Skip to content
Snippets Groups Projects
SMPInstr.cpp 135 KiB
Newer Older
			}
			break;
		}

		case 1:  // nothing for SDT to do
		{	qfprintf(AnnotFile, "%10x %6d INSTR LOCAL NoMetaUpdate %s \n",
					addr, -1, disasm);
			++AnnotationCount[OptType];
			break;
		}

		case 4:  // INC, DEC, etc.: no SDT work unless MemDest
		{	if (MemDest || MemSrc) {
				SDTInstrumentation = true;
				break;  // treat as category 0
	 		}
			qfprintf(AnnotFile, "%10x %6d INSTR LOCAL Always1stSrc %s \n",
					addr, -1, disasm);
			++AnnotationCount[OptType];
			break;
		}

		case 5: // ADD, etc.: If numeric 2nd src operand, no SDT work.
		{	if (MemDest || MemSrc) {
				SDTInstrumentation = true;
				break;  // treat as category 0
			}
			if (SecondSrcOperandNum && !this->MDIsFrameAllocInstr()) { // treat as category 1
				qfprintf(AnnotFile, "%10x %6d INSTR LOCAL %s %s \n",
						addr, -1, OptExplanation[OptType], disasm);
				++AnnotationCount[OptType];
			}
			break;
		}

		case 6: // Only OS code should include these; problem for SDT
		{	if (MemDest) {
				SDTInstrumentation = true;
				break;  // treat as category 0
			}
			qfprintf(AnnotFile, "%10x %6d INSTR LOCAL AlwaysPTR %s \n",
					addr, -OptType, disasm);
			++AnnotationCount[OptType];
			break;
		}

		case 8: // Implicitly writes to EDX:EAX, always numeric.
		{	qfprintf(AnnotFile, "%10x %6d INSTR LOCAL n EDX EAX ZZ %s %s \n",
					addr, -2, OptExplanation[OptType], disasm);
			++AnnotationCount[OptType];
			SDTInstrumentation = true;
			break;
		}

		case 9:  // Either writes to FP reg (cat. 1) or memory (cat. 0)
		{	if (MemDest) {
#if SMP_DEBUG
				// MemDest seems to happen too much.
				msg("Floating point MemDest: %s \n", disasm);
#endif
				SDTInstrumentation = true;
				break; // treat as category 0
			}
			qfprintf(AnnotFile, "%10x %6d INSTR LOCAL %s %s \n",
					addr, -1, OptExplanation[OptType], disasm);
			++AnnotationCount[OptType];
			break;
		}

		default: // 2,3,7: Optimization possibilities depend on operands
		{ 
#if SMP_DEBUG2
			if (OptType ==  3) {  // MOV instr class
				if (MemDest) {
					msg("MemDest on MOV: %s\n", disasm);
				}
				else if (!SecondSrcOperandNum) {
					msg("MOV: not 2nd op numeric: %s\n", disasm);
						this->PrintOperands();
				}
			}
#endif
			SDTInstrumentation = true;
			if (MemDest) {
#if SMP_DEBUG_XOR
				if (OptType == 2)
					msg("MemDest on OptType 2: %s\n", disasm);
#endif
				break;  // treat as category 0
			}
			if ((OptType == 2) || (OptType == 7) || SecondSrcOperandNum) {
				qfprintf(AnnotFile, "%10x %6d INSTR LOCAL n %s %s %s \n",
						addr, -2, this->DestString(OptType), 
						OptExplanation[OptType], disasm);
				++AnnotationCount[OptType];
			}
			break;
		}
	} // end switch (OptType)
	
	// If mmStrata is going to have to deal with the
	//  instruction, then we can annotate EBP and ESP
	//  relative constant offsets. If we have emitted
	//  an annotation of type -1, there is no point
	//  in telling mmStrata about these constants.
	if (SDTInstrumentation) {
		this->AnnotateStackConstants(UseFP, AnnotFile);
		if (strlen(this->DeadRegsString) > 0) {
			// Optimize by informing mmStrata of dead registers. It can avoid saving
			//  and restoring dead state. This is particularly important for EFLAGS,
			//  as restoring the flags is a pipeline serializing instruction.
			qfprintf(AnnotFile, "%10x %6d INSTR DEADREGS %s ZZ %s \n",
				addr, this->SMPcmd.size, this->DeadRegsString, disasm);
		}
	}
	return;
} // end of SMPInstr::EmitAnnotations()
1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000

// Build the RTL for an instruction with a unary opcode
bool SMPInstr::BuildUnaryRTL(SMPoperator UnaryOp) {
	size_t OpNum;
	bool DestFound = false;
	SMPRegTransfer *TempRT = NULL;

	op_t VoidOp;
	VoidOp.type = o_void;

	op_t FPRegOp;
	FPRegOp.type = o_fpreg;  // floating point register stack
	FPRegOp.reg = 0;

	op_t FlagsOp;
	FlagsOp.type = o_reg;
	FlagsOp.reg = X86_FLAGS_REG;

