Skip to content
Snippets Groups Projects
SMPInstr.cpp 207 KiB
Newer Older

// Build the RTL for a direct or indirect call instruction
bool SMPInstr::BuildCallRTL(void) {
	size_t OpNum;
	bool SourceFound = false;
	op_t VoidOp;
	VoidOp.type = o_void;
	SMPRegTransfer *TempRT = NULL;

	for (OpNum = 0; !SourceFound && (OpNum < UA_MAXOP); ++OpNum) {
		op_t TempOp = this->SMPcmd.Operands[OpNum];
		if (this->features & DefMacros[OpNum]) { // DEF
			if (MDKnownOperandType(TempOp)) {
#if SMP_DEBUG_BUILD_RTL
				msg("ERROR: Found destination operand for call at %x : %s\n",
					this->GetAddr(), this->GetDisasm());
#endif
			}
		}
		else { // USE
			if (MDKnownOperandType(TempOp)) {
				SourceFound = true;
				TempRT = new SMPRegTransfer;
				TempRT->SetLeftOperand(VoidOp);
				TempRT->SetOperator(SMP_CALL);
				TempRT->SetRightOperand(TempOp);
			}
		}
	} // end for (OpNum = 0; ...)

	if (!SourceFound) {
#if SMP_DEBUG_BUILD_RTL
		msg("ERROR: Could not find CALL operand at %x for %s\n", this->GetAddr(), this->GetDisasm());
#endif
	}
	else {
		this->RTL.push_back(TempRT);
	}
	return SourceFound;
} // end of SMPInstr::BuildCallRTL()

// Build the RTL for a return instruction, with or without extra bytes popped off stack
bool SMPInstr::BuildReturnRTL(void) {
	size_t OpNum;
	uval_t PopBytes = 4;  // default: pop off return address

	for (OpNum = 0; OpNum < UA_MAXOP; ++OpNum) {
		op_t TempOp = this->SMPcmd.Operands[OpNum];
		if (this->features & DefMacros[OpNum]) { // DEF
			if (MDKnownOperandType(TempOp)) {
#if SMP_DEBUG_BUILD_RTL
				msg("ERROR: Found destination operand for RET at %x : %s\n",
					this->GetAddr(), this->GetDisasm());
#endif
			}
		}
		else { // USE
			if (MDKnownOperandType(TempOp)) {
				if (o_imm == TempOp.type) {
					PopBytes += TempOp.value;
				}
				else {
#if SMP_DEBUG_BUILD_RTL
					if (!(this->IsTailCall())) {
						msg("ERROR: Found unexpected operand for return at %x : %s\n",
							this->GetAddr(), this->GetDisasm());
					}
#endif
				}
			}
		}
	} // end for (OpNum = 0; ...)

	this->AddToStackPointer(PopBytes);
	return true;
} // end of SMPInstr::BuildReturnRTL()

// Build the RTL for an ENTER instruction
bool SMPInstr::BuildEnterRTL(void) {
	// An "ENTER k,0" instruction with allocation k and nesting level 0 does the following:
	//  push ebp
	//  mov ebp,esp
	//  sub esp,k
	// This can be modeled by the parallel effects:
	//  [esp-4] := ebp; ebp := esp - 4; esp := esp - k
	// If nesting level is greater than zero, we have a block structure language with
	//  nested procedures, in which additional frame pointers are saved:
	// "ENTER k,n" pushes n additional frame pointers on the stack. We will only model
	//  the change in the stack pointer here, and not attempt to transfer the display
	//  pointers. A warning will be issued to the log file. Parallel effects are:
	//  [esp-4] := ebp; ebp := esp - 4; esp := esp - (k + n*4)
	// Note that k and n and immediate values so the final expression can be computed.
	size_t OpNum;
	uval_t NestingLevel = 0;
	uval_t AllocBytes = 0;
	bool AllocFound = false;
	bool NestingLevelFound = false;

	op_t StackPointerOp;          // ESP
	StackPointerOp.type = o_reg;
	StackPointerOp.reg = R_sp;

	op_t FramePointerOp;          // EBP
	FramePointerOp.type = o_reg;
	FramePointerOp.reg = R_bp;

	op_t Immed4Op;                // 4
	Immed4Op.type = o_imm;
	Immed4Op.value = 4;
	Immed4Op.dtyp = dt_dword;

	op_t SavedEBP;                // [ESP-4], location of saved EBP
	SavedEBP.type = o_displ;
	SavedEBP.addr = (ea_t) -4;
	SavedEBP.dtyp = dt_dword;
	SavedEBP.reg = R_sp;
	SavedEBP.hasSIB = 0;

	for (OpNum = 0; !(AllocFound && NestingLevelFound) && (OpNum < UA_MAXOP); ++OpNum) {
		op_t TempOp = this->SMPcmd.Operands[OpNum];
		if (this->features & DefMacros[OpNum]) { // DEF
			if (MDKnownOperandType(TempOp)) {
#if SMP_DEBUG_BUILD_RTL
				msg("ERROR: Found destination operand for ENTER at %x : %s\n",
					this->GetAddr(), this->GetDisasm());
#endif
			}
		}
		else { // USE
			if (MDKnownOperandType(TempOp)) {
				if (o_imm == TempOp.type) {
					if (!AllocFound) {
						AllocBytes = TempOp.value;
						AllocFound = true;
					}
					else {
						NestingLevel = TempOp.value;
						NestingLevelFound = true;
					}
				}
				else {
#if SMP_DEBUG_BUILD_RTL
					msg("ERROR: Found unexpected operand for ENTER at %x : %s\n",
						this->GetAddr(), this->GetDisasm());
#endif
				}
			}
		}
	} // end for (OpNum = 0; ...)

