Skip to content
Snippets Groups Projects
SMPFunction.cpp 311 KiB
Newer Older
		for (list<int>::iterator ChildIter = this->DomTree.at(HeadBlockNum).second.begin(); 
			ChildIter != this->DomTree.at(HeadBlockNum).second.end(); 
			++ChildIter) {
			int ChildBlockNum = (*ChildIter);
			if (this->DoesBlockDominateBlock(ChildBlockNum, TailBlockNum)) { // recurse depth-first
				FoundIt = true;
				break;
			}
		}
		return FoundIt;
	}
} // end of SMPFunction::DoesBlockDominateBlock()

// Is block (with block # BlockNum) inside any loop?
bool SMPFunction::IsBlockInAnyLoop(int BlockNum) {
	bool FoundInsideLoop = this->FuncLoopsByBlock.at((size_t)BlockNum).IsAnyBitSet();
	return FoundInsideLoop;
} // end of SMPFunction::IsBlockInAnyLoop()

// Is block (with block # BlockNum) inside loop # LoopNum?
bool SMPFunction::IsBlockInLoop(int BlockNum, size_t LoopNum) {
	return ((LoopNum < this->LoopCount) && (this->FuncLoopsByBlock.at((size_t) BlockNum).GetBit(LoopNum)));
} // end of SMPFunction::IsBlockInLoop()

// build list of loop numbers that BlockNum is part of.
void SMPFunction::BuildLoopList(int BlockNum, list<size_t> &LoopList) {
	size_t LoopIndex;
	for (LoopIndex = 0; LoopIndex < this->LoopCount; ++LoopIndex) {
		if (this->FuncLoopsByBlock.at((size_t) BlockNum).GetBit(LoopIndex)) {
			LoopList.push_back(LoopIndex);
		}
	}
	return;
} // end of SMPFunction::BuildLoopList()

// Helper for SSA subscript renumbering: return the next SSA number for the global name
//  and increment the SSACounter to prepare the next number. Push the returned number onto
//  the SSAStack for the global name.
int SMPFunction::SSANewNumber(size_t GlobNameIndex) {
	int Subscript = this->SSACounter.at(GlobNameIndex);
	++(this->SSACounter[GlobNameIndex]);
	this->SSAStack[GlobNameIndex].push_back(Subscript);
	return Subscript;
} // end of SMPFunction::SSANewNumber()

// Main helper for SSA subscript renumbering. Renumber within block throughout its phi
//  functions, then its DEFs and USEs, then its phi successors. Recurse then on all
//  successors in the dominator tree.
void SMPFunction::SSARename(int BlockNumber) {
	assert(0 <= BlockNumber);
	assert(BlockNumber < this->BlockCount);
	SMPBasicBlock *CurrBlock = this->RPOBlocks.at((size_t) BlockNumber);
	DumpFlag |=	(0 == strcmp("main", this->GetFuncName()));
	DumpFlag |= (0 == strcmp("dohanoi", this->GetFuncName()));
	DumpFlag |= (0 == strcmp("uw_frame_state_for", this->GetFuncName()));
	DumