Newer
Older
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
assert(FuncInsertResult.second);
FuncNamePolicyPair.first.clear();
FuncNamePolicyPair.first.append("pipe");
FuncInsertResult = ZST_FuncTypeMap.insert(FuncNamePolicyPair);
assert(FuncInsertResult.second);
FuncNamePolicyPair.first.clear();
FuncNamePolicyPair.first.append("bind");
FuncInsertResult = ZST_FuncTypeMap.insert(FuncNamePolicyPair);
assert(FuncInsertResult.second);
FuncNamePolicyPair.first.clear();
FuncNamePolicyPair.first.append("listen");
FuncInsertResult = ZST_FuncTypeMap.insert(FuncNamePolicyPair);
assert(FuncInsertResult.second);
FuncNamePolicyPair.first.clear();
FuncNamePolicyPair.first.append("accept");
FuncInsertResult = ZST_FuncTypeMap.insert(FuncNamePolicyPair);
assert(FuncInsertResult.second);
FuncNamePolicyPair.first.clear();
FuncNamePolicyPair.first.append("connect");
FuncInsertResult = ZST_FuncTypeMap.insert(FuncNamePolicyPair);
assert(FuncInsertResult.second);
}
else {
msg("WARNING: No policy file %s found. System call policies not in effect.\n", PolicyFileName);
}
return;
} // end of ZST_InitPolicies()
// Initialize the OptCategory[] array to define how we emit
// optimizing annotations.
void InitOptCategory(void) {
// Default category is 0, no optimization without knowing context.
(void) memset(OptCategory, 0, sizeof(OptCategory));
// Category 1 instructions never need updating of their memory
// metadata by the Memory Monitor SDT. Currently, this is because
// these instructions only have effects on registers we do not maintain
// metadata for, such as the EIP and the FLAGS, e.g. jumps, compares,
// or because they are no-ops, including machine-dependent no-op idioms.
// Category 2 instructions always have a result type of 'n' (number).
// Category 3 instructions have a result type of 'n' (number)
// whenever the second source operand is an operand of type 'n'.
// NOTE: MOV is only current example, and this will take some thought if
// other examples arise.
// Category 4 instructions have a result type identical to the 1st source operand type.
// NOTE: This is currently set for single-operand instructions such as
// INC, DEC. As a result, these are treated pretty much as if
// they were category 1 instructions, as there is no metadata update,
// unless the operand is a memory operand (i.e. mem or [reg]).
// If new instructions are added to this category that are not single
// operand and do require some updating, the category should be split.
// Category 5 instructions have a result type identical to the 1st source operand
// type whenever the 2nd source operand is an operand of type 'n'.
// If the destination is memory, metadata still needs to be checked; if
// not, no metadata check is needed, so it becomes category 1.
// Category 6 instructions always have a result type of 'p' (pointer).
// Category 7 instructions are category 2 instructions with two destinations,
// such as multiply and divide instructions that affect EDX:EAX. There are
// forms of these instructions that only have one destination, so they have
// to be distinguished via the operand info.
// Category 8 instructions implicitly write a numeric value to EDX:EAX, but
// EDX and EAX are not listed as operands. RDTSC, RDPMC, RDMSR, and other
// instructions that copy machine registers into EDX:EAX are category 8.
// Category 9 instructions are floating point instructions that either
// have a memory destination (treat as category 0) or a FP reg destination
// (treat as category 1).
// Category 10 instructions are the same as category 8, but also write
// to register ECX in addition to EDX:EAX.
// NOTE: The Memory Monitor SDT needs just three categories, corresponding
// to categories 0, 1, and all others. For all categories > 1, the
// annotation should tell the SDT exactly how to update its metadata.
// For example, a division instruction will write type 'n' (NUM) as
// the metadata for result registers EDX:EAX. So, the annotation should
// list 'n', EDX, EAX, and a terminator of ZZ. CWD (convert word to
// doubleword) should have a list of 'n', EAX, ZZ.
OptCategory[NN_null] = 0; // Unknown Operation
OptCategory[NN_aaa] = 2; // ASCII Adjust after Addition
OptCategory[NN_aad] = 2; // ASCII Adjust AX before Division
OptCategory[NN_aam] = 2; // ASCII Adjust AX after Multiply
OptCategory[NN_aas] = 2; // ASCII Adjust AL after Subtraction
OptCategory[NN_adc] = 5; // Add with Carry
OptCategory[NN_add] = 5; // Add
OptCategory[NN_and] = 0; // Logical AND
OptCategory[NN_arpl] = 1; // Adjust RPL Field of Selector
OptCategory[NN_bound] = 1; // Check Array Index Against Bounds
OptCategory[NN_bsf] = 2; // Bit Scan Forward
OptCategory[NN_bsr] = 2; // Bit Scan Reverse
OptCategory[NN_bt] = 0; // Bit Test
OptCategory[NN_btc] = 0; // Bit Test and Complement
OptCategory[NN_btr] = 0; // Bit Test and Reset
OptCategory[NN_bts] = 0; // Bit Test and Set
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
OptCategory[NN_call] = 1; // Call Procedure
OptCategory[NN_callfi] = 1; // Indirect Call Far Procedure
OptCategory[NN_callni] = 1; // Indirect Call Near Procedure
OptCategory[NN_cbw] = 2; // AL -> AX (with sign) ** No ops?
OptCategory[NN_cwde] = 2; // AX -> EAX (with sign) **
OptCategory[NN_cdqe] = 2; // EAX -> RAX (with sign) **
OptCategory[NN_clc] = 1; // Clear Carry Flag
OptCategory[NN_cld] = 1; // Clear Direction Flag
OptCategory[NN_cli] = 1; // Clear Interrupt Flag
OptCategory[NN_clts] = 1; // Clear Task-Switched Flag in CR0
OptCategory[NN_cmc] = 1; // Complement Carry Flag
OptCategory[NN_cmp] = 1; // Compare Two Operands
OptCategory[NN_cmps] = 1; // Compare Strings
OptCategory[NN_cwd] = 2; // AX -> DX:AX (with sign)
OptCategory[NN_cdq] = 2; // EAX -> EDX:EAX (with sign)
OptCategory[NN_cqo] = 2; // RAX -> RDX:RAX (with sign)
OptCategory[NN_daa] = 2; // Decimal Adjust AL after Addition
OptCategory[NN_das] = 2; // Decimal Adjust AL after Subtraction
OptCategory[NN_dec] = 4; // Decrement by 1
OptCategory[NN_div] = 7; // Unsigned Divide
OptCategory[NN_enterw] = 0; // Make Stack Frame for Procedure Parameters **
OptCategory[NN_enter] = 0; // Make Stack Frame for Procedure Parameters **
OptCategory[NN_enterd] = 0; // Make Stack Frame for Procedure Parameters **
OptCategory[NN_enterq] = 0; // Make Stack Frame for Procedure Parameters **
OptCategory[NN_hlt] = 0; // Halt
OptCategory[NN_idiv] = 7; // Signed Divide
OptCategory[NN_imul] = 7; // Signed Multiply
OptCategory[NN_in] = 0; // Input from Port **
OptCategory[NN_inc] = 4; // Increment by 1
OptCategory[NN_ins] = 2; // Input Byte(s) from Port to String **
OptCategory[NN_int] = 0; // Call to Interrupt Procedure
OptCategory[NN_into] = 0; // Call to Interrupt Procedure if Overflow Flag = 1
OptCategory[NN_int3] = 0; // Trap to Debugger
OptCategory[NN_iretw] = 0; // Interrupt Return
OptCategory[NN_iret] = 0; // Interrupt Return
OptCategory[NN_iretd] = 0; // Interrupt Return (use32)
OptCategory[NN_iretq] = 0; // Interrupt Return (use64)
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
OptCategory[NN_ja] = 1; // Jump if Above (CF=0 & ZF=0)
OptCategory[NN_jae] = 1; // Jump if Above or Equal (CF=0)
OptCategory[NN_jb] = 1; // Jump if Below (CF=1)
