Newer
Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
/* SMPInstr.cpp - <see below>.
*
* Copyright (c) 2000, 2001, 2010 - University of Virginia
*
* This file is part of the Memory Error Detection System (MEDS) infrastructure.
* This file may be used and modified for non-commercial purposes as long as
* all copyright, permission, and nonwarranty notices are preserved.
* Redistribution is prohibited without prior written consent from the University
* of Virginia.
*
* Please contact the authors for restrictions applying to commercial use.
*
* THIS SOURCE IS PROVIDED "AS IS" AND WITHOUT ANY EXPRESS OR IMPLIED
* WARRANTIES, INCLUDING, WITHOUT LIMITATION, THE IMPLIED WARRANTIES OF
* MERCHANTIBILITY AND FITNESS FOR A PARTICULAR PURPOSE.
*
* Author: University of Virginia
* e-mail: jwd@virginia.com
* URL : http://www.cs.virginia.edu/
*
* Additional copyrights 2010, 2011, 2012, 2013, 2014, 2015 by Zephyr Software LLC
* e-mail: {clc,jwd}@zephyr-software.com
* URL : http://www.zephyr-software.com/
*
*/
//
// SMPInstr.cpp
//
// This module performs the instruction level analyses needed for the
// SMP project (Software Memory Protection).
//
using namespace std;
#include <memory>
#include <string>
#include <iostream>
#include <sstream>
#include <iomanip>
#include <cstring>
#include <cstddef>
#include <cassert>
#include "interfaces/STARSTypes.h"
#include "interfaces/SMPDBInterface.h"
#include "base/SMPDataFlowAnalysis.h"
#include "base/SMPInstr.h"
#include "base/SMPProgram.h"
#include "base/ProfilerInformation.h"
#include "interfaces/abstract/STARSInstruction.h"
#include "interfaces/abstract/STARSOp.h"
// Set to 1 for debugging output
#define SMP_DEBUG 1
#define SMP_DEBUG2 0 // verbose
#define SMP_DEBUG_XOR 0
#define SMP_DEBUG_BUILD_RTL 1 // should be left on, serious errors!
#define SMP_VERBOSE_DEBUG_BUILD_RTL 0
#define SMP_VERBOSE_DEBUG_BUILD_RTL_DEF_USE 0
#define SMP_VERBOSE_DEBUG_INFER_TYPES 0
#define SMP_VERBOSE_DUMP 0
#define SMP_VERBOSE_FIND_POINTERS 0
#define STARS_DUMP_FG_INFO 1 // show signedness of DEFs and USEs in dump
#define STARS_DEBUG_STATIC_MEM_OPS 0
#define SMP_BASEREG_POINTER_TYPE 1 // Initialize Base Register USEs to type POINTER?
#define SMP_OPTIMIZE_ADD_TO_NUMERIC 0 // optimizing annotation type -5
#define SMP_IDENTIFY_POINTER_ADDRESS_REG 0 // optimizing annotation POINTER
#define SMP_CHILDACCESS_ALL_CODE 0 // CHILDACCESS annotations for all funcs, or just analyzed funcs?
#define SPECIAL_CASE_CARRY_BORROW 0 // Treat sbb/adc different from sub/add annotations?
#define SMP_BUILD_SPECIAL_ADC_SBB_RTL 0 // Explicit RTL subtree for carry flag?
#define SMP_AGGRESSIVE_TYPE_INFERENCE 1 // Shorten iterations by quick propagation in InferOperatorType()
#define SMP_ANNOTATE_ALL_MEMORY_OPERANDS 0 // Info annotation for all memory read and write operands?
#define SMP_AGGRESSIVE_SIGN_TRANSFER 1 // More transfer of signedness across instructions
#define STARS_NO_SHIFT_SIGNEDNESS_IN_SCALEFACTOR 1 // unsigned left shift for scale factors is really unknownsign multiply
#define STARS_USE_NUMERIC_ERROR_BLACKLISTING 1 // Only instrument for numeric errors if DEF leads to a blacklisted (important) sink
#define STARS_CONSERVATIVE_DEADREGS 1 // debug DEADREGS annotations by being ultra-conservative at call sites
#define STARS_EXPR_CALL_DEPTH_LIMIT 50 // Limit on number of invocations of ExpandExpr(), ExpandOperand(), and ExpandOperandHelper()
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
// Text to be printed in each optimizing annotation explaining why
// the annotation was emitted.
