = false; // Packed 16-bit Integer to Floating-Point
SMPDefsFlags[NN_pswapd] = false; // Packed Swap Double Word
// Undocumented FP instructions (thanks to norbert.juffa@adm.com)
SMPDefsFlags[NN_fstp1] = false; // Alias of Store Real and Pop
SMPDefsFlags[NN_fxch4] = false; // Alias of Exchange Registers
SMPDefsFlags[NN_ffreep] = false; // Free Register and Pop
SMPDefsFlags[NN_fxch7] = false; // Alias of Exchange Registers
SMPDefsFlags[NN_fstp8] = false; // Alias of Store Real and Pop
SMPDefsFlags[NN_fstp9] = false; // Alias of Store Real and Pop
// Pentium 4 instructions
SMPDefsFlags[NN_addpd] = false; // Add Packed Double-Precision Floating-Point Values
SMPDefsFlags[NN_addsd] = false; // Add Scalar Double-Precision Floating-Point Values
SMPDefsFlags[NN_andnpd] = false; // Bitwise Logical AND NOT of Packed Double-Precision Floating-Point Values
SMPDefsFlags[NN_andpd] = false; // Bitwise Logical AND of Packed Double-Precision Floating-Point Values
SMPDefsFlags[NN_clflush] = false; // Flush Cache Line
SMPDefsFlags[NN_cmppd] = false; // Compare Packed Double-Precision Floating-Point Values
SMPDefsFlags[NN_cmpsd] = false; // Compare Scalar Double-Precision Floating-Point Values
SMPDefsFlags[NN_cvtdq2pd] = false; // Convert Packed Doubleword Integers to Packed Single-Precision Floating-Point Values
SMPDefsFlags[NN_cvtdq2ps] = false; // Convert Packed Doubleword Integers to Packed Double-Precision Floating-Point Values
SMPDefsFlags[NN_cvtpd2dq] = false; // Convert Packed Double-Precision Floating-Point Values to Packed Doubleword Integers
SMPDefsFlags[NN_cvtpd2pi] = false; // Convert Packed Double-Precision Floating-Point Values to Packed Doubleword Integers
SMPDefsFlags[NN_cvtpd2ps] = false; // Convert Packed Double-Precision Floating-Point Values to Packed Single-Precision Floating-Point Values
SMPDefsFlags[NN_cvtpi2pd] = false; // Convert Packed Doubleword Integers to Packed Double-Precision Floating-Point Values
SMPDefsFlags[NN_cvtps2dq] = false; // Convert Packed Single-Precision Floating-Point Values to Packed Doubleword Integers
SMPDefsFlags[NN_cvtps2pd] = false; // Convert Packed Single-Precision Floating-Point Values to Packed Double-Precision Floating-Point Values
SMPDefsFlags[NN_cvtsd2si] = false; // Convert Scalar Double-Precision Floating-Point Value to Doubleword Integer
SMPDefsFlags[NN_cvtsd2ss] = false; // Convert Scalar Double-Precision Floating-Point Value to Scalar Single-Precision Floating-Point Value
SMPDefsFlags[NN_cvtsi2sd] = false; // Convert Doubleword Integer to Scalar Double-Precision Floating-Point Value
SMPDefsFlags[NN_cvtss2sd] = false; // Convert Scalar Single-Precision Floating-Point Value to Scalar Double-Precision Floating-Point Value
SMPDefsFlags[NN_cvttpd2dq] = false; // Convert With Truncation Packed Double-Precision Floating-Point Values to Packed Doubleword Integers
SMPDefsFlags[NN_cvttpd2pi] = false; // Convert with Truncation Packed Double-Precision Floating-Point Values to Packed Doubleword Integers
SMPDefsFlags[NN_cvttps2dq] = false; // Convert With Truncation Packed Single-Precision Floating-Point Values to Packed Doubleword Integers
SMPDefsFlags[NN_cvttsd2si] = false; // Convert with Truncation Scalar Double-Precision Floating-Point Value to Doubleword Integer
SMPDefsFlags[NN_divpd] = false; // Divide Packed Double-Precision Floating-Point Values
SMPDefsFlags[NN_divsd] = false; // Divide Scalar Double-Precision Floating-Point Values
SMPDefsFlags[NN_lfence] = false; // Load Fence
SMPDefsFlags[NN_maskmovdqu] = false; // Store Selected Bytes of Double Quadword
SMPDefsFlags[NN_maxpd] = false; // Return Maximum Packed Double-Precision Floating-Point Values
SMPDefsFlags[NN_maxsd] = false; // Return Maximum Scalar Double-Precision Floating-Point Value
SMPDefsFlags[NN_mfence] = false; // Memory Fence
SMPDefsFlags[NN_minpd] = false; // Return Minimum Packed Double-Precision Floating-Point Values
SMPDefsFlags[NN_minsd] = false; // Return Minimum Scalar Double-Precision Floating-Point Value
SMPDefsFlags[NN_movapd] = false; // Move Aligned Packed Double-Precision Floating-Point Values
SMPDefsFlags[NN_movdq2q] = false; // Move Quadword from XMM to MMX Register
SMPDefsFlags[NN_movdqa] = false; // Move Aligned Double Quadword