OptCategory[NN_jbe] = 1; // Jump if Below or Equal (CF=1 | ZF=1)
OptCategory[NN_jc] = 1; // Jump if Carry (CF=1)
OptCategory[NN_jcxz] = 1; // Jump if CX is 0
OptCategory[NN_jecxz] = 1; // Jump if ECX is 0
OptCategory[NN_jrcxz] = 1; // Jump if RCX is 0
OptCategory[NN_je] = 1; // Jump if Equal (ZF=1)
OptCategory[NN_jg] = 1; // Jump if Greater (ZF=0 & SF=OF)
OptCategory[NN_jge] = 1; // Jump if Greater or Equal (SF=OF)
OptCategory[NN_jl] = 1; // Jump if Less (SF!=OF)
OptCategory[NN_jle] = 1; // Jump if Less or Equal (ZF=1 | SF!=OF)
OptCategory[NN_jna] = 1; // Jump if Not Above (CF=1 | ZF=1)
OptCategory[NN_jnae] = 1; // Jump if Not Above or Equal (CF=1)
OptCategory[NN_jnb] = 1; // Jump if Not Below (CF=0)
OptCategory[NN_jnbe] = 1; // Jump if Not Below or Equal (CF=0 & ZF=0)
OptCategory[NN_jnc] = 1; // Jump if Not Carry (CF=0)
OptCategory[NN_jne] = 1; // Jump if Not Equal (ZF=0)
OptCategory[NN_jng] = 1; // Jump if Not Greater (ZF=1 | SF!=OF)
OptCategory[NN_jnge] = 1; // Jump if Not Greater or Equal (ZF=1)
OptCategory[NN_jnl] = 1; // Jump if Not Less (SF=OF)
OptCategory[NN_jnle] = 1; // Jump if Not Less or Equal (ZF=0 & SF=OF)
OptCategory[NN_jno] = 1; // Jump if Not Overflow (OF=0)
OptCategory[NN_jnp] = 1; // Jump if Not Parity (PF=0)
OptCategory[NN_jns] = 1; // Jump if Not Sign (SF=0)
OptCategory[NN_jnz] = 1; // Jump if Not Zero (ZF=0)
OptCategory[NN_jo] = 1; // Jump if Overflow (OF=1)
OptCategory[NN_jp] = 1; // Jump if Parity (PF=1)
OptCategory[NN_jpe] = 1; // Jump if Parity Even (PF=1)
OptCategory[NN_jpo] = 1; // Jump if Parity Odd (PF=0)
OptCategory[NN_js] = 1; // Jump if Sign (SF=1)
OptCategory[NN_jz] = 1; // Jump if Zero (ZF=1)
OptCategory[NN_jmp] = 1; // Jump
OptCategory[NN_jmpfi] = 1; // Indirect Far Jump
OptCategory[NN_jmpni] = 1; // Indirect Near Jump
OptCategory[NN_jmpshort] = 1; // Jump Short (not used)
OptCategory[NN_lahf] = 2; // Load Flags into AH Register
OptCategory[NN_lar] = 2; // Load Access Rights Byte
OptCategory[NN_lea] = 0; // Load Effective Address **
OptCategory[NN_leavew] = 0; // High Level Procedure Exit **
OptCategory[NN_leave] = 0; // High Level Procedure Exit **
OptCategory[NN_leaved] = 0; // High Level Procedure Exit **
OptCategory[NN_leaveq] = 0; // High Level Procedure Exit **
OptCategory[NN_lgdt] = 0; // Load Global Descriptor Table Register
OptCategory[NN_lidt] = 0; // Load Interrupt Descriptor Table Register
OptCategory[NN_lgs] = 6; // Load Full Pointer to GS:xx
OptCategory[NN_lss] = 6; // Load Full Pointer to SS:xx
OptCategory[NN_lds] = 6; // Load Full Pointer to DS:xx
OptCategory[NN_les] = 6; // Load Full Pointer to ES:xx
OptCategory[NN_lfs] = 6; // Load Full Pointer to FS:xx
OptCategory[NN_lldt] = 0; // Load Local Descriptor Table Register
OptCategory[NN_lmsw] = 1; // Load Machine Status Word
OptCategory[NN_lock] = 1; // Assert LOCK# Signal Prefix
OptCategory[NN_lods] = 0; // Load String
OptCategory[NN_loopw] = 1; // Loop while ECX != 0
OptCategory[NN_loop] = 1; // Loop while CX != 0
OptCategory[NN_loopd] = 1; // Loop while ECX != 0
OptCategory[NN_loopq] = 1; // Loop while RCX != 0
OptCategory[NN_loopwe] = 1; // Loop while CX != 0 and ZF=1
OptCategory[NN_loope] = 1; // Loop while rCX != 0 and ZF=1
OptCategory[NN_loopde] = 1; // Loop while ECX != 0 and ZF=1
OptCategory[NN_loopqe] = 1; // Loop while RCX != 0 and ZF=1
OptCategory[NN_loopwne] = 1; // Loop while CX != 0 and ZF=0
OptCategory[NN_loopne] = 1; // Loop while rCX != 0 and ZF=0
OptCategory[NN_loopdne] = 1; // Loop while ECX != 0 and ZF=0
OptCategory[NN_loopqne] = 1; // Loop while RCX != 0 and ZF=0
OptCategory[NN_lsl] = 6; // Load Segment Limit
OptCategory[NN_ltr] = 1; // Load Task Register
OptCategory[NN_mov] = 3; // Move Data
OptCategory[NN_movsp] = 3; // Move to/from Special Registers
OptCategory[NN_movs] = 0; // Move Byte(s) from String to String
OptCategory[NN_movsx] = 3; // Move with Sign-Extend
OptCategory[NN_movzx] = 3; // Move with Zero-Extend
OptCategory[NN_mul] = 7; // Unsigned Multiplication of AL or AX
clc5q
committed
OptCategory[NN_neg] = 2; // Two's Complement Negation !!!!****!!!! Change this when mmStrata handles NEGATEDPTR type.
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
OptCategory[NN_nop] = 1; // No Operation
OptCategory[NN_not] = 2; // One's Complement Negation
OptCategory[NN_or] = 0; // Logical Inclusive OR
OptCategory[NN_out] = 0; // Output to Port
OptCategory[NN_outs] = 0; // Output Byte(s) to Port
OptCategory[NN_pop] = 0; // Pop a word from the Stack
OptCategory[NN_popaw] = 0; // Pop all General Registers
OptCategory[NN_popa] = 0; // Pop all General Registers
OptCategory[NN_popad] = 0; // Pop all General Registers (use32)
OptCategory[NN_popaq] = 0; // Pop all General Registers (use64)
OptCategory[NN_popfw] = 1; // Pop Stack into Flags Register **
OptCategory[NN_popf] = 1; // Pop Stack into Flags Register **
OptCategory[NN_popfd] = 1; // Pop Stack into Eflags Register **
OptCategory[NN_popfq] = 1; // Pop Stack into Rflags Register **
OptCategory[NN_push] = 0; // Push Operand onto the Stack
OptCategory[NN_pushaw] = 0; // Push all General Registers
OptCategory[NN_pusha] = 0; // Push all General Registers
OptCategory[NN_pushad] = 0; // Push all General Registers (use32)
OptCategory[NN_pushaq] = 0; // Push all General Registers (use64)
OptCategory[NN_pushfw] = 0; // Push Flags Register onto the Stack
OptCategory[NN_pushf] = 0; // Push Flags Register onto the Stack
OptCategory[NN_pushfd] = 0; // Push Flags Register onto the Stack (use32)
OptCategory[NN_pushfq] = 0; // Push Flags Register onto the Stack (use64)
OptCategory[NN_rcl] = 2; // Rotate Through Carry Left
OptCategory[NN_rcr] = 2; // Rotate Through Carry Right
OptCategory[NN_rol] = 2; // Rotate Left
OptCategory[NN_ror] = 2; // Rotate Right
OptCategory[NN_rep] = 0; // Repeat String Operation
OptCategory[NN_repe] = 0; // Repeat String Operation while ZF=1
OptCategory[NN_repne] = 0; // Repeat String Operation while ZF=0
OptCategory[NN_retn] = 0; // Return Near from Procedure
OptCategory[NN_retf] = 0; // Return Far from Procedure
OptCategory[NN_sahf] = 1; // Store AH into Flags Register
OptCategory[NN_sal] = 2; // Shift Arithmetic Left
OptCategory[NN_sar] = 2; // Shift Arithmetic Right
OptCategory[NN_shl] = 2; // Shift Logical Left
OptCategory[NN_shr] = 2; // Shift Logical Right
OptCategory[NN_sbb] = 5; // Integer Subtraction with Borrow
OptCategory[NN_scas] = 1; // Compare String
OptCategory[NN_seta] = 2; // Set Byte if Above (CF=0 & ZF=0)
OptCategory[NN_setae] = 2; // Set Byte if Above or Equal (CF=0)
OptCategory[NN_setb] = 2; // Set Byte if Below (CF=1)
OptCategory[NN_setbe] = 2; // Set Byte if Below or Equal (CF=1 | ZF=1)
OptCategory[NN_setc] = 2; // Set Byte if Carry (CF=1)
OptCategory[NN_sete] = 2; // Set Byte if Equal (ZF=1)
OptCategory[NN_setg] = 2; // Set Byte if Greater (ZF=0 & SF=OF)
OptCategory[NN_setge] = 2; // Set Byte if Greater or Equal (SF=OF)
OptCategory[NN_setl] = 2; // Set Byte if Less (SF!=OF)
OptCategory[NN_setle] = 2; // Set Byte if Less or Equal (ZF=1 | SF!=OF)
OptCategory[NN_setna] = 2; // Set Byte if Not Above (CF=1 | ZF=1)
OptCategory[NN_setnae] = 2; // Set Byte if Not Above or Equal (CF=1)