#define LAST_TYPE_CATEGORY 15
static const char *OptExplanation[LAST_TYPE_CATEGORY + 1] =
{ "NoOpt", "NoMetaUpdate", "AlwaysNUM", "NUMVia2ndSrcIMMEDNUM",
"Always1stSrc", "1stSrcVia2ndSrcIMMEDNUM", "AlwaysPtr",
"AlwaysNUM", "AlwaysNUM", "NUMViaFPRegDest", "NumericSources",
"StackMemoryTracking", "NumericSources", "NumericMemDest",
"NeverMemDest", "SafeIfNoIndexing"
};
const char *OperatorText[LAST_SMP_OPERATOR + 1] =
{ "SMP_NULL_OPERATOR", "SMP_CALL", "SMP_INPUT", "SMP_OUTPUT", "SMP_ADDRESS_OF",
"SMP_U_LEFT_SHIFT", "SMP_S_LEFT_SHIFT", "SMP_U_RIGHT_SHIFT", "SMP_S_RIGHT_SHIFT",
"SMP_ROTATE_LEFT", "SMP_ROTATE_LEFT_CARRY", "SMP_ROTATE_RIGHT", "SMP_ROTATE_RIGHT_CARRY",
"SMP_DECREMENT", "SMP_INCREMENT",
"SMP_ADD", "SMP_ADD_CARRY", "SMP_SUBTRACT", "SMP_SUBTRACT_BORROW", "SMP_U_MULTIPLY",
"SMP_S_MULTIPLY", "SMP_U_DIVIDE", "SMP_S_DIVIDE", "SMP_U_REMAINDER",
"SMP_SIGN_EXTEND", "SMP_ZERO_EXTEND", "SMP_ASSIGN", "SMP_BITWISE_AND",
"SMP_BITWISE_OR", "SMP_BITWISE_NOT", "SMP_BITWISE_XOR", "SMP_BITWISE_AND_NOT", "SMP_NEGATE",
"SMP_S_COMPARE", "SMP_U_COMPARE", "SMP_GENERAL_COMPARE", "SMP_LESS_THAN", "SMP_GREATER_THAN",
"SMP_LESS_EQUAL", "SMP_GREATER_EQUAL", "SMP_EQUAL", "SMP_NOT_EQUAL",
"SMP_BELOW", "SMP_BELOW_EQUAL", "SMP_ABOVE", "SMP_ABOVE_EQUAL",
"SMP_CARRY", "SMP_NOT_CARRY", "SMP_PARITY", "SMP_NOT_PARITY",
"SMP_OVERFLOW", "SMP_NOT_OVERFLOW", "SMP_SIGN_BIT_SET", "SMP_NOT_SIGN_BIT_SET",
"SMP_LOGICAL_AND", "SMP_LOGICAL_OR", "SMP_UNARY_NUMERIC_OPERATION",
"SMP_BINARY_NUMERIC_OPERATION", "SMP_SYSTEM_OPERATION",
"SMP_UNARY_FLOATING_ARITHMETIC", "SMP_BINARY_FLOATING_ARITHMETIC",
"SMP_FLOATING_ADD", "SMP_FLOATING_SUBTRACT",
"SMP_FLOATING_MULTIPLY", "SMP_FLOATING_DIVIDE", "SMP_FLOATING_NEGATE_AND_ADD",
"SMP_REVERSE_SHIFT_U", "SMP_SHUFFLE", "SMP_COMPARE_EQ_AND_SET",
"SMP_COMPARE_NE_AND_SET", "SMP_COMPARE_GT_AND_SET",
"SMP_COMPARE_GE_AND_SET", "SMP_COMPARE_LT_AND_SET", "SMP_COMPARE_LE_AND_SET",
"SMP_PACK_SIGNED", "SMP_PACK_UNSIGNED",
"SMP_AVERAGE_UNSIGNED", "SMP_MULTIPLY_AND_ADD", "SMP_SUM_OF_DIFFS",
"SMP_MAX_S", "SMP_MAX_U", "SMP_MIN_S", "SMP_MIN_U", "SMP_ABS_VALUE",
"SMP_CONVERT_INT_TO_FP", "SMP_CONVERT_FP_TO_INT", "SMP_CREATE_MASK",
"SMP_INTERLEAVE", "SMP_CONCATENATE", "SMP_EXTRACT_ZERO_EXTEND",
"SMP_ENCRYPTION_OPERATION", "SMP_UNARY_POINTER_OPERATION", "X86.ReadMem64", "SMP_SIGNAL"
};
// Take RelationalOperator from a comparison instruction, as determined by its matching jump,
// and convert it to the operator needed if the comparison operands are swapped.
// E.g.: cmp rax,rbx followed by ja label1 produces SMP_GREATER_THAN operator.
// If we did cmp rbx,rax then the operator would logically be SMP_LESS_THAN.
// Used in STARSExpression tree flips.
SMPoperator InvertRelationalOperator(SMPoperator RelationalOperator) {
switch (RelationalOperator) {
case SMP_LESS_THAN:
RelationalOperator = SMP_GREATER_THAN;
break;
case SMP_GREATER_THAN:
RelationalOperator = SMP_LESS_THAN;
break;
case SMP_LESS_EQUAL:
RelationalOperator = SMP_GREATER_EQUAL;
break;
case SMP_GREATER_EQUAL:
RelationalOperator = SMP_LESS_EQUAL;
break;
case SMP_EQUAL:
RelationalOperator = SMP_EQUAL;
break;
case SMP_NOT_EQUAL:
RelationalOperator = SMP_NOT_EQUAL;
break;
case SMP_BELOW: // unsigned comparison operators BELOW, BELOW_EQUAL, ABOVE, ABOVE_EQUAL
RelationalOperator = SMP_ABOVE;
break;
case SMP_BELOW_EQUAL:
RelationalOperator = SMP_ABOVE_EQUAL;
break;
case SMP_ABOVE:
RelationalOperator = SMP_BELOW;
break;
case SMP_ABOVE_EQUAL:
RelationalOperator = SMP_BELOW_EQUAL;
break;
case SMP_CARRY: // should only be used in Guard RTLs
RelationalOperator = SMP_NOT_CARRY;
break;
case SMP_NOT_CARRY: // should only be used in Guard RTLs
RelationalOperator = SMP_CARRY;
break;
case SMP_PARITY: // should only be used in Guard RTLs
RelationalOperator = SMP_NOT_PARITY;
break;
case SMP_NOT_PARITY: // should only be used in Guard RTLs
RelationalOperator = SMP_PARITY;
break;
case SMP_OVERFLOW: // should only be used in Guard RTLs
RelationalOperator = SMP_NOT_OVERFLOW;
break;
case SMP_NOT_OVERFLOW: // should only be used in Guard RTLs
RelationalOperator = SMP_OVERFLOW;
break;
case SMP_SIGN_BIT_SET: // should only be used in Guard RTLs
RelationalOperator = SMP_NOT_SIGN_BIT_SET;
break;
case SMP_NOT_SIGN_BIT_SET: // should only be used in Guard RTLs
RelationalOperator = SMP_SIGN_BIT_SET;
break;
default:
SMP_msg("ERROR: Non-relational operator %d in call to InvertRelationalOperator()\n", RelationalOperator);
break;
}
return RelationalOperator;
} // end of InvertRelationalOperator()
// Is the given memory range just a local frame write?
