Newer
Older
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
if (DebugFlag) msg("Pred: %d\n", (*CurrPred)->GetNumber());
int PredIDOM = this->IDom.at((*CurrPred)->GetNumber());
if (DebugFlag) msg("Pred IDom: %d\n", PredIDOM);
if (SMP_BLOCKNUM_UNINIT != PredIDOM) {
NewIdom = (*CurrPred)->GetNumber();
break;
}
}
if (NewIdom == SMP_BLOCKNUM_UNINIT)
msg("Failure on NewIdom in ComputeIDoms for %s\n", this->GetFuncName());
assert(NewIdom != SMP_BLOCKNUM_UNINIT);
// Loop through all predecessors of block RPONum except block NewIdom.
// Set NewIdom to the intersection of its Dom set and the Doms set of
// each predecessor that has had its Doms set computed.
for (CurrPred = CurrBlock->GetFirstPred(); CurrPred != CurrBlock->GetLastPred(); ++CurrPred) {
int PredNum = (*CurrPred)->GetNumber();
if (DebugFlag) msg("PredNum: %d\n", PredNum);
int PredIDOM = this->IDom.at(PredNum);
if (DebugFlag) msg("PredIDOM: %d\n", PredIDOM);
if ((SMP_BLOCKNUM_UNINIT == PredIDOM) || (NewIdom == PredIDOM)) {
// Skip predecessors that have uncomputed Dom sets, or are the
// current NewIdom.
continue;
}
if (DebugFlag) msg("Old NewIdom value: %d\n", NewIdom);
NewIdom = this->IntersectDoms(PredNum, NewIdom);
if (DebugFlag) msg("New NewIdom value: %d\n", NewIdom);
}
// If NewIdom is not the value currently in vector IDom[], update the
// vector entry and set changed to true.
if (NewIdom != this->IDom.at(RPONum)) {
if (DebugFlag) msg("IDOM changed from %d to %d\n", this->IDom.at(RPONum), NewIdom);
this->IDom[RPONum] = NewIdom;
changed = true;
}
}
} while (changed);
return;
} // end of SMPFunction::ComputeIDoms()
// Compute dominance frontier sets for each block.
void SMPFunction::ComputeDomFrontiers(void) {
list<SMPBasicBlock>::iterator CurrBlock;
for (CurrBlock = this->Blocks.begin(); CurrBlock != this->Blocks.end(); ++CurrBlock) {
// We look only at join points in the CFG, as per Cooper/Torczon chapter 9.
if (1 < CurrBlock->GetNumPreds()) { // join point; more than 1 predecessor
int runner;
list<list<SMPBasicBlock>::iterator>::iterator CurrPred;
for (CurrPred = CurrBlock->GetFirstPred(); CurrPred != CurrBlock->GetLastPred(); ++CurrPred) {
// For each predecessor, we run up the IDom[] vector and add CurrBlock to the
// DomFrontier for all blocks that are between CurrPred and IDom[CurrBlock],
// not including IDom[CurrBlock] itself.
runner = (*CurrPred)->GetNumber();
while (runner != this->IDom.at(CurrBlock->GetNumber())) {
// Cooper/Harvey/Kennedy paper does not quite agree with the later
// text by Cooper/Torczon. Text says that the start node has no IDom
// in the example on pages 462-463, but it shows an IDOM for the
// root node in Figure 9.9 of value == itself. The first edition text
// on p.463 seems correct, as the start node dominates every node and
// thus should have no dominance frontier.
if (SMP_TOP_BLOCK == runner)
break;
(*CurrPred)->AddToDomFrontier(CurrBlock->GetNumber());
runner = this->IDom.at(runner);
}
} // end for all predecessors
} // end if join point
} // end for all blocks
return;
} // end of SMPFunction::ComputeDomFrontiers()
// Compute the GlobalNames set, which includes all operands that are used in more than
// one basic block. It is the union of all UpExposedSets of all blocks.
void SMPFunction::ComputeGlobalNames(void) {
set<op_t, LessOp>::iterator SetIter;
list<SMPBasicBlock>::iterator CurrBlock;
unsigned int index = 0;
if (this->Blocks.size() < 2)
return; // cannot have global names if there is only one block
for (CurrBlock = this->Blocks.begin(); CurrBlock != this->Blocks.end(); ++CurrBlock) {
for (SetIter = CurrBlock->GetFirstUpExposed(); SetIter != CurrBlock->GetLastUpExposed(); ++SetIter) {
op_t TempOp = *SetIter;
msg("Global Name: ");
PrintOneOperand(TempOp, 0, -1);
set<op_t, LessOp>::iterator AlreadyInSet = this->GlobalNames.find(TempOp);
if (AlreadyInSet != this->GlobalNames.end()) {
// Already in GlobalNames, so don't assign an index number or call insert.
msg(" already in GlobalNames.\n");
continue;
}
// The GlobalNames set will have the complete collection of operands that we are
// going to number in our SSA computations. We now assign an operand number
// within the op_t structure for each, so that we can index into the
// BlocksUsedIn[] vector, for example. This operand number is not to be
// confused with SSA numbers.