OptCategory[NN_setnb] = 2; // Set Byte if Not Below (CF=0)
OptCategory[NN_setnbe] = 2; // Set Byte if Not Below or Equal (CF=0 & ZF=0)
OptCategory[NN_setnc] = 2; // Set Byte if Not Carry (CF=0)
OptCategory[NN_setne] = 2; // Set Byte if Not Equal (ZF=0)
OptCategory[NN_setng] = 2; // Set Byte if Not Greater (ZF=1 | SF!=OF)
OptCategory[NN_setnge] = 2; // Set Byte if Not Greater or Equal (ZF=1)
OptCategory[NN_setnl] = 2; // Set Byte if Not Less (SF=OF)
OptCategory[NN_setnle] = 2; // Set Byte if Not Less or Equal (ZF=0 & SF=OF)
OptCategory[NN_setno] = 2; // Set Byte if Not Overflow (OF=0)
OptCategory[NN_setnp] = 2; // Set Byte if Not Parity (PF=0)
OptCategory[NN_setns] = 2; // Set Byte if Not Sign (SF=0)
OptCategory[NN_setnz] = 2; // Set Byte if Not Zero (ZF=0)
OptCategory[NN_seto] = 2; // Set Byte if Overflow (OF=1)
OptCategory[NN_setp] = 2; // Set Byte if Parity (PF=1)
OptCategory[NN_setpe] = 2; // Set Byte if Parity Even (PF=1)
OptCategory[NN_setpo] = 2; // Set Byte if Parity Odd (PF=0)
OptCategory[NN_sets] = 2; // Set Byte if Sign (SF=1)
OptCategory[NN_setz] = 2; // Set Byte if Zero (ZF=1)
OptCategory[NN_sgdt] = 0; // Store Global Descriptor Table Register
OptCategory[NN_sidt] = 0; // Store Interrupt Descriptor Table Register
OptCategory[NN_shld] = 2; // Double Precision Shift Left
OptCategory[NN_shrd] = 2; // Double Precision Shift Right
OptCategory[NN_sldt] = 6; // Store Local Descriptor Table Register
OptCategory[NN_smsw] = 2; // Store Machine Status Word
OptCategory[NN_stc] = 1; // Set Carry Flag
OptCategory[NN_std] = 1; // Set Direction Flag
OptCategory[NN_sti] = 1; // Set Interrupt Flag
OptCategory[NN_stos] = 0; // Store String
OptCategory[NN_str] = 6; // Store Task Register
OptCategory[NN_sub] = 5; // Integer Subtraction
OptCategory[NN_test] = 1; // Logical Compare
OptCategory[NN_verr] = 1; // Verify a Segment for Reading
OptCategory[NN_verw] = 1; // Verify a Segment for Writing
OptCategory[NN_wait] = 1; // Wait until BUSY# Pin is Inactive (HIGH)
OptCategory[NN_xchg] = 0; // Exchange Register/Memory with Register
OptCategory[NN_xlat] = 0; // Table Lookup Translation
OptCategory[NN_xor] = 2; // Logical Exclusive OR
//
// 486 instructions
//
OptCategory[NN_cmpxchg] = 0; // Compare and Exchange
OptCategory[NN_bswap] = 2; // Swap bytes in register
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
OptCategory[NN_xadd] = 0; // t<-dest; dest<-src+dest; src<-t
OptCategory[NN_invd] = 1; // Invalidate Data Cache
OptCategory[NN_wbinvd] = 1; // Invalidate Data Cache (write changes)
OptCategory[NN_invlpg] = 1; // Invalidate TLB entry
//
// Pentium instructions
//
OptCategory[NN_rdmsr] = 8; // Read Machine Status Register
OptCategory[NN_wrmsr] = 1; // Write Machine Status Register
OptCategory[NN_cpuid] = 8; // Get CPU ID
OptCategory[NN_cmpxchg8b] = 0; // Compare and Exchange Eight Bytes
OptCategory[NN_rdtsc] = 8; // Read Time Stamp Counter
OptCategory[NN_rsm] = 1; // Resume from System Management Mode
//
// Pentium Pro instructions
//
OptCategory[NN_cmova] = 0; // Move if Above (CF=0 & ZF=0)
OptCategory[NN_cmovb] = 0; // Move if Below (CF=1)
OptCategory[NN_cmovbe] = 0; // Move if Below or Equal (CF=1 | ZF=1)
OptCategory[NN_cmovg] = 0; // Move if Greater (ZF=0 & SF=OF)
OptCategory[NN_cmovge] = 0; // Move if Greater or Equal (SF=OF)
OptCategory[NN_cmovl] = 0; // Move if Less (SF!=OF)
OptCategory[NN_cmovle] = 0; // Move if Less or Equal (ZF=1 | SF!=OF)
OptCategory[NN_cmovnb] = 0; // Move if Not Below (CF=0)
OptCategory[NN_cmovno] = 0; // Move if Not Overflow (OF=0)
OptCategory[NN_cmovnp] = 0; // Move if Not Parity (PF=0)
OptCategory[NN_cmovns] = 0; // Move if Not Sign (SF=0)
OptCategory[NN_cmovnz] = 0; // Move if Not Zero (ZF=0)
OptCategory[NN_cmovo] = 0; // Move if Overflow (OF=1)
OptCategory[NN_cmovp] = 0; // Move if Parity (PF=1)
OptCategory[NN_cmovs] = 0; // Move if Sign (SF=1)
OptCategory[NN_cmovz] = 0; // Move if Zero (ZF=1)
OptCategory[NN_fcmovb] = 1; // Floating Move if Below
OptCategory[NN_fcmove] = 1; // Floating Move if Equal
OptCategory[NN_fcmovbe] = 1; // Floating Move if Below or Equal
OptCategory[NN_fcmovu] = 1; // Floating Move if Unordered
OptCategory[NN_fcmovnb] = 1; // Floating Move if Not Below
OptCategory[NN_fcmovne] = 1; // Floating Move if Not Equal
OptCategory[NN_fcmovnbe] = 1; // Floating Move if Not Below or Equal
OptCategory[NN_fcmovnu] = 1; // Floating Move if Not Unordered
OptCategory[NN_fcomi] = 1; // FP Compare, result in EFLAGS
OptCategory[NN_fucomi] = 1; // FP Unordered Compare, result in EFLAGS
OptCategory[NN_fcomip] = 1; // FP Compare, result in EFLAGS, pop stack
OptCategory[NN_fucomip] = 1; // FP Unordered Compare, result in EFLAGS, pop stack
OptCategory[NN_rdpmc] = 8; // Read Performance Monitor Counter
//
// FPP instructuions
//
OptCategory[NN_fld] = 1; // Load Real ** Infer src is 'n'
OptCategory[NN_fst] = 9; // Store Real
OptCategory[NN_fstp] = 9; // Store Real and Pop
OptCategory[NN_fxch] = 1; // Exchange Registers
OptCategory[NN_fild] = 1; // Load Integer ** Infer src is 'n'
OptCategory[NN_fist] = 0; // Store Integer
OptCategory[NN_fistp] = 0; // Store Integer and Pop
OptCategory[NN_fbld] = 1; // Load BCD
OptCategory[NN_fbstp] = 0; // Store BCD and Pop
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
OptCategory[NN_fadd] = 1; // Add Real
OptCategory[NN_faddp] = 1; // Add Real and Pop
OptCategory[NN_fiadd] = 1; // Add Integer
OptCategory[NN_fsub] = 1; // Subtract Real
OptCategory[NN_fsubp] = 1; // Subtract Real and Pop
OptCategory[NN_fisub] = 1; // Subtract Integer
OptCategory[NN_fsubr] = 1; // Subtract Real Reversed
OptCategory[NN_fsubrp] = 1; // Subtract Real Reversed and Pop
OptCategory[NN_fisubr] = 1; // Subtract Integer Reversed
OptCategory[NN_fmul] = 1; // Multiply Real
OptCategory[NN_fmulp] = 1; // Multiply Real and Pop
OptCategory[NN_fimul] = 1; // Multiply Integer
OptCategory[NN_fdiv] = 1; // Divide Real
OptCategory[NN_fdivp] = 1; // Divide Real and Pop
OptCategory[NN_fidiv] = 1; // Divide Integer
OptCategory[NN_fdivr] = 1; // Divide Real Reversed
OptCategory[NN_fdivrp] = 1; // Divide Real Reversed and Pop
OptCategory[NN_fidivr] = 1; // Divide Integer Reversed
OptCategory[NN_fsqrt] = 1; // Square Root
OptCategory[NN_fscale] = 1; // Scale: st(0) <- st(0) * 2^st(1)
OptCategory[NN_fprem] = 1; // Partial Remainder
OptCategory[NN_frndint] = 1; // Round to Integer
OptCategory[NN_fxtract] = 1; // Extract exponent and significand
OptCategory[NN_fabs] = 1; // Absolute value
OptCategory[NN_fchs] = 1; // Change Sign
OptCategory[NN_fcom] = 1; // Compare Real
OptCategory[NN_fcomp] = 1; // Compare Real and Pop
OptCategory[NN_fcompp] = 1; // Compare Real and Pop Twice
OptCategory[NN_ficom] = 1; // Compare Integer
OptCategory[NN_ficomp] = 1; // Compare Integer and Pop
OptCategory[NN_ftst] = 1; // Test
OptCategory[NN_fxam] = 1; // Examine
OptCategory[NN_fptan] = 1; // Partial tangent
OptCategory[NN_fpatan] = 1; // Partial arctangent
OptCategory[NN_f2xm1] = 1; // 2^x - 1
OptCategory[NN_fyl2x] = 1; // Y * lg2(X)
OptCategory[NN_fyl2xp1] = 1; // Y * lg2(X+1)
OptCategory[NN_fldz] = 1; // Load +0.0
OptCategory[NN_fld1] = 1; // Load +1.0
OptCategory[NN_fldpi] = 1; // Load PI=3.14...
OptCategory[NN_fldl2t] = 1; // Load lg2(10)
OptCategory[NN_fldl2e] = 1; // Load lg2(e)
OptCategory[NN_fldlg2] = 1; // Load lg10(2)
OptCategory[NN_fldln2] = 1; // Load ln(2)
OptCategory[NN_finit] = 1; // Initialize Processor
OptCategory[NN_fninit] = 1; // Initialize Processor (no wait)
OptCategory[NN_fsetpm] = 1; // Set Protected Mode
OptCategory[NN_fldcw] = 1; // Load Control Word
OptCategory[NN_fstcw] = 0; // Store Control Word
OptCategory[NN_fnstcw] = 0; // Store Control Word (no wait)
OptCategory[NN_fstsw] = 2; // Store Status Word to memory or AX
OptCategory[NN_fnstsw] = 2; // Store Status Word (no wait) to memory or AX
OptCategory[NN_fclex] = 1; // Clear Exceptions
OptCategory[NN_fnclex] = 1; // Clear Exceptions (no wait)
OptCategory[NN_fstenv] = 0; // Store Environment
OptCategory[NN_fnstenv] = 0; // Store Environment (no wait)
OptCategory[NN_fldenv] = 1; // Load Environment
OptCategory[NN_fsave] = 0; // Save State
OptCategory[NN_fnsave] = 0; // Save State (no wait)
OptCategory[NN_frstor] = 1; // Restore State ** infer src is 'n'
OptCategory[NN_fincstp] = 1; // Increment Stack Pointer
OptCategory[NN_fdecstp] = 1; // Decrement Stack Pointer
OptCategory[NN_ffree] = 1; // Free Register
OptCategory[NN_fnop] = 1; // No Operation
OptCategory[NN_feni] = 1; // (8087 only)
OptCategory[NN_fneni] = 1; // (no wait) (8087 only)
OptCategory[NN_fdisi] = 1; // (8087 only)
OptCategory[NN_fndisi] = 1; // (no wait) (8087 only)
//
// 80387 instructions
//
OptCategory[NN_fprem1] = 1; // Partial Remainder ( < half )
OptCategory[NN_fsincos] = 1; // t<-cos(st); st<-sin(st); push t
OptCategory[NN_fsin] = 1; // Sine
OptCategory[NN_fcos] = 1; // Cosine
OptCategory[NN_fucom] = 1; // Compare Unordered Real
OptCategory[NN_fucomp] = 1; // Compare Unordered Real and Pop
OptCategory[NN_fucompp] = 1; // Compare Unordered Real and Pop Twice
//
// Instructions added 28.02.96
//
OptCategory[NN_setalc] = 2; // Set AL to Carry Flag **
OptCategory[NN_svdc] = 0; // Save Register and Descriptor
OptCategory[NN_rsdc] = 0; // Restore Register and Descriptor
OptCategory[NN_svldt] = 0; // Save LDTR and Descriptor
OptCategory[NN_rsldt] = 0; // Restore LDTR and Descriptor
OptCategory[NN_svts] = 1; // Save TR and Descriptor
OptCategory[NN_rsts] = 1; // Restore TR and Descriptor
OptCategory[NN_icebp] = 1; // ICE Break Point
OptCategory[NN_loadall] = 0; // Load the entire CPU state from ES:EDI
//
// MMX instructions
//
OptCategory[NN_emms] = 1; // Empty MMX state
OptCategory[NN_movd] = 9; // Move 32 bits
OptCategory[NN_movq] = 9; // Move 64 bits
OptCategory[NN_packsswb] = 1; // Pack with Signed Saturation (Word->Byte)
OptCategory[NN_packssdw] = 1; // Pack with Signed Saturation (Dword->Word)
OptCategory[NN_packuswb] = 1; // Pack with Unsigned Saturation (Word->Byte)
OptCategory[NN_paddb] = 1; // Packed Add Byte
OptCategory[NN_paddw] = 1; // Packed Add Word
OptCategory[NN_paddd] = 1; // Packed Add Dword
OptCategory[NN_paddsb] = 1; // Packed Add with Saturation (Byte)
OptCategory[NN_paddsw] = 1; // Packed Add with Saturation (Word)
OptCategory[NN_paddusb] = 1; // Packed Add Unsigned with Saturation (Byte)
OptCategory[NN_paddusw] = 1; // Packed Add Unsigned with Saturation (Word)
OptCategory[NN_pand] = 1; // Bitwise Logical And
OptCategory[NN_pandn] = 1; // Bitwise Logical And Not
OptCategory[NN_pcmpeqb] = 1; // Packed Compare for Equal (Byte)
OptCategory[NN_pcmpeqw] = 1; // Packed Compare for Equal (Word)
OptCategory[NN_pcmpeqd] = 1; // Packed Compare for Equal (Dword)
OptCategory[NN_pcmpgtb] = 1; // Packed Compare for Greater Than (Byte)
OptCategory[NN_pcmpgtw] = 1; // Packed Compare for Greater Than (Word)
OptCategory[NN_pcmpgtd] = 1; // Packed Compare for Greater Than (Dword)
OptCategory[NN_pmaddwd] = 1; // Packed Multiply and Add
OptCategory[NN_pmulhw] = 1; // Packed Multiply High
OptCategory[NN_pmullw] = 1; // Packed Multiply Low
OptCategory[NN_por] = 1; // Bitwise Logical Or
OptCategory[NN_psllw] = 1; // Packed Shift Left Logical (Word)
OptCategory[NN_pslld] = 1; // Packed Shift Left Logical (Dword)
OptCategory[NN_psllq] = 1; // Packed Shift Left Logical (Qword)
OptCategory[NN_psraw] = 1; // Packed Shift Right Arithmetic (Word)
OptCategory[NN_psrad] = 1; // Packed Shift Right Arithmetic (Dword)
OptCategory[NN_psrlw] = 1; // Packed Shift Right Logical (Word)
OptCategory[NN_psrld] = 1; // Packed Shift Right Logical (Dword)
OptCategory[NN_psrlq] = 1; // Packed Shift Right Logical (Qword)
OptCategory[NN_psubb] = 1; // Packed Subtract Byte
OptCategory[NN_psubw] = 1; // Packed Subtract Word
OptCategory[NN_psubd] = 1; // Packed Subtract Dword
OptCategory[NN_psubsb] = 1; // Packed Subtract with Saturation (Byte)
OptCategory[NN_psubsw] = 1; // Packed Subtract with Saturation (Word)
OptCategory[NN_psubusb] = 1; // Packed Subtract Unsigned with Saturation (Byte)
OptCategory[NN_psubusw] = 1; // Packed Subtract Unsigned with Saturation (Word)
OptCategory[NN_punpckhbw] = 1; // Unpack High Packed Data (Byte->Word)
OptCategory[NN_punpckhwd] = 1; // Unpack High Packed Data (Word->Dword)
OptCategory[NN_punpckhdq] = 1; // Unpack High Packed Data (Dword->Qword)
OptCategory[NN_punpcklbw] = 1; // Unpack Low Packed Data (Byte->Word)
OptCategory[NN_punpcklwd] = 1; // Unpack Low Packed Data (Word->Dword)
OptCategory[NN_punpckldq] = 1; // Unpack Low Packed Data (Dword->Qword)
OptCategory[NN_pxor] = 1; // Bitwise Logical Exclusive Or
//
// Undocumented Deschutes processor instructions
//
OptCategory[NN_fxsave] = 1; // Fast save FP context ** to where?
OptCategory[NN_fxrstor] = 1; // Fast restore FP context ** from where?
// Pentium II instructions
OptCategory[NN_sysenter] = 1; // Fast Transition to System Call Entry Point
OptCategory[NN_sysexit] = 1; // Fast Transition from System Call Entry Point
// 3DNow! instructions
OptCategory[NN_pavgusb] = 1; // Packed 8-bit Unsigned Integer Averaging
OptCategory[NN_pfadd] = 1; // Packed Floating-Point Addition
OptCategory[NN_pfsub] = 1; // Packed Floating-Point Subtraction
OptCategory[NN_pfsubr] = 1; // Packed Floating-Point Reverse Subtraction
OptCategory[NN_pfacc] = 1; // Packed Floating-Point Accumulate
OptCategory[NN_pfcmpge] = 1; // Packed Floating-Point Comparison, Greater or Equal
OptCategory[NN_pfcmpgt] = 1; // Packed Floating-Point Comparison, Greater
OptCategory[NN_pfcmpeq] = 1; // Packed Floating-Point Comparison, Equal
OptCategory[NN_pfmin] = 1; // Packed Floating-Point Minimum
OptCategory[NN_pfmax] = 1; // Packed Floating-Point Maximum
OptCategory[NN_pi2fd] = 1; // Packed 32-bit Integer to Floating-Point
OptCategory[NN_pf2id] = 1; // Packed Floating-Point to 32-bit Integer
OptCategory[NN_pfrcp] = 1; // Packed Floating-Point Reciprocal Approximation
OptCategory[NN_pfrsqrt] = 1; // Packed Floating-Point Reciprocal Square Root Approximation
OptCategory[NN_pfmul] = 1; // Packed Floating-Point Multiplication
OptCategory[NN_pfrcpit1] = 1; // Packed Floating-Point Reciprocal First Iteration Step
OptCategory[NN_pfrsqit1] = 1; // Packed Floating-Point Reciprocal Square Root First Iteration Step
OptCategory[NN_pfrcpit2] = 1; // Packed Floating-Point Reciprocal Second Iteration Step
OptCategory[NN_pmulhrw] = 1; // Packed Floating-Point 16-bit Integer Multiply with rounding
OptCategory[NN_femms] = 1; // Faster entry/exit of the MMX or floating-point state
OptCategory[NN_prefetch] = 1; // Prefetch at least a 32-byte line into L1 data cache
OptCategory[NN_prefetchw] = 1; // Prefetch processor cache line into L1 data cache (mark as modified)
// Pentium III instructions
OptCategory[NN_addps] = 1; // Packed Single-FP Add
OptCategory[NN_addss] = 1; // Scalar Single-FP Add
OptCategory[NN_andnps] = 1; // Bitwise Logical And Not for Single-FP
OptCategory[NN_andps] = 1; // Bitwise Logical And for Single-FP
OptCategory[NN_cmpps] = 1; // Packed Single-FP Compare
OptCategory[NN_cmpss] = 1; // Scalar Single-FP Compare
OptCategory[NN_comiss] = 1; // Scalar Ordered Single-FP Compare and Set EFLAGS
OptCategory[NN_cvtpi2ps] = 1; // Packed signed INT32 to Packed Single-FP conversion
OptCategory[NN_cvtps2pi] = 1; // Packed Single-FP to Packed INT32 conversion
OptCategory[NN_cvtsi2ss] = 1; // Scalar signed INT32 to Single-FP conversion
OptCategory[NN_cvtss2si] = 2; // Scalar Single-FP to signed INT32 conversion
OptCategory[NN_cvttps2pi] = 1; // Packed Single-FP to Packed INT32 conversion (truncate)
OptCategory[NN_cvttss2si] = 2; // Scalar Single-FP to signed INT32 conversion (truncate)
OptCategory[NN_divps] = 1; // Packed Single-FP Divide
OptCategory[NN_divss] = 1; // Scalar Single-FP Divide
OptCategory[NN_ldmxcsr] = 1; // Load Streaming SIMD Extensions Technology Control/Status Register
OptCategory[NN_maxps] = 1; // Packed Single-FP Maximum
OptCategory[NN_maxss] = 1; // Scalar Single-FP Maximum
OptCategory[NN_minps] = 1; // Packed Single-FP Minimum
OptCategory[NN_minss] = 1; // Scalar Single-FP Minimum
OptCategory[NN_movaps] = 9; // Move Aligned Four Packed Single-FP ** infer memsrc 'n'?
OptCategory[NN_movhlps] = 1; // Move High to Low Packed Single-FP
OptCategory[NN_movhps] = 1; // Move High Packed Single-FP
OptCategory[NN_movlhps] = 1; // Move Low to High Packed Single-FP
OptCategory[NN_movlps] = 1; // Move Low Packed Single-FP
OptCategory[NN_movmskps] = 1; // Move Mask to Register
OptCategory[NN_movss] = 9; // Move Scalar Single-FP
OptCategory[NN_movups] = 9; // Move Unaligned Four Packed Single-FP
OptCategory[NN_mulps] = 1; // Packed Single-FP Multiply
OptCategory[NN_mulss] = 1; // Scalar Single-FP Multiply
OptCategory[NN_orps] = 1; // Bitwise Logical OR for Single-FP Data
OptCategory[NN_rcpps] = 1; // Packed Single-FP Reciprocal
OptCategory[NN_rcpss] = 1; // Scalar Single-FP Reciprocal
OptCategory[NN_rsqrtps] = 1; // Packed Single-FP Square Root Reciprocal
OptCategory[NN_rsqrtss] = 1; // Scalar Single-FP Square Root Reciprocal
OptCategory[NN_shufps] = 1; // Shuffle Single-FP
OptCategory[NN_sqrtps] = 1; // Packed Single-FP Square Root
OptCategory[NN_sqrtss] = 1; // Scalar Single-FP Square Root
OptCategory[NN_stmxcsr] = 0; // Store Streaming SIMD Extensions Technology Control/Status Register ** Infer dest is 'n'
OptCategory[NN_subps] = 1; // Packed Single-FP Subtract
OptCategory[NN_subss] = 1; // Scalar Single-FP Subtract
OptCategory[NN_ucomiss] = 1; // Scalar Unordered Single-FP Compare and Set EFLAGS
OptCategory[NN_unpckhps] = 1; // Unpack High Packed Single-FP Data
OptCategory[NN_unpcklps] = 1; // Unpack Low Packed Single-FP Data
OptCategory[NN_xorps] = 1; // Bitwise Logical XOR for Single-FP Data
OptCategory[NN_pavgb] = 1; // Packed Average (Byte)
OptCategory[NN_pavgw] = 1; // Packed Average (Word)
OptCategory[NN_pextrw] = 2; // Extract Word
OptCategory[NN_pinsrw] = 1; // Insert Word
OptCategory[NN_pmaxsw] = 1; // Packed Signed Integer Word Maximum
OptCategory[NN_pmaxub] = 1; // Packed Unsigned Integer Byte Maximum
OptCategory[NN_pminsw] = 1; // Packed Signed Integer Word Minimum
OptCategory[NN_pminub] = 1; // Packed Unsigned Integer Byte Minimum
OptCategory[NN_pmovmskb] = 1; // Move Byte Mask to Integer
OptCategory[NN_pmulhuw] = 1; // Packed Multiply High Unsigned
OptCategory[NN_psadbw] = 1; // Packed Sum of Absolute Differences
OptCategory[NN_pshufw] = 1; // Packed Shuffle Word
OptCategory[NN_maskmovq] = 0; // Byte Mask write ** Infer dest is 'n'
OptCategory[NN_movntps] = 0; // Move Aligned Four Packed Single-FP Non Temporal * infer dest is 'n'
OptCategory[NN_movntq] = 0; // Move 64 Bits Non Temporal ** Infer dest is 'n'
OptCategory[NN_prefetcht0] = 1; // Prefetch to all cache levels
OptCategory[NN_prefetcht1] = 1; // Prefetch to all cache levels
OptCategory[NN_prefetcht2] = 1; // Prefetch to L2 cache
OptCategory[NN_prefetchnta] = 1; // Prefetch to L1 cache
OptCategory[NN_sfence] = 1; // Store Fence
// Pentium III Pseudo instructions
OptCategory[NN_cmpeqps] = 1; // Packed Single-FP Compare EQ
OptCategory[NN_cmpltps] = 1; // Packed Single-FP Compare LT
OptCategory[NN_cmpleps] = 1; // Packed Single-FP Compare LE
OptCategory[NN_cmpunordps] = 1; // Packed Single-FP Compare UNORD
OptCategory[NN_cmpneqps] = 1; // Packed Single-FP Compare NOT EQ
OptCategory[NN_cmpnltps] = 1; // Packed Single-FP Compare NOT LT
OptCategory[NN_cmpnleps] = 1; // Packed Single-FP Compare NOT LE
OptCategory[NN_cmpordps] = 1; // Packed Single-FP Compare ORDERED
OptCategory[NN_cmpeqss] = 1; // Scalar Single-FP Compare EQ
OptCategory[NN_cmpltss] = 1; // Scalar Single-FP Compare LT
OptCategory[NN_cmpless] = 1; // Scalar Single-FP Compare LE
OptCategory[NN_cmpunordss] = 1; // Scalar Single-FP Compare UNORD
OptCategory[NN_cmpneqss] = 1; // Scalar Single-FP Compare NOT EQ
OptCategory[NN_cmpnltss] = 1; // Scalar Single-FP Compare NOT LT
OptCategory[NN_cmpnless] = 1; // Scalar Single-FP Compare NOT LE
OptCategory[NN_cmpordss] = 1; // Scalar Single-FP Compare ORDERED
// AMD K7 instructions
// Revisit AMD if we port to it.