bool IsLocalStackFrameExprPair(const STARSExpression *LowerExpr, const STARSExpression *UpperExpr) {
bool StackFrameAccess = false;
if ((nullptr != LowerExpr) && (nullptr != UpperExpr)) {
STARS_sval_t CurrentStackOffset = LowerExpr->GetOriginalParentInst()->GetStackPtrOffset();
STARS_sval_t FinalStackOffset;
if (UpperExpr->IsStackPtrOffset(CurrentStackOffset, FinalStackOffset)) {
StackFrameAccess = (0 > FinalStackOffset);
}
}
return StackFrameAccess;
} // end of IsLocalStackFrameExprPair()
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
#if 0
// Does the CurrOperator definitely indicate a signed or unsigned operation?
bool OperatorHasSignedness(SMPoperator CurrOperator) {
bool DetectedSignedness;
switch (CurrOperator) {
case SMP_NULL_OPERATOR:
DetectedSignedness = false;
break;
case SMP_CALL: // CALL instruction
DetectedSignedness = true;
break;
case SMP_INPUT: // input from port
case SMP_OUTPUT: // output to port
case SMP_ADDRESS_OF: // take effective address
case SMP_GENERAL_COMPARE:
DetectedSignedness = false;
break;
case SMP_U_LEFT_SHIFT: // unsigned left shift
case SMP_U_RIGHT_SHIFT: // unsigned right shift
case SMP_ROTATE_LEFT:
case SMP_ROTATE_LEFT_CARRY: // rotate left through carry
case SMP_ROTATE_RIGHT:
case SMP_ROTATE_RIGHT_CARRY: // rotate right through carry
case SMP_U_MULTIPLY:
case SMP_U_DIVIDE:
case SMP_U_REMAINDER:
case SMP_ZERO_EXTEND:
case SMP_BITWISE_NOT: // unary operator
case SMP_BITWISE_XOR:
case SMP_BITWISE_AND_NOT:
case SMP_U_COMPARE: // unsigned compare (AND-based)
case SMP_UNARY_POINTER_OPERATION:
DetectedSignedness = true;
break;
case SMP_S_LEFT_SHIFT: // signed left shift
case SMP_S_RIGHT_SHIFT: // signed right shift
case SMP_S_MULTIPLY:
case SMP_S_DIVIDE:
case SMP_SIGN_EXTEND:
case SMP_NEGATE: // unary negation
case SMP_S_COMPARE: // signed compare (subtraction-based)
case SMP_LESS_THAN: // boolean test operators
case SMP_GREATER_THAN:
case SMP_LESS_EQUAL:
case SMP_GREATER_EQUAL:
case SMP_BELOW:
case SMP_BELOW_EQUAL:
case SMP_ABOVE:
case SMP_ABOVE_EQUAL:
DetectedSignedness = true;
break;
case SMP_DECREMENT:
case SMP_INCREMENT:
case SMP_ADD:
case SMP_ADD_CARRY: // add with carry
case SMP_SUBTRACT:
case SMP_SUBTRACT_BORROW: // subtract with borrow
case SMP_ASSIGN:
case SMP_BITWISE_AND:
case SMP_BITWISE_OR:
case SMP_EQUAL:
case SMP_NOT_EQUAL:
case SMP_LOGICAL_AND:
case SMP_LOGICAL_OR:
case SMP_UNARY_NUMERIC_OPERATION: // miscellaneous; produces NUMERIC result
case SMP_BINARY_NUMERIC_OPERATION: // miscellaneous; produces NUMERIC result
case SMP_SYSTEM_OPERATION: // for instructions such as CPUID, RDTSC, etc.; NUMERIC
case SMP_SHUFFLE: // Shuffle bytes, words, etc. within destination operation per source mask
case SMP_SIGNAL: // signal or raise exception
DetectedSignedness = false;
break;
case SMP_UNARY_FLOATING_ARITHMETIC: // all the same to our type system; all NUMERIC
case SMP_BINARY_FLOATING_ARITHMETIC: // all the same to our type system; all NUMERIC
case SMP_FLOATING_ADD:
case SMP_FLOATING_SUBTRACT:
case SMP_FLOATING_MULTIPLY: // floating-point multiplication of any precision; all NUMERIC
case SMP_FLOATING_DIVIDE: // floating-point division of any precision; all NUMERIC
case SMP_FLOATING_NEGATE_AND_ADD: // floating negate left operand and add to right, any precision; NUMERIC
DetectedSignedness = true;
break;
case SMP_REVERSE_SHIFT_U: // Shift right operand by bit count in left operand
case SMP_COMPARE_EQ_AND_SET: // Compare for equality and set fields to all 1's or all 0's
case SMP_COMPARE_NE_AND_SET: // Compare for inequality and set fields to all 1's or all 0's
case SMP_COMPARE_GT_AND_SET: // Compare for greater-than and set fields to all 1's or all 0's
case SMP_COMPARE_GE_AND_SET: // Compare for greater-than-or-equal and set fields to all 1's or all 0's
case SMP_COMPARE_LT_AND_SET: // Compare for less-than and set fields to all 1's or all 0's
case SMP_COMPARE_LE_AND_SET: // Compare for less-than-or-equal and set fields to all 1's or all 0's
case SMP_PACK_S: // Pack operands into extended-precision register, signed saturation for loss of precision
case SMP_PACK_U: // Pack operands into extended-precision register, unsigned saturation for loss of precision
case SMP_AVERAGE_U: // Average of unsigned operands
case SMP_MULTIPLY_AND_ADD: // multiply and add (or multiply and accumulate)
case SMP_SUM_OF_DIFFS: // sum over two vectors of absolute values of differences of their elements
case SMP_MAX_S: // dest := signed_max(dest, src)
case SMP_MAX_U: // dest := unsigned_max(dest, src)
case SMP_MIN_S: // dest := signed_min(dest, src)
case SMP_MIN_U: // dest := unsigned_min(dest, src)
case SMP_ABSOLUTE_VALUE: // take absolute value
case SMP_CONVERT_INT_TO_FP: // convert integer to floating point
case SMP_CONVERT_FP_TO_INT: // convert floating point to integer
case SMP_INTERLEAVE: // extended-precision interleaving of bytes or words or dwords etc.; NUMERIC
case SMP_CONCATENATE: // extended-precision concatenation; NUMERIC
DetectedSignedness = true;
break;
default:
DetectedSignedness = false;
SMP_msg("ERROR: Unknown operator in OperatorHasSignedness: %d\n", CurrOperator);
break;
} // end switch on operator
return DetectedSignedness;
} // end of OperatorHasSignedness()
#endif
// Print the SPARK Ada procedure suffix for the operand, e.g. reg32 or mem16 or const32
void PrintOperandSPARKAdaSuffix(const STARSOpndTypePtr &Opnd, FILE *OutFile) {
bool ErrorFlag = false;
if (Opnd->IsRegOp()) {
SMP_fprintf(OutFile, "_reg");
}
else if (IsMemOperand(Opnd)) {
SMP_fprintf(OutFile, "_mem");
}
else if (Opnd->IsImmedOp()) {
SMP_fprintf(OutFile, "_const");
}
else {
ErrorFlag = true;
SMP_fprintf(OutFile, "_ERROR");
}
// Append the bit width.
