Newer
Older
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
// mov ebp,esp ; new frame pointer = current stack pointer
// push esi ; callee save reg
// push edi ; callee save reg
// sub esp,34h ; allocate 52 bytes for local variables
//
// Notice that EBP acquires its final frame pointer value AFTER the
// old EBP has been pushed. This means that, of the three callee saved
// registers, one is above where EBP points and two are below.
// IDA Pro is concerned with generating readable addressing expressions
// for items on the stack. None of the callee-saved regs will ever
// be addressed in the function; they will be dormant until they are popped
// off the stack in the function epilogue. In order to create readable
// disassembled code, IDA defines named constant offsets for locals. These
// offsets are negative values (x86 stack grows downward from EBP toward
// ESP). When ESP_relative addressing occurs, IDA converts a statement:
// mov eax,[esp+12]
// into the statement:
// mov eax,[esp+3Ch+var_30]
// Here, 3Ch == 60 decimal is the distance between ESP and EBP, and
// var_30 is defined to ahve the value -30h == -48 decimal. So, the
// "frame size" in IDA Pro is 60 bytes, and a certain local can be
// addressed in ESP-relative manner as shown, or as [ebp+var_30] for
// EBP-relative addressing. The interactive IDA user can then edit
// the name var_30 to something mnemonic, such as "virus_size", and IDA
// will replace all occurrences with the new name, so that code references
// automatically become [ebp+virus_size]. As the user proceeds
// interactively, he eventually produces very understandable code.
// This all makes sense for producing readable assembly text. However,
// our analyses have a compiler perspective as well as a memory access
// defense perspective. SMP distinguishes between callee saved regs,
// which should not be overwritten in the function body, and local
// variables, which can be written. We view the stack frame in logical
// pieces: here are the saved regs, here are the locals, here is the
// return address, etc. We don't care which direction from EBP the
// callee-saved registers lie; we don't want to lump them in with the
// local variables. We also don't like the fact that IDA Pro will take
// the function prologue code shown above and declare frregs=4 and
// frsize=60, because frsize no longer matches the stack allocation
// statement sub esp,34h == sub esp,52. We prefer frsize=52 and frregs=12.
// So, the task of this function is to fix these stack sizes in our
// private data members for the function, while leaving the IDA database
// alone because IDA needs to maintain its own definitions of these
// variables.
// Fixing means we will update the data members LocalVarsSize and
// CalleeSavedRegsSize.
// NOTE: This function is both machine dependent and platform dependent.
// The prologue and epilogue code generated by gcc-linux is as discussed
// above, while on Visual Studio and other Windows x86 compilers, the
// saving of registers other than EBP happens AFTER local stack allocation.
// A Windows version of the function would expect to see the pushing
// of ESI and EDI AFTER the sub esp,34h statement.
int SavedRegsSize = 0;
int OtherPushesSize = 0; // besides callee-saved regs
int NewLocalsSize = 0;
int OldFrameTotal = this->CalleeSavedRegsSize + this->LocalVarsSize;
bool Changed = false;
// Iterate through the first basic block in the function. If we find
// a frame allocating Instr in it, then we have local vars. If not,
// we don't, and LocalVarsSize should have been zero. Count the callee
// register saves leading up to the local allocation. Set data members
// according to what we found if the values of the data members would
// change.
SMPBasicBlock CurrBlock = this->Blocks.front();
for (list<SMPInstr>::iterator CurrInstr = CurrBlock.GetFirstInstr();
CurrInstr != CurrBlock.GetLastInstr(); // LastInstr is jump anyway
++CurrInstr) {
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
if (CurrInstr->MDIsPushInstr()) {
// We will make the gcc-linux assumption that a PUSH in
// the first basic block, prior to the stack allocating
// instruction, is a callee register save. To make this
// more robust, we should ensure that the register is from
// the callee saved group of registers, and that it has
// not been defined thus far in the function (else it might
// be a push of an outgoing argument to a call that happens
// in the first block when there are no locals). **!!!!**
if (CurrInstr->MDUsesCalleeSavedReg()
&& !CurrInstr->HasSourceMemoryOperand()) {
SavedRegsSize += 4; // **!!** should check the size
}
else {
// Pushes of outgoing args can be scheduled so that
// they are mixed with the pushes of callee saved regs.