OptCategory[NN_pf2iw] = 0; // Packed Floating-Point to Integer with Sign Extend
OptCategory[NN_pfnacc] = 0; // Packed Floating-Point Negative Accumulate
OptCategory[NN_pfpnacc] = 0; // Packed Floating-Point Mixed Positive-Negative Accumulate
OptCategory[NN_pi2fw] = 0; // Packed 16-bit Integer to Floating-Point
OptCategory[NN_pswapd] = 0; // Packed Swap Double Word
// Undocumented FP instructions (thanks to norbert.juffa@adm.com)
OptCategory[NN_fstp1] = 9; // Alias of Store Real and Pop
OptCategory[NN_fcom2] = 1; // Alias of Compare Real
OptCategory[NN_fcomp3] = 1; // Alias of Compare Real and Pop
OptCategory[NN_fxch4] = 1; // Alias of Exchange Registers
OptCategory[NN_fcomp5] = 1; // Alias of Compare Real and Pop
OptCategory[NN_ffreep] = 1; // Free Register and Pop
OptCategory[NN_fxch7] = 1; // Alias of Exchange Registers
OptCategory[NN_fstp8] = 9; // Alias of Store Real and Pop
OptCategory[NN_fstp9] = 9; // Alias of Store Real and Pop
// Pentium 4 instructions
OptCategory[NN_addpd] = 1; // Add Packed Double-Precision Floating-Point Values
OptCategory[NN_addsd] = 1; // Add Scalar Double-Precision Floating-Point Values
OptCategory[NN_andnpd] = 1; // Bitwise Logical AND NOT of Packed Double-Precision Floating-Point Values
OptCategory[NN_andpd] = 1; // Bitwise Logical AND of Packed Double-Precision Floating-Point Values
OptCategory[NN_clflush] = 1; // Flush Cache Line
OptCategory[NN_cmppd] = 1; // Compare Packed Double-Precision Floating-Point Values
OptCategory[NN_cmpsd] = 1; // Compare Scalar Double-Precision Floating-Point Values
OptCategory[NN_comisd] = 1; // Compare Scalar Ordered Double-Precision Floating-Point Values and Set EFLAGS
OptCategory[NN_cvtdq2pd] = 1; // Convert Packed Doubleword Integers to Packed Single-Precision Floating-Point Values
OptCategory[NN_cvtdq2ps] = 1; // Convert Packed Doubleword Integers to Packed Double-Precision Floating-Point Values
OptCategory[NN_cvtpd2dq] = 1; // Convert Packed Double-Precision Floating-Point Values to Packed Doubleword Integers
OptCategory[NN_cvtpd2pi] = 1; // Convert Packed Double-Precision Floating-Point Values to Packed Doubleword Integers
OptCategory[NN_cvtpd2ps] = 1; // Convert Packed Double-Precision Floating-Point Values to Packed Single-Precision Floating-Point Values
OptCategory[NN_cvtpi2pd] = 1; // Convert Packed Doubleword Integers to Packed Double-Precision Floating-Point Values
OptCategory[NN_cvtps2dq] = 1; // Convert Packed Single-Precision Floating-Point Values to Packed Doubleword Integers
OptCategory[NN_cvtps2pd] = 1; // Convert Packed Single-Precision Floating-Point Values to Packed Double-Precision Floating-Point Values
OptCategory[NN_cvtsd2si] = 2; // Convert Scalar Double-Precision Floating-Point Value to Doubleword Integer
OptCategory[NN_cvtsd2ss] = 1; // Convert Scalar Double-Precision Floating-Point Value to Scalar Single-Precision Floating-Point Value
OptCategory[NN_cvtsi2sd] = 1; // Convert Doubleword Integer to Scalar Double-Precision Floating-Point Value
OptCategory[NN_cvtss2sd] = 1; // Convert Scalar Single-Precision Floating-Point Value to Scalar Double-Precision Floating-Point Value
OptCategory[NN_cvttpd2dq] = 1; // Convert With Truncation Packed Double-Precision Floating-Point Values to Packed Doubleword Integers
OptCategory[NN_cvttpd2pi] = 1; // Convert with Truncation Packed Double-Precision Floating-Point Values to Packed Doubleword Integers
OptCategory[NN_cvttps2dq] = 1; // Convert With Truncation Packed Single-Precision Floating-Point Values to Packed Doubleword Integers
OptCategory[NN_cvttsd2si] = 2; // Convert with Truncation Scalar Double-Precision Floating-Point Value to Doubleword Integer
OptCategory[NN_divpd] = 1; // Divide Packed Double-Precision Floating-Point Values
OptCategory[NN_divsd] = 1; // Divide Scalar Double-Precision Floating-Point Values
OptCategory[NN_lfence] = 1; // Load Fence
OptCategory[NN_maskmovdqu] = 0; // Store Selected Bytes of Double Quadword ** Infer dest is 'n'
OptCategory[NN_maxpd] = 1; // Return Maximum Packed Double-Precision Floating-Point Values
OptCategory[NN_maxsd] = 1; // Return Maximum Scalar Double-Precision Floating-Point Value
OptCategory[NN_mfence] = 1; // Memory Fence
OptCategory[NN_minpd] = 1; // Return Minimum Packed Double-Precision Floating-Point Values
OptCategory[NN_minsd] = 1; // Return Minimum Scalar Double-Precision Floating-Point Value
OptCategory[NN_movapd] = 9; // Move Aligned Packed Double-Precision Floating-Point Values ** Infer dest is 'n'
OptCategory[NN_movdq2q] = 1; // Move Quadword from XMM to MMX Register
OptCategory[NN_movdqa] = 9; // Move Aligned Double Quadword ** Infer dest is 'n'
OptCategory[NN_movdqu] = 9; // Move Unaligned Double Quadword ** Infer dest is 'n'
OptCategory[NN_movhpd] = 9; // Move High Packed Double-Precision Floating-Point Values ** Infer dest is 'n'
OptCategory[NN_movlpd] = 9; // Move Low Packed Double-Precision Floating-Point Values ** Infer dest is 'n'
OptCategory[NN_movmskpd] = 2; // Extract Packed Double-Precision Floating-Point Sign Mask
OptCategory[NN_movntdq] = 0; // Store Double Quadword Using Non-Temporal Hint
OptCategory[NN_movnti] = 0; // Store Doubleword Using Non-Temporal Hint
OptCategory[NN_movntpd] = 0; // Store Packed Double-Precision Floating-Point Values Using Non-Temporal Hint
OptCategory[NN_movq2dq] = 1; // Move Quadword from MMX to XMM Register
OptCategory[NN_movsd] = 9; // Move Scalar Double-Precision Floating-Point Values
OptCategory[NN_movupd] = 9; // Move Unaligned Packed Double-Precision Floating-Point Values
OptCategory[NN_mulpd] = 1; // Multiply Packed Double-Precision Floating-Point Values
OptCategory[NN_mulsd] = 1; // Multiply Scalar Double-Precision Floating-Point Values
OptCategory[NN_orpd] = 1; // Bitwise Logical OR of Double-Precision Floating-Point Values
OptCategory[NN_paddq] = 1; // Add Packed Quadword Integers
OptCategory[NN_pause] = 1; // Spin Loop Hint
OptCategory[NN_pmuludq] = 1; // Multiply Packed Unsigned Doubleword Integers
OptCategory[NN_pshufd] = 1; // Shuffle Packed Doublewords
OptCategory[NN_pshufhw] = 1; // Shuffle Packed High Words
OptCategory[NN_pshuflw] = 1; // Shuffle Packed Low Words
OptCategory[NN_pslldq] = 1; // Shift Double Quadword Left Logical
OptCategory[NN_psrldq] = 1; // Shift Double Quadword Right Logical
OptCategory[NN_psubq] = 1; // Subtract Packed Quadword Integers
OptCategory[NN_punpckhqdq] = 1; // Unpack High Data
OptCategory[NN_punpcklqdq] = 1; // Unpack Low Data
OptCategory[NN_shufpd] = 1; // Shuffle Packed Double-Precision Floating-Point Values
OptCategory[NN_sqrtpd] = 1; // Compute Square Roots of Packed Double-Precision Floating-Point Values
OptCategory[NN_sqrtsd] = 1; // Compute Square Rootof Scalar Double-Precision Floating-Point Value
OptCategory[NN_subpd] = 1; // Subtract Packed Double-Precision Floating-Point Values
OptCategory[NN_subsd] = 1; // Subtract Scalar Double-Precision Floating-Point Values
OptCategory[NN_ucomisd] = 1; // Unordered Compare Scalar Ordered Double-Precision Floating-Point Values and Set EFLAGS
OptCategory[NN_unpckhpd] = 1; // Unpack and Interleave High Packed Double-Precision Floating-Point Values
OptCategory[NN_unpcklpd] = 1; // Unpack and Interleave Low Packed Double-Precision Floating-Point Values