	if (!AllocFound) {
#if SMP_DEBUG_BUILD_RTL
		msg("ERROR: Could not find allocation operand for ENTER at %x : %s\n",
			this->GetAddr(), this->GetDisasm());
#endif
	}
	else {
		SMPRegTransfer *TempRT = new SMPRegTransfer;

		// Add first effect: [esp-4] := ebp
		TempRT->SetLeftOperand(SavedEBP);
		TempRT->SetOperator(SMP_ASSIGN);
		TempRT->SetRightOperand(FramePointerOp);
		this->RTL.push_back(TempRT);
		TempRT = NULL;

		// Add second effect: ebp := esp - 4
		TempRT = new SMPRegTransfer;
		TempRT->SetLeftOperand(FramePointerOp);
		TempRT->SetOperator(SMP_ASSIGN);
		SMPRegTransfer *RightRT = new SMPRegTransfer;
		RightRT->SetLeftOperand(StackPointerOp);
		RightRT->SetOperator(SMP_SUBTRACT);
		RightRT->SetRightOperand(Immed4Op);
		TempRT->SetRightTree(RightRT);
		this->RTL.push_back(TempRT);
		TempRT = NULL;
		RightRT = NULL;

		// Add final effect on stack pointer
		AllocBytes += (4 * NestingLevel);
		if (0 != NestingLevel) {
			msg("WARNING: Nested procedures in ENTER instruction at %x : %s\n",
				this->GetAddr(), this->GetDisasm());
		}
		this->AddToStackPointer(AllocBytes);
	}
	return AllocFound;
} // end of SMPInstr::BuildEnterRTL()

// Build the RTL for an LEAVE instruction
bool SMPInstr::BuildLeaveRTL(void) {
	// A LEAVE instruction simulates the following instructions:
	//  mov ebp into esp (deallocates stack frame)
	//  pop saved ebp off stack into ebp
	// We will model these two instructions with three parallel effects:
	//  esp := ebp; ebp := [ebp+0]; esp = esp + 4;
	// There cannot be two definitions of esp in the list of effects, so we do:
	//  esp := ebp + 4; ebp := [ebp+0] as our two parallel effects
	op_t StackPointerOp;          // ESP
	StackPointerOp.type = o_reg;
	StackPointerOp.reg = R_sp;

	op_t FramePointerOp;          // EBP
	FramePointerOp.type = o_reg;
	FramePointerOp.reg = R_bp;

	op_t Immed4Op;                // 4
	Immed4Op.type = o_imm;
	Immed4Op.value = 4;
	Immed4Op.dtyp = dt_dword;

	op_t SavedEBP;                // [EBP+0]
	SavedEBP.type = o_displ;
	SavedEBP.addr = 0;
	SavedEBP.dtyp = dt_dword;
	SavedEBP.reg = R_bp;
	SavedEBP.hasSIB = 0;

	// Build first effect:  ESP := EBP + 4
	SMPRegTransfer *TempRT = new SMPRegTransfer;
	TempRT->SetLeftOperand(StackPointerOp);
	TempRT->SetOperator(SMP_ASSIGN);
	SMPRegTransfer *RightRT = new SMPRegTransfer;
	RightRT->SetOperator(SMP_ADD);
	RightRT->SetLeftOperand(FramePointerOp);
	RightRT->SetRightOperand(Immed4Op);
	TempRT->SetRightTree(RightRT);
	this->RTL.push_back(TempRT);
	TempRT = NULL;
	RightRT = NULL;

	// Build second effect: EBP := [EBP+0]
	TempRT = new SMPRegTransfer;
	TempRT->SetLeftOperand(FramePointerOp);
	TempRT->SetOperator(SMP_ASSIGN);
	TempRT->SetRightOperand(SavedEBP);
	this->RTL.push_back(TempRT);
	TempRT = NULL;

	return true;
} // end of SMPInstr::BuildLeaveRTL()

// Build OptCategory 8 RTLs, which set system info into EDX:EAX.
bool SMPInstr::BuildOptType8RTL(void) {
	op_t DestOp;
	DestOp.type = o_reg;

	op_t VoidOp;
	VoidOp.type = o_void;

	// Create the effect on EDX.
	SMPRegTransfer *TempRT = new SMPRegTransfer;
	DestOp.reg = R_dx;
	TempRT->SetLeftOperand(DestOp);
	TempRT->SetOperator(SMP_ASSIGN);
	SMPRegTransfer *RightRT =  new SMPRegTransfer;
	RightRT->SetLeftOperand(VoidOp);
	RightRT->SetOperator(SMP_SYSTEM_OPERATION);
	RightRT->SetRightOperand(VoidOp);
	TempRT->SetRightTree(RightRT);
	this->RTL.push_back(TempRT);

	// Create the effect on EAX.
	TempRT = NULL;
	RightRT = NULL;
	TempRT = new SMPRegTransfer;
	DestOp.reg = R_ax;
	TempRT->SetLeftOperand(DestOp);
	TempRT->SetOperator(SMP_ASSIGN);
	RightRT = new SMPRegTransfer;
	RightRT->SetLeftOperand(VoidOp);
	RightRT->SetOperator(SMP_SYSTEM_OPERATION);
	RightRT->SetRightOperand(VoidOp);
	TempRT->SetRightTree(RightRT);
	this->RTL.push_back(TempRT);

	return true;
} // end of BuildOptType8RTL()

// Build the RTL for a direct or indirect jump instruction
bool SMPInstr::BuildJumpRTL(SMPoperator CondBranchOp) {
	size_t OpNum;
	bool TargetFound = false;
	SMPRegTransfer *TempRT = NULL;
	op_t EIPOp, ZeroOp, FlagsOp;

	EIPOp.type = o_reg;
	EIPOp.reg = R_ip;

	ZeroOp.type = o_imm;
	ZeroOp.value = 0;

	FlagsOp.type = o_reg;
	FlagsOp.reg = X86_FLAGS_REG;

	op_t CountOp;
	CountOp.type = o_reg;
	CountOp.reg = R_cx;

	if (this->IsTailCall())
		return this->BuildReturnRTL();

4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320 4321 4322 4323 4324 4325 4326 4327 4328 4329 4330 4331 4332 4333 4334 4335 4336 4337 4338 4339 4340 4341 4342 4343 4344 4345 4346 4347 4348 4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372 4373 4374 4375 4376 4377 4378 4379 4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396 4397 4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418 4419 4420 4421 4422 4423 4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444 4445 4446 4447 4448 4449 4450 4451 4452 4453 4454 4455 4456 4457 4458 4459 4460 4461 4462 4463 4464 4465 4466 4467 4468 4469 4470 4471 4472 4473 4474 4475 4476 4477 4478 4479 4480 4481 4482 4483 4484 4485 4486 4487 4488 4489 4490 4491 4492 4493 4494 4495 4496 4497 4498 4499 4500 4501 4502 4503 4504 4505 4506 4507 4508 4509 4510 4511 4512 4513 4514 4515 4516 4517 4518 4519 4520 4521 4522 4523 4524 4525 4526 4527 4528 4529 4530 4531 4532 4533 4534 4535 4536 4537 4538 4539 4540 4541 4542 4543 4544 4545 4546 4547 4548 4549 4550 4551 4552 4553 4554 4555 4556 4557 4558 4559 4560 4561 4562 4563 4564 4565 4566 4567 4568 4569 4570 4571 4572 4573 4574 4575 4576 4577 4578 4579 4580 4581 4582 4583 4584 4585 4586 4587 4588 4589 4590 4591 4592 4593 4594 4595 4596 4597 4598 4599 4600 4601 4602 4603 4604 4605 4606 4607 4608 4609 4610 4611 4612 4613 4614 4615 4616 4617 4618 4619 4620 4621 4622 4623 4624 4625 4626 4627 4628 4629 4630 4631 4632 4633 4634 4635 4636 4637 4638 4639 4640 4641 4642 4643 4644 4645 4646 4647 4648 4649 4650 4651 4652 4653 4654 4655 4656 4657 4658 4659 4660 4661 4662 4663 4664 4665 4666 4667 4668 4669
	for (OpNum = 0; !TargetFound && (OpNum < UA_MAXOP); ++OpNum) {
		op_t TempOp = this->SMPcmd.Operands[OpNum];
		if (this->features & UseMacros[OpNum]) { // USE
			if (MDKnownOperandType(TempOp)) {
				TargetFound = true;
				TempRT = new SMPRegTransfer;
				TempRT->SetLeftOperand(EIPOp);
				TempRT->SetOperator(SMP_ASSIGN);
				TempRT->SetRightOperand(TempOp);
				if (CondBranchOp != SMP_NULL_OPERATOR) {
					// Set up a guard expression comparing EFLAGS to zero.
					// NOTE: This is imprecise for value-set purposes, but OK for types.
					SMPGuard *BranchCondition = new SMPGuard;
					BranchCondition->SetOperator(CondBranchOp);
					// The conditional jumps on ECX==0 compare to ECX, not EFLAGS.
					if ((NN_jcxz <= this->SMPcmd.itype) && (NN_jrcxz >= this->SMPcmd.itype))
						BranchCondition->SetLeftOperand(CountOp);
					else
						BranchCondition->SetLeftOperand(FlagsOp);
					BranchCondition->SetRightOperand(ZeroOp);
					TempRT->SetGuard(BranchCondition);
				}
				this->RTL.push_back(TempRT);
			}
		}
	} // end for (OpNum = 0; ...)

#if SMP_DEBUG_BUILD_RTL
	if (!TargetFound) {
		msg("ERROR: Could not find jump target at %x for %s\n", this->GetAddr(), this->GetDisasm());
	}
#endif
	return TargetFound;
} // end of SMPInstr::BuildJumpRTL()

// Add to the stack pointer to deallocate stack space, e.g. for a pop instruction.
void SMPInstr::AddToStackPointer(uval_t delta) {
	SMPRegTransfer *TempRT = new SMPRegTransfer;
	SMPRegTransfer *RightRT = new SMPRegTransfer;
	op_t StackOp, DeltaOp;

	StackOp.type = o_reg;
	StackOp.reg = R_sp;
	StackOp.addr = 0;
	StackOp.hasSIB = 0;
	StackOp.dtyp = dt_dword;

	DeltaOp.type = o_imm;
	DeltaOp.value = delta;

	TempRT->SetLeftOperand(StackOp);    // ESP := RightRT
	TempRT->SetOperator(SMP_ASSIGN); 
	RightRT->SetLeftOperand(StackOp); // ESP + delta
	RightRT->SetOperator(SMP_ADD);
	RightRT->SetRightOperand(DeltaOp);
	TempRT->SetRightTree(RightRT);
	this->RTL.push_back(TempRT);
	return;
} // end of SMPInstr::AddToStackPointer()

// Add to the stack pointer to deallocate stack space, e.g. for a pop instruction.
void SMPInstr::SubFromStackPointer(uval_t delta) {
	SMPRegTransfer *TempRT = new SMPRegTransfer;
	SMPRegTransfer *RightRT = new SMPRegTransfer;
	op_t StackOp, DeltaOp;

	StackOp.type = o_reg;
	StackOp.reg = R_sp;
	StackOp.addr = 0;
	StackOp.hasSIB = 0;
	StackOp.dtyp = dt_dword;

	DeltaOp.type = o_imm;
	DeltaOp.value = delta;

	TempRT->SetLeftOperand(StackOp);    // ESP := RightRT
	TempRT->SetOperator(SMP_ASSIGN);
	RightRT->SetLeftOperand(StackOp); // ESP - delta
	RightRT->SetOperator(SMP_SUBTRACT);
	RightRT->SetRightOperand(DeltaOp);
	TempRT->SetRightTree(RightRT);
	this->RTL.push_back(TempRT);
	return;
} // end of SMPInstr::SubFromStackPointer()

#define SMP_FIRST_POP_FLAGS  NN_popfw
#define SMP_LAST_POP_FLAGS  NN_popfq
#define SMP_FIRST_POP_ALL  NN_popaw
#define SMP_LAST_POP_ALL  NN_popaq
// Build the RTL for a pop instruction
bool SMPInstr::BuildPopRTL(void) {
	size_t OpNum, OpSize;
	bool DestFound = false;
	SMPRegTransfer *TempRT = NULL;
	op_t StackOp, FlagsOp;
	StackOp.type = o_displ;
	StackOp.reg = R_sp;
	StackOp.addr = 0;  // [ESP+0]
	StackOp.hasSIB = 0;
	StackOp.dtyp = dt_dword;
	FlagsOp.type = o_reg;
	FlagsOp.reg = X86_FLAGS_REG;
	FlagsOp.dtyp = dt_dword;

	// Handle special cases first.
	if ((SMP_FIRST_POP_FLAGS <= this->SMPcmd.itype) && (SMP_LAST_POP_FLAGS >= this->SMPcmd.itype)) {
		TempRT = new SMPRegTransfer;
		TempRT->SetLeftOperand(FlagsOp);
		TempRT->SetOperator(SMP_ASSIGN);
		TempRT->SetRightOperand(StackOp);
		this->RTL.push_back(TempRT);
		TempRT = NULL;
		// Now create the stack pointer increment effect.
		this->AddToStackPointer(4);
		return true;
	}

	if ((SMP_FIRST_POP_ALL <= this->SMPcmd.itype) && (SMP_LAST_POP_ALL >= this->SMPcmd.itype)) {
		// We pop off 7 registers from the 8 that were pushed on the stack.
		//  The pushed stack pointer is ignored. Instead, the stack pointer value is
		//  adjusted at the end, per the Intel instruction manuals.

		op_t RegOp;
		RegOp.type = o_reg;

		// EDI comes from [ESP+0]
		RegOp.reg = R_di;
		StackOp.addr = 0;  // [ESP+0]
		TempRT = new SMPRegTransfer;
		TempRT->SetLeftOperand(RegOp);
		TempRT->SetOperator(SMP_ASSIGN);
		TempRT->SetRightOperand(StackOp);
		this->RTL.push_back(TempRT);
		TempRT = NULL;

		// ESI comes from [ESP+4]
		RegOp.reg = R_si;
		StackOp.addr = 4;  // [ESP+4]
		TempRT = new SMPRegTransfer;
		TempRT->SetLeftOperand(RegOp);
		TempRT->SetOperator(SMP_ASSIGN);
		TempRT->SetRightOperand(StackOp);
		this->RTL.push_back(TempRT);
		TempRT = NULL;

		// EBP comes from [ESP+8]
		RegOp.reg = R_bp;
		StackOp.addr = 8;  // [ESP+8]
		TempRT = new SMPRegTransfer;
		TempRT->SetLeftOperand(RegOp);
		TempRT->SetOperator(SMP_ASSIGN);
		TempRT->SetRightOperand(StackOp);
		this->RTL.push_back(TempRT);
		TempRT = NULL;

		// Skip over saved ESP at [ESP+12]

		// EBX comes from [ESP+16]
		RegOp.reg = R_bx;
		StackOp.addr = 16;  // [ESP+16]
		TempRT = new SMPRegTransfer;
		TempRT->SetLeftOperand(RegOp);
		TempRT->SetOperator(SMP_ASSIGN);
		TempRT->SetRightOperand(StackOp);
		this->RTL.push_back(TempRT);
		TempRT = NULL;

		// EDX comes from [ESP+20]
		RegOp.reg = R_dx;
		StackOp.addr = 20;  // [ESP+20]
		TempRT = new SMPRegTransfer;
		TempRT->SetLeftOperand(RegOp);
		TempRT->SetOperator(SMP_ASSIGN);
		TempRT->SetRightOperand(StackOp);
		this->RTL.push_back(TempRT);
		TempRT = NULL;

		// ECX comes from [ESP+24]
		RegOp.reg = R_cx;
		StackOp.addr = 24;  // [ESP+24]
		TempRT = new SMPRegTransfer;
		TempRT->SetLeftOperand(RegOp);
		TempRT->SetOperator(SMP_ASSIGN);
		TempRT->SetRightOperand(StackOp);
		this->RTL.push_back(TempRT);
		TempRT = NULL;

		// EAX comes from [ESP+28]
		RegOp.reg = R_ax;
		StackOp.addr = 28;  // [ESP+28]
		TempRT = new SMPRegTransfer;
		TempRT->SetLeftOperand(RegOp);
		TempRT->SetOperator(SMP_ASSIGN);
		TempRT->SetRightOperand(StackOp);
		this->RTL.push_back(TempRT);
		TempRT = NULL;