if (!ErrorFlag) {
std::size_t ByteWidth = Opnd->GetByteWidth();
std::size_t BitWidth = ByteWidth * 8;
char WidthStr[12];
SMP_snprintf(WidthStr, 5, "%z", BitWidth);
SMP_fprintf(OutFile, "%s", WidthStr);
}
return;
} // end of PrintOperandSPARKAdaSuffix()
// Construct SPARK memory write procedure call, including open parenthesis for arg list.
void GetSPARKMemWriteProcString(std::size_t OpndByteWidth, char *MemWriteString) {
if (OpndByteWidth == 8) {
SMP_snprintf(MemWriteString, 30, "X86.WriteMem64((");
}
else if (OpndByteWidth == 4) {
SMP_snprintf(MemWriteString, 30, "X86.WriteMem32(Unsigned64(");
}
else if (OpndByteWidth == 2) {
SMP_snprintf(MemWriteString, 30, "X86.WriteMem16(Unsigned64(");
}
else if (OpndByteWidth == 1) {
SMP_snprintf(MemWriteString, 30, "X86.WriteMem8(Unsigned64(");
}
else if (OpndByteWidth == 10) {
SMP_snprintf(MemWriteString, 30, "X86.WriteMem80(Unsigned64(");
}
return;
} // end of GetSPARKMemWriteProcString()
// Construct SPARK memory read procedure call, including open parenthesis for arg list.
void GetSPARKMemReadProcString(std::size_t OpndByteWidth, char *MemReadString) {
if (OpndByteWidth == 8) {
SMP_snprintf(MemReadString, 30, "X86.ReadMem64((");
}
else if (OpndByteWidth == 4) {
SMP_snprintf(MemReadString, 30, "X86.ReadMem32(Unsigned64(");
}
else if (OpndByteWidth == 2) {
SMP_snprintf(MemReadString, 30, "X86.ReadMem16(Unsigned64(");
}
else if (OpndByteWidth == 1) {
SMP_snprintf(MemReadString, 30, "X86.ReadMem8(Unsigned64(");
}
else if (OpndByteWidth == 10) {
SMP_snprintf(MemReadString, 30, "X86.ReadMem80(Unsigned64(");
}
return;
} // end of GetSPARKMemReadProcString()
// Construct SPARK bitwidth cast string. e.g. Unsigned32.
void GetSPARKWidthCastString(std::size_t OpndByteWidth, char *CastString) {
if (OpndByteWidth == 8) {
SMP_snprintf(CastString, 15, "Unsigned64");
}
else if (OpndByteWidth == 4) {
SMP_snprintf(CastString, 15, "Unsigned32");
}
else if (OpndByteWidth == 2) {
SMP_snprintf(CastString, 15, "Unsigned16");
}
else if (OpndByteWidth == 1) {
SMP_snprintf(CastString, 15, "Unsigned8");
}
else if (OpndByteWidth == 10) {
SMP_snprintf(CastString, 15, "Unsigned80");
}
return;
} // end of GetSPARKWidthCastString()
void PrintSPARKIndentTabs(FILE *OutFile) {
#define DEBUG_STARS_TABS 1
#if DEBUG_STARS_TABS
if (STARS_SPARK_IndentCount > 8) {
SMP_msg("ERROR: Indentation level out of range: %u\n", STARS_SPARK_IndentCount);
STARS_SPARK_IndentCount = 8;
}
#endif
for (std::size_t Counter = 0; Counter < STARS_SPARK_IndentCount; ++Counter) {
SMP_fprintf(OutFile, "\t");
}
return;
}
// Print an operand in SPARK-Ada form.