OtherPushesSize += 4;
}
}
else if (CurrInstr->MDIsFrameAllocInstr()) {
SavedRegsSize += OtherPushesSize;
// Get the size being allocated.
for (size_t index = 0; index < CurrInstr->NumUses(); ++index) {
// Find the immediate operand.
if (o_imm == CurrInstr->GetUse(index).type) {
// Get its value into LocalVarsSize.
long AllocValue = (signed long) CurrInstr->GetUse(index).value;
// One compiler might have sub esp,24 and another
// might have add esp,-24. Take the absolute value.
if (0 > AllocValue)
AllocValue = -AllocValue;
if (AllocValue != (long) this->LocalVarsSize) {
Changed = true;
#if SMP_DEBUG_FRAMEFIXUP
if (AllocValue + SavedRegsSize != OldFrameTotal)
msg("Total frame size changed: %s\n", this->FuncName);
#endif
this->LocalVarsSize = (asize_t) AllocValue;
this->CalleeSavedRegsSize = (ushort) SavedRegsSize;
NewLocalsSize = this->LocalVarsSize;
}
else { // Old value was correct; no change.
NewLocalsSize = this->LocalVarsSize;
if (SavedRegsSize != this->CalleeSavedRegsSize) {
this->CalleeSavedRegsSize = (ushort) SavedRegsSize;
Changed = true;
#if SMP_DEBUG_FRAMEFIXUP
msg("Only callee regs size changed: %s\n", this->FuncName);
#endif
}
}
} // end if (o_imm == ...)
} // end for all uses
break; // After frame allocation instr, we are done
} // end if (push) .. elsif frame allocating instr
} // end for all instructions in the first basic block
// If we did not find an allocating instruction, see if it would keep
// the total size the same to set LocalVarsSize to 0 and to set
// CalleeSavedRegsSize to SavedRegsSize. If so, do it. If not, we
// might be better off to leave the numbers alone.
if (!Changed && (NewLocalsSize == 0)) {
if (OldFrameTotal == SavedRegsSize) {
this->CalleeSavedRegsSize = SavedRegsSize;
this->LocalVarsSize = 0;
Changed = true;
}
#if SMP_DEBUG_FRAMEFIXUP
else {
msg("Could not update frame sizes: %s\n", this->FuncName);
}
#endif
#if SMP_DEBUG_FRAMEFIXUP
if ((0 < OtherPushesSize) && (0 < NewLocalsSize))
msg("Extra pushes found of size %d in %s\n", OtherPushesSize,
this->FuncName);
#endif
return Changed;
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
} // end of SMPFunction::MDFixFrameInfo()
// Emit the annotations describing the regions of the stack frame.
void SMPFunction::EmitStackFrameAnnotations(FILE *AnnotFile, list<SMPInstr>::iterator Instr) {
ea_t addr = Instr->GetAddr();
if (0 < IncomingArgsSize)
qfprintf(AnnotFile, "%x %d INARGS STACK esp + %d %s \n",
addr, IncomingArgsSize,
(LocalVarsSize + CalleeSavedRegsSize + RetAddrSize),
Instr->GetDisasm());
if (0 < RetAddrSize)
qfprintf(AnnotFile, "%x %d MEMORYHOLE STACK esp + %d ReturnAddress \n",
addr, RetAddrSize, (LocalVarsSize + CalleeSavedRegsSize));
if (0 < CalleeSavedRegsSize)
qfprintf(AnnotFile, "%x %d MEMORYHOLE STACK esp + %d CalleeSavedRegs \n",
addr, CalleeSavedRegsSize, LocalVarsSize);
if (0 < LocalVarsSize)
qfprintf(AnnotFile, "%x %d LOCALFRAME STACK esp + %d LocalVars \n",
addr, LocalVarsSize, 0);
return;
} // end of SMPFunction::EmitStackFrameAnnotations()
// Main data flow analysis driver. Goes through the function and
// fills all objects for instructions, basic blocks, and the function
// itself.