	// Handle special cases first
	if (SMP_UNARY_FLOATING_ARITHMETIC == UnaryOp) {
		// Use of the floating register stack top is implicit
		DestFound = true;
		TempRT = new SMPRegTransfer;
		TempRT->SetLeftOperand(FPRegOp);
		TempRT->SetOperator(SMP_ASSIGN);
		SMPRegTransfer *RightRT = new SMPRegTransfer;
		RightRT->SetLeftOperand(FPRegOp);
		RightRT->SetOperator(UnaryOp);
		RightRT->SetRightOperand(VoidOp);
		TempRT->SetRightTree(RightRT);
		this->RTL.push_back(TempRT);
	}
	else if ((NN_clc == this->SMPcmd.itype) || (NN_cld == this->SMPcmd.itype)
		|| (NN_cmc == this->SMPcmd.itype) || (NN_stc == this->SMPcmd.itype)
		|| (NN_std == this->SMPcmd.itype)) {
		// Flags register is implicit destination.
		DestFound = true;
		TempRT = new SMPRegTransfer;
		TempRT->SetLeftOperand(FlagsOp);
		TempRT->SetOperator(SMP_ASSIGN);
		SMPRegTransfer *RightRT = new SMPRegTransfer;
		if (NN_cmc == this->SMPcmd.itype) { // complement carry flag USEs old carry flag
			RightRT->SetLeftOperand(FlagsOp);
			RightRT->SetOperator(SMP_BITWISE_NOT);
		}
		else {
			RightRT->SetLeftOperand(VoidOp);
			RightRT->SetOperator(UnaryOp);
		}
		RightRT->SetRightOperand(VoidOp);
		TempRT->SetRightTree(RightRT);
		this->RTL.push_back(TempRT);
	}

	for (OpNum = 0; !DestFound && (OpNum < UA_MAXOP); ++OpNum) {
		op_t TempOp = this->SMPcmd.Operands[OpNum];
		if (this->features & DefMacros[OpNum]) { // DEF
			if (MDKnownOperandType(TempOp)) {
				DestFound = true;
				TempRT = new SMPRegTransfer;
				TempRT->SetLeftOperand(TempOp);
				TempRT->SetOperator(SMP_ASSIGN);
				SMPRegTransfer *RightRT = new SMPRegTransfer;
				RightRT->SetLeftOperand(TempOp);
				RightRT->SetOperator(UnaryOp);
				RightRT->SetRightOperand(VoidOp);
				TempRT->SetRightTree(RightRT);
				this->RTL.push_back(TempRT);
			}
		}
	} // end for (OpNum = 0; ...)

#if SMP_DEBUG_BUILD_RTL
	if (!DestFound) {
		msg("ERROR: Could not find unary operand at %x for %s\n", this->GetAddr(), this->GetDisasm());
	}
#endif
	return DestFound;
} // end of SMPInstr::BuildUnaryRTL()

// Build the RTL for an instruction with a binary arithmetic opcode
bool SMPInstr::BuildBinaryRTL(SMPoperator BinaryOp) {
	size_t OpNum;
	bool DestFound = false;
	bool SourceFound = false;
	SMPRegTransfer *TempRT = NULL;
	SMPRegTransfer *RightRT = new SMPRegTransfer;

	op_t VoidOp;
	VoidOp.type = o_void;

	op_t FPRegOp;
	FPRegOp.type = o_fpreg;  // floating point register stack
	FPRegOp.reg = 0;

	op_t Immed1Op;
	Immed1Op.type = o_imm;  // immediate 1 for increment or decrement
	Immed1Op.value = 1;

	// Handle special cases first
	if (SMP_BINARY_FLOATING_ARITHMETIC == BinaryOp) {
		// Use of the floating register stack top is implicit
		DestFound = true;
		TempRT = new SMPRegTransfer;
		TempRT->SetLeftOperand(FPRegOp);
		TempRT->SetOperator(SMP_ASSIGN);
		RightRT->SetLeftOperand(FPRegOp);
		RightRT->SetOperator(BinaryOp);
		RightRT->SetRightOperand(VoidOp);
		TempRT->SetRightTree(RightRT);
	}
	else if ((NN_dec == this->SMPcmd.itype) || (NN_inc == this->SMPcmd.itype)) {
		// The immediate value of 1 to add or subtract is implicit.
		SourceFound = true;
		RightRT->SetRightOperand(Immed1Op);
	}

	for (OpNum = 0; !(DestFound && SourceFound) && (OpNum < UA_MAXOP); ++OpNum) {
		op_t TempOp = this->SMPcmd.Operands[OpNum];
		if (this->features & DefMacros[OpNum]) { // DEF
			if (MDKnownOperandType(TempOp)) {
				DestFound = true;
				TempRT = new SMPRegTransfer;
				TempRT->SetLeftOperand(TempOp);
				TempRT->SetOperator(SMP_ASSIGN);
				RightRT->SetLeftOperand(TempOp);
				RightRT->SetOperator(BinaryOp);
				TempRT->SetRightTree(RightRT);
			}
		}
		else { // USE
			if (MDKnownOperandType(TempOp)) {
				SourceFound = true;
				RightRT->SetRightOperand(TempOp);
			}
		}
	} // end for (OpNum = 0; ...)

