Newer
Older
//
// SMPInstr.cpp
//
// This module performs the instruction level analyses needed for the
// SMP project (Software Memory Protection).
//
#include <cstring>
#include <pro.h>
#include <assert.h>
#include <ida.hpp>
#include <idp.hpp>
#include <allins.hpp>
#include <auto.hpp>
#include <bytes.hpp>
#include <funcs.hpp>
#include <intel.hpp>
#include <loader.hpp>
#include <lines.hpp>
#include <name.hpp>
#include "SMPStaticAnalyzer.h"
#include "SMPDataFlowAnalysis.h"
#include "SMPInstr.h"
// Set to 1 for debugging output
#define SMP_DEBUG 1
#define SMP_DEBUG2 0 // verbose
#define SMP_DEBUG_XOR 0
#define X86_FLAGS_REG R_cf
// Make the CF_CHG1 .. CF_CHG6 and CF_USE1..CF_USE6 macros more usable
// by allowing us to pick them up with an array index.
static ulong DefMacros[UA_MAXOP] = {CF_CHG1, CF_CHG2, CF_CHG3, CF_CHG4, CF_CHG5, CF_CHG6};
static ulong UseMacros[UA_MAXOP] = {CF_USE1, CF_USE2, CF_USE3, CF_USE4, CF_USE5, CF_USE6};
// Text to be printed in each optimizing annotation explaining why
// the annotation was emitted.
static char *OptExplanation[LAST_OPT_CATEGORY + 1] =
{ "NoOpt", "NoMetaUpdate", "AlwaysNUM", "NUMVia2ndSrcIMMEDNUM",
"Always1stSrc", "1stSrcVia2ndSrcIMMEDNUM", "AlwaysPtr",
"AlwaysNUM", "AlwaysNUM", "NUMViaFPRegDest"
};
// *****************************************************************
// Class SMPInstr
// *****************************************************************
// Constructor for instruction.
SMPInstr::SMPInstr(ea_t addr) {
this->address = addr;
this->analyzed = false;
this->JumpTarget = false;
this->BlockTerm = false;
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
return;
}
// Is the instruction the type that terminates a basic block?
bool SMPInstr::IsBasicBlockTerminator() const {
return ((type == JUMP) || (type == COND_BRANCH)
|| (type == INDIR_JUMP) || (type == RETURN));
}
// Is the destination operand a memory reference?
bool SMPInstr::HasDestMemoryOperand(void) const {
bool MemDest = false;
for (size_t index = 0; index < Defs.GetSize(); ++index) {
optype_t CurrType = Defs.GetRef(index).GetOp().type;
MemDest = ((CurrType == o_mem) || (CurrType == o_phrase) || (CurrType == o_displ));
if (MemDest)
break;
}
return MemDest;
} // end of SMPInstr::HasDestMemoryOperand()
// Is a source operand a memory reference?
bool SMPInstr::HasSourceMemoryOperand(void) const {
bool MemSrc = false;
for (size_t index = 0; index < Uses.GetSize(); ++index) {
optype_t CurrType = Uses.GetRef(index).GetOp().type;
MemSrc = ((CurrType == o_mem) || (CurrType == o_phrase) || (CurrType == o_displ));
if (MemSrc)
break;
}
return MemSrc;
} // end of SMPInstr::HasSourceMemoryOperand()
// Does the instruction whose flags are in F have a numeric type
// as the second source operand?
// NOTE: We can only analyze immediate values now, using a heuristic
// that values in the range +/- 8K are numeric and others are
// probably addresses. When data flow analyses are implemented,
// we will be able to analyze many non-immediate operands.
#define IMMEDNUM_LOWER -8191
#define IMMEDNUM_UPPER 8191
bool SMPInstr::IsSecondSrcOperandNumeric(flags_t F) const {
bool SecondOpImm = (SMPcmd.Operands[1].type == o_imm);
signed long TempImm;
if (SecondOpImm) {
TempImm = (signed long) SMPcmd.Operands[1].value;
}
#if SMP_DEBUG
if (SecondOpImm && (0 > TempImm)) {
#if 0
msg("Negative immediate: %d Hex: %x ASM: %s\n", TempImm,
SMPcmd.Operands[1].value, disasm);
#endif
}
else if ((!SecondOpImm) && (SMPcmd.Operands[1].type == o_imm)) {
msg("Problem with flags on immediate src operand: %s\n", disasm);
}
#endif
return (SecondOpImm && (TempImm > IMMEDNUM_LOWER)
&& (TempImm < IMMEDNUM_UPPER));
} // end of SMPInstr::IsSecondSrcOperandNumeric()
// DEBUG print operands for Inst.
void SMPInstr::PrintOperands(void) const {
op_t Opnd;
for (int i = 0; i < UA_MAXOP; ++i) {
Opnd = SMPcmd.Operands[i];
PrintOneOperand(Opnd, this->features, i);
}
msg(" \n");
return;
} // end of SMPInstr::PrintOperands()
// Complete DEBUG printing.
void SMPInstr::Dump(void) const {
msg("%x %d SMPitype: %d %s\n", this->address, this->SMPcmd.size, (int) this->type,
this->GetDisasm());
msg("USEs: ");
this->Uses.Dump();
msg("DEFs: ");
this->Defs.Dump();
return;
} // end of SMPInstr::Dump()
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
// Print out the destination operand list for the instruction, given
// the OptCategory for the instruction as a hint.
char * SMPInstr::DestString(int OptType) {
static char DestList[MAXSTR] = { '\0', '\0' };
int RegDestCount = 0;
for (size_t DefIndex = 0; DefIndex < this->NumDefs(); ++DefIndex) {
op_t DefOpnd = this->GetDef(DefIndex).GetOp();
if (o_reg == DefOpnd.type) {
ushort DestReg = DefOpnd.reg;
if (0 == RegDestCount) {
qstrncpy(DestList, RegNames[DestReg], 1 + strlen(RegNames[DestReg]));
}
else {
qstrncat(DestList, " ", MAXSTR);
qstrncat(DestList, RegNames[DestReg], MAXSTR);
}
++RegDestCount;
}
}
if (0 >= RegDestCount) {
msg("WARNING: No destination registers: %s\n", this->GetDisasm());
}
else {
qstrncat(DestList, " ZZ ", MAXSTR);
}
return DestList;
} // end of SMPInstr::DestString()
// Equality operator for SMPInstr. Key field is address.
int SMPInstr::operator==(const SMPInstr &rhs) const {
if (this->address != rhs.GetAddr())
return 0;
else
return 1;
}
// Inequality operator for SMPInstr. Key field is address.
int SMPInstr::operator!=(const SMPInstr &rhs) const {
return (this->address != rhs.GetAddr());
}
// Less than operator for sorting SMPInstr lists. Key field is address.
int SMPInstr::operator<(const SMPInstr &rhs) const {
return (this->address < rhs.GetAddr());
}
// Less than or equal operator for sorting SMPInstr lists. Key field is address.
int SMPInstr::operator<=(const SMPInstr &rhs) const {
return (this->address <= rhs.GetAddr());
}
#define MD_FIRST_ENTER_INSTR NN_enterw
#define MD_LAST_ENTER_INSTR NN_enterq
// Is this instruction the one that allocates space on the
// stack for the local variables?
bool SMPInstr::MDIsFrameAllocInstr(void) const {
// The frame allocating instruction should look like:
// sub esp,48 or add esp,-64 etc.
if ((SMPcmd.itype == NN_sub) || (SMPcmd.itype == NN_add)) {
if (Defs.GetRef(0).GetOp().is_reg(R_sp)) {
// We know that an addition or subtraction is being
// performed on the stack pointer. This should not be
// possible within the prologue except at the stack
// frame allocation instruction, so return true. We
// could be more robust in this analysis in the future. **!!**
// CAUTION: If a compiler allocates 64 bytes for locals
// and 16 bytes for outgoing arguments in a single
// instruction: sub esp,80
// you cannot insist on finding sub esp,LocSize
// To make this more robust, we are going to insist that
// an allocation of stack space is either performed by
// adding a negative immediate value, or by subtracting
// a positive immediate value. We will throw in, free of
// charge, a subtraction of a register, which is how alloca()
// usually allocates stack space.
if (o_imm == Uses.GetRef(0).GetOp().type) {
signed long TempImm = (signed long) Uses.GetRef(0).GetOp().value;
if (((0 > TempImm) && (SMPcmd.itype == NN_add))
|| ((0 < TempImm) && (SMPcmd.itype == NN_sub))) {
return true;
}
}
else if ((o_reg == Uses.GetRef(0).GetOp().type)
&& (SMPcmd.itype == NN_sub)) { // alloca() ?
return true;
}
}
}
else if ((SMPcmd.itype >= MD_FIRST_ENTER_INSTR) && (SMPcmd.itype <= MD_LAST_ENTER_INSTR)) {
return true;
}
return false;
} // end of SMPInstr::MDIsFrameAllocInstr()
// Is this instruction in the epilogue the one that deallocates the local
// vars region of the stack frame?
bool SMPInstr::MDIsFrameDeallocInstr(bool UseFP, asize_t LocalVarsSize) const {
// The usual compiler idiom for the prologue on x86 is to
// deallocate the local var space with: mov esp,ebp
// It could be add esp,constant. We can be tricked by
// add esp,constant when the constant is just the stack
// adjustment after a call. We will have to insist that
// the immediate operand have at least the value of
// LocalVarsSize for this second form, and that UseFP be true
// for the first form.