		// Now create the stack pointer increment effect.
		this->AddToStackPointer(32);
		return true;
	} // end for "pop all" instructions

	// If we reach this point, we have a simple POP instruction.
	for (OpNum = 0; !DestFound && (OpNum < UA_MAXOP); ++OpNum) {
		op_t TempOp = this->SMPcmd.Operands[OpNum];
		if (this->features & DefMacros[OpNum]) { // DEF
			if (MDKnownOperandType(TempOp)) {
				DestFound = true;
				TempRT = new SMPRegTransfer;
				TempRT->SetLeftOperand(TempOp);
				TempRT->SetOperator(SMP_ASSIGN);
				StackOp.dtyp = TempOp.dtyp;  // size of transfer
				TempRT->SetRightOperand(StackOp);
				this->RTL.push_back(TempRT);
				// Now create the stack pointer increment effect.
				OpSize = GetOpDataSize(TempOp);
				this->AddToStackPointer((uval_t) OpSize);
			}
		}
	} // end for (OpNum = 0; ...)

#if SMP_DEBUG_BUILD_RTL
	if (!DestFound) {
		msg("ERROR: Could not find pop operand at %x for %s\n", this->GetAddr(), this->GetDisasm());
	}
#endif
	return DestFound;
} // end of SMPInstr::BuildPopRTL()

#define SMP_FIRST_PUSH_FLAGS  NN_pushfw
#define SMP_LAST_PUSH_FLAGS  NN_pushfq
#define SMP_FIRST_PUSH_ALL  NN_pushaw
#define SMP_LAST_PUSH_ALL  NN_pushaq
// Build the RTL for a push instruction
bool SMPInstr::BuildPushRTL(void) {
	size_t OpNum, OpSize;
	bool SourceFound = false;
	SMPRegTransfer *TempRT = NULL;
	op_t StackOp, FlagsOp;
	StackOp.type = o_displ;
	StackOp.reg = R_sp;
	StackOp.addr = (ea_t) -4;  // [ESP-4]
	StackOp.hasSIB = 0;
	StackOp.dtyp = dt_dword;
	FlagsOp.type = o_reg;
	FlagsOp.reg = X86_FLAGS_REG;
	FlagsOp.dtyp = dt_dword;

	// Handle special cases first.
	if ((SMP_FIRST_PUSH_FLAGS <= this->SMPcmd.itype) && (SMP_LAST_PUSH_FLAGS >= this->SMPcmd.itype)) {
		TempRT = new SMPRegTransfer;
		TempRT->SetRightOperand(FlagsOp);
		TempRT->SetOperator(SMP_ASSIGN);
		TempRT->SetLeftOperand(StackOp);
		this->RTL.push_back(TempRT);
		// Now create the stack pointer increment effect.
		this->SubFromStackPointer(4);
		return true;
	}

	if ((SMP_FIRST_PUSH_ALL <= this->SMPcmd.itype) && (SMP_LAST_PUSH_ALL >= this->SMPcmd.itype)) {
		op_t RegOp;
		RegOp.type = o_reg;

		// EDI goes to [ESP-32]
		RegOp.reg = R_di;
		StackOp.addr = (ea_t) -32;  // [ESP-32]
		TempRT = new SMPRegTransfer;
		TempRT->SetRightOperand(RegOp);
		TempRT->SetOperator(SMP_ASSIGN);
		TempRT->SetLeftOperand(StackOp);
		this->RTL.push_back(TempRT);
		TempRT = NULL;

		// ESI goes to [ESP-28]
		RegOp.reg = R_si;
		StackOp.addr = (ea_t) -28;  // [ESP-28]
		TempRT = new SMPRegTransfer;
		TempRT->SetRightOperand(RegOp);
		TempRT->SetOperator(SMP_ASSIGN);
		TempRT->SetLeftOperand(StackOp);
		this->RTL.push_back(TempRT);
		TempRT = NULL;

		// EBP goes to [ESP-24]
		RegOp.reg = R_bp;
		StackOp.addr = (ea_t) -24;  // [ESP-24]
		TempRT = new SMPRegTransfer;
		TempRT->SetRightOperand(RegOp);
		TempRT->SetOperator(SMP_ASSIGN);
		TempRT->SetLeftOperand(StackOp);
		this->RTL.push_back(TempRT);
		TempRT = NULL;

		// ESP goes to [ESP-20]
		RegOp.reg = R_sp;
		StackOp.addr = (ea_t) -20;  // [ESP-20]
		TempRT = new SMPRegTransfer;
		TempRT->SetRightOperand(RegOp);
		TempRT->SetOperator(SMP_ASSIGN);
		TempRT->SetLeftOperand(StackOp);
		this->RTL.push_back(TempRT);
		TempRT = NULL;

		// EBX goes to [ESP-16]
		RegOp.reg = R_bx;
		StackOp.addr = (ea_t) -16;  // [ESP-16]
		TempRT = new SMPRegTransfer;
		TempRT->SetRightOperand(RegOp);
		TempRT->SetOperator(SMP_ASSIGN);
		TempRT->SetLeftOperand(StackOp);
		this->RTL.push_back(TempRT);
		TempRT = NULL;

		// EDX goes to [ESP-12]
		RegOp.reg = R_dx;
		StackOp.addr = (ea_t) -12;  // [ESP-12]
		TempRT = new SMPRegTransfer;
		TempRT->SetRightOperand(RegOp);
		TempRT->SetOperator(SMP_ASSIGN);
		TempRT->SetLeftOperand(StackOp);
		this->RTL.push_back(TempRT);
		TempRT = NULL;