SMPDefsFlags[NN_movdqu] = false; // Move Unaligned Double Quadword
SMPDefsFlags[NN_movhpd] = false; // Move High Packed Double-Precision Floating-Point Values
SMPDefsFlags[NN_movlpd] = false; // Move Low Packed Double-Precision Floating-Point Values
SMPDefsFlags[NN_movmskpd] = false; // Extract Packed Double-Precision Floating-Point Sign Mask
SMPDefsFlags[NN_movntdq] = false; // Store Double Quadword Using Non-Temporal Hint
SMPDefsFlags[NN_movnti] = false; // Store Doubleword Using Non-Temporal Hint
SMPDefsFlags[NN_movntpd] = false; // Store Packed Double-Precision Floating-Point Values Using Non-Temporal Hint
SMPDefsFlags[NN_movq2dq] = false; // Move Quadword from MMX to XMM Register
SMPDefsFlags[NN_movsd] = false; // Move Scalar Double-Precision Floating-Point Values
SMPDefsFlags[NN_movupd] = false; // Move Unaligned Packed Double-Precision Floating-Point Values
SMPDefsFlags[NN_mulpd] = false; // Multiply Packed Double-Precision Floating-Point Values
SMPDefsFlags[NN_mulsd] = false; // Multiply Scalar Double-Precision Floating-Point Values
SMPDefsFlags[NN_orpd] = false; // Bitwise Logical OR of Double-Precision Floating-Point Values
SMPDefsFlags[NN_paddq] = false; // Add Packed Quadword Integers
SMPDefsFlags[NN_pause] = false; // Spin Loop Hint
SMPDefsFlags[NN_pmuludq] = false; // Multiply Packed Unsigned Doubleword Integers
SMPDefsFlags[NN_pshufd] = false; // Shuffle Packed Doublewords
SMPDefsFlags[NN_pshufhw] = false; // Shuffle Packed High Words
SMPDefsFlags[NN_pshuflw] = false; // Shuffle Packed Low Words
SMPDefsFlags[NN_pslldq] = false; // Shift Double Quadword Left Logical
SMPDefsFlags[NN_psrldq] = false; // Shift Double Quadword Right Logical
SMPDefsFlags[NN_psubq] = false; // Subtract Packed Quadword Integers
SMPDefsFlags[NN_punpckhqdq] = false; // Unpack High Data
SMPDefsFlags[NN_punpcklqdq] = false; // Unpack Low Data
SMPDefsFlags[NN_shufpd] = false; // Shuffle Packed Double-Precision Floating-Point Values
SMPDefsFlags[NN_sqrtpd] = false; // Compute Square Roots of Packed Double-Precision Floating-Point Values
SMPDefsFlags[NN_sqrtsd] = false; // Compute Square Rootof Scalar Double-Precision Floating-Point Value
SMPDefsFlags[NN_subpd] = false; // Subtract Packed Double-Precision Floating-Point Values
SMPDefsFlags[NN_subsd] = false; // Subtract Scalar Double-Precision Floating-Point Values
SMPDefsFlags[NN_unpckhpd] = false; // Unpack and Interleave High Packed Double-Precision Floating-Point Values
SMPDefsFlags[NN_unpcklpd] = false; // Unpack and Interleave Low Packed Double-Precision Floating-Point Values
SMPDefsFlags[NN_xorpd] = false; // Bitwise Logical OR of Double-Precision Floating-Point Values
// AMD syscall/sysret instructions NOTE: not AMD, found in Intel manual
// AMD64 instructions NOTE: not AMD, found in Intel manual
SMPDefsFlags[NN_swapgs] = false; // Exchange GS base with KernelGSBase MSR
// New Pentium instructions (SSE3)
SMPDefsFlags[NN_movddup] = false; // Move One Double-FP and Duplicate
SMPDefsFlags[NN_movshdup] = false; // Move Packed Single-FP High and Duplicate
SMPDefsFlags[NN_movsldup] = false; // Move Packed Single-FP Low and Duplicate
// Missing AMD64 instructions NOTE: also found in Intel manual
SMPDefsFlags[NN_movsxd] = false; // Move with Sign-Extend Doubleword
// SSE3 instructions
SMPDefsFlags[NN_addsubpd] = false; // Add /Sub packed DP FP numbers
SMPDefsFlags[NN_addsubps] = false; // Add /Sub packed SP FP numbers
SMPDefsFlags[NN_haddpd] = false; // Add horizontally packed DP FP numbers
SMPDefsFlags[NN_haddps] = false; // Add horizontally packed SP FP numbers
SMPDefsFlags[NN_hsubpd] = false; // Sub horizontally packed DP FP numbers
SMPDefsFlags[NN_hsubps] = false; // Sub horizontally packed SP FP numbers
SMPDefsFlags[NN_monitor] = false; // Set up a linear address range to be monitored by hardware
SMPDefsFlags[NN_mwait] = false; // Wait until write-back store performed within the range specified by the MONITOR instruction
SMPDefsFlags[NN_fisttp] = false; // Store ST in intXX (chop) and pop
SMPDefsFlags[NN_lddqu] = false; // Load unaligned integer 128-bit
// SSSE3 instructions
SMPDefsFlags[NN_psignb] = false; // Packed SIGN Byte
SMPDefsFlags[NN_psignw] = false; // Packed SIGN Word
SMPDefsFlags[NN_psignd] = false; // Packed SIGN Doubleword