if (UseFP && (this->SMPcmd.itype == NN_mov)
&& (this->Defs.GetRef(0).GetOp().is_reg(R_sp))
&& (this->Uses.GetRef(0).GetOp().is_reg(R_bp)))
return true;
else if ((this->SMPcmd.itype == NN_add)
&& (this->Defs.GetRef(0).GetOp().is_reg(R_sp))
&& (this->Uses.GetRef(1).GetOp().is_imm((uval_t) LocalVarsSize)))
return true;
else if ((this->SMPcmd.itype == NN_add)
&& (this->Defs.GetRef(0).GetOp().is_reg(R_sp))
&& (this->Uses.GetRef(1).GetOp().type == o_imm)) {
msg("Used imprecise LocalVarsSize to find dealloc instr.\n");
return true;
}
else if (NN_leave == this->SMPcmd.itype)
return true;
else
return false;
} // end of SMPInstr::MDIsFrameDeallocInstr()
// Is instruction a no-op? There are 1-byte, 2-byte, etc versions of no-ops.
bool SMPInstr::MDIsNop(void) const {
bool IsNop = false;
ushort opcode = this->SMPcmd.itype;
if (NN_nop == opcode)
IsNop = true;
else if (NN_mov == opcode) {
if ((o_reg == this->SMPcmd.Operands[0].type)
&& this->SMPcmd.Operands[1].is_reg(this->SMPcmd.Operands[0].reg)) {
// We have a register to register move with source == destination.
IsNop = true;
}
}
else if (NN_lea == opcode) {
if ((o_reg == this->SMPcmd.Operands[0].type)
&& (o_displ == this->SMPcmd.Operands[1].type)) {
// We are looking for 6-byte no-ops like lea esi,[esi+0]
ushort destreg = this->SMPcmd.Operands[0].reg;
if ((this->SMPcmd.Operands[1].hasSIB)
&& (destreg == (ushort) sib_base(this->SMPcmd.Operands[1]))) {
IsNop = true;
}
else if (destreg == this->SMPcmd.Operands[1].reg) {
IsNop = true;
}
}
}
return IsNop;
} // end of SMPInstr::MDIsNop()
// MACHINE DEPENDENT: Is instruction a return instruction?
bool SMPInstr::MDIsReturnInstr(void) const {
return ((SMPcmd.itype == NN_retn) || (SMPcmd.itype == NN_retf));
}
// MACHINE DEPENDENT: Is instruction a POP instruction?
#define FIRST_POP_INST NN_pop
#define LAST_POP_INST NN_popfq
bool SMPInstr::MDIsPopInstr(void) const {
return ((SMPcmd.itype >= FIRST_POP_INST)
&& (SMPcmd.itype <= LAST_POP_INST));
}
// MACHINE DEPENDENT: Is instruction a PUSH instruction?
#define FIRST_PUSH_INST NN_push
#define LAST_PUSH_INST NN_pushfq
bool SMPInstr::MDIsPushInstr(void) const {
return ((SMPcmd.itype >= FIRST_PUSH_INST)
&& (SMPcmd.itype <= LAST_PUSH_INST));
}
// MACHINE DEPENDENT: Is instruction an ENTER instruction?
#define FIRST_ENTER_INST NN_enterw
#define LAST_ENTER_INST NN_enterq
bool SMPInstr::MDIsEnterInstr(void) const {
return ((SMPcmd.itype >= FIRST_ENTER_INST)
&& (SMPcmd.itype <= LAST_ENTER_INST));
}
// MACHINE DEPENDENT: Is instruction a LEAVE instruction?
#define FIRST_LEAVE_INST NN_leavew
#define LAST_LEAVE_INST NN_leaveq
bool SMPInstr::MDIsLeaveInstr(void) const {
return ((SMPcmd.itype >= FIRST_LEAVE_INST)
&& (SMPcmd.itype <= LAST_LEAVE_INST));
}
// MACHINE DEPENDENT: Does instruction use a callee-saved register?
bool SMPInstr::MDUsesCalleeSavedReg(void) const {
for (size_t index = 0; index < this->Uses.GetSize(); ++index) {
op_t CurrUse = this->GetUse(index).GetOp();
if (CurrUse.is_reg(R_bp) || CurrUse.is_reg(R_si)
|| CurrUse.is_reg(R_di) || CurrUse.is_reg(R_bx)) {
return true;
}
}
return false;
} // end of SMPInstr::MDUsesCalleeSavedReg()
// Is the instruction a register to register copy of a stack pointer or frame pointer
// into a general purpose register (which mmStrata will now need to track as a stack
// relative pointer)?