void SMPFunction::Analyze(void) {
list<SMPInstr>::iterator FirstInBlock = this->Instrs.end();
// For starting a basic block
list<SMPInstr>::iterator LastInBlock = this->Instrs.end();
// Terminating a basic block
#if SMP_DEBUG_CONTROLFLOW
msg("Entering SMPFunction::Analyze.\n");
#endif
// Get some basic info from the FuncInfo structure.
this->Size = this->FuncInfo->endEA - this->FuncInfo->startEA;
this->UseFP = (0 != (this->FuncInfo->flags & (FUNC_FRAME | FUNC_BOTTOMBP)));
this->StaticFunc = (0 != (this->FuncInfo->flags & FUNC_STATIC));
get_func_name(this->FuncInfo->startEA, this->FuncName,
sizeof(this->FuncName) - 1);
#if SMP_DEBUG_CONTROLFLOW
msg("SMPFunction::Analyze: got basic info.\n");
#endif
// Cycle through all chunks that belong to the function.
func_tail_iterator_t FuncTail(this->FuncInfo);
size_t ChunkCounter = 0;
for (bool ChunkOK = FuncTail.main(); ChunkOK; ChunkOK = FuncTail.next()) {
const area_t &CurrChunk = FuncTail.chunk();
++ChunkCounter;
#if SMP_DEBUG_CHUNKS
if (1 < ChunkCounter)
msg("Found tail chunk for %s\n", this->FuncName);
#endif
// Build the instruction and block lists for the function.
for (ea_t addr = CurrChunk.startEA; addr < CurrChunk.endEA;
addr = get_item_end(addr)) {
flags_t InstrFlags = getFlags(addr);
if (isHead(InstrFlags) && isCode(InstrFlags)) {
SMPInstr CurrInst = SMPInstr(addr);
// Fill in the instruction data members.
#if SMP_DEBUG_CONTROLFLOW
msg("SMPFunction::Analyze: calling CurrInst::Analyze.\n");
#endif
CurrInst.Analyze();
if (SMPBinaryDebug) {
msg("Disasm: %s \n", CurrInst.GetDisasm());
}
if (CurrInst.GetDataFlowType() == INDIR_CALL)
this->IndirectCalls = true;
// Before we insert the instruction into the instruction
// list, determine if it is a jump target that does not
// follow a basic block terminator. This is the special case
// of a CASE in a SWITCH that falls through into another
// CASE, for example. The first sequence of statements
// was not terminated by a C "break;" statement, so it
// looks like straight line code, but there is an entry
// point at the beginning of the second CASE sequence and
// we have to split basic blocks at the entry point.
if ((FirstInBlock != this->Instrs.end())
&& CurrInst.IsJumpTarget()) {
#if SMP_DEBUG_CONTROLFLOW
msg("SMPFunction::Analyze: hit special jump target case.\n");
#endif
LastInBlock = --(this->Instrs.end());
SMPBasicBlock CurrBlock = SMPBasicBlock(FirstInBlock,
LastInBlock);
CurrBlock.Analyze();
// If not the first chunk in the function, it is a shared
// tail chunk.
if (ChunkCounter > 1) {
CurrBlock.SetShared();
}
FirstInBlock = this->Instrs.end();
LastInBlock = this->Instrs.end();
this->Blocks.push_back(CurrBlock);
}
#if SMP_DEBUG_CONTROLFLOW
msg("SMPFunction::Analyze: putting CurrInst on list.\n");
#endif
// Insert instruction at end of list.
this->Instrs.push_back(CurrInst);
// Find basic block leaders and terminators.
if (FirstInBlock == this->Instrs.end()) {
#if SMP_DEBUG_CONTROLFLOW
msg("SMPFunction::Analyze: setting FirstInBlock.\n");
#endif
FirstInBlock = --(this->Instrs.end());
}
if (CurrInst.IsBasicBlockTerminator()) {
#if SMP_DEBUG_CONTROLFLOW
msg("SMPFunction::Analyze: found block terminator.\n");
#endif
LastInBlock = --(this->Instrs.end());
SMPBasicBlock CurrBlock = SMPBasicBlock(FirstInBlock, LastInBlock);
CurrBlock.Analyze();
// If not the first chunk in the function, it is a shared
// tail chunk.
if (ChunkCounter > 1) {
CurrBlock.SetShared();
}
FirstInBlock = this->Instrs.end();
LastInBlock = this->Instrs.end();
this->Blocks.push_back(CurrBlock);
}
} // end if (isHead(InstrFlags) && isCode(InstrFlags)
} // end for (ea_t addr = FuncInfo->startEA; ... )
// Handle the special case in which a function does not terminate
// with a return instruction or any other basic block terminator.
// Sometimes IDA Pro sees a call to a NORET function and decides
// to not include the dead code after it in the function. That
// dead code includes the return instruction, so the function no
// longer includes a return instruction and terminates with a CALL.
if (FirstInBlock != this->Instrs.end()) {
LastInBlock = --(this->Instrs.end());
SMPBasicBlock CurrBlock = SMPBasicBlock(FirstInBlock, LastInBlock);
CurrBlock.Analyze();
// If not the first chunk in the function, it is a shared
// tail chunk.
if (ChunkCounter > 1) {
CurrBlock.SetShared();
}
FirstInBlock = this->Instrs.end();
LastInBlock = this->Instrs.end();
this->Blocks.push_back(CurrBlock);
}
} // end for (bool ChunkOK = ...)
#if SMP_DEBUG_CONTROLFLOW
msg("SMPFunction::Analyze: set stack frame info.\n");
#endif
// Figure out the stack frame and related info.
this->SetStackFrameInfo();
return;
} // end of SMPFunction::Analyze()
// Emit all annotations for the function, including all per-instruction
// annotations.
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
void SMPFunction::EmitAnnotations(FILE *AnnotFile) {
// Emit annotation for the function as a whole.
if (this->StaticFunc) {
qfprintf(AnnotFile, "%x %d FUNC LOCAL %s ", FuncInfo->startEA,
this->Size, this->FuncName);
}
else {
qfprintf(AnnotFile, "%x %d FUNC GLOBAL %s ", FuncInfo->startEA,
this->Size, this->FuncName);
}
if (this->UseFP) {
qfprintf(AnnotFile, "USEFP ");
}
else {
qfprintf(AnnotFile, "NOFP ");
}
if (this->FuncInfo->does_return()) {
qfprintf(AnnotFile, "\n");
}
else {
qfprintf(AnnotFile, "NORET \n");
}
// Loop through all instructions in the function.
// Output optimization annotations for those
// instructions that do not require full computation
// of their memory metadata by the Memory Monitor SDT.
list<SMPInstr>::iterator CurrInst;
bool AllocSeen = false; // Reached LocalVarsAllocInstr yet?
bool DeallocTrigger = false;
for (CurrInst = Instrs.begin(); CurrInst != Instrs.end(); ++CurrInst) {
ea_t addr = CurrInst->GetAddr();
if (this->LocalVarsAllocInstr == addr) {
this->EmitStackFrameAnnotations(AnnotFile, CurrInst);
}
// If this is the instruction which deallocated space
// for local variables, we set a flag to remind us to
// emit an annotation on the next instruction.
// mmStrata wants the instruction AFTER the
// deallocating instruction, so that it processes
// the deallocation after it happens. It inserts
// instrumentation before an instruction, not
// after, so it will insert the deallocating
// instrumentation before the first POP of callee-saved regs,
// if there are any, or before the return, otherwise.
if (addr == LocalVarsDeallocInstr) {
DeallocTrigger = true;
}
else if (DeallocTrigger) { // Time for annotation
qfprintf(AnnotFile, "%x %d DEALLOC STACK esp - %d %s\n", addr,
LocalVarsSize, LocalVarsSize, CurrInst->GetDisasm());
CurrInst->EmitAnnotations(this->UseFP, AllocSeen, AnnotFile);
} // end for (ea_t addr = FuncInfo->startEA; ...)
return;
} // end of SMPFunction::EmitAnnotations()
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
// Initialize the DFACategory[] array to define instruction classes
// for the purposes of data flow analysis.
void InitDFACategory(void) {
// Default category is 0, not the start or end of a basic block.
(void) memset(DFACategory, 0, sizeof(DFACategory));
DFACategory[NN_call] = CALL; // Call Procedure
DFACategory[NN_callfi] = INDIR_CALL; // Indirect Call Far Procedure
DFACategory[NN_callni] = INDIR_CALL; // Indirect Call Near Procedure
DFACategory[NN_hlt] = HALT; // Halt
DFACategory[NN_int] = CALL; // Call to Interrupt Procedure
DFACategory[NN_into] = CALL; // Call to Interrupt Procedure if Overflow Flag = 1
DFACategory[NN_int3] = CALL; // Trap to Debugger
DFACategory[NN_iretw] = RETURN; // Interrupt Return
DFACategory[NN_iret] = RETURN; // Interrupt Return
DFACategory[NN_iretd] = RETURN; // Interrupt Return (use32)
DFACategory[NN_iretq] = RETURN; // Interrupt Return (use64)
DFACategory[NN_ja] = COND_BRANCH; // Jump if Above (CF=0 & ZF=0)
DFACategory[NN_jae] = COND_BRANCH; // Jump if Above or Equal (CF=0)
DFACategory[NN_jb] = COND_BRANCH; // Jump if Below (CF=1)
DFACategory[NN_jbe] = COND_BRANCH; // Jump if Below or Equal (CF=1 | ZF=1)
DFACategory[NN_jc] = COND_BRANCH; // Jump if Carry (CF=1)
DFACategory[NN_jcxz] = COND_BRANCH; // Jump if CX is 0
DFACategory[NN_jecxz] = COND_BRANCH; // Jump if ECX is 0
DFACategory[NN_jrcxz] = COND_BRANCH; // Jump if RCX is 0
DFACategory[NN_je] = COND_BRANCH; // Jump if Equal (ZF=1)
DFACategory[NN_jg] = COND_BRANCH; // Jump if Greater (ZF=0 & SF=OF)
DFACategory[NN_jge] = COND_BRANCH; // Jump if Greater or Equal (SF=OF)
DFACategory[NN_jl] = COND_BRANCH; // Jump if Less (SF!=OF)
DFACategory[NN_jle] = COND_BRANCH; // Jump if Less or Equal (ZF=1 | SF!=OF)
DFACategory[NN_jna] = COND_BRANCH; // Jump if Not Above (CF=1 | ZF=1)
DFACategory[NN_jnae] = COND_BRANCH; // Jump if Not Above or Equal (CF=1)
DFACategory[NN_jnb] = COND_BRANCH; // Jump if Not Below (CF=0)
DFACategory[NN_jnbe] = COND_BRANCH; // Jump if Not Below or Equal (CF=0 & ZF=0)
DFACategory[NN_jnc] = COND_BRANCH; // Jump if Not Carry (CF=0)
DFACategory[NN_jne] = COND_BRANCH; // Jump if Not Equal (ZF=0)
DFACategory[NN_jng] = COND_BRANCH; // Jump if Not Greater (ZF=1 | SF!=OF)
DFACategory[NN_jnge] = COND_BRANCH; // Jump if Not Greater or Equal (ZF=1)
DFACategory[NN_jnl] = COND_BRANCH; // Jump if Not Less (SF=OF)
DFACategory[NN_jnle] = COND_BRANCH; // Jump if Not Less or Equal (ZF=0 & SF=OF)
DFACategory[NN_jno] = COND_BRANCH; // Jump if Not Overflow (OF=0)
DFACategory[NN_jnp] = COND_BRANCH; // Jump if Not Parity (PF=0)
DFACategory[NN_jns] = COND_BRANCH; // Jump if Not Sign (SF=0)
DFACategory[NN_jnz] = COND_BRANCH; // Jump if Not Zero (ZF=0)
DFACategory[NN_jo] = COND_BRANCH; // Jump if Overflow (OF=1)
DFACategory[NN_jp] = COND_BRANCH; // Jump if Parity (PF=1)
DFACategory[NN_jpe] = COND_BRANCH; // Jump if Parity Even (PF=1)
DFACategory[NN_jpo] = COND_BRANCH; // Jump if Parity Odd (PF=0)
DFACategory[NN_js] = COND_BRANCH; // Jump if Sign (SF=1)
DFACategory[NN_jz] = COND_BRANCH; // Jump if Zero (ZF=1)
DFACategory[NN_jmp] = JUMP; // Jump
DFACategory[NN_jmpfi] = INDIR_JUMP; // Indirect Far Jump
DFACategory[NN_jmpni] = INDIR_JUMP; // Indirect Near Jump
DFACategory[NN_jmpshort] = JUMP; // Jump Short (only in 64-bit mode)
DFACategory[NN_loopw] = COND_BRANCH; // Loop while ECX != 0
DFACategory[NN_loop] = COND_BRANCH; // Loop while CX != 0
DFACategory[NN_loopd] = COND_BRANCH; // Loop while ECX != 0
DFACategory[NN_loopq] = COND_BRANCH; // Loop while RCX != 0
DFACategory[NN_loopwe] = COND_BRANCH; // Loop while CX != 0 and ZF=1
DFACategory[NN_loope] = COND_BRANCH; // Loop while rCX != 0 and ZF=1
DFACategory[NN_loopde] = COND_BRANCH; // Loop while ECX != 0 and ZF=1
DFACategory[NN_loopqe] = COND_BRANCH; // Loop while RCX != 0 and ZF=1
DFACategory[NN_loopwne] = COND_BRANCH; // Loop while CX != 0 and ZF=0
DFACategory[NN_loopne] = COND_BRANCH; // Loop while rCX != 0 and ZF=0
DFACategory[NN_loopdne] = COND_BRANCH; // Loop while ECX != 0 and ZF=0
DFACategory[NN_loopqne] = COND_BRANCH; // Loop while RCX != 0 and ZF=0
DFACategory[NN_retn] = RETURN; // Return Near from Procedure
DFACategory[NN_retf] = RETURN; // Return Far from Procedure
//
// Pentium instructions
//
DFACategory[NN_rsm] = HALT; // Resume from System Management Mode
// Pentium II instructions
DFACategory[NN_sysenter] = CALL; // Fast Transition to System Call Entry Point
DFACategory[NN_sysexit] = CALL; // Fast Transition from System Call Entry Point
// AMD syscall/sysret instructions NOTE: not AMD, found in Intel manual
DFACategory[NN_syscall] = CALL; // Low latency system call
DFACategory[NN_sysret] = CALL; // Return from system call
// VMX instructions
DFACategory[NN_vmcall] = INDIR_CALL; // Call to VM Monitor
return;
} // end InitDFACategory()