	if (!DestFound || !SourceFound) {
		assert(NULL != RightRT);
		delete RightRT;
		if (NULL != TempRT)
			delete TempRT;
#if SMP_DEBUG_BUILD_RTL
		msg("ERROR: Could not find binary operand at %x for %s\n", this->GetAddr(), this->GetDisasm());
#endif
	}
	else {
		this->RTL.push_back(TempRT);
	}
	return (DestFound && SourceFound);
} // end of SMPInstr::BuildBinaryRTL()

// Build the RTL for an double-word shift instruction
bool SMPInstr::BuildDoubleShiftRTL(SMPoperator BinaryOp) {
	size_t OpNum;
	bool DestFound = false;
	bool SourceFound = false;
	bool CountFound = false;
	SMPRegTransfer *TempRT = NULL;
	SMPRegTransfer *RightRT = new SMPRegTransfer;
	SMPRegTransfer *LowerRightRT = new SMPRegTransfer;

	op_t VoidOp;
	VoidOp.type = o_void;

	op_t FlagsOp;
	FlagsOp.type = o_reg;
	FlagsOp.reg = X86_FLAGS_REG;

	for (OpNum = 0; !(DestFound && SourceFound && CountFound) && (OpNum < UA_MAXOP); ++OpNum) {
		op_t TempOp = this->SMPcmd.Operands[OpNum];
		if (this->features & DefMacros[OpNum]) { // DEF
			if (MDKnownOperandType(TempOp)) {
				DestFound = true;
				TempRT = new SMPRegTransfer;
				TempRT->SetLeftOperand(TempOp);
				TempRT->SetOperator(SMP_ASSIGN);
				RightRT->SetLeftOperand(TempOp);
				RightRT->SetOperator(BinaryOp);
				TempRT->SetRightTree(RightRT);
				LowerRightRT->SetOperator(BinaryOp);
				RightRT->SetRightTree(LowerRightRT);
			}
		}
		else { // USE
			if (MDKnownOperandType(TempOp)) {
				if (!SourceFound) {
					SourceFound = true;
					LowerRightRT->SetLeftOperand(TempOp);
				}
				else {
					CountFound = true;
					LowerRightRT->SetRightOperand(TempOp);
				}
			}
		}
	} // end for (OpNum = 0; ...)

	if (!DestFound || !SourceFound || !CountFound) {
		if (NULL != TempRT)
			delete TempRT;
#if SMP_DEBUG_BUILD_RTL
		msg("ERROR: Could not find double-shift operand at %x for %s\n", this->GetAddr(), this->GetDisasm());
#endif
	}
	else {
		this->RTL.push_back(TempRT);
		// The carry flag gets the last shifted out bit.
		this->RTL.ExtraKills.push_back(FlagsOp);
	}
	return (DestFound && SourceFound);
} // end of SMPInstr::BuildDoubleShiftRTL()

// Build the RTL for a multiply or divide, which can have implicit EAX and/or EDX operands
bool SMPInstr::BuildMultiplyDivideRTL(SMPoperator BinaryOp) {
	size_t OpNum;
	bool DestFound = false;
	bool SourceFound = false;
	bool HiddenEAXUse = false;
	SMPRegTransfer *TempRT = NULL;
	SMPRegTransfer *RightRT = new SMPRegTransfer;

	op_t VoidOp;
	VoidOp.type = o_void;

	op_t FPRegOp;
	FPRegOp.type = o_fpreg;  // floating point register stack
	FPRegOp.reg = 0;

	op_t Immed1Op;
	Immed1Op.type = o_imm;  // immediate 1 for increment or decrement
	FPRegOp.value = 1;

	// Detect the cases in which EDX:EDX is the destination and EAX is a hidden operand.
	//  See detailed comments on the multiply and divide instructions in MDFixupDefUseLists().
	for (OpNum = 0; !(DestFound && SourceFound) && (OpNum < UA_MAXOP); ++OpNum) {
		op_t TempOp = this->SMPcmd.Operands[OpNum];
		if (!TempOp.showed()) { // hidden operand
			if (TempOp.is_reg(R_ax)) { // not R_al, so it is not 8 bits
				// This for always has a hidden use of EDX:EAX
				HiddenEAXUse = true;
			}
		}
	}

	for (OpNum = 0; !(DestFound && SourceFound) && (OpNum < UA_MAXOP); ++OpNum) {
		op_t TempOp = this->SMPcmd.Operands[OpNum];
		if (this->features & DefMacros[OpNum]) { // DEF
			if (MDKnownOperandType(TempOp)) {
				DestFound = true;
				TempRT = new SMPRegTransfer;
				TempRT->SetLeftOperand(TempOp);
				TempRT->SetOperator(SMP_ASSIGN);
				RightRT->SetLeftOperand(TempOp);
				RightRT->SetOperator(BinaryOp);
				TempRT->SetRightTree(RightRT);
			}
		}
		else { // USE
			if (MDKnownOperandType(TempOp)) {
				SourceFound = true;
				RightRT->SetRightOperand(TempOp);
			}
		}
	} // end for (OpNum = 0; ...)