// We use the operand number field op_t.n for the lower 8 bits, and the offset
// fields op_t.offb:op_t.offo for the upper 16 bits. We are overwriting IDA
// values here, but operands in the data flow analysis sets should never be
// inserted back into the program anyway.
TempOp.n = (char) (index & 0x000000ff);
TempOp.offb = (char) ((index & 0x0000ff00) >> 8);
TempOp.offo = (char) ((index & 0x00ff0000) >> 16);
++index;
this->GlobalNames.insert(TempOp);
msg(" inserted as index %d\n", ExtractGlobalIndex(TempOp));
}
}
assert(16777215 >= this->GlobalNames.size()); // index fits in 24 bits
return;
} // end of SMPFunction::ComputeGlobalNames()
// For each item in GlobalNames, record the blocks that DEF the item.
void SMPFunction::ComputeBlocksDefinedIn(void) {
// Loop through all basic blocks and examine all DEFs. For Global DEFs, record
// the block number in BlocksDefinedIn. The VarKillSet records DEFs without
// having to examine every instruction.
list<SMPBasicBlock>::iterator CurrBlock;
this->BlocksDefinedIn.clear();
for (size_t i = 0; i < this->GlobalNames.size(); ++i) {
list<int> TempList;
this->BlocksDefinedIn.push_back(TempList);
}
msg("Number of GlobalNames: %d\n", this->GlobalNames.size());
for (CurrBlock = this->Blocks.begin(); CurrBlock != this->Blocks.end(); ++CurrBlock) {
set<op_t, LessOp>::iterator KillIter;
for (KillIter = CurrBlock->GetFirstVarKill(); KillIter != CurrBlock->GetLastVarKill(); ++KillIter) {
// If killed item is not a block-local item (it is global), record it.
set<op_t, LessOp>::iterator NameIter = this->GlobalNames.find(*KillIter);
if (NameIter != this->GlobalNames.end()) { // found in GlobalNames set
// We have a kill of a global name. Get index from three 8-bit fields.
unsigned int index = ExtractGlobalIndex(*NameIter);
#if 0
msg("VarKill item offo: %d offb: %d n: %d index: %d\n", NameIter->offo, NameIter->offb, NameIter->n, index);
#endif
assert(index < this->GlobalNames.size());
// index is a valid subscript for the BlocksDefinedIn vector. Push the
// current block number onto the list of blocks that define this global name.
this->BlocksDefinedIn[index].push_back(CurrBlock->GetNumber());
}
}
}
return;
} // end of SMPFunction::ComputeBlocksDefinedIn()
// Compute the phi functions at the entry point of each basic block that is a join point.
void SMPFunction::InsertPhiFunctions(void) {
set<op_t, LessOp>::iterator NameIter;
list<int> WorkList; // list of block numbers
for (NameIter = this->GlobalNames.begin(); NameIter != this->GlobalNames.end(); ++NameIter) {
int CurrNameIndex = (int) (ExtractGlobalIndex(*NameIter));
// Initialize the work list to all blocks that define the current name.
WorkList.clear();
list<int>::iterator WorkIter;
for (WorkIter = this->BlocksDefinedIn.at((size_t) CurrNameIndex).begin();
WorkIter != this->BlocksDefinedIn.at((size_t) CurrNameIndex).end();
++WorkIter) {
WorkList.push_back(*WorkIter);
}
// Iterate through the work list, inserting phi functions for the current name
// into all the blocks in the dominance frontier of each work list block.
// Insert into the work list each block that had a phi function added.
while (!WorkList.empty()) {
msg("WorkList size: %d\n", WorkList.size());
list<int>::iterator WorkIter = WorkList.begin();
while (WorkIter != WorkList.end()) {
set<int>::iterator DomFrontIter;
list<SMPBasicBlock>::iterator WorkBlock = this->RPOBlocks[*WorkIter];
for (DomFrontIter = WorkBlock->GetFirstDomFrontier();
DomFrontIter != WorkBlock->GetLastDomFrontier();
++DomFrontIter) {
list<SMPBasicBlock>::iterator PhiBlock = this->RPOBlocks[*DomFrontIter];
// Before inserting a phi function for the current name in *PhiBlock,
// see if the current name is LiveIn for *PhiBlock. If not, there
// is no need for the phi function. This check is what makes the SSA
// a fully pruned SSA.
if (PhiBlock->IsLiveIn(*NameIter)) {
size_t NumPreds = PhiBlock->GetNumPreds();
SMPPhiFunction CurrPhi(CurrNameIndex);
DefOrUse CurrRef(*NameIter);
for (size_t NumCopies = 0; NumCopies < NumPreds; ++NumCopies) {
CurrPhi.PushBack(CurrRef);
}
if (PhiBlock->AddPhi(CurrPhi)) {
// If not already in Phi set, new phi function was inserted.
WorkList.push_back(PhiBlock->GetNumber());
msg("Added phi for name %d at top of block %d\n", CurrNameIndex, PhiBlock->GetNumber());
}
}
} // end for all blocks in the dominance frontier
// Remove current block number from the work list
WorkIter = WorkList.erase(WorkIter);
} // end for all block numbers in the work list
} // end while the work list is not empty
} // end for all elements of the GlobalNames set
return;
} // end of SMPFunction::InsertPhiFunctions()
void SMPFunction::SSARenumber(void) {
// **!!** Get this into CVS and patch in the code later after final debugging
return;
}
// Emit all annotations for the function, including all per-instruction
// annotations.
void SMPFunction::EmitAnnotations(FILE *AnnotFile) {
// Emit annotation for the function as a whole.
if (this->StaticFunc) {
qfprintf(AnnotFile, "%x %d FUNC LOCAL %s ", this->FuncInfo.startEA,
this->Size, this->FuncName);
}
else {
qfprintf(AnnotFile, "%x %d FUNC GLOBAL %s ", this->FuncInfo.startEA,
this->Size, this->FuncName);
}
if (this->UseFP) {
qfprintf(AnnotFile, "USEFP ");
}
else {
qfprintf(AnnotFile, "NOFP ");
}
if (this->FuncInfo.does_return()) {
qfprintf(AnnotFile, "\n");
}
else {
qfprintf(AnnotFile, "NORET \n");
}
// Loop through all instructions in the function.
// Output optimization annotations for those
// instructions that do not require full computation
// of their memory metadata by the Memory Monitor SDT.
list<SMPInstr>::iterator CurrInst;
bool AllocSeen = false; // Reached LocalVarsAllocInstr yet?
bool DeallocTrigger = false;
for (CurrInst = Instrs.begin(); CurrInst != Instrs.end(); ++CurrInst) {
ea_t addr = CurrInst->GetAddr();
if (this->LocalVarsAllocInstr == addr) {
AllocSeen = true;
this->EmitStackFrameAnnotations(AnnotFile, CurrInst);
}
// If this is the instruction which deallocated space
// for local variables, we set a flag to remind us to
// emit an annotation on the next instruction.
// mmStrata wants the instruction AFTER the
// deallocating instruction, so that it processes
// the deallocation after it happens. It inserts
// instrumentation before an instruction, not
// after, so it will insert the deallocating
// instrumentation before the first POP of callee-saved regs,
// if there are any, or before the return, otherwise.
if (addr == LocalVarsDeallocInstr) {
DeallocTrigger = true;
}
else if (DeallocTrigger) { // Time for annotation
qfprintf(AnnotFile, "%x %d DEALLOC STACK esp - %d %s\n", addr,
LocalVarsSize, LocalVarsSize, CurrInst->GetDisasm());
DeallocTrigger = false;
}
CurrInst->EmitAnnotations(this->UseFP, AllocSeen, AnnotFile);
} // end for (ea_t addr = FuncInfo.startEA; ...)
return;
} // end of SMPFunction::EmitAnnotations()
// Debug output dump.
void SMPFunction::Dump(void) {
list<SMPBasicBlock>::iterator CurrBlock;
msg("Debug dump for function: %s\n", this->GetFuncName());
for (size_t index = 0; index < this->IDom.size(); ++index) {
msg("IDOM for %d: %d\n", index, this->IDom.at(index));
}
msg("Global names: \n");
set<op_t, LessOp>::iterator NameIter;
for (NameIter = this->GlobalNames.begin(); NameIter != this->GlobalNames.end(); ++NameIter) {
msg("index: %d ", ExtractGlobalIndex(*NameIter));
PrintOneOperand(*NameIter, 0, -1);
msg("\n");
}
msg("Blocks each name is defined in: \n");
for (size_t index = 0; index < this->BlocksDefinedIn.size(); ++index) {
msg("Name index: %d Blocks: ", index);
list<int>::iterator BlockIter;
for (BlockIter = this->BlocksDefinedIn.at(index).begin();
BlockIter != this->BlocksDefinedIn.at(index).end();
++BlockIter) {
msg("%d ", *BlockIter);
}
msg("\n");
}
for (CurrBlock = this->Blocks.begin(); CurrBlock != this->Blocks.end(); ++CurrBlock) {
// Dump out the function number and data flow sets before the instructions.
CurrBlock->Dump();
}
return;
} // end of SMPFunction::Dump()