SMPDefsFlags[NN_pshufb] = false; // Packed Shuffle Bytes
SMPDefsFlags[NN_pmulhrsw] = false; // Packed Multiply High with Round and Scale
SMPDefsFlags[NN_pmaddubsw] = false; // Multiply and Add Packed Signed and Unsigned Bytes
SMPDefsFlags[NN_phsubsw] = false; // Packed Horizontal Subtract and Saturate
SMPDefsFlags[NN_phaddsw] = false; // Packed Horizontal Add and Saturate
SMPDefsFlags[NN_phaddw] = false; // Packed Horizontal Add Word
SMPDefsFlags[NN_phaddd] = false; // Packed Horizontal Add Doubleword
SMPDefsFlags[NN_phsubw] = false; // Packed Horizontal Subtract Word
SMPDefsFlags[NN_phsubd] = false; // Packed Horizontal Subtract Doubleword
SMPDefsFlags[NN_palignr] = false; // Packed Align Right
SMPDefsFlags[NN_pabsb] = false; // Packed Absolute Value Byte
SMPDefsFlags[NN_pabsw] = false; // Packed Absolute Value Word
SMPDefsFlags[NN_pabsd] = false; // Packed Absolute Value Doubleword
// VMX instructions
SMPDefsFlags[NN_ud2] = false; // Undefined Instruction
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
// Added with x86-64
SMPDefsFlags[NN_rdtscp] = false; // Read Time-Stamp Counter and Processor ID
// Geode LX 3DNow! extensions
SMPDefsFlags[NN_pfrcpv] = false; // Reciprocal Approximation for a Pair of 32-bit Floats
SMPDefsFlags[NN_pfrsqrtv] = false; // Reciprocal Square Root Approximation for a Pair of 32-bit Floats
// SSE2 pseudoinstructions
SMPDefsFlags[NN_cmpeqpd] = false; // Packed Double-FP Compare EQ
SMPDefsFlags[NN_cmpltpd] = false; // Packed Double-FP Compare LT
SMPDefsFlags[NN_cmplepd] = false; // Packed Double-FP Compare LE
SMPDefsFlags[NN_cmpunordpd] = false; // Packed Double-FP Compare UNORD
SMPDefsFlags[NN_cmpneqpd] = false; // Packed Double-FP Compare NOT EQ
SMPDefsFlags[NN_cmpnltpd] = false; // Packed Double-FP Compare NOT LT
SMPDefsFlags[NN_cmpnlepd] = false; // Packed Double-FP Compare NOT LE
SMPDefsFlags[NN_cmpordpd] = false; // Packed Double-FP Compare ORDERED
SMPDefsFlags[NN_cmpeqsd] = false; // Scalar Double-FP Compare EQ
SMPDefsFlags[NN_cmpltsd] = false; // Scalar Double-FP Compare LT
SMPDefsFlags[NN_cmplesd] = false; // Scalar Double-FP Compare LE
SMPDefsFlags[NN_cmpunordsd] = false; // Scalar Double-FP Compare UNORD
SMPDefsFlags[NN_cmpneqsd] = false; // Scalar Double-FP Compare NOT EQ
SMPDefsFlags[NN_cmpnltsd] = false; // Scalar Double-FP Compare NOT LT
SMPDefsFlags[NN_cmpnlesd] = false; // Scalar Double-FP Compare NOT LE
SMPDefsFlags[NN_cmpordsd] = false; // Scalar Double-FP Compare ORDERED
// SSSE4.1 instructions
SMPDefsFlags[NN_blendpd] = false; // Blend Packed Double Precision Floating-Point Values
SMPDefsFlags[NN_blendps] = false; // Blend Packed Single Precision Floating-Point Values
SMPDefsFlags[NN_blendvpd] = false; // Variable Blend Packed Double Precision Floating-Point Values
SMPDefsFlags[NN_blendvps] = false; // Variable Blend Packed Single Precision Floating-Point Values
SMPDefsFlags[NN_dppd] = false; // Dot Product of Packed Double Precision Floating-Point Values
SMPDefsFlags[NN_dpps] = false; // Dot Product of Packed Single Precision Floating-Point Values
SMPDefsFlags[NN_extractps] = 2; // Extract Packed Single Precision Floating-Point Value
SMPDefsFlags[NN_insertps] = false; // Insert Packed Single Precision Floating-Point Value
SMPDefsFlags[NN_movntdqa] = false; // Load Double Quadword Non-Temporal Aligned Hint
SMPDefsFlags[NN_mpsadbw] = false; // Compute Multiple Packed Sums of Absolute Difference
SMPDefsFlags[NN_packusdw] = false; // Pack with Unsigned Saturation
SMPDefsFlags[NN_pblendvb] = false; // Variable Blend Packed Bytes
SMPDefsFlags[NN_pblendw] = false; // Blend Packed Words
SMPDefsFlags[NN_pcmpeqq] = false; // Compare Packed Qword Data for Equal
SMPDefsFlags[NN_pextrb] = false; // Extract Byte
SMPDefsFlags[NN_pextrd] = false; // Extract Dword
SMPDefsFlags[NN_pextrq] = false; // Extract Qword
SMPDefsFlags[NN_phminposuw] = false; // Packed Horizontal Word Minimum
SMPDefsFlags[NN_pinsrb] = false; // Insert Byte
SMPDefsFlags[NN_pinsrd] = false; // Insert Dword
SMPDefsFlags[NN_pinsrq] = false; // Insert Qword
SMPDefsFlags[NN_pmaxsb] = false; // Maximum of Packed Signed Byte Integers
SMPDefsFlags[NN_pmaxsd] = false; // Maximum of Packed Signed Dword Integers