void SMPInstr::PrintSPARKAdaOperand(const STARSOpndTypePtr &Opnd, FILE *OutFile, bool LeftHandSide, bool UseFP, bool UseMachinePrefix, bool OmitTrailingSpace, bool UseSavedStackPtr) {
#if 1
std::string OutString;
this->SPARKAdaOperandToString(Opnd, OutString, LeftHandSide, UseFP, UseMachinePrefix, OmitTrailingSpace, UseSavedStackPtr);
SMP_fprintf(OutFile, "%s", OutString.c_str());
#else
std::size_t OpndByteWidth = Opnd->GetByteWidth();
bool MemOpnd = IsMemOperand(Opnd);
bool SubwordWidth = (global_STARS_program->GetSTARS_ISA_Bytewidth() > OpndByteWidth);
bool MemWrite = LeftHandSide && MemOpnd;
bool MemRead = MemOpnd && (!LeftHandSide);
char MemWriteString[40] = { '\0' };
++SPARKOperandCount;
if (MemWrite) {
GetSPARKMemWriteProcString(OpndByteWidth, MemWriteString);
}
else if (MemRead) {
GetSPARKMemReadProcString(OpndByteWidth, MemWriteString);
}
if (Opnd->IsStaticMemOp()) {
if (Opnd->HasSIBByte()) {
SMP_fprintf(OutFile, " %s ", MemWriteString);
SPARKAnnotPrintSIB(Opnd, true, OutFile, Opnd->GetSegReg(), UseFP, this->MDIsAddressing64bit(), UseSavedStackPtr);
SMP_fprintf(OutFile, " + 16#%llx# )", (uint64_t) Opnd->GetAddr());
}
else {
SMP_fprintf(OutFile, " %s 16#%llx# ", MemWriteString, (uint64_t) Opnd->GetAddr());
}
if (SubwordWidth) {
++SubwordMemCount;
}
}
else if (Opnd->IsMemNoDisplacementOp()) {
if (Opnd->HasSIBByte()) { // has SIB info
SMP_fprintf(OutFile, " %s ", MemWriteString);
SPARKAnnotPrintSIB(Opnd, false, OutFile, Opnd->GetSegReg(), UseFP, this->MDIsAddressing64bit(), UseSavedStackPtr);
}
else { // no SIB info
STARS_regnum_t BaseReg = Opnd->GetReg();
STARSOpndTypePtr BaseOp = this->STARSInstPtr->MakeRegOpnd(BaseReg);
if (this->MDIsAddressing64bit()) {
BaseOp->SetByteWidth(8);
}
#if STARS_SPARK_EMIT_SEGMENT_REGS
if (Opnd->HasSegReg() && (!((STARS_x86_R_ss == Opnd->GetSegReg()) && MDIsStackAccessOpnd(Opnd, UseFP)))) {
// We have a segment selector that is not just a redundant SS: selector for an RSP-relative access.
STARSOpndTypePtr SegRegOp = this->STARSInstPtr->MakeRegOpnd(Opnd->GetSegReg());
SMP_fprintf(OutFile, " %s X86.%s + X86.%s ", MemWriteString, MDGetRegName(SegRegOp), MDGetRegName(BaseOp));
}
else {
#endif
if (!(UseSavedStackPtr && (BaseReg == MD_STACK_POINTER_REG))) {
SMP_fprintf(OutFile, " %s X86.%s ", MemWriteString, MDGetRegName(BaseOp));
}
else {
SMP_fprintf(OutFile, " %s SaveStackPtr ", MemWriteString);
}
#if STARS_SPARK_EMIT_SEGMENT_REGS
}
#endif
if (global_STARS_program->GetSTARS_ISA_Bytewidth() > BaseOp->GetByteWidth()) {
++SubwordAddressRegCount;
}
}
if (Opnd->GetAddr() != 0) {
SMP_msg(" \n WARNING: addr for o_phrase type: %llx\n", (unsigned long long) Opnd->GetAddr());
}
if (SubwordWidth) {
++SubwordMemCount;
}
}
else if (Opnd->IsMemDisplacementOp()) {
STARS_ea_t offset = Opnd->GetAddr();
int SignedOffset = (int) offset;
if (Opnd->HasSIBByte()) {
SMP_fprintf(OutFile, " %s ", MemWriteString);
SPARKAnnotPrintSIB(Opnd, (SignedOffset != 0), OutFile, Opnd->GetSegReg(), UseFP, this->MDIsAddressing64bit(), false);
if (SignedOffset > 0) // print plus sign
SMP_fprintf(OutFile, "+ 16#%x# )", (unsigned int) SignedOffset);
else if (SignedOffset < 0) {
SMP_fprintf(OutFile, "- 16#%x# )", (unsigned int) (0 - SignedOffset));
}
}
else {
STARS_regnum_t BaseReg = Opnd->GetReg();
STARSOpndTypePtr BaseOp = this->STARSInstPtr->MakeRegOpnd(BaseReg);
if (this->MDIsAddressing64bit()) {
BaseOp->SetByteWidth(8);
}
#if STARS_SPARK_EMIT_SEGMENT_REGS
if (Opnd->HasSegReg() && (!((STARS_x86_R_ss == Opnd->GetSegReg()) && MDIsStackAccessOpnd(Opnd, UseFP)))) {
// We have a segment selector that is not just a redundant SS: selector for an RSP-relative access.
STARSOpndTypePtr SegRegOp = this->STARSInstPtr->MakeRegOpnd(Opnd->GetSegReg());
SMP_fprintf(OutFile, " %s X86.%s + X86.%s ", MemWriteString, MDGetRegName(SegRegOp), MDGetRegName(BaseOp));
}
else {
#endif
if (!(UseSavedStackPtr && (BaseReg == MD_STACK_POINTER_REG))) {
SMP_fprintf(OutFile, " %s X86.%s ", MemWriteString, MDGetRegName(BaseOp));
}
else {
SMP_fprintf(OutFile, " %s SaveStackPtr ", MemWriteString);
}
#if STARS_SPARK_EMIT_SEGMENT_REGS
}
#endif
if (SignedOffset >= 0) // print plus sign
SMP_fprintf(OutFile, "+ 16#%x# ", (unsigned int) SignedOffset);
else {
SMP_fprintf(OutFile, "- 16#%x# ", (unsigned int) (0 - SignedOffset));
}
if (global_STARS_program->GetSTARS_ISA_Bytewidth() > BaseOp->GetByteWidth()) {
++SubwordAddressRegCount;
}
}
if (SubwordWidth) {
++SubwordMemCount;
}
}
else if (Opnd->IsRegOp()) {
if (UseSavedStackPtr && Opnd->MatchesReg(MD_STACK_POINTER_REG)) {
assert(!LeftHandSide);
SMP_fprintf(OutFile, " SaveStackPtr");
}
else if (SubwordWidth && LeftHandSide) {
// Subword reg writes are procedure calls, e.g. Write_EDI(...