OptCategory[NN_xorpd] = 1; // Bitwise Logical OR of Double-Precision Floating-Point Values
// AMD syscall/sysret instructions NOTE: not AMD, found in Intel manual
OptCategory[NN_syscall] = 1; // Low latency system call
OptCategory[NN_sysret] = 1; // Return from system call
// AMD64 instructions NOTE: not AMD, found in Intel manual
OptCategory[NN_swapgs] = 1; // Exchange GS base with KernelGSBase MSR
// New Pentium instructions (SSE3)
OptCategory[NN_movddup] = 9; // Move One Double-FP and Duplicate
OptCategory[NN_movshdup] = 9; // Move Packed Single-FP High and Duplicate
OptCategory[NN_movsldup] = 9; // Move Packed Single-FP Low and Duplicate
// Missing AMD64 instructions NOTE: also found in Intel manual
OptCategory[NN_movsxd] = 2; // Move with Sign-Extend Doubleword
OptCategory[NN_cmpxchg16b] = 0; // Compare and Exchange 16 Bytes
// SSE3 instructions
OptCategory[NN_addsubpd] = 1; // Add /Sub packed DP FP numbers
OptCategory[NN_addsubps] = 1; // Add /Sub packed SP FP numbers
OptCategory[NN_haddpd] = 1; // Add horizontally packed DP FP numbers
OptCategory[NN_haddps] = 1; // Add horizontally packed SP FP numbers
OptCategory[NN_hsubpd] = 1; // Sub horizontally packed DP FP numbers
OptCategory[NN_hsubps] = 1; // Sub horizontally packed SP FP numbers
OptCategory[NN_monitor] = 1; // Set up a linear address range to be monitored by hardware
OptCategory[NN_mwait] = 1; // Wait until write-back store performed within the range specified by the MONITOR instruction
OptCategory[NN_fisttp] = 0; // Store ST in intXX (chop) and pop
OptCategory[NN_lddqu] = 1; // Load unaligned integer 128-bit
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
// SSSE3 instructions
OptCategory[NN_psignb] = 1; // Packed SIGN Byte
OptCategory[NN_psignw] = 1; // Packed SIGN Word
OptCategory[NN_psignd] = 1; // Packed SIGN Doubleword
OptCategory[NN_pshufb] = 1; // Packed Shuffle Bytes
OptCategory[NN_pmulhrsw] = 1; // Packed Multiply High with Round and Scale
OptCategory[NN_pmaddubsw] = 1; // Multiply and Add Packed Signed and Unsigned Bytes
OptCategory[NN_phsubsw] = 1; // Packed Horizontal Subtract and Saturate
OptCategory[NN_phaddsw] = 1; // Packed Horizontal Add and Saturate
OptCategory[NN_phaddw] = 1; // Packed Horizontal Add Word
OptCategory[NN_phaddd] = 1; // Packed Horizontal Add Doubleword
OptCategory[NN_phsubw] = 1; // Packed Horizontal Subtract Word
OptCategory[NN_phsubd] = 1; // Packed Horizontal Subtract Doubleword
OptCategory[NN_palignr] = 1; // Packed Align Right
OptCategory[NN_pabsb] = 1; // Packed Absolute Value Byte
OptCategory[NN_pabsw] = 1; // Packed Absolute Value Word
OptCategory[NN_pabsd] = 1; // Packed Absolute Value Doubleword
// VMX instructions
OptCategory[NN_vmcall] = 1; // Call to VM Monitor
OptCategory[NN_vmclear] = 0; // Clear Virtual Machine Control Structure
OptCategory[NN_vmlaunch] = 1; // Launch Virtual Machine
OptCategory[NN_vmresume] = 1; // Resume Virtual Machine
OptCategory[NN_vmptrld] = 6; // Load Pointer to Virtual Machine Control Structure
OptCategory[NN_vmptrst] = 0; // Store Pointer to Virtual Machine Control Structure
OptCategory[NN_vmread] = 0; // Read Field from Virtual Machine Control Structure
OptCategory[NN_vmwrite] = 0; // Write Field from Virtual Machine Control Structure
OptCategory[NN_vmxoff] = 1; // Leave VMX Operation
OptCategory[NN_vmxon] = 1; // Enter VMX Operation
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
#if 599 < IDA_SDK_VERSION
OptCategory[NN_ud2] = 1; // Undefined Instruction
// Added with x86-64
OptCategory[NN_rdtscp] = 10; // Read Time-Stamp Counter and Processor ID
// Geode LX 3DNow! extensions
OptCategory[NN_pfrcpv] = 1; // Reciprocal Approximation for a Pair of 32-bit Floats
OptCategory[NN_pfrsqrtv] = 1; // Reciprocal Square Root Approximation for a Pair of 32-bit Floats
// SSE2 pseudoinstructions
OptCategory[NN_cmpeqpd] = 1; // Packed Double-FP Compare EQ
OptCategory[NN_cmpltpd] = 1; // Packed Double-FP Compare LT
OptCategory[NN_cmplepd] = 1; // Packed Double-FP Compare LE
OptCategory[NN_cmpunordpd] = 1; // Packed Double-FP Compare UNORD
OptCategory[NN_cmpneqpd] = 1; // Packed Double-FP Compare NOT EQ
OptCategory[NN_cmpnltpd] = 1; // Packed Double-FP Compare NOT LT
OptCategory[NN_cmpnlepd] = 1; // Packed Double-FP Compare NOT LE
OptCategory[NN_cmpordpd] = 1; // Packed Double-FP Compare ORDERED
OptCategory[NN_cmpeqsd] = 1; // Scalar Double-FP Compare EQ
OptCategory[NN_cmpltsd] = 1; // Scalar Double-FP Compare LT
OptCategory[NN_cmplesd] = 1; // Scalar Double-FP Compare LE
OptCategory[NN_cmpunordsd] = 1; // Scalar Double-FP Compare UNORD
OptCategory[NN_cmpneqsd] = 1; // Scalar Double-FP Compare NOT EQ
OptCategory[NN_cmpnltsd] = 1; // Scalar Double-FP Compare NOT LT
OptCategory[NN_cmpnlesd] = 1; // Scalar Double-FP Compare NOT LE
OptCategory[NN_cmpordsd] = 1; // Scalar Double-FP Compare ORDERED
// SSSE4.1 instructions
OptCategory[NN_blendpd] = 1; // Blend Packed Double Precision Floating-Point Values
OptCategory[NN_blendps] = 1; // Blend Packed Single Precision Floating-Point Values
OptCategory[NN_blendvpd] = 1; // Variable Blend Packed Double Precision Floating-Point Values
OptCategory[NN_blendvps] = 1; // Variable Blend Packed Single Precision Floating-Point Values
OptCategory[NN_dppd] = 1; // Dot Product of Packed Double Precision Floating-Point Values
OptCategory[NN_dpps] = 1; // Dot Product of Packed Single Precision Floating-Point Values
OptCategory[NN_extractps] = 2; // Extract Packed Single Precision Floating-Point Value
OptCategory[NN_insertps] = 1; // Insert Packed Single Precision Floating-Point Value
OptCategory[NN_movntdqa] = 0; // Load Double Quadword Non-Temporal Aligned Hint
OptCategory[NN_mpsadbw] = 1; // Compute Multiple Packed Sums of Absolute Difference
OptCategory[NN_packusdw] = 1; // Pack with Unsigned Saturation
OptCategory[NN_pblendvb] = 1; // Variable Blend Packed Bytes
OptCategory[NN_pblendw] = 1; // Blend Packed Words
OptCategory[NN_pcmpeqq] = 1; // Compare Packed Qword Data for Equal
OptCategory[NN_pextrb] = 1; // Extract Byte
OptCategory[NN_pextrd] = 1; // Extract Dword
OptCategory[NN_pextrq] = 1; // Extract Qword
OptCategory[NN_phminposuw] = 1; // Packed Horizontal Word Minimum
OptCategory[NN_pinsrb] = 1; // Insert Byte
OptCategory[NN_pinsrd] = 1; // Insert Dword
OptCategory[NN_pinsrq] = 1; // Insert Qword
OptCategory[NN_pmaxsb] = 1; // Maximum of Packed Signed Byte Integers
OptCategory[NN_pmaxsd] = 1; // Maximum of Packed Signed Dword Integers
OptCategory[NN_pmaxud] = 1; // Maximum of Packed Unsigned Dword Integers
OptCategory[NN_pmaxuw] = 1; // Maximum of Packed Word Integers
OptCategory[NN_pminsb] = 1; // Minimum of Packed Signed Byte Integers
OptCategory[NN_pminsd] = 1; // Minimum of Packed Signed Dword Integers
OptCategory[NN_pminud] = 1; // Minimum of Packed Unsigned Dword Integers
OptCategory[NN_pminuw] = 1; // Minimum of Packed Word Integers
OptCategory[NN_pmovsxbw] = 1; // Packed Move with Sign Extend
OptCategory[NN_pmovsxbd] = 1; // Packed Move with Sign Extend
OptCategory[NN_pmovsxbq] = 1; // Packed Move with Sign Extend
OptCategory[NN_pmovsxwd] = 1; // Packed Move with Sign Extend
OptCategory[NN_pmovsxwq] = 1; // Packed Move with Sign Extend
OptCategory[NN_pmovsxdq] = 1; // Packed Move with Sign Extend