SMPDefsFlags[NN_pmaxud] = false; // Maximum of Packed Unsigned Dword Integers
SMPDefsFlags[NN_pmaxuw] = false; // Maximum of Packed Word Integers
SMPDefsFlags[NN_pminsb] = false; // Minimum of Packed Signed Byte Integers
SMPDefsFlags[NN_pminsd] = false; // Minimum of Packed Signed Dword Integers
SMPDefsFlags[NN_pminud] = false; // Minimum of Packed Unsigned Dword Integers
SMPDefsFlags[NN_pminuw] = false; // Minimum of Packed Word Integers
SMPDefsFlags[NN_pmovsxbw] = false; // Packed Move with Sign Extend
SMPDefsFlags[NN_pmovsxbd] = false; // Packed Move with Sign Extend
SMPDefsFlags[NN_pmovsxbq] = false; // Packed Move with Sign Extend
SMPDefsFlags[NN_pmovsxwd] = false; // Packed Move with Sign Extend
SMPDefsFlags[NN_pmovsxwq] = false; // Packed Move with Sign Extend
SMPDefsFlags[NN_pmovsxdq] = false; // Packed Move with Sign Extend
SMPDefsFlags[NN_pmovzxbw] = false; // Packed Move with Zero Extend
SMPDefsFlags[NN_pmovzxbd] = false; // Packed Move with Zero Extend
SMPDefsFlags[NN_pmovzxbq] = false; // Packed Move with Zero Extend
SMPDefsFlags[NN_pmovzxwd] = false; // Packed Move with Zero Extend
SMPDefsFlags[NN_pmovzxwq] = false; // Packed Move with Zero Extend
SMPDefsFlags[NN_pmovzxdq] = false; // Packed Move with Zero Extend
SMPDefsFlags[NN_pmuldq] = false; // Multiply Packed Signed Dword Integers
SMPDefsFlags[NN_pmulld] = false; // Multiply Packed Signed Dword Integers and Store Low Result
SMPDefsFlags[NN_roundpd] = false; // Round Packed Double Precision Floating-Point Values
SMPDefsFlags[NN_roundps] = false; // Round Packed Single Precision Floating-Point Values
SMPDefsFlags[NN_roundsd] = false; // Round Scalar Double Precision Floating-Point Values
SMPDefsFlags[NN_roundss] = false; // Round Scalar Single Precision Floating-Point Values
// SSSE4.2 instructions
SMPDefsFlags[NN_crc32] = false; // Accumulate CRC32 Value
SMPDefsFlags[NN_pcmpgtq] = false; // Compare Packed Data for Greater Than
// AMD SSE4a instructions
SMPDefsFlags[NN_extrq] = false; // Extract Field From Register
SMPDefsFlags[NN_insertq] = false; // Insert Field
SMPDefsFlags[NN_movntsd] = false; // Move Non-Temporal Scalar Double-Precision Floating-Point
SMPDefsFlags[NN_movntss] = false; // Move Non-Temporal Scalar Single-Precision Floating-Point
// xsave/xrstor instructions
SMPDefsFlags[NN_xgetbv] = false; // Get Value of Extended Control Register
SMPDefsFlags[NN_xrstor] = false; // Restore Processor Extended States
SMPDefsFlags[NN_xsave] = false; // Save Processor Extended States
SMPDefsFlags[NN_xsetbv] = false; // Set Value of Extended Control Register
// Intel Safer Mode Extensions (SMX)
// AMD-V Virtualization ISA Extension
SMPDefsFlags[NN_invlpga] = false; // Invalidate TLB Entry in a Specified ASID
SMPDefsFlags[NN_skinit] = false; // Secure Init and Jump with Attestation
SMPDefsFlags[NN_vmexit] = false; // Stop Executing Guest, Begin Executing Host
SMPDefsFlags[NN_vmload] = false; // Load State from VMCB
SMPDefsFlags[NN_vmmcall] = false; // Call VMM
SMPDefsFlags[NN_vmrun] = false; // Run Virtual Machine
SMPDefsFlags[NN_vmsave] = false; // Save State to VMCB
// VMX+ instructions
SMPDefsFlags[NN_invept] = false; // Invalidate Translations Derived from EPT
SMPDefsFlags[NN_invvpid] = false; // Invalidate Translations Based on VPID
// Intel Atom instructions
SMPDefsFlags[NN_movbe] = false; // Move Data After Swapping Bytes
// Intel AES instructions
SMPDefsFlags[NN_aesenc] = false; // Perform One Round of an AES Encryption Flow
SMPDefsFlags[NN_aesenclast] = false; // Perform the Last Round of an AES Encryption Flow
SMPDefsFlags[NN_aesdec] = false; // Perform One Round of an AES Decryption Flow
SMPDefsFlags[NN_aesdeclast] = false; // Perform the Last Round of an AES Decryption Flow
SMPDefsFlags[NN_aesimc] = false; // Perform the AES InvMixColumn Transformation
SMPDefsFlags[NN_aeskeygenassist] = false; // AES Round Key Generation Assist
// Carryless multiplication
SMPDefsFlags[NN_pclmulqdq] = false; // Carry-Less Multiplication Quadword
#endif // 599 < IDA_SDK_VERSION
SMPDefsFlags[NN_last] = false;
return;
} // end InitSMPDefsFlags()
// Initialize the SMPUsesFlags[] array to define how we emit
// optimizing annotations.
void InitSMPUsesFlags(void) {
// Default value is false. Few instructions use the flags.