bool SMPInstr::MDIsStackPointerCopy(bool UseFP) const {
if ((this->OptType == 3) && (this->GetDef(0).GetOp().type == o_reg)
&& (!(this->GetDef(0).GetOp().is_reg(R_sp)))) {
if (UseFP) {
if (this->GetUse(0).GetOp().is_reg(R_bp))
// Move of base pointer EBP into a general register
return true;
else if ((this->GetUse(0).GetOp().is_reg(R_sp))
&& !(this->GetDef(0).GetOp().is_reg(R_bp)))
// Move of ESP into something besides a base pointer
return true;
}
else if (this->GetUse(0).GetOp().is_reg(R_sp)) {
// Move of ESP into a register; no base pointer used in this function
return true;
}
}
return false;
} // end of SMPInstr::MDIsStackPointerCopy()
// Is instruction a branch (conditional or unconditional) to a
// code target that is not in the current chunk?
bool SMPInstr::IsBranchToFarChunk(void) const {
func_t *CurrChunk = get_fchunk(this->address);
bool FarBranch = false;
if ((JUMP | COND_BRANCH) & this->GetDataFlowType()) {
// Instruction is a direct branch, conditional or unconditional
if (this->NumUses() > 0) {
op_t JumpTarget = this->GetUse(0).GetOp();
if ((o_near == JumpTarget.type) || (o_far == JumpTarget.type)) {
// Branches to a code address
func_t *TargetChunk = get_fchunk(JumpTarget.addr);
// Is target address within the same chunk as the branch?
FarBranch = (NULL == TargetChunk) || (CurrChunk->startEA != TargetChunk->startEA);
}
}
}
return FarBranch;
} // end of SMPInstr::IsBranchToFarChunk()
// Analyze the instruction and its operands.
void SMPInstr::Analyze(void) {
if (this->analyzed)
return;
// Fill cmd structure with disassembly of instr
ua_ana0(this->address);
// Get the instr disassembly text.
(void) generate_disasm_line(this->address, this->disasm, sizeof(this->disasm) - 1);
// Remove interactive color-coding tags.
tag_remove(this->disasm, this->disasm, 0);
// Copy cmd to member variable SMPcmd.
this->SMPcmd = cmd;
// Get the canonical features into member variables features.
this->features = cmd.get_canon_feature();
// Record what type of instruction this is, simplified for the needs
// of data flow and type analysis.
this->type = DFACategory[cmd.itype];
// Record optimization category.
this->OptType = OptCategory[cmd.itype];
// Build the DEF and USE lists for the instruction.
this->BuildSMPDefUseLists();
// Fix up machine dependent quirks in the def and use lists.
this->MDFixupDefUseLists();
// Erase any duplicate references we just added by accident.
this->Uses.EraseDuplicates();
this->Defs.EraseDuplicates();
// Set the type (NUMERIC or POINTER) of the DEFs and USEs if possible to determine
// without context from other instructions.
this->MDAnalyzeDefType();
this->MDAnalyzeUseType();
// Determine whether the instruction is a jump target by looking
// at its cross references and seeing if it has "TO" code xrefs.
xrefblk_t xrefs;
for (bool ok = xrefs.first_to(this->address, XREF_FAR); ok; ok = xrefs.next_to()) {
if ((xrefs.from != 0) && (xrefs.iscode)) {
this->JumpTarget = true;
break;
}
}
this->analyzed = true;
return;
} // end of SMPInstr::Analyze()
// Fill the Defs and Uses private data members.
void SMPInstr::BuildSMPDefUseLists(void) {
size_t OpNum;
this->Defs.clear();
this->Uses.clear();
// Start with the Defs.
for (OpNum = 0; OpNum < UA_MAXOP; ++OpNum) {
if (this->features & DefMacros[OpNum]) { // DEF
op_t TempOp = this->SMPcmd.Operands[OpNum];
if (MDKnownOperandType(TempOp))
this->Defs.SetRef(TempOp);
}
} // end for (OpNum = 0; ...)
// Now, do the Uses. Uses have special case operations, because
// any memory operand could have register uses in the addressing
// expression, and we must create Uses for those registers. For
// example: mov eax,[ebx + esi*2 + 044Ch]
// This is a two-operand instruction with one def: eax. But
// there are three uses: [ebx + esi*2 + 044Ch], ebx, and esi.