SMP_fprintf(OutFile, " X86.Write_%s(", MDGetRegName(Opnd));
}
else if (UseMachinePrefix) {
SMP_fprintf(OutFile, " X86.%s", MDGetRegName(Opnd));
}
else {
SMP_fprintf(OutFile, " %s", MDGetRegName(Opnd));
}
if (!OmitTrailingSpace) { // parameters to loop functions will get a suffix; all others need a space now
SMP_fprintf(OutFile, " ");
}
if (SubwordWidth) {
++SubwordRegCount;
}
}
else if (Opnd->IsFloatingPointRegOp()) {
bool FPStackTop = (STARS_x86_R_st0 == Opnd->GetReg());
if (UseMachinePrefix) {
if (FPStackTop)
SMP_fprintf(OutFile, " X86.FloatingPointStackDummy ");
else
SMP_fprintf(OutFile, " X86.FloatingPointStackDummy1 ");
}
else {
if (FPStackTop)
SMP_fprintf(OutFile, " FloatingPointStackDummy ");
else
SMP_fprintf(OutFile, " FloatingPointStackDummy1 ");
}
}
else if (Opnd->IsImmedOp()) {
STARS_sval_t SignedImmedValue = (STARS_sval_t) Opnd->GetImmedValue();
if (0 > SignedImmedValue) { // enclose unary minus in parentheses for Ada
SMP_fprintf(OutFile, " (%lld) ", (long long) SignedImmedValue);
}
else {
SMP_fprintf(OutFile, " 16#%llx# ", (unsigned long long) SignedImmedValue);
}
}
else if (Opnd->IsFarPointer() || Opnd->IsNearPointer()) {
SMP_fprintf(OutFile, " 16#%llx# ", (unsigned long long) Opnd->GetAddr());
}
else if (Opnd->IsVoidOp()) {
; // nothing to print
}
else {
SMP_fprintf(OutFile, " ERROROP");
}
if (MemWrite) { // close the procedure call address arg cast parentheses
SMP_fprintf(OutFile, "), "); // e.g. MemWrite32(Unsigned64(Opnd),
}
else if (MemRead) {
SMP_fprintf(OutFile, ")) "); // e.g. MemRead8(Unsigned64(Opnd))
}
#endif
return;
} // end of PrintSPARKAdaOperand()
void SMPInstr::SPARKAdaOperandToString(const STARSOpndTypePtr &Opnd, std::string &OutString, bool LeftHandSide, bool UseFP, bool UseMachinePrefix, bool OmitTrailingSpace, bool UseSavedStackPtr) {
std::size_t OpndByteWidth = Opnd->GetByteWidth();
bool MemOpnd = IsMemOperand(Opnd);
bool SubwordWidth = (global_STARS_program->GetSTARS_ISA_Bytewidth() > OpndByteWidth);
bool MemWrite = LeftHandSide && MemOpnd;
bool MemRead = MemOpnd && (!LeftHandSide);
char MemWriteString[40] = { '\0' };
char TempString[40] = { '\0' };
string SIBString;
++SPARKOperandCount;
if (MemWrite) {
GetSPARKMemWriteProcString(OpndByteWidth, MemWriteString);
}
else if (MemRead) {
GetSPARKMemReadProcString(OpndByteWidth, MemWriteString);
}
if (Opnd->IsStaticMemOp()) {
OutString.append(" ");
OutString.append(MemWriteString);
if (Opnd->HasSIBByte()) {
SPARKAnnotSIBToString(Opnd, true, SIBString, Opnd->GetSegReg(), UseFP, this->MDIsAddressing64bit(), UseSavedStackPtr);
OutString.append(" ");
OutString.append(SIBString);
(void) SMP_snprintf(TempString, 20, " + 16#%llx# )", (unsigned long long) Opnd->GetAddr());
}
else {
(void) SMP_snprintf(TempString, 20, " 16#%llx# ", (unsigned long long) Opnd->GetAddr());
}
OutString.append(" ");
OutString.append(TempString);
if (SubwordWidth) {
++SubwordMemCount;
// OutString.append(")"); // close cast parenthesis
}
}
else if (Opnd->IsMemNoDisplacementOp()) {
OutString.append(" ");
OutString.append(MemWriteString);
if (Opnd->HasSIBByte()) {
SPARKAnnotSIBToString(Opnd, false, SIBString, Opnd->GetSegReg(), UseFP, this->MDIsAddressing64bit(), UseSavedStackPtr);
OutString.append(" ");
OutString.append(SIBString);
}
else { // no SIB info
STARS_regnum_t BaseReg = Opnd->GetReg();
STARSOpndTypePtr BaseOp = this->STARSInstPtr->MakeRegOpnd(BaseReg);
if (this->MDIsAddressing64bit()) {
BaseOp->SetByteWidth(8);
}
#if STARS_SPARK_EMIT_SEGMENT_REGS
if (Opnd->HasSegReg() && (!((STARS_x86_R_ss == Opnd->GetSegReg()) && MDIsStackAccessOpnd(Opnd, UseFP)))) {
// We have a segment selector that is not just a redundant SS: selector for an RSP-relative access.
STARSOpndTypePtr SegRegOp = this->STARSInstPtr->MakeRegOpnd(Opnd->GetSegReg());
SMP_fprintf(OutFile, " %s X86.%s + X86.%s ", MemWriteString, MDGetRegName(SegRegOp), MDGetRegName(BaseOp));
}
else {
#endif
if (!(UseSavedStackPtr && (BaseReg == MD_STACK_POINTER_REG))) {
OutString.append(" X86.");
OutString.append(MDGetRegName(BaseOp));
OutString.append(" ");
}
else {
OutString.append(" SaveStackPtr ");
}
#if STARS_SPARK_EMIT_SEGMENT_REGS
}
#endif
if (global_STARS_program->GetSTARS_ISA_Bytewidth() > BaseOp->GetByteWidth()) {
++SubwordAddressRegCount;
}
}
if (Opnd->GetAddr() != 0) {
SMP_msg(" \n WARNING: addr for o_phrase type: %llx\n", (unsigned long long) Opnd->GetAddr());
}
if (SubwordWidth) {
++SubwordMemCount;
// OutString.append(")"); // close cast parenthesis
}
}
else if (Opnd->IsMemDisplacementOp()) {
STARS_ea_t offset = Opnd->GetAddr();
int SignedOffset = (int) offset;
OutString.append(" ");
OutString.append(MemWriteString);
if (Opnd->HasSIBByte()) {
SPARKAnnotSIBToString(Opnd, true, SIBString, Opnd->GetSegReg(), UseFP, this->MDIsAddressing64bit(), false);
OutString.append(" ");
OutString.append(SIBString);
if (SignedOffset > 0) // print plus sign
SMP_snprintf(TempString, 20, "+ 16#%x# )", (unsigned int) SignedOffset);
else if (SignedOffset < 0)
SMP_snprintf(TempString, 20, "- 16#%x# )", (unsigned int) (0 - SignedOffset));
OutString.append(TempString);
}
else {
STARS_regnum_t BaseReg = Opnd->GetReg();
STARSOpndTypePtr BaseOp = this->STARSInstPtr->MakeRegOpnd(BaseReg);
if (this->MDIsAddressing64bit()) {
BaseOp->SetByteWidth(8);
}
#if STARS_SPARK_EMIT_SEGMENT_REGS
if (Opnd->HasSegReg() && (!((STARS_x86_R_ss == Opnd->GetSegReg()) && MDIsStackAccessOpnd(Opnd, UseFP)))) {
// We have a segment selector that is not just a redundant SS: selector for an RSP-relative access.