(void) memset(SMPUsesFlags, false, sizeof(SMPUsesFlags));
SMPUsesFlags[NN_null] = true; // Unknown Operation
clc5q
committed
SMPUsesFlags[NN_aaa] = true; // ASCII adjust after addition
SMPUsesFlags[NN_aas] = true; // ASCII adjust after subtraction
SMPUsesFlags[NN_adc] = true; // Add with Carry
SMPUsesFlags[NN_cmps] = true; // Compare Strings (uses DF direction flag)
SMPUsesFlags[NN_daa] = true; // Decimal Adjust AL after Addition
SMPUsesFlags[NN_das] = true; // Decimal Adjust AL after Subtraction
SMPUsesFlags[NN_ins] = true; // Input Byte(s) from Port to String
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
SMPUsesFlags[NN_into] = true; // Call to Interrupt Procedure if Overflow Flag = 1
SMPUsesFlags[NN_ja] = true; // Jump if Above (CF=0 & ZF=0)
SMPUsesFlags[NN_jae] = true; // Jump if Above or Equal (CF=0)
SMPUsesFlags[NN_jb] = true; // Jump if Below (CF=1)
SMPUsesFlags[NN_jbe] = true; // Jump if Below or Equal (CF=1 | ZF=1)
SMPUsesFlags[NN_jc] = true; // Jump if Carry (CF=1)
SMPUsesFlags[NN_jcxz] = true; // Jump if CX is 0
SMPUsesFlags[NN_jecxz] = true; // Jump if ECX is 0
SMPUsesFlags[NN_jrcxz] = true; // Jump if RCX is 0
SMPUsesFlags[NN_je] = true; // Jump if Equal (ZF=1)
SMPUsesFlags[NN_jg] = true; // Jump if Greater (ZF=0 & SF=OF)
SMPUsesFlags[NN_jge] = true; // Jump if Greater or Equal (SF=OF)
SMPUsesFlags[NN_jl] = true; // Jump if Less (SF!=OF)
SMPUsesFlags[NN_jle] = true; // Jump if Less or Equal (ZF=1 | SF!=OF)
SMPUsesFlags[NN_jna] = true; // Jump if Not Above (CF=1 | ZF=1)
SMPUsesFlags[NN_jnae] = true; // Jump if Not Above or Equal (CF=1)
SMPUsesFlags[NN_jnb] = true; // Jump if Not Below (CF=0)
SMPUsesFlags[NN_jnbe] = true; // Jump if Not Below or Equal (CF=0 & ZF=0)
SMPUsesFlags[NN_jnc] = true; // Jump if Not Carry (CF=0)
SMPUsesFlags[NN_jne] = true; // Jump if Not Equal (ZF=0)
SMPUsesFlags[NN_jng] = true; // Jump if Not Greater (ZF=1 | SF!=OF)
SMPUsesFlags[NN_jnge] = true; // Jump if Not Greater or Equal (ZF=1)
SMPUsesFlags[NN_jnl] = true; // Jump if Not Less (SF=OF)
SMPUsesFlags[NN_jnle] = true; // Jump if Not Less or Equal (ZF=0 & SF=OF)
SMPUsesFlags[NN_jno] = true; // Jump if Not Overflow (OF=0)
SMPUsesFlags[NN_jnp] = true; // Jump if Not Parity (PF=0)
SMPUsesFlags[NN_jns] = true; // Jump if Not Sign (SF=0)
SMPUsesFlags[NN_jnz] = true; // Jump if Not Zero (ZF=0)
SMPUsesFlags[NN_jo] = true; // Jump if Overflow (OF=1)
SMPUsesFlags[NN_jp] = true; // Jump if Parity (PF=1)
SMPUsesFlags[NN_jpe] = true; // Jump if Parity Even (PF=1)
SMPUsesFlags[NN_jpo] = true; // Jump if Parity Odd (PF=0)
SMPUsesFlags[NN_js] = true; // Jump if Sign (SF=1)
SMPUsesFlags[NN_jz] = true; // Jump if Zero (ZF=1)
SMPUsesFlags[NN_lahf] = true; // Load Flags into AH Register
SMPUsesFlags[NN_lods] = true; // Load String
SMPUsesFlags[NN_loopwe] = true; // Loop while CX != 0 and ZF=1
SMPUsesFlags[NN_loope] = true; // Loop while rCX != 0 and ZF=1
SMPUsesFlags[NN_loopde] = true; // Loop while ECX != 0 and ZF=1
SMPUsesFlags[NN_loopqe] = true; // Loop while RCX != 0 and ZF=1
SMPUsesFlags[NN_loopwne] = true; // Loop while CX != 0 and ZF=0
SMPUsesFlags[NN_loopne] = true; // Loop while rCX != 0 and ZF=0
SMPUsesFlags[NN_loopdne] = true; // Loop while ECX != 0 and ZF=0
SMPUsesFlags[NN_loopqne] = true; // Loop while RCX != 0 and ZF=0
SMPUsesFlags[NN_movs] = true; // Move String (uses flags if REP prefix)
SMPUsesFlags[NN_outs] = true; // Output Byte(s) to Port
SMPUsesFlags[NN_pushfw] = true; // Push Flags Register onto the Stack
SMPUsesFlags[NN_pushf] = true; // Push Flags Register onto the Stack
SMPUsesFlags[NN_pushfd] = true; // Push Flags Register onto the Stack (use32)
SMPUsesFlags[NN_pushfq] = true; // Push Flags Register onto the Stack (use64)
SMPUsesFlags[NN_rcl] = true; // Rotate Through Carry Left
SMPUsesFlags[NN_rcr] = true; // Rotate Through Carry Right
SMPUsesFlags[NN_repe] = true; // Repeat String Operation while ZF=1
SMPUsesFlags[NN_repne] = true; // Repeat String Operation while ZF=0
SMPUsesFlags[NN_sbb] = true; // Integer Subtraction with Borrow