	if (!DestFound || !SourceFound) {
		assert(NULL != RightRT);
		delete RightRT;
		if (NULL != TempRT)
			delete TempRT;
#if SMP_DEBUG_BUILD_RTL
		msg("ERROR: Could not find mul/div operand at %x for %s\n", this->GetAddr(), this->GetDisasm());
#endif
	}
	else {
		this->RTL.push_back(TempRT);
		if (HiddenEAXUse) {
			// Need another effect for EDX, which was implicit.
			//  Make a deep copy from existing effect and change EAX dest to EDX.
			//  For divisions, we also change EAX source to EDX.
			SMPRegTransfer *EDXRT = new SMPRegTransfer;
			SMPRegTransfer *EDXRightRT = new SMPRegTransfer;
			op_t EDXOp;
			EDXRT->SetOperator(SMP_ASSIGN);
			EDXOp = TempRT->GetLeftOperand();
			assert(EDXOp.is_reg(R_ax));
			EDXOp.reg = R_dx;
			EDXRT->SetLeftOperand(EDXOp);
			op_t SourceOp = RightRT->GetLeftOperand();
			if ((NN_div == this->SMPcmd.itype) || (NN_idiv == this->SMPcmd.itype)) {
				// Need to change left operand of RightRT to EDX. i.e. we are
				//  changing the effect from eax := eax DIV foo to edx := edx DIV foo.
				assert(SourceOp.is_reg(R_ax));
				EDXRightRT->SetLeftOperand(EDXOp);
			}
			else { // just use same source operands for multiplies
				EDXRightRT->SetLeftOperand(SourceOp);
			}
			EDXRightRT->SetOperator(BinaryOp);
			EDXRightRT->SetRightOperand(RightRT->GetRightOperand());
			EDXRT->SetRightTree(EDXRightRT);
			this->RTL.push_back(EDXRT);
		}
	}
	return (DestFound && SourceFound);
} // end of SMPInstr::BuildMultiplyDivideRTL()

// Build the RTL for an instruction with a tertiary arithmetic opcode applied to
//  two operands plus an implied FLAGS operand, e.g. add with carry adds the carry bit
//  and two operands together; rotate through carry, etc.
bool SMPInstr::BuildBinaryPlusFlagsRTL(SMPoperator BinaryOp) {
	size_t OpNum;
	bool DestFound = false;
	bool SourceFound = false;
	SMPRegTransfer *TempRT = NULL;

	op_t FlagsOp;
	FlagsOp.type = o_reg;
	FlagsOp.reg = X86_FLAGS_REG;

	SMPRegTransfer *RightRT = new SMPRegTransfer;
	SMPRegTransfer *FlagsRightRT = new SMPRegTransfer;

	for (OpNum = 0; !(DestFound && SourceFound) && (OpNum < UA_MAXOP); ++OpNum) {
		op_t TempOp = this->SMPcmd.Operands[OpNum];
		if (this->features & DefMacros[OpNum]) { // DEF
			if (MDKnownOperandType(TempOp)) {
				DestFound = true;
				TempRT = new SMPRegTransfer;
				TempRT->SetLeftOperand(TempOp);
				TempRT->SetOperator(SMP_ASSIGN);
				RightRT->SetLeftOperand(TempOp);
				RightRT->SetOperator(BinaryOp);
				TempRT->SetRightTree(RightRT);
			}
		}
		else { // USE
			if (MDKnownOperandType(TempOp)) {
				SourceFound = true;
				FlagsRightRT->SetLeftOperand(TempOp);
				FlagsRightRT->SetOperator(BinaryOp);
				FlagsRightRT->SetRightOperand(FlagsOp);
				RightRT->SetRightTree(FlagsRightRT);
			}
		}
	} // end for (OpNum = 0; ...)

	if (!DestFound || !SourceFound) {
		if (DestFound)
			delete TempRT;   // also deletes linked in RightRT
		else
			delete RightRT;  // will also delete FlagsRightRT if SourceFound is true
		if (!SourceFound) // FlagsRightRT not linked into RightRT yet
			delete FlagsRightRT; // .. so delete FlagsRightRT separately
#if SMP_DEBUG_BUILD_RTL
		msg("ERROR: Could not find binary operand at %x for %s\n", this->GetAddr(), this->GetDisasm());
#endif
	}
	else {
		this->RTL.push_back(TempRT);
	}
	return (DestFound && SourceFound);
} // end of SMPInstr::BuildBinaryPlusFlagsRTL()

#define SMP_FIRST_SET_OPCODE  NN_seta
#define SMP_LAST_SET_OPCODE   NN_setz
// Build the RTL for an instruction of form dest := unary_operator(source), dest != source
bool SMPInstr::BuildUnary2OpndRTL(SMPoperator UnaryOp) {
	size_t OpNum;
	bool DestFound = false;
	bool SourceFound = false;
	SMPRegTransfer *TempRT = NULL;
	SMPRegTransfer *RightRT = new SMPRegTransfer;

	op_t VoidOp;
	VoidOp.type = o_void;

	op_t FlagsOp;
	FlagsOp.type = o_reg;
	FlagsOp.reg = X86_FLAGS_REG;