// The first use is an op_t of type o_phrase (memory phrase),
// which can be copied from cmd.Operands[1]. Likewise, we just
// copy cmd.Operands[0] into the defs list. However, we must create
// op_t types for register ebx and register esi and append them
// to the Uses list. This is handled by the machine dependent
// method MDFixupDefUseLists().
for (OpNum = 0; OpNum < UA_MAXOP; ++OpNum) {
if (this->features & UseMacros[OpNum]) { // USE
op_t TempOp = this->SMPcmd.Operands[OpNum];
if (MDKnownOperandType(TempOp))
this->Uses.SetRef(TempOp);
}
} // end for (OpNum = 0; ...)
return;
} // end of SMPInstr::BuildSMPDefUseLists()
// If DefReg is not already in the DEF list, add a DEF for it.
void SMPInstr::MDAddRegDef(ushort DefReg, bool Shown) {
bool AlreadySet = false;
for (size_t DefIndex = 0; DefIndex < this->NumDefs(); ++DefIndex) {
if (this->GetDef(DefIndex).GetOp().is_reg(DefReg)) {
AlreadySet = true;
break;
}
}
if (!AlreadySet) {
op_t TempDef;
TempDef.type = o_reg;
TempDef.reg = DefReg;
if (Shown)
TempDef.set_showed();
else
TempDef.clr_showed();
this->Defs.SetRef(TempDef);
}
return;
} // end of SMPInstr::MDAddRegDef()
// If UseReg is not already in the USE list, add a USE for it.
void SMPInstr::MDAddRegUse(ushort UseReg, bool Shown) {
bool AlreadyUsed = false;
for (size_t UseIndex = 0; UseIndex < this->NumUses(); ++UseIndex) {
if (this->GetUse(UseIndex).GetOp().is_reg(UseReg)) {
AlreadyUsed = true;
break;
}
}
if (!AlreadyUsed) {
op_t TempUse;
TempUse.type = o_reg;
TempUse.reg = UseReg;
if (Shown)
TempUse.set_showed();
else
TempUse.clr_showed();
this->Uses.SetRef(TempUse);
}
return;
} // end of SMPInstr::MDAddRegUse()
// Perform machine dependent ad hoc fixes to the def and use lists.
// For example, some multiply and divide instructions in x86 implicitly
// use and/or define register EDX. For memory phrase examples, see comment
// in BuildSMPDefUseLists().
void SMPInstr::MDFixupDefUseLists(void) {
// First, handle the uses hidden in memory addressing modes. Note that we do not
// care whether we are dealing with a memory destination operand or source
// operand, because register USEs, not DEFs, happen within the addressing expressions.
size_t OpNum;
for (OpNum = 0; OpNum < UA_MAXOP; ++OpNum) {
op_t Opnd = SMPcmd.Operands[OpNum];
if ((Opnd.type == o_phrase) || (Opnd.type == o_displ)) {
if (Opnd.hasSIB) {
int BaseReg = sib_base(Opnd);
short IndexReg = sib_index(Opnd);
if (R_none != BaseReg) {
op_t BaseOpnd = Opnd; // Init to current operand field values
BaseOpnd.type = o_reg; // Change type and reg fields
BaseOpnd.reg = BaseReg;
BaseOpnd.hasSIB = 0;
BaseOpnd.set_showed();
this->Uses.SetRef(BaseOpnd);
}
if (R_none != IndexReg) { // Should we disallow R_sp here? **!!**
op_t IndexOpnd = Opnd; // Init to current operand field values
IndexOpnd.type = o_reg; // Change type and reg fields
IndexOpnd.reg = IndexReg;
IndexOpnd.hasSIB = 0;
IndexOpnd.set_showed();
this->Uses.SetRef(IndexOpnd);
}
}
else { // no SIB byte; can have base reg but no index reg
ushort BaseReg = Opnd.reg; // cannot be R_none for no SIB case
op_t BaseOpnd = Opnd; // Init to current operand field values
BaseOpnd.type = o_reg; // Change type and reg fields
BaseOpnd.reg = BaseReg;
BaseOpnd.hasSIB = 0;
BaseOpnd.set_showed();
this->Uses.SetRef(BaseOpnd);
}
} // end if (o_phrase or o_displ operand)
} // end for (all operands)
// Now, handle special instruction categories that have implicit operands.
if (NN_cmpxchg == SMPcmd.itype) {
// x86 Compare and Exchange conditionally sets EAX. We must keep data flow analysis
// sound by declaring that EAX is always a DEF.
this->MDAddRegDef(R_ax, false);
} // end if NN_cmpxchg
else if (this->MDIsPopInstr() || this->MDIsPushInstr() || this->MDIsReturnInstr()) {
// IDA does not include the stack pointer in the DEFs or USEs.
this->MDAddRegDef(R_sp, false);
this->MDAddRegUse(R_sp, false);
}
else if (this->MDIsEnterInstr() || this->MDIsLeaveInstr()) {
// Entire function prologue or epilogue microcoded.
this->MDAddRegDef(R_sp, false);
this->MDAddRegUse(R_sp, false);
this->MDAddRegDef(R_bp, false);
this->MDAddRegUse(R_bp, false);
}
else if (8 == this->GetOptType()) {
// This category implicitly writes to EDX:EAX.
this->MDAddRegDef(R_dx, false);
this->MDAddRegDef(R_ax, false);
} // end else if (8 == GetOptType)
else if (7 == this->GetOptType()) {
// Category 7 instructions sometimes write implicitly to EDX:EAX or DX:AX.