OptCategory[NN_pmovzxbw] = 1; // Packed Move with Zero Extend
OptCategory[NN_pmovzxbd] = 1; // Packed Move with Zero Extend
OptCategory[NN_pmovzxbq] = 1; // Packed Move with Zero Extend
OptCategory[NN_pmovzxwd] = 1; // Packed Move with Zero Extend
OptCategory[NN_pmovzxwq] = 1; // Packed Move with Zero Extend
OptCategory[NN_pmovzxdq] = 1; // Packed Move with Zero Extend
OptCategory[NN_pmuldq] = 1; // Multiply Packed Signed Dword Integers
OptCategory[NN_pmulld] = 1; // Multiply Packed Signed Dword Integers and Store Low Result
OptCategory[NN_ptest] = 1; // Logical Compare
OptCategory[NN_roundpd] = 1; // Round Packed Double Precision Floating-Point Values
OptCategory[NN_roundps] = 1; // Round Packed Single Precision Floating-Point Values
OptCategory[NN_roundsd] = 1; // Round Scalar Double Precision Floating-Point Values
OptCategory[NN_roundss] = 1; // Round Scalar Single Precision Floating-Point Values
// SSSE4.2 instructions
OptCategory[NN_crc32] = 2; // Accumulate CRC32 Value
OptCategory[NN_pcmpestri] = 2; // Packed Compare Explicit Length Strings, Return Index
OptCategory[NN_pcmpestrm] = 2; // Packed Compare Explicit Length Strings, Return Mask
OptCategory[NN_pcmpistri] = 2; // Packed Compare Implicit Length Strings, Return Index
OptCategory[NN_pcmpistrm] = 2; // Packed Compare Implicit Length Strings, Return Mask
OptCategory[NN_pcmpgtq] = 1; // Compare Packed Data for Greater Than
OptCategory[NN_popcnt] = 2; // Return the Count of Number of Bits Set to 1
// AMD SSE4a instructions
OptCategory[NN_extrq] = 1; // Extract Field From Register
OptCategory[NN_insertq] = 1; // Insert Field
OptCategory[NN_movntsd] = 0; // Move Non-Temporal Scalar Double-Precision Floating-Point
OptCategory[NN_movntss] = 0; // Move Non-Temporal Scalar Single-Precision Floating-Point
OptCategory[NN_lzcnt] = 2; // Leading Zero Count
// xsave/xrstor instructions
OptCategory[NN_xgetbv] = 8; // Get Value of Extended Control Register
OptCategory[NN_xrstor] = 0; // Restore Processor Extended States
OptCategory[NN_xsave] = 1; // Save Processor Extended States
OptCategory[NN_xsetbv] = 1; // Set Value of Extended Control Register
// Intel Safer Mode Extensions (SMX)
OptCategory[NN_getsec] = 1; // Safer Mode Extensions (SMX) Instruction
// AMD-V Virtualization ISA Extension
OptCategory[NN_clgi] = 0; // Clear Global Interrupt Flag
OptCategory[NN_invlpga] = 1; // Invalidate TLB Entry in a Specified ASID
OptCategory[NN_skinit] = 1; // Secure Init and Jump with Attestation
OptCategory[NN_stgi] = 0; // Set Global Interrupt Flag
OptCategory[NN_vmexit] = 1; // Stop Executing Guest, Begin Executing Host
OptCategory[NN_vmload] = 0; // Load State from VMCB
OptCategory[NN_vmmcall] = 1; // Call VMM
OptCategory[NN_vmrun] = 1; // Run Virtual Machine
OptCategory[NN_vmsave] = 0; // Save State to VMCB
// VMX+ instructions
OptCategory[NN_invept] = 1; // Invalidate Translations Derived from EPT
OptCategory[NN_invvpid] = 1; // Invalidate Translations Based on VPID
// Intel Atom instructions
OptCategory[NN_movbe] = 3; // Move Data After Swapping Bytes
// Intel AES instructions
OptCategory[NN_aesenc] = 1; // Perform One Round of an AES Encryption Flow
OptCategory[NN_aesenclast] = 1; // Perform the Last Round of an AES Encryption Flow
OptCategory[NN_aesdec] = 1; // Perform One Round of an AES Decryption Flow
OptCategory[NN_aesdeclast] = 1; // Perform the Last Round of an AES Decryption Flow
OptCategory[NN_aesimc] = 1; // Perform the AES InvMixColumn Transformation
OptCategory[NN_aeskeygenassist] = 1; // AES Round Key Generation Assist
// Carryless multiplication
OptCategory[NN_pclmulqdq] = 1; // Carry-Less Multiplication Quadword
#endif // 599 < IDA_SDK_VERSION
OptCategory[NN_last] = 1;
return;
} // end InitOptCategory()
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
// Initialize the StackAlteration[] array to define how opcodes
// adjust the stack pointer.
void InitStackAlteration(void) {
// Default category is 0; most instructions do not alter the stack pointer.
(void) memset(StackAlteration, 0, sizeof(StackAlteration));
// Many arithmetic instructions could alter the stack pointer. We will have to
// examine each instruction that performs addition, subtraction, logical AND, etc.,
// to determine if the stack pointer was the DEF operand. We cannot use a purely
// table driven approach to compute stack pointer alteration. The table is used for
// the deterministic cases, e.g. push, pop, call, return. Because of variability on
// a few of these instructions, a non-zero return value from the table below will
// trigger a search of the RTL for exactly how much adjustment of the stack pointer
// occurred. A value of 1 in the table below is a trigger to investigate RTLs
// that might or might not alter the stack pointer, e.g. add, subtract, etc.
StackAlteration[NN_add] = 1; // Addition; check operands for stack pointer
StackAlteration[NN_and] = 1; // Logical AND; check operands for stack pointer
StackAlteration[NN_call] = -4; // Call Procedure
StackAlteration[NN_callfi] = -8; // Indirect Call Far Procedure
StackAlteration[NN_callni] = -4; // Indirect Call Near Procedure
StackAlteration[NN_enterw] = -2; // Make Stack Frame for Procedure Parameters **
StackAlteration[NN_enter] = -4; // Make Stack Frame for Procedure Parameters **
StackAlteration[NN_enterd] = -4; // Make Stack Frame for Procedure Parameters **
StackAlteration[NN_enterq] = -8; // Make Stack Frame for Procedure Parameters **
StackAlteration[NN_int] = 0; // Call to Interrupt Procedure
StackAlteration[NN_into] = 0; // Call to Interrupt Procedure if Overflow Flag = 1
StackAlteration[NN_int3] = 0; // Trap to Debugger
StackAlteration[NN_iretw] = 0; // Interrupt Return
StackAlteration[NN_iret] = 0; // Interrupt Return
StackAlteration[NN_iretd] = 0; // Interrupt Return (use32)
StackAlteration[NN_iretq] = 0; // Interrupt Return (use64)
StackAlteration[NN_leavew] = 2; // High Level Procedure Exit **
StackAlteration[NN_leave] = 4; // High Level Procedure Exit **
StackAlteration[NN_leaved] = 4; // High Level Procedure Exit **
StackAlteration[NN_leaveq] = 8; // High Level Procedure Exit **
StackAlteration[NN_pop] = 4; // Pop a word from the Stack
StackAlteration[NN_popaw] = 14; // Pop all General Registers
StackAlteration[NN_popa] = 28; // Pop all General Registers
StackAlteration[NN_popad] = 28; // Pop all General Registers (use32)
StackAlteration[NN_popaq] = 56; // Pop all General Registers (use64)
StackAlteration[NN_popfw] = 2; // Pop Stack into Flags Register **
StackAlteration[NN_popf] = 4; // Pop Stack into Flags Register **
StackAlteration[NN_popfd] = 4; // Pop Stack into Eflags Register **
StackAlteration[NN_popfq] = 8; // Pop Stack into Rflags Register **
StackAlteration[NN_push] = -4; // Push Operand onto the Stack
StackAlteration[NN_pushaw] = -14; // Push all General Registers
StackAlteration[NN_pusha] = -28; // Push all General Registers
StackAlteration[NN_pushad] = -28; // Push all General Registers (use32)
StackAlteration[NN_pushaq] = -56; // Push all General Registers (use64)
StackAlteration[NN_pushfw] = -2; // Push Flags Register onto the Stack
StackAlteration[NN_pushf] = -4; // Push Flags Register onto the Stack
StackAlteration[NN_pushfd] = -4; // Push Flags Register onto the Stack (use32)