	// Handle special cases first.
	if ((SMP_FIRST_SET_OPCODE <= this->SMPcmd.itype) && (SMP_LAST_SET_OPCODE >= this->SMPcmd.itype)) {
		// Set instructions implicitly use the flags register.
		SourceFound = true;
		RightRT->SetLeftOperand(FlagsOp);
	}

	for (OpNum = 0; !(DestFound && SourceFound) && (OpNum < UA_MAXOP); ++OpNum) {
		op_t TempOp = this->SMPcmd.Operands[OpNum];
		if (this->features & DefMacros[OpNum]) { // DEF
			if (MDKnownOperandType(TempOp)) {
				DestFound = true;
				TempRT = new SMPRegTransfer;
				TempRT->SetLeftOperand(TempOp);
				TempRT->SetOperator(SMP_ASSIGN);
				RightRT->SetRightOperand(VoidOp);
				RightRT->SetOperator(UnaryOp);
				TempRT->SetRightTree(RightRT);
			}
		}
		else { // USE
			if (MDKnownOperandType(TempOp)) {
				SourceFound = true;
				RightRT->SetLeftOperand(TempOp);
			}
		}
	} // end for (OpNum = 0; ...)

	if (!DestFound || !SourceFound) {
		if (!DestFound)
			delete RightRT; // never linked in to TempRT
		if (NULL != TempRT)
			delete TempRT;
#if SMP_DEBUG_BUILD_RTL
		msg("ERROR: Could not find binary operand at %x for %s\n", this->GetAddr(), this->GetDisasm());
#endif
	}
	else {
		this->RTL.push_back(TempRT);
	}
	return (DestFound && SourceFound);
} // end of SMPInstr::BuildUnary2OpndRTL()

// Build the RTL for an instruction of form dest := source, dest != source
bool SMPInstr::BuildMoveRTL(SMPoperator GuardOp) {
	size_t OpNum;
	bool DestFound = false;
	bool SourceFound = false;
	bool HasRepeatPrefix = (0 != (this->SMPcmd.auxpref & aux_rep)) 
		|| (0 != (this->SMPcmd.auxpref & aux_repne));

	SMPRegTransfer *TempRT = new SMPRegTransfer;

	op_t VoidOp;
	VoidOp.type = o_void;

	op_t EAXOp;
	EAXOp.type = o_reg;
	EAXOp.reg = R_ax;

	op_t CountOp;
	CountOp.type = o_reg;
	CountOp.reg = R_cx;

	op_t FlagsOp;
	FlagsOp.type = o_reg;
	FlagsOp.reg = X86_FLAGS_REG;

	op_t FPRegOp;
	FPRegOp.type = o_fpreg;  // floating point register stack
	FPRegOp.reg = 0;

	op_t ZeroOp;
	ZeroOp.type = o_imm;  // immediate zero
	ZeroOp.value = 0;

	// First, handle special cases with implicit operands
	if (NN_lahf == this->SMPcmd.itype) {  // load AH from flags
		TempRT->SetOperator(SMP_ASSIGN);
		TempRT->SetLeftOperand(EAXOp);
		TempRT->SetRightOperand(FlagsOp);
		this->RTL.push_back(TempRT);
		return true;
	}
	if (NN_sahf == this->SMPcmd.itype) {  // store AH to flags
		TempRT->SetOperator(SMP_ASSIGN);
		TempRT->SetLeftOperand(FlagsOp);
		TempRT->SetRightOperand(EAXOp);
		this->RTL.push_back(TempRT);
		return true;
	}

	// Some floating point instructions use the floating point register stack top as
	//  an implicit source or destination, but the other operand of the load or store
	//  is explicit, so we set the implicit operand and let control flow pass to the
	//  main processing loop below.
	if ((NN_fld == this->SMPcmd.itype) || (NN_fbld == this->SMPcmd.itype)
		|| (NN_fild == this->SMPcmd.itype)) {
		// Loads implicitly use the floating point stack top as destination.
		TempRT->SetLeftOperand(FPRegOp);
		TempRT->SetOperator(SMP_ASSIGN);
		DestFound =  true;
	}
	else if ((NN_fst == this->SMPcmd.itype) || (NN_fstp == this->SMPcmd.itype)
		|| (NN_fbstp == this->SMPcmd.itype) || (NN_fist == this->SMPcmd.itype)
		|| (NN_fistp == this->SMPcmd.itype)) {
		// Stores implicitly use the floating point stack top as source
		TempRT->SetRightOperand(FPRegOp);
		SourceFound = true;
		// The "p" at the end of the opcode indicates that the floating point
		//  register stack gets popped.
		if ((NN_fstp == this->SMPcmd.itype)
			|| (NN_fbstp == this->SMPcmd.itype)
			|| (NN_fistp == this->SMPcmd.itype)) {
			this->RTL.ExtraKills.push_back(FPRegOp);
		}
	}

	for (OpNum = 0; !(DestFound && SourceFound) && (OpNum < UA_MAXOP); ++OpNum) {
		op_t TempOp = this->SMPcmd.Operands[OpNum];
		if (this->features & DefMacros[OpNum]) { // DEF
			if (MDKnownOperandType(TempOp)) {
				DestFound = true;
				TempRT->SetLeftOperand(TempOp);
				TempRT->SetOperator(SMP_ASSIGN);
			}
		}
		else { // USE
			if (MDKnownOperandType(TempOp)) {
				SourceFound = true;
				TempRT->SetRightOperand(TempOp);
			}
		}
	} // end for (OpNum = 0; ...)