// DX is the same as EDX to IDA Pro (and SMP); ditto for EAX and AX.
// DIV, IDIV, and MUL all have hidden EAX or AX operands (hidden in the IDA Pro
// sense, because they are not displayed in the disassembly text). For example:
// mul ebx means EDX:EAX <-- EAX*EBX, and mul bx means DX:AX <-- AX*BX. If the
// source operand is only 8 bits wide, there is room to hold the result in AX
// without using DX: mul bl means AX <-- AL*BL.
// IMUL has forms with a hidden EAX or AX operand and forms with no implicit
// operands: imul ebx means EDX:EAX <-- EAX*EBX, but imul ebx,edx means that
// EBX*EDX gets truncated and the result placed in EBX (no hidden operands).
bool HiddenEAXUse = false;
for (size_t UseIndex = 0; UseIndex < this->NumUses(); ++UseIndex) {
op_t TempUse = this->GetUse(UseIndex).GetOp();
if (!TempUse.showed()) { // hidden operand
if (TempUse.is_reg(R_ax)) { // not R_al, so it is not 8 bits
this->MDAddRegUse(R_dx, false);
this->MDAddRegDef(R_ax, false);
this->MDAddRegDef(R_dx, false);
}
}
}
} // end else if (7 == OptType)
#if 1
if (this->MDIsNop()) {
// Clear the DEFs and USEs for no-ops.
this->Defs.clear();
this->Uses.clear();
}
#endif
return;
} // end of SMPInstr::MDFixupDefUseLists()
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
// Set the type (NUMERIC or POINTER) of DEFs for this instruction if the type can
// be determined from the OptType (optimization category). We can also set all
// DEFs of the CPU flags to NUMERIC as they cannot be POINTER.
void SMPInstr::MDAnalyzeDefType(void) {
size_t index;
// Optimization category 6 always produces a POINTER result, while categories
// 2, 7, 8, and 9 always produce NUMERIC results. Categories 0 and 1 produce
// different results for different opcodes.
if (this->OptType == 6) {
for (index = 0; index < this->Defs.GetSize(); ++index) {
this->Defs.SetType(index, POINTER);
}
}
else if ((this->OptType == 2) || (this->OptType >= 7 && this->OptType <= 9)) {
for (index = 0; index < this->Defs.GetSize(); ++index) {
this->Defs.SetType(index, NUMERIC);
}
}
// Now, set all flags DEFs to NUMERIC.
vector<DefOrUse>::iterator DefIter;
index = 0;
for (DefIter = this->Defs.GetFirstRef(); DefIter != this->Defs.GetLastRef(); ++DefIter) {
op_t TempOp = DefIter->GetOp();
if (TempOp.is_reg(X86_FLAGS_REG)) {
this->Defs.SetType(index, NUMERIC);
}
++index;
}
return;
} // end of SMPInstr::MDAnalyzeDefType()
// Set the type (NUMERIC or POINTER) of USEs for this instruction if the type can
// be determined from the OptType (optimization category). We can also set all
// USEs of the CPU flags to NUMERIC as they cannot be POINTER.
void SMPInstr::MDAnalyzeUseType(void) {
size_t index;
// We start out with a clone of the NUMERIC part of the corresponding function for DEFs.
// The key idea is that if an instruction produces a NUMERIC result, its USES were
// NUMERIC within this instruction. Thus, if an exclusive-or instruction produces a
// result of type NUMERIC, its source operands were being used as numeric values
// regardless of their shadow metadata type. That does not mean that we can change
// the metadata to NUMERIC. You can certainly load a POINTER and use it as a NUMERIC,
// an example being the hash function computation that hashes an address into a numeric
// hash table index. What it does mean is that if all USEs for a particular SSA DEF
// are NUMERIC, then there is no point in looking up the metadata for this variable
// anywhere in this def-use chain. We can emit optimizing annotations when a complete
// USE chain for a particular DEF is numeric.
// Optimization categories 2, 7, 8, and 9 always produce NUMERIC results.