STARSOpndTypePtr SegRegOp = this->STARSInstPtr->MakeRegOpnd(Opnd->GetSegReg());
SMP_fprintf(OutFile, " %s X86.%s + X86.%s ", MemWriteString, MDGetRegName(SegRegOp), MDGetRegName(BaseOp));
}
else {
#endif
if (!(UseSavedStackPtr && (BaseReg == MD_STACK_POINTER_REG))) {
OutString.append(" X86.");
OutString.append(MDGetRegName(BaseOp));
OutString.append(" ");
}
else {
OutString.append(" SaveStackPtr ");
}
#if STARS_SPARK_EMIT_SEGMENT_REGS
}
#endif
if (SignedOffset > 0) // print plus sign
SMP_snprintf(TempString, 20, "+ 16#%x# ", (unsigned int) SignedOffset);
else if (SignedOffset < 0)
SMP_snprintf(TempString, 20, "- 16#%x# ", (unsigned int) (0 - SignedOffset));
OutString.append(TempString);
if (global_STARS_program->GetSTARS_ISA_Bytewidth() > BaseOp->GetByteWidth()) {
++SubwordAddressRegCount;
}
}
if (SubwordWidth) {
++SubwordMemCount;
// OutString.append(")"); // close cast parenthesis
}
}
else if (Opnd->IsRegOp()) {
if (UseSavedStackPtr && Opnd->MatchesReg(MD_STACK_POINTER_REG)) {
assert(!LeftHandSide);
SMP_snprintf(TempString, 20, " SaveStackPtr");
}
else if (SubwordWidth && LeftHandSide) {
// Subword reg writes are procedure calls, e.g. Write_EDI(...
SMP_snprintf(TempString, 20, " X86.Write_%s(", MDGetRegName(Opnd));
}
else if (UseMachinePrefix) {
SMP_snprintf(TempString, 20, " X86.%s", MDGetRegName(Opnd));
}
else {
SMP_snprintf(TempString, 20, " %s", MDGetRegName(Opnd));
}
OutString.append(TempString);
if (!OmitTrailingSpace) { // parameters to loop functions will get a suffix; all others need a space now
OutString.append(" ");
}
if (SubwordWidth) {
++SubwordRegCount;
}
}
else if (Opnd->IsFloatingPointRegOp()) {
bool FPStackTop = (STARS_x86_R_st0 == Opnd->GetReg());
if (UseMachinePrefix) {
if (FPStackTop)
OutString.append(" X86.FloatingPointStackDummy ");
else
OutString.append(" X86.FloatingPointStackDummy1 ");
}
else {
if (FPStackTop)
OutString.append(" X86.FloatingPointStackDummy ");
else
OutString.append(" X86.FloatingPointStackDummy1 ");
}
}
else if (Opnd->IsImmedOp()) {
STARS_sval_t SignedImmedValue = (STARS_sval_t)Opnd->GetImmedValue();
if (0 > SignedImmedValue) { // enclose unary minus in parentheses for Ada
SMP_snprintf(TempString, 20, " (%lld) ", (long long) SignedImmedValue);
}
else {
SMP_snprintf(TempString, 20, " 16#%llx# ", (unsigned long long) SignedImmedValue);
}
OutString.append(TempString);
}
else if (Opnd->IsFarPointer() || Opnd->IsNearPointer()) {
SMP_snprintf(TempString, 20, " 16#%llx# ", (unsigned long long) Opnd->GetAddr());
OutString.append(TempString);
}
else if (Opnd->IsVoidOp()) {
; // nothing to print
}
else {
OutString.append(" ERROROP");
}
if (MemWrite) { // close the procedure call address arg cast parentheses
OutString.append("), "); // e.g. MemWrite32(Unsigned64(Opnd),
}
else if (MemRead) {
OutString.append(")) "); // e.g. MemRead8(Unsigned64(Opnd))
}
return;
} // end of SMPInstr::SPARKAdaOperandToString()
// Print just the addressing expression for a memory operand in SPARK-Ada form.
void SMPInstr::PrintSPARKAdaAddressExpr(const STARSOpndTypePtr &Opnd, FILE *OutFile, bool UseFP, bool UseSavedStackPtr) {
bool MemOpnd = IsMemOperand(Opnd);
assert(MemOpnd);
if (Opnd->IsStaticMemOp()) {
if (Opnd->HasSIBByte()) {
SPARKAnnotPrintSIB(Opnd, true, OutFile, Opnd->GetSegReg(), UseFP, this->MDIsAddressing64bit(), UseSavedStackPtr);
SMP_fprintf(OutFile, " + 16#%llx# )", (uint64_t) Opnd->GetAddr());
}
else {
SMP_fprintf(OutFile, " 16#%llx# ", (uint64_t) Opnd->GetAddr());
}
}
else if (Opnd->IsMemNoDisplacementOp()) {
if (Opnd->HasSIBByte()) { // has SIB info
SPARKAnnotPrintSIB(Opnd, false, OutFile, Opnd->GetSegReg(), UseFP, this->MDIsAddressing64bit(), UseSavedStackPtr);
}
else { // no SIB info
STARS_regnum_t BaseReg = Opnd->GetReg();
STARSOpndTypePtr BaseOp = this->STARSInstPtr->MakeRegOpnd(BaseReg);
if (this->MDIsAddressing64bit()) {
BaseOp->SetByteWidth(8);
}
#if STARS_SPARK_EMIT_SEGMENT_REGS
if (Opnd->HasSegReg() && (!((STARS_x86_R_ss == Opnd->GetSegReg()) && MDIsStackAccessOpnd(Opnd, UseFP)))) {
// We have a segment selector that is not just a redundant SS: selector for an RSP-relative access.