		// ECX goes to [ESP-8]
		RegOp.reg = R_cx;
		StackOp.addr = (ea_t) -8;  // [ESP-8]
		TempRT = new SMPRegTransfer;
		TempRT->SetRightOperand(RegOp);
		TempRT->SetOperator(SMP_ASSIGN);
		TempRT->SetLeftOperand(StackOp);
		this->RTL.push_back(TempRT);
		TempRT = NULL;

		// EAX goes to [ESP-4]
		RegOp.reg = R_ax;
		StackOp.addr = (ea_t) -4;  // [ESP-4]
		TempRT = new SMPRegTransfer;
		TempRT->SetRightOperand(RegOp);
		TempRT->SetOperator(SMP_ASSIGN);
		TempRT->SetLeftOperand(StackOp);
		this->RTL.push_back(TempRT);
		TempRT = NULL;

		// Now create the stack pointer increment effect.
		this->SubFromStackPointer(32);
		return true;
	} // end for "pop all" instructions

	// If we reach this point, we have a simple PUSH instruction.
	for (OpNum = 0; !SourceFound && (OpNum < UA_MAXOP); ++OpNum) {
		op_t TempOp = this->SMPcmd.Operands[OpNum];
		if (this->features & UseMacros[OpNum]) { // USE
			if (MDKnownOperandType(TempOp)) {
				SourceFound = true;
				OpSize = GetOpDataSize(TempOp);
				TempRT = new SMPRegTransfer;
				TempRT->SetRightOperand(TempOp);
				TempRT->SetOperator(SMP_ASSIGN);
				StackOp.dtyp = TempOp.dtyp;  // size of transfer
				StackOp.addr = (ea_t) (-((signed int) OpSize));
				TempRT->SetLeftOperand(StackOp);
				this->RTL.push_back(TempRT);
				TempRT = NULL;
				// Now create the stack pointer increment effect.
				this->SubFromStackPointer((uval_t) OpSize);
#if 0
				this->RTL.Dump();
#endif
			}
		}
	} // end for (OpNum = 0; ...)

#if SMP_DEBUG_BUILD_RTL
	if (!SourceFound) {
		msg("ERROR: Could not find push operand at %x for %s\n", this->GetAddr(), this->GetDisasm());
	}
#endif
	return SourceFound;
} // end of SMPInstr::BuildPushRTL()

// Build RTL trees from the SMPcmd info.
bool SMPInstr::BuildRTL(void) {
	op_t FlagsOp;
	FlagsOp.type = o_reg;
	FlagsOp.reg = X86_FLAGS_REG;
	SMPRegTransfer *NopRT = NULL;  // no-op register transfer

	// We don't want to explicitly represent the various no-ops except as NULL operations.
	//  E.g. mov esi,esi should not generate DEF and USE of esi, because esi does not change.
	if (this->MDIsNop()) {
		NopRT = new SMPRegTransfer;
		NopRT->SetOperator(SMP_NULL_OPERATOR);
		this->RTL.push_back(NopRT);
		NopRT = NULL;
		return true;
	}

	switch (this->SMPcmd.itype) {
		case NN_aaa:                 // ASCII Adjust after Addition
		case NN_aad:                 // ASCII Adjust AX before Division
		case NN_aam:                 // ASCII Adjust AX after Multiply
		case NN_aas:                 // ASCII Adjust AL after Subtraction
			return this->BuildUnaryRTL(SMP_UNARY_NUMERIC_OPERATION);

		case NN_adc:                 // Add with Carry
			return this->BuildBinaryPlusFlagsRTL(SMP_ADD_CARRY);

		case NN_add:                 // Add
			return this->BuildBinaryRTL(SMP_ADD);

		case NN_and:                 // Logical AND
			return this->BuildBinaryRTL(SMP_BITWISE_AND);

		case NN_arpl:                // Adjust RPL Field of Selector
		case NN_bound:               // Check Array Index Against Bounds
			return false;
			break;

		case NN_bsf:                 // Bit Scan Forward
		case NN_bsr:                 // Bit Scan Reverse
			return this->BuildUnary2OpndRTL(SMP_UNARY_NUMERIC_OPERATION);

		case NN_bt:                  // Bit Test
			return this->BuildFlagsDestBinaryRTL(SMP_BINARY_NUMERIC_OPERATION);

		case NN_btc:                 // Bit Test and Complement
		case NN_btr:                 // Bit Test and Reset
		case NN_bts:                 // Bit Test and Set
			// Has effects on both the carry flag and the first operand
			this->RTL.ExtraKills.push_back(FlagsOp);
			return this->BuildBinaryRTL(SMP_BINARY_NUMERIC_OPERATION);

		case NN_call:                // Call Procedure
		case NN_callfi:              // Indirect Call Far Procedure
		case NN_callni:              // Indirect Call Near Procedure
			return this->BuildCallRTL();

		case NN_cbw:                 // AL -> AX (with sign)
		case NN_cwde:                // AX -> EAX (with sign)
		case NN_cdqe:                // EAX -> RAX (with sign)
			return this->BuildUnaryRTL(SMP_SIGN_EXTEND);

		case NN_clc:                 // Clear Carry Flag
		case NN_cld:                 // Clear Direction Flag
			return this->BuildUnaryRTL(SMP_UNARY_NUMERIC_OPERATION);

		case NN_cli:                 // Clear Interrupt Flag
		case NN_clts:                // Clear Task-Switched Flag in CR0
			// We don't track the interrupt flag or the special registers,
			//  so we can just consider these to be no-ops.
			NopRT = new SMPRegTransfer;
			NopRT->SetOperator(SMP_NULL_OPERATOR);
			this->RTL.push_back(NopRT);
			NopRT = NULL;
			return true;