// Categories 0 and 1 produce different results for different opcodes.
if ((this->OptType == 2) || (this->OptType >= 7 && this->OptType <= 9)) {
for (index = 0; index < this->Uses.GetSize(); ++index) {
this->Uses.SetType(index, NUMERIC);
}
}
// Now, set all flags USEs to NUMERIC.
vector<DefOrUse>::iterator UseIter;
index = 0;
for (UseIter = this->Uses.GetFirstRef(); UseIter != this->Uses.GetLastRef(); ++UseIter) {
op_t TempOp = UseIter->GetOp();
if (TempOp.is_reg(X86_FLAGS_REG)) {
this->Uses.SetType(index, NUMERIC);
}
++index;
}
return;
} // end of SMPInstr::MDAnalyzeUseType()
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
// Handle x86 opcode SIB byte annotations.
void SMPInstr::MDAnnotateSIBStackConstants(FILE *AnnotFile, op_t Opnd, ea_t offset, bool UseFP) {
int BaseReg = sib_base(Opnd);
short IndexReg = sib_index(Opnd);
if (BaseReg == R_none) {
msg("BaseReg of R_none at %x\n", this->address);
}
if (BaseReg == R_sp) { // ESP cannot be IndexReg
// ESP-relative constant offset
qfprintf(AnnotFile,
"%x %d PTRIMMEDESP STACK %d displ %s\n",
this->SMPcmd.ea, this->SMPcmd.size, offset, this->disasm);
}
else if (UseFP && ((IndexReg == R_bp) || (BaseReg == R_bp))) {
// EBP-relative constant offset
qfprintf(AnnotFile,
"%x %d PTRIMMEDEBP STACK %d displ %s\n",
this->SMPcmd.ea, this->SMPcmd.size, offset, this->disasm);
}
return;
} // end of MDAnnotateSIBStackConstants
// Emit annotations for constants used as ptr offsets from EBP or
// ESP into the stack frame. Only pay attention to EBP-relative
// offsets if EBP is being used as a frame pointer (UseFP == true).
void SMPInstr::AnnotateStackConstants(bool UseFP, FILE *AnnotFile) {
op_t Opnd;
#if 0
if (this->address == 0x80925f4) {
msg("PROBLEM INSTRUCTION: \n");
this->PrintOperands();
}
#endif
for (int i = 0; i < UA_MAXOP; ++i) {
Opnd = SMPcmd.Operands[i];
if (Opnd.type == o_displ) {
ea_t offset = Opnd.addr;
if (Opnd.hasSIB) {
MDAnnotateSIBStackConstants(AnnotFile, Opnd, offset, UseFP);
}
else { // no SIB
ushort BaseReg = Opnd.reg;
if (BaseReg == R_sp) {
// ESP-relative constant offset
qfprintf(AnnotFile,
"%x %d PTRIMMEDESP STACK %d displ %s\n",
SMPcmd.ea, SMPcmd.size, offset, disasm);
}
else if (UseFP && (BaseReg == R_bp)) {
// EBP-relative constant offset
qfprintf(AnnotFile,
"%x %d PTRIMMEDEBP STACK %d displ %s\n",
SMPcmd.ea, SMPcmd.size, offset, disasm);
}
} // end if (Opnd.hasSIB) ... else ...
} // end if (Opnd.type == o_displ)
else if (Opnd.type == o_phrase) {
ea_t offset = 0; // mmStrata thinks [esp] is [esp+0]
if (Opnd.hasSIB) {
MDAnnotateSIBStackConstants(AnnotFile, Opnd, offset, UseFP);
}
else { // Something like [ecx]
ushort BaseReg = Opnd.reg;
if (BaseReg == R_sp) {
// ESP-relative constant offset
qfprintf(AnnotFile,
"%x %d PTRIMMEDESP STACK %d displ %s\n",
SMPcmd.ea, SMPcmd.size, offset, disasm);
}
else if (UseFP && (BaseReg == R_bp)) {
// EBP-relative constant offset
qfprintf(AnnotFile,
"%x %d PTRIMMEDEBP STACK %d displ %s\n",
SMPcmd.ea, SMPcmd.size, offset, disasm);
}
} // end if (Opnd.hasSIB) ... else ...
} // end else if (Opnd.type == o_phrase)
} // end for all operands
// If we move a stack pointer or frame pointer into another register, we
// need to annotate the implicit zero offset, e.g. mov edi,esp == mov edi,esp+0
// and edi is becoming a stack pointer that mmStrata needs to track.
if (this->MDIsStackPointerCopy(UseFP)) {
if (UseFP && this->GetUse(0).GetOp().is_reg(R_bp)) {
qfprintf(AnnotFile, "%x %d PTRIMMEDEBP STACK 0 displ %s\n",
SMPcmd.ea, SMPcmd.size, disasm);
}
else {
qfprintf(AnnotFile, "%x %d PTRIMMEDESP STACK 0 displ %s\n",
SMPcmd.ea, SMPcmd.size, disasm);
}
}
return;
} // end of SMPInstr::AnnotateStackConstants()
// Emit all annotations for the instruction.
void SMPInstr::EmitAnnotations(bool UseFP, bool AllocSeen, FILE *AnnotFile) {
ea_t addr = this->address;
flags_t InstrFlags = getFlags(addr);
bool MemDest = this->HasDestMemoryOperand();
bool MemSrc = this->HasSourceMemoryOperand();
bool SecondSrcOperandNum = this->IsSecondSrcOperandNumeric(InstrFlags);
++OptCount[OptType]; // keep count for debugging info
#if SMP_DEBUG_MEM
if (MemDest || MemSrc) {
msg("OptType: %d %s", OptType, disasm);
this->PrintOperands();
}
#endif
// Emit appropriate optimization annotations.
bool SDTInstrumentation = false;
switch (OptType) {
case 0: // SDT will have to handle these
{
#if SMP_DEBUG_TYPE0
msg("OptType 0: %x %s\n", addr, disasm);
#endif
// mmStrata wants to suppress warnings on the PUSH
// instructions that precede the LocalVarsAllocInstr
// (i.e. the PUSHes of callee-saved regs).
if (!AllocSeen && this->MDIsPushInstr()) {
qfprintf(AnnotFile, "%x %d INSTR LOCAL NoWarn %s \n",
addr, -3, disasm);
}
else {
SDTInstrumentation = true;
}
break;
}
case 1: // nothing for SDT to do
{ qfprintf(AnnotFile, "%x %d INSTR LOCAL NoMetaUpdate %s \n",
addr, -1, disasm);
++AnnotationCount[OptType];
break;
}
case 4: // INC, DEC, etc.: no SDT work unless MemDest
{ if (MemDest || MemSrc) {
SDTInstrumentation = true;
break; // treat as category 0
}
qfprintf(AnnotFile, "%x %d INSTR LOCAL Always1stSrc %s \n",
addr, -1, disasm);
++AnnotationCount[OptType];
break;
}
case 5: // ADD, etc.: If numeric 2nd src operand, no SDT work.
{ if (MemDest || MemSrc) {
SDTInstrumentation = true;
break; // treat as category 0
}
if (SecondSrcOperandNum) { // treat as category 1
qfprintf(AnnotFile, "%x %d INSTR LOCAL %s %s \n",
addr, -1, OptExplanation[OptType], disasm);
++AnnotationCount[OptType];
}
break;
}
case 6: // Only OS code should include these; problem for SDT
{ if (MemDest) {
SDTInstrumentation = true;
break; // treat as category 0
}
qfprintf(AnnotFile, "%x %d INSTR LOCAL AlwaysPTR %s \n",
addr, -OptType, disasm);
++AnnotationCount[OptType];
break;
}
case 8: // Implicitly writes to EDX:EAX, always numeric.
{ qfprintf(AnnotFile, "%x %d INSTR LOCAL n EDX EAX ZZ %s %s \n",
addr, -2, OptExplanation[OptType], disasm);
++AnnotationCount[OptType];
SDTInstrumentation = true;
break;
}
case 9: // Either writes to FP reg (cat. 1) or memory (cat. 0)
{ if (MemDest) {
#if SMP_DEBUG
// MemDest seems to happen too much.
msg("Floating point MemDest: %s \n", disasm);
#endif
SDTInstrumentation = true;
break; // treat as category 0
}
qfprintf(AnnotFile, "%x %d INSTR LOCAL %s %s \n",
addr, -1, OptExplanation[OptType], disasm);
++AnnotationCount[OptType];
break;
}
default: // 2,3,7: Optimization possibilities depend on operands
{
#if SMP_DEBUG2
if (OptType == 3) { // MOV instr class
if (MemDest) {
msg("MemDest on MOV: %s\n", disasm);
}
else if (!SecondSrcOperandNum) {
msg("MOV: not 2nd op numeric: %s\n", disasm);
this->PrintOperands();
}
}
#endif
SDTInstrumentation = true;
if (MemDest) {
#if SMP_DEBUG_XOR
if (OptType == 2)
msg("MemDest on OptType 2: %s\n", disasm);
#endif
break; // treat as category 0
}
if ((OptType == 2) || (OptType == 7) || SecondSrcOperandNum) {
qfprintf(AnnotFile, "%x %d INSTR LOCAL n %s %s %s \n",
addr, -2, this->DestString(OptType),
OptExplanation[OptType], disasm);
++AnnotationCount[OptType];
}
break;
}
} // end switch (OptType)
// If mmStrata is going to have to deal with the
// instruction, then we can annotate EBP and ESP
// relative constant offsets. If we have emitted
// an annotation of type -1, there is no point
// in telling mmStrata about these constants.
if (SDTInstrumentation) {
this->AnnotateStackConstants(UseFP, AnnotFile);
}
return;
} // end of SMPInstr::EmitAnnotations()