SMPUsesFlags[NN_scas] = true; // Compare String (uses DF direction flag)
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
SMPUsesFlags[NN_seta] = true; // Set Byte if Above (CF=0 & ZF=0)
SMPUsesFlags[NN_setae] = true; // Set Byte if Above or Equal (CF=0)
SMPUsesFlags[NN_setb] = true; // Set Byte if Below (CF=1)
SMPUsesFlags[NN_setbe] = true; // Set Byte if Below or Equal (CF=1 | ZF=1)
SMPUsesFlags[NN_setc] = true; // Set Byte if Carry (CF=1)
SMPUsesFlags[NN_sete] = true; // Set Byte if Equal (ZF=1)
SMPUsesFlags[NN_setg] = true; // Set Byte if Greater (ZF=0 & SF=OF)
SMPUsesFlags[NN_setge] = true; // Set Byte if Greater or Equal (SF=OF)
SMPUsesFlags[NN_setl] = true; // Set Byte if Less (SF!=OF)
SMPUsesFlags[NN_setle] = true; // Set Byte if Less or Equal (ZF=1 | SF!=OF)
SMPUsesFlags[NN_setna] = true; // Set Byte if Not Above (CF=1 | ZF=1)
SMPUsesFlags[NN_setnae] = true; // Set Byte if Not Above or Equal (CF=1)
SMPUsesFlags[NN_setnb] = true; // Set Byte if Not Below (CF=0)
SMPUsesFlags[NN_setnbe] = true; // Set Byte if Not Below or Equal (CF=0 & ZF=0)
SMPUsesFlags[NN_setnc] = true; // Set Byte if Not Carry (CF=0)
SMPUsesFlags[NN_setne] = true; // Set Byte if Not Equal (ZF=0)
SMPUsesFlags[NN_setng] = true; // Set Byte if Not Greater (ZF=1 | SF!=OF)
SMPUsesFlags[NN_setnge] = true; // Set Byte if Not Greater or Equal (ZF=1)
SMPUsesFlags[NN_setnl] = true; // Set Byte if Not Less (SF=OF)
SMPUsesFlags[NN_setnle] = true; // Set Byte if Not Less or Equal (ZF=0 & SF=OF)
SMPUsesFlags[NN_setno] = true; // Set Byte if Not Overflow (OF=0)
SMPUsesFlags[NN_setnp] = true; // Set Byte if Not Parity (PF=0)
SMPUsesFlags[NN_setns] = true; // Set Byte if Not Sign (SF=0)
SMPUsesFlags[NN_setnz] = true; // Set Byte if Not Zero (ZF=0)
SMPUsesFlags[NN_seto] = true; // Set Byte if Overflow (OF=1)
SMPUsesFlags[NN_setp] = true; // Set Byte if Parity (PF=1)
SMPUsesFlags[NN_setpe] = true; // Set Byte if Parity Even (PF=1)
SMPUsesFlags[NN_setpo] = true; // Set Byte if Parity Odd (PF=0)
SMPUsesFlags[NN_sets] = true; // Set Byte if Sign (SF=1)
SMPUsesFlags[NN_setz] = true; // Set Byte if Zero (ZF=1)
SMPUsesFlags[NN_stos] = true; // Store String
//
// 486 instructions
//
//
// Pentium instructions
//
clc5q
committed
#if 0
SMPUsesFlags[NN_cpuid] = true; // Get CPU ID
SMPUsesFlags[NN_cmpxchg8b] = true; // Compare and Exchange Eight Bytes
clc5q
committed
#endif
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
//
// Pentium Pro instructions
//
SMPUsesFlags[NN_cmova] = true; // Move if Above (CF=0 & ZF=0)
SMPUsesFlags[NN_cmovb] = true; // Move if Below (CF=1)
SMPUsesFlags[NN_cmovbe] = true; // Move if Below or Equal (CF=1 | ZF=1)
SMPUsesFlags[NN_cmovg] = true; // Move if Greater (ZF=0 & SF=OF)
SMPUsesFlags[NN_cmovge] = true; // Move if Greater or Equal (SF=OF)
SMPUsesFlags[NN_cmovl] = true; // Move if Less (SF!=OF)
SMPUsesFlags[NN_cmovle] = true; // Move if Less or Equal (ZF=1 | SF!=OF)
SMPUsesFlags[NN_cmovnb] = true; // Move if Not Below (CF=0)
SMPUsesFlags[NN_cmovno] = true; // Move if Not Overflow (OF=0)
SMPUsesFlags[NN_cmovnp] = true; // Move if Not Parity (PF=0)
SMPUsesFlags[NN_cmovns] = true; // Move if Not Sign (SF=0)
SMPUsesFlags[NN_cmovnz] = true; // Move if Not Zero (ZF=0)
SMPUsesFlags[NN_cmovo] = true; // Move if Overflow (OF=1)
SMPUsesFlags[NN_cmovp] = true; // Move if Parity (PF=1)
SMPUsesFlags[NN_cmovs] = true; // Move if Sign (SF=1)
SMPUsesFlags[NN_cmovz] = true; // Move if Zero (ZF=1)
SMPUsesFlags[NN_fcmovb] = true; // Floating Move if Below
SMPUsesFlags[NN_fcmove] = true; // Floating Move if Equal
SMPUsesFlags[NN_fcmovbe] = true; // Floating Move if Below or Equal
SMPUsesFlags[NN_fcmovu] = true; // Floating Move if Unordered
SMPUsesFlags[NN_fcmovnb] = true; // Floating Move if Not Below
SMPUsesFlags[NN_fcmovne] = true; // Floating Move if Not Equal
SMPUsesFlags[NN_fcmovnbe] = true; // Floating Move if Not Below or Equal
SMPUsesFlags[NN_fcmovnu] = true; // Floating Move if Not Unordered
//
clc5q
committed
// FPP instructions
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
//
//