STARSOpndTypePtr SegRegOp = this->STARSInstPtr->MakeRegOpnd(Opnd->GetSegReg());
SMP_fprintf(OutFile, " X86.%s + X86.%s ", MDGetRegName(SegRegOp), MDGetRegName(BaseOp));
}
else {
#endif
if (!(UseSavedStackPtr && BaseOp->MatchesReg(MD_STACK_POINTER_REG))) {
SMP_fprintf(OutFile, " X86.%s ", MDGetRegName(BaseOp));
}
else {
SMP_fprintf(OutFile, " SaveStackPtr ");
}
#if STARS_SPARK_EMIT_SEGMENT_REGS
}
#endif
}
if (Opnd->GetAddr() != 0) {
SMP_msg(" \n WARNING: addr for o_phrase type: %llx\n", (uint64_t) Opnd->GetAddr());
}
}
else if (Opnd->IsMemDisplacementOp()) {
STARS_ea_t offset = Opnd->GetAddr();
int SignedOffset = (int) offset;
if (Opnd->HasSIBByte()) {
SPARKAnnotPrintSIB(Opnd, (SignedOffset != 0), OutFile, Opnd->GetSegReg(), UseFP, this->MDIsAddressing64bit(), UseSavedStackPtr);
if (SignedOffset > 0) // print plus sign
SMP_fprintf(OutFile, "+ 16#%x# )", (unsigned int) SignedOffset);
else if (SignedOffset < 0) // minus sign will print automatically
SMP_fprintf(OutFile, "%d )", SignedOffset);
}
else {
STARS_regnum_t BaseReg = Opnd->GetReg();
STARSOpndTypePtr BaseOp = this->STARSInstPtr->MakeRegOpnd(BaseReg);
if (this->MDIsAddressing64bit()) {
BaseOp->SetByteWidth(8);
}
#if STARS_SPARK_EMIT_SEGMENT_REGS
if (Opnd->HasSegReg() && (!((STARS_x86_R_ss == Opnd->GetSegReg()) && MDIsStackAccessOpnd(Opnd, UseFP)))) {
// We have a segment selector that is not just a redundant SS: selector for an RSP-relative access.
STARSOpndTypePtr SegRegOp = this->STARSInstPtr->MakeRegOpnd(Opnd->GetSegReg());
SMP_fprintf(OutFile, " X86.%s + X86.%s ", MDGetRegName(SegRegOp), MDGetRegName(BaseOp));
}
else {
#endif
if (!(UseSavedStackPtr && BaseOp->MatchesReg(MD_STACK_POINTER_REG))) {
SMP_fprintf(OutFile, " X86.%s ", MDGetRegName(BaseOp));
}
else {
SMP_fprintf(OutFile, " SaveStackPtr ");
}
#if STARS_SPARK_EMIT_SEGMENT_REGS
}
#endif
if (SignedOffset >= 0) // print plus sign
SMP_fprintf(OutFile, "+ 16#%x# ", (unsigned int) SignedOffset);
else // minus sign will print automatically
SMP_fprintf(OutFile, "%d ", SignedOffset);
}
}
else {
SMP_fprintf(OutFile, " ERROROP");
}
return;
} // end of PrintSPARKAdaAddressExpr()
// Print an operator in SPARK-Ada form.
void PrintSPARKAdaOperator(SMPoperator Oper, string &OutString, bool &PrefixProcCall, bool &PrefixUnary, bool ConstFollows) {
PrefixProcCall = false;
PrefixUnary = false;
switch (Oper) {
case SMP_NULL_OPERATOR:
case SMP_INPUT: // input from port
case SMP_OUTPUT: // output to port
case SMP_ADDRESS_OF: // take effective address
case SMP_S_LEFT_SHIFT: // signed left shift
case SMP_ROTATE_LEFT_CARRY: // rotate left through carry
case SMP_ROTATE_RIGHT_CARRY: // rotate right through carry
SMP_msg("ERROR: SPARK: Cannot translate operator: ");
SMP_msg(" %s \n", OperatorText[Oper]);
OutString = "ERROR";
break;
case SMP_ADD_CARRY: // add with carry
OutString = " X86.adc";
PrefixProcCall = true;
break;
case SMP_SUBTRACT_BORROW: // subtract with borrow
OutString = " X86.sbb";
PrefixProcCall = true;
break;
case SMP_CALL: // CALL instruction
break;
case SMP_U_LEFT_SHIFT: // unsigned left shift
case SMP_REVERSE_SHIFT_U: // Shift right operand by bit count in left operand
OutString = " Interfaces.Shift_Left";
PrefixProcCall = true;
break;
case SMP_U_RIGHT_SHIFT: // unsigned right shift
OutString = " Interfaces.Shift_Right";
PrefixProcCall = true;
break;
case SMP_S_RIGHT_SHIFT: // signed right shift
OutString = " Interfaces.Shift_Right_Arithmetic";
PrefixProcCall = true;
break;
case SMP_ROTATE_LEFT:
OutString = " Interfaces.Rotate_Left";
PrefixProcCall = true;
break;
case SMP_ROTATE_RIGHT:
OutString = " Interfaces.Rotate_Right";
PrefixProcCall = true;
break;