	if (!DestFound || !SourceFound) {
		if (NULL != TempRT)
			delete TempRT;
#if SMP_DEBUG_BUILD_RTL
		msg("ERROR: Could not find move operand at %x for %s\n", this->GetAddr(), this->GetDisasm());
#endif
	}
	else {
		// If the move is conditional, set the guard expression.
		if (SMP_NULL_OPERATOR != GuardOp) {
			SMPGuard *Guard1 = new SMPGuard;
			Guard1->SetLeftOperand(FlagsOp);
			Guard1->SetOperator(GuardOp);
			Guard1->SetRightOperand(ZeroOp);
			TempRT->SetGuard(Guard1);
		}
		this->RTL.push_back(TempRT);
		// Now, create the repeat prefix effects
		if (HasRepeatPrefix) { // Must be MOVS or STOS
			// The repeat causes USE and DEF of ECX as a counter
			SMPRegTransfer *CounterRT = new SMPRegTransfer;
			SMPRegTransfer *RightRT = new SMPRegTransfer;
			CounterRT->SetLeftOperand(CountOp);
			CounterRT->SetOperator(SMP_ASSIGN);
			RightRT->SetLeftOperand(CountOp);
			RightRT->SetOperator(SMP_UNARY_NUMERIC_OPERATION);
			RightRT->SetRightOperand(VoidOp);
			CounterRT->SetRightTree(RightRT);
			this->RTL.push_back(CounterRT);
		}
		if ((NN_movs == this->SMPcmd.itype) || (NN_stos == this->SMPcmd.itype)) {
			// The ESI and EDI registers get incremented or decremented, depending
			//  on the direction flag DF, for MOVS; only EDI for STOS.
			// This is true with or without a repeat prefix.
			op_t ESIOp, EDIOp;
			ESIOp.type = o_reg;
			ESIOp.reg = R_si;
			EDIOp.type = o_reg;
			EDIOp.reg = R_di;
			if (NN_movs == this->SMPcmd.itype) {
				this->RTL.ExtraKills.push_back(ESIOp);
			}
			this->RTL.ExtraKills.push_back(EDIOp);
		}
	}
	return (DestFound && SourceFound);
} // end of SMPInstr::BuildMoveRTL()

// Build the RTL for a compare string instruction, possibly with repeat prefix.
bool SMPInstr::BuildCompareStringRTL(void) {
	size_t OpNum;
	bool Src1Found = false;
	bool Src2Found = false;
	bool HasRepeatPrefix = (0 != (this->SMPcmd.auxpref & aux_rep)) 
		|| (0 != (this->SMPcmd.auxpref & aux_repne));

	op_t FlagsOp;
	FlagsOp.type = o_reg;
	FlagsOp.reg = X86_FLAGS_REG;

	op_t CountOp;
	CountOp.type = o_reg;
	CountOp.reg = R_cx;

	op_t VoidOp;
	VoidOp.type = o_void;

	SMPRegTransfer *TempRT = new SMPRegTransfer;
	SMPRegTransfer *RightRT = new SMPRegTransfer;

	for (OpNum = 0; !(Src1Found && Src2Found) && (OpNum < UA_MAXOP); ++OpNum) {
		op_t TempOp = this->SMPcmd.Operands[OpNum];
		if (MDKnownOperandType(TempOp)) {
			if (!Src1Found) {
				Src1Found = true;
				TempRT->SetLeftOperand(FlagsOp);
				TempRT->SetOperator(SMP_ASSIGN);
				RightRT->SetLeftOperand(TempOp);
				RightRT->SetOperator(SMP_U_COMPARE);
				TempRT->SetRightTree(RightRT);
				if (this->features & DefMacros[OpNum]) // DEF
					msg("CMPS 1st opnd is DEF\n");
				else if (this->features & UseMacros[OpNum]) // USE
					msg("CMPS 1st opnd is USE\n");
				else
					msg("CMPS 1st opnd neither DEF nor USE\n");
			}
			else {
				Src2Found = true;
				RightRT->SetRightOperand(TempOp);
				if (this->features & DefMacros[OpNum]) // DEF
					msg("CMPS 2nd opnd is DEF\n");
				else if (this->features & UseMacros[OpNum]) // USE
					msg("CMPS 2nd opnd is USE\n");
				else
					msg("CMPS 2nd opnd neither DEF nor USE\n");
			}
		}
	} // end for (OpNum = 0; ...)

	if (!Src1Found || !Src2Found) {
		if (NULL != TempRT)
			delete TempRT;
#if SMP_DEBUG_BUILD_RTL
		msg("ERROR: Could not find CMPS operand at %x for %s\n", this->GetAddr(), this->GetDisasm());
#endif
	}
	else {
		this->RTL.push_back(TempRT);
		// Now, create the repeat prefix effects
		if (HasRepeatPrefix) {
			// The repeat causes USE and DEF of ECX as a counter
			SMPRegTransfer *CounterRT = new SMPRegTransfer;
			SMPRegTransfer *RightRT = new SMPRegTransfer;
			CounterRT->SetLeftOperand(CountOp);
			CounterRT->SetOperator(SMP_ASSIGN);
			RightRT->SetLeftOperand(CountOp);
			RightRT->SetOperator(SMP_UNARY_NUMERIC_OPERATION);
			RightRT->SetRightOperand(VoidOp);
			CounterRT->SetRightTree(RightRT);
			this->RTL.push_back(CounterRT);
		}
	}
	return (Src1Found && Src2Found);
} // end of SMPInstr::BuildCompareStringRTL()