		case NN_cmc:                 // Complement Carry Flag
			return this->BuildUnaryRTL(SMP_UNARY_NUMERIC_OPERATION);

		case NN_cmp:                 // Compare Two Operands
			return this->BuildFlagsDestBinaryRTL(SMP_S_COMPARE);

		case NN_cmps:                // Compare Strings
			return this->BuildFlagsDestBinaryRTL(SMP_U_COMPARE);

		case NN_cwd:                 // AX -> DX:AX (with sign)
		case NN_cdq:                 // EAX -> EDX:EAX (with sign)
		case NN_cqo:                 // RAX -> RDX:RAX (with sign)
			return this->BuildUnary2OpndRTL(SMP_SIGN_EXTEND);

		case NN_daa:                 // Decimal Adjust AL after Addition
		case NN_das:                 // Decimal Adjust AL after Subtraction
			return this->BuildUnaryRTL(SMP_UNARY_NUMERIC_OPERATION);

		case NN_dec:                 // Decrement by 1
			return this->BuildUnaryRTL(SMP_DECREMENT);

		case NN_div:                 // Unsigned Divide
			return this->BuildMultiplyDivideRTL(SMP_U_DIVIDE);

		case NN_enterw:              // Make Stack Frame for Procedure Parameters
		case NN_enter:               // Make Stack Frame for Procedure Parameters
		case NN_enterd:              // Make Stack Frame for Procedure Parameters
		case NN_enterq:              // Make Stack Frame for Procedure Parameters
			return this->BuildEnterRTL();

		case NN_hlt:                 // Halt
			// Treat as a no-op
			NopRT = new SMPRegTransfer;
			NopRT->SetOperator(SMP_NULL_OPERATOR);
			this->RTL.push_back(NopRT);
			NopRT = NULL;
			return true;

		case NN_idiv:                // Signed Divide
			return this->BuildMultiplyDivideRTL(SMP_S_DIVIDE);

		case NN_imul:                // Signed Multiply
			return this->BuildMultiplyDivideRTL(SMP_S_MULTIPLY);

		case NN_in:                  // Input from Port
			return this->BuildUnary2OpndRTL(SMP_INPUT);

		case NN_inc:                 // Increment by 1
			return this->BuildUnaryRTL(SMP_INCREMENT);

		case NN_ins:                 // Input Byte(s) from Port to String
			return false;
			break;

		case NN_int:                 // Call to Interrupt Procedure
		case NN_into:                // Call to Interrupt Procedure if Overflow Flag = 1
		case NN_int3:                // Trap to Debugger
			return this->BuildCallRTL();

		case NN_iretw:               // Interrupt Return
		case NN_iret:                // Interrupt Return
		case NN_iretd:               // Interrupt Return (use32)
		case NN_iretq:               // Interrupt Return (use64)
			return this->BuildReturnRTL();

		case NN_ja:                  // Jump if Above (CF=0 & ZF=0)
		case NN_jae:                 // Jump if Above or Equal (CF=0)
		case NN_jb:                  // Jump if Below (CF=1)
		case NN_jbe:                 // Jump if Below or Equal (CF=1 | ZF=1)
		case NN_jc:                  // Jump if Carry (CF=1)
			return this->BuildJumpRTL(SMP_BINARY_NUMERIC_OPERATION);

		case NN_jcxz:                // Jump if CX is 0
		case NN_jecxz:               // Jump if ECX is 0
		case NN_jrcxz:               // Jump if RCX is 0
			return this->BuildJumpRTL(SMP_EQUAL); // special case in BuildJumpRTL()

		case NN_je:                  // Jump if Equal (ZF=1)
			return this->BuildJumpRTL(SMP_EQUAL);

		case NN_jg:                  // Jump if Greater (ZF=0 & SF=OF)
			return this->BuildJumpRTL(SMP_GREATER_THAN);

		case NN_jge:                 // Jump if Greater or Equal (SF=OF)
			return this->BuildJumpRTL(SMP_GREATER_EQUAL);

		case NN_jl:                  // Jump if Less (SF!=OF)
			return this->BuildJumpRTL(SMP_LESS_THAN);

		case NN_jle:                 // Jump if Less or Equal (ZF=1 | SF!=OF)
			return this->BuildJumpRTL(SMP_LESS_EQUAL);

		case NN_jna:                 // Jump if Not Above (CF=1 | ZF=1)
		case NN_jnae:                // Jump if Not Above or Equal (CF=1)
		case NN_jnb:                 // Jump if Not Below (CF=0)
		case NN_jnbe:                // Jump if Not Below or Equal (CF=0 & ZF=0) a.k.a. ja
		case NN_jnc:                 // Jump if Not Carry (CF=0)
			return this->BuildJumpRTL(SMP_BINARY_NUMERIC_OPERATION);

		case NN_jne:                 // Jump if Not Equal (ZF=0)
			return this->BuildJumpRTL(SMP_NOT_EQUAL);

		case NN_jng:                 // Jump if Not Greater (ZF=1 | SF!=OF) a.k.a. jle
			return this->BuildJumpRTL(SMP_LESS_EQUAL);

		case NN_jnge:                // Jump if Not Greater or Equal (SF != OF) **
			return this->BuildJumpRTL(SMP_LESS_THAN);

		case NN_jnl:                 // Jump if Not Less (SF=OF) a.k.a. jge
			return this->BuildJumpRTL(SMP_GREATER_EQUAL);

		case NN_jnle:                // Jump if Not Less or Equal (ZF=0 & SF=OF) a.k.a. jg
			return this->BuildJumpRTL(SMP_GREATER_THAN);