// 80387 instructions
//
//
// Instructions added 28.02.96
//
SMPUsesFlags[NN_setalc] = true; // Set AL to Carry Flag
//
// MMX instructions
//
//
// Undocumented Deschutes processor instructions
//
// Pentium II instructions
// 3DNow! instructions
// Pentium III instructions
// Pentium III Pseudo instructions
// AMD K7 instructions
// Revisit AMD if we port to it.
// Undocumented FP instructions (thanks to norbert.juffa@adm.com)
// Pentium 4 instructions
// AMD syscall/sysret instructions NOTE: not AMD, found in Intel manual
// AMD64 instructions NOTE: not AMD, found in Intel manual
// New Pentium instructions (SSE3)
// Missing AMD64 instructions NOTE: also found in Intel manual
// SSE3 instructions
// SSSE3 instructions
// VMX instructions
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
// Added with x86-64
// Geode LX 3DNow! extensions
// SSE2 pseudoinstructions
// SSSE4.1 instructions
// SSSE4.2 instructions
// AMD SSE4a instructions
// xsave/xrstor instructions
// Intel Safer Mode Extensions (SMX)
// AMD-V Virtualization ISA Extension
// VMX+ instructions
// Intel Atom instructions
// Intel AES instructions
// Carryless multiplication
SMPUsesFlags[NN_last] = false;
return;
} // end InitSMPUsesFlags()
// Initialize the SMPTypeCategory[] array to define how we infer
// numeric or pointer operand types for optimizing annotations.
void InitTypeCategory(void) {
// Default category is 0, no type inference without knowing context.
(void) memset(SMPTypeCategory, 0, sizeof(SMPTypeCategory));
// Category 1 instructions will need no mmStrata instrumentation
// and are irrelevant to our type system, so we do not attempt
// to make type inferences. Many of these operate on numeric
// operands such as floating point or MMX/SSE registers. mmStrata
// assumes that such registers are always numeric, so we do not
// need annotations informing mmStrata that FP/MMX/SSE regs are numeric.
// Category 2 instructions always have a result type of 'n' (number).
// Category 3 instructions have a result type of 'n' (number)
// whenever the second source operand is an operand of type 'n'.
// NOTE: MOV is the only current example, and this will take some thought if
// other examples arise.
// Category 4 instructions have a result type identical to the 1st source operand type.
// NOTE: This is currently set for single-operand instructions such as
// INC, DEC. As a result, these are treated pretty much as if
// they were category 1 instructions, as there is no metadata update,
// even if the operand is a memory operand.
// If new instructions are added to this category that are not single
// operand and do require some updating, the category should be split.
// Category 5 instructions have a result type identical to the 1st source operand
// type whenever the 2nd source operand is an operand of type 'n' & vice versa.
// Examples are add, sub, adc, and sbb. There are subtle exceptions
// handled in the SMPInstr::EmitTypeAnnotations() method.
// Category 6 instructions always have a result type of 'p' (pointer).
// Category 7 instructions are category 2 instructions with two destinations,
// such as multiply and divide instructions that affect EDX:EAX. There are
// forms of these instructions that only have one destination, so they have
// to be distinguished via the operand info.
// Category 8 instructions implicitly write a numeric value to EDX:EAX, but
// EDX and EAX are not listed as operands. RDTSC, RDPMC, RDMSR, and other
// instructions that copy machine registers into EDX:EAX are category 8.
// Some instructions in category 8 also write to ECX.
// Category 9 instructions are floating point instructions that either
// have a memory destination (treat as category 13) or a FP reg destination
// (treat as category 1, as FP regs are always 'n' and ignored in our system).
// Category 10 instructions have 'n' results if the sources are all 'n';
// we cannot infer the type of the result if the sources are of mixed types.
// Bitwise OR and AND and LEA (load effective address) are examples.