// Build the RTL for an instruction of form dest := source, source := dest
bool SMPInstr::BuildExchangeRTL(void) {
	size_t OpNum;
	bool Src1Found = false;
	bool Src2Found = false;
	SMPRegTransfer *TempRT = new SMPRegTransfer;  // second effect, src := dest

	for (OpNum = 0; !(Src1Found && Src2Found) && (OpNum < UA_MAXOP); ++OpNum) {
		op_t TempOp = this->SMPcmd.Operands[OpNum];
		if (MDKnownOperandType(TempOp)) {
			if (!Src1Found) {
				Src1Found = true;
				TempRT->SetRightOperand(TempOp);
				TempRT->SetOperator(SMP_ASSIGN);
				if (this->features & DefMacros[OpNum]) // DEF
					msg("XCHG 1st opnd is DEF\n");
				else if (this->features & UseMacros[OpNum]) // USE
					msg("XCHG 1st opnd is USE\n");
				else
					msg("XCHG 1st opnd neither DEF nor USE\n");
			}
			else {
				Src2Found = true;
				TempRT->SetLeftOperand(TempOp);
				if (this->features & DefMacros[OpNum]) // DEF
					msg("XCHG 2nd opnd is DEF\n");
				else if (this->features & UseMacros[OpNum]) // USE
					msg("XCHG 2nd opnd is USE\n");
				else
					msg("XCHG 2nd opnd neither DEF nor USE\n");
			}
		}
	} // end for (OpNum = 0; ...)

	if (!Src1Found || !Src2Found) {
		if (NULL != TempRT)
			delete TempRT;
#if SMP_DEBUG_BUILD_RTL
		msg("ERROR: Could not find XCHG operand at %x for %s\n", this->GetAddr(), this->GetDisasm());
#endif
	}
	else {
		// Create the first effect, dest := src
		SMPRegTransfer *FirstRT = new SMPRegTransfer;
		FirstRT->SetLeftOperand(TempRT->GetRightOperand());
		FirstRT->SetRightOperand(TempRT->GetLeftOperand());
		FirstRT->SetOperator(SMP_ASSIGN);
		this->RTL.push_back(FirstRT);
		// Push the second effect on the list, src := dest
		this->RTL.push_back(TempRT);
	}
	return (Src1Found && Src2Found);
} // end of SMPInstr::BuildExchangeRTL()

// Build the RTL for an instruction of form dest := dest + source, source := dest
bool SMPInstr::BuildExchangeAddRTL(void) {
	size_t OpNum;
	bool Src1Found = false;
	bool Src2Found = false;

	SMPRegTransfer *TempRT = new SMPRegTransfer;  // second effect, src := dest

	for (OpNum = 0; !(Src1Found && Src2Found) && (OpNum < UA_MAXOP); ++OpNum) {
		op_t TempOp = this->SMPcmd.Operands[OpNum];
		if (MDKnownOperandType(TempOp)) {
			if (!Src1Found) {
				Src1Found = true;
				TempRT->SetRightOperand(TempOp);
				TempRT->SetOperator(SMP_ASSIGN);
				if (this->features & DefMacros[OpNum]) // DEF
					msg("XADD 1st opnd is DEF\n");
				else if (this->features & UseMacros[OpNum]) // USE
					msg("XADD 1st opnd is USE\n");
				else
					msg("XADD 1st opnd neither DEF nor USE\n");
			}
			else {
				Src2Found = true;
				TempRT->SetLeftOperand(TempOp);
				if (this->features & DefMacros[OpNum]) // DEF
					msg("XADD 2nd opnd is DEF\n");
				else if (this->features & UseMacros[OpNum]) // USE
					msg("XADD 2nd opnd is USE\n");
				else
					msg("XADD 2nd opnd neither DEF nor USE\n");
			}
		}
	} // end for (OpNum = 0; ...)

	if (!Src1Found || !Src2Found) {
		if (NULL != TempRT)
			delete TempRT;
#if SMP_DEBUG_BUILD_RTL
		msg("ERROR: Could not find XADD operand at %x for %s\n", this->GetAddr(), this->GetDisasm());
#endif
	}
	else {
		// Create the first effect, dest := dest + src
		SMPRegTransfer *FirstRT = new SMPRegTransfer;
		SMPRegTransfer *AddRT = new SMPRegTransfer;
		AddRT->SetLeftOperand(TempRT->GetRightOperand());
		AddRT->SetOperator(SMP_ADD);
		AddRT->SetRightOperand(TempRT->GetLeftOperand());
		FirstRT->SetLeftOperand(TempRT->GetRightOperand());
		FirstRT->SetRightTree(AddRT);
		FirstRT->SetOperator(SMP_ASSIGN);
		this->RTL.push_back(FirstRT);
		// Push the second effect on the list, src := dest
		this->RTL.push_back(TempRT);
	}
	return (Src1Found && Src2Found);
} // end of SMPInstr::BuildExchangeAddRTL()