		case NN_jno:                 // Jump if Not Overflow (OF=0)
		case NN_jnp:                 // Jump if Not Parity (PF=0)
		case NN_jns:                 // Jump if Not Sign (SF=0)
			return this->BuildJumpRTL(SMP_BINARY_NUMERIC_OPERATION);

		case NN_jnz:                 // Jump if Not Zero (ZF=0)  a.k.a. jne
			return this->BuildJumpRTL(SMP_NOT_EQUAL);

		case NN_jo:                  // Jump if Overflow (OF=1)
		case NN_jp:                  // Jump if Parity (PF=1)
		case NN_jpe:                 // Jump if Parity Even (PF=1)
		case NN_jpo:                 // Jump if Parity Odd  (PF=0)
		case NN_js:                  // Jump if Sign (SF=1)
			return this->BuildJumpRTL(SMP_BINARY_NUMERIC_OPERATION);

		case NN_jz:                  // Jump if Zero (ZF=1)
			return this->BuildJumpRTL(SMP_EQUAL);

		case NN_jmp:                 // Jump
		case NN_jmpfi:               // Indirect Far Jump
		case NN_jmpni:               // Indirect Near Jump
		case NN_jmpshort:            // Jump Short (not used)
			return this->BuildJumpRTL(SMP_NULL_OPERATOR);

		case NN_lahf:                // Load Flags into AH Register
			return this->BuildMoveRTL(SMP_NULL_OPERATOR);

		case NN_lar:                 // Load Access Right Byte
			return false;
			break;

		case NN_lea:                 // Load Effective Address

		case NN_leavew:              // High Level Procedure Exit
		case NN_leave:               // High Level Procedure Exit
		case NN_leaved:              // High Level Procedure Exit
		case NN_leaveq:              // High Level Procedure Exit
			return this->BuildLeaveRTL();

		case NN_lgdt:                // Load Global Descriptor Table Register
		case NN_lidt:                // Load Interrupt Descriptor Table Register
		case NN_lgs:                 // Load Full Pointer to GS:xx
		case NN_lss:                 // Load Full Pointer to SS:xx
		case NN_lds:                 // Load Full Pointer to DS:xx
		case NN_les:                 // Load Full Pointer to ES:xx
		case NN_lfs:                 // Load Full Pointer to FS:xx
		case NN_lldt:                // Load Local Descriptor Table Register
		case NN_lmsw:                // Load Machine Status Word
		case NN_lock:                // Assert LOCK# Signal Prefix
		case NN_lods:                // Load String
			return false;
			break;

		case NN_loopw:               // Loop while ECX != 0
		case NN_loop:                // Loop while CX != 0
		case NN_loopd:               // Loop while ECX != 0
		case NN_loopq:               // Loop while RCX != 0
		case NN_loopwe:              // Loop while CX != 0 and ZF=1
		case NN_loope:               // Loop while rCX != 0 and ZF=1
		case NN_loopde:              // Loop while ECX != 0 and ZF=1
		case NN_loopqe:              // Loop while RCX != 0 and ZF=1
		case NN_loopwne:             // Loop while CX != 0 and ZF=0
		case NN_loopne:              // Loop while rCX != 0 and ZF=0
		case NN_loopdne:             // Loop while ECX != 0 and ZF=0
		case NN_loopqne:             // Loop while RCX != 0 and ZF=0
			return false;
			break;

		case NN_lsl:                 // Load Segment Limit
		case NN_ltr:                 // Load Task Register
			return false;
			break;

		case NN_mov:                 // Move Data
		case NN_movsp:               // Move to/from Special Registers
		case NN_movs:                // Move Byte(s) from String to String
			return this->BuildMoveRTL(SMP_NULL_OPERATOR);

		case NN_movsx:               // Move with Sign-Extend
			return this->BuildUnary2OpndRTL(SMP_SIGN_EXTEND);

		case NN_movzx:               // Move with Zero-Extend
			return this->BuildUnary2OpndRTL(SMP_ZERO_EXTEND);

		case NN_mul:                 // Unsigned Multiplication of AL or AX
			return this->BuildMultiplyDivideRTL(SMP_U_MULTIPLY);

		case NN_neg:                 // Two's Complement Negation
			return this->BuildUnaryRTL(SMP_NEGATE);

		case NN_nop:                 // No Operation
			NopRT = new SMPRegTransfer;
			NopRT->SetOperator(SMP_NULL_OPERATOR);
			this->RTL.push_back(NopRT);
			NopRT = NULL;
			return true;

		case NN_not:                 // One's Complement Negation
			return this->BuildUnaryRTL(SMP_BITWISE_NOT);

		case NN_or:                  // Logical Inclusive OR
			return this->BuildBinaryRTL(SMP_BITWISE_OR);

		case NN_out:                 // Output to Port
			return this->BuildBinaryRTL(SMP_OUTPUT);

		case NN_outs:                // Output Byte(s) to Port
			return false;
			break;

		case NN_pop:                 // Pop a word from the Stack
		case NN_popaw:               // Pop all General Registers
		case NN_popa:                // Pop all General Registers
		case NN_popad:               // Pop all General Registers (use32)
		case NN_popaq:               // Pop all General Registers (use64)
		case NN_popfw:               // Pop Stack into Flags Register
		case NN_popf:                // Pop Stack into Flags Register
		case NN_popfd:               // Pop Stack into Eflags Register
		case NN_popfq:               // Pop Stack into Rflags Register
			return this->BuildPopRTL();

		case NN_push:                // Push Operand onto the Stack
		case NN_pushaw:              // Push all General Registers
		case NN_pusha:               // Push all General Registers
		case NN_pushad:              // Push all General Registers (use32)