// Category 11 instructions need to have their types and locations on the stack
// frame tracked, e.g. push and pop instructions. No direct type inference.
// Category 12 instructions are similar to category 10, except that we do not
// output 'n' annotations when all sources are 'n'; rather, the instruction can
// be simply ignored (not instrumented by mmStrata) in that case. Conditional
// exchange instructions are examples; we do or do not
// move a numeric value into a register that already has numeric metadata.
// Category 13 instructions imply that their memory destination is 'n'.
// Category 14 instructions imply that their reg or memory source operand is 'n';
// if source is not memory, they are category 1 (inferences, but no instrumentation).
// There should never be a memory destination (usual destination is fpreg or flags).
// Category 15 instructions always have 'n' source AND destination operands;
// if addressed using indirect or indexed addressing, they are a subset of category 0
// (must be instrumented by mmStrata to keep index in bounds). Memory destinations
// are common in this category.
// NOTE: The Memory Monitor SDT needs just three categories, corresponding
// to categories 0, 1, and all others. For all categories > 1, the
// annotation should tell the SDT exactly how to update its metadata.
// For example, a division instruction will write type 'n' (NUM) as
// the metadata for result registers EDX:EAX. So, the annotation should
// list 'n', EDX, EAX, and a terminator of ZZ. CWD (convert word to
// doubleword) should have a list of n EAX ZZ.
SMPTypeCategory[NN_null] = 0; // Unknown Operation
SMPTypeCategory[NN_aaa] = 2; // ASCII Adjust after Addition
SMPTypeCategory[NN_aad] = 2; // ASCII Adjust AX before Division
SMPTypeCategory[NN_aam] = 2; // ASCII Adjust AX after Multiply
SMPTypeCategory[NN_aas] = 2; // ASCII Adjust AL after Subtraction
SMPTypeCategory[NN_adc] = 5; // Add with Carry
SMPTypeCategory[NN_add] = 5; // Add
SMPTypeCategory[NN_and] = 10; // Logical AND
SMPTypeCategory[NN_arpl] = 1; // Adjust RPL Field of Selector
SMPTypeCategory[NN_bound] = 1; // Check Array Index Against Bounds
SMPTypeCategory[NN_bsf] = 2; // Bit Scan Forward
SMPTypeCategory[NN_bsr] = 2; // Bit Scan Reverse
SMPTypeCategory[NN_bt] = 10; // Bit Test
SMPTypeCategory[NN_btc] = 10; // Bit Test and Complement
SMPTypeCategory[NN_btr] = 10; // Bit Test and Reset
SMPTypeCategory[NN_bts] = 10; // Bit Test and Set
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
SMPTypeCategory[NN_call] = 1; // Call Procedure
SMPTypeCategory[NN_callfi] = 1; // Indirect Call Far Procedure
SMPTypeCategory[NN_callni] = 1; // Indirect Call Near Procedure
SMPTypeCategory[NN_cbw] = 2; // AL -> AX (with sign) ** No ops?
SMPTypeCategory[NN_cwde] = 2; // AX -> EAX (with sign) **
SMPTypeCategory[NN_cdqe] = 2; // EAX -> RAX (with sign) **
SMPTypeCategory[NN_clc] = 1; // Clear Carry Flag
SMPTypeCategory[NN_cld] = 1; // Clear Direction Flag
SMPTypeCategory[NN_cli] = 1; // Clear Interrupt Flag
SMPTypeCategory[NN_clts] = 1; // Clear Task-Switched Flag in CR0
SMPTypeCategory[NN_cmc] = 1; // Complement Carry Flag
SMPTypeCategory[NN_cmp] = 1; // Compare Two Operands
SMPTypeCategory[NN_cmps] = 14; // Compare Strings
SMPTypeCategory[NN_cwd] = 2; // AX -> DX:AX (with sign)
SMPTypeCategory[NN_cdq] = 2; // EAX -> EDX:EAX (with sign)
SMPTypeCategory[NN_cqo] = 2; // RAX -> RDX:RAX (with sign)
SMPTypeCategory[NN_daa] = 2; // Decimal Adjust AL after Addition
SMPTypeCategory[NN_das] = 2; // Decimal Adjust AL after Subtraction
SMPTypeCategory[NN_dec] = 4; // Decrement by 1
SMPTypeCategory[NN_div] = 7; // Unsigned Divide
SMPTypeCategory[NN_enterw] = 0; // Make Stack Frame for Procedure Parameters **
SMPTypeCategory[NN_enter] = 0; // Make Stack Frame for Procedure Parameters **
SMPTypeCategory[NN_enterd] = 0; // Make Stack Frame for Procedure Parameters **
SMPTypeCategory[NN_enterq] = 0; // Make Stack Frame for Procedure Parameters **
SMPTypeCategory[NN_hlt] = 0; // Halt
SMPTypeCategory[NN_idiv] = 7; // Signed Divide
SMPTypeCategory[NN_imul] = 7; // Signed Multiply
SMPTypeCategory[NN_in] = 0; // Input from Port **
SMPTypeCategory[NN_inc] = 4; // Increment by 1
SMPTypeCategory[NN_ins] = 2; // Input Byte(s) from Port to String **
SMPTypeCategory[NN_int] = 0; // Call to Interrupt Procedure
SMPTypeCategory[NN_into] = 0; // Call to Interrupt Procedure if Overflow Flag = 1