// Build the RTL for an instruction of form:
//  if (dest==EAX) dest := source  else  EAX := dest
bool SMPInstr::BuildCompareExchangeRTL(void) {
	size_t OpNum;
	bool DestFound = false;
	bool SourceFound = false;
	op_t DestOp;
	op_t SourceOp;
	SMPRegTransfer *TempRT = new SMPRegTransfer;

	for (OpNum = 0; !(DestFound && SourceFound) && (OpNum < UA_MAXOP); ++OpNum) {
		op_t TempOp = this->SMPcmd.Operands[OpNum];
		if (MDKnownOperandType(TempOp)) {
			if (this->features & DefMacros[OpNum]) { // DEF
				if (!DestFound) {
					DestFound = true;
					DestOp = TempOp;
				}
				else {
					msg("CMPXCHG has two DEF operands.\n");
				}
			}
			else if (this->features & UseMacros[OpNum]) { // USE
				if (!SourceFound) {
					SourceFound = true;
					SourceOp = TempOp;
				}
				else {
					msg("CMPXCHG has two USE operands.\n");
				}
			}
		}
	} // end for (OpNum = 0; ...)

	if (!DestFound || !SourceFound) {
		if (NULL != TempRT)
			delete TempRT;
#if SMP_DEBUG_BUILD_RTL
		msg("ERROR: Could not find CMPXCHG operand at %x for %s\n", this->GetAddr(), this->GetDisasm());
#endif
	}
	else {
		// Create the first effect, if (dest == EAX) dest := src
		SMPGuard *Guard1 = new SMPGuard;
		op_t EAXOp;
		EAXOp.type = o_reg;
		EAXOp.reg =  R_ax;
		Guard1->SetLeftOperand(DestOp);
		Guard1->SetOperator(SMP_EQUAL);
		Guard1->SetRightOperand(EAXOp);
		SMPRegTransfer *FirstRT = new SMPRegTransfer;
		FirstRT->SetLeftOperand(DestOp);
		FirstRT->SetRightOperand(SourceOp);
		FirstRT->SetOperator(SMP_ASSIGN);
		FirstRT->SetGuard(Guard1);
		this->RTL.push_back(FirstRT);
		// Push the second effect on the list, if (dest!=EAX) dest := EAX
		SMPGuard *Guard2 = new SMPGuard;
		Guard2->SetLeftOperand(DestOp);
		Guard2->SetOperator(SMP_EQUAL);
		Guard2->SetRightOperand(EAXOp);
		TempRT->SetLeftOperand(DestOp);
		TempRT->SetRightOperand(EAXOp);
		TempRT->SetOperator(SMP_ASSIGN);
		TempRT->SetGuard(Guard2);
		this->RTL.push_back(TempRT);
	}
	return (DestFound && SourceFound);
} // end of SMPInstr::BuildCompareExchangeRTL()

// Build the RTL for a compare or test instruction with an implicit EFLAGS destination operand
bool SMPInstr::BuildFlagsDestBinaryRTL(SMPoperator BinaryOp) {
	size_t OpNum;
	bool Source1Found = false;
	bool Source2Found = false;
	bool HasRepeatPrefix = (0 != (this->SMPcmd.auxpref & aux_rep)) 
		|| (0 != (this->SMPcmd.auxpref & aux_repne));

	op_t Src1Op, Src2Op;
	SMPRegTransfer *TempRT = new SMPRegTransfer;
	SMPRegTransfer *RightRT = new SMPRegTransfer;

	op_t VoidOp, FlagsOp;
	VoidOp.type = o_void;

	FlagsOp.type = o_reg;
	FlagsOp.reg = X86_FLAGS_REG;

	op_t CountOp;
	CountOp.type = o_reg;
	CountOp.reg = R_cx;

	for (OpNum = 0; !(Source1Found && Source2Found) && (OpNum < UA_MAXOP); ++OpNum) {
		op_t TempOp = this->SMPcmd.Operands[OpNum];
		if (this->features & DefMacros[OpNum]) { // DEF
			if (MDKnownOperandType(TempOp)) {
#if SMP_DEBUG_BUILD_RTL
				msg("ERROR: Found destination for compare or test at %x : %s\n",
					this->GetAddr(), this->GetDisasm());
#endif
			}
		}
		else { // USE
			if (MDKnownOperandType(TempOp)) {
				if (!Source1Found) {
					Source1Found = true;
					Src1Op = TempOp;
					TempRT->SetLeftOperand(FlagsOp);
					TempRT->SetOperator(SMP_ASSIGN);
					RightRT->SetLeftOperand(TempOp);
					RightRT->SetOperator(BinaryOp);
					TempRT->SetRightTree(RightRT);
				}
				else {
					Source2Found = true;
					Src2Op = TempOp;
					RightRT->SetRightOperand(TempOp);
				}
			}
		}
	} // end for (OpNum = 0; ...)

	// The compare string instruction always uses DS:ESI and ES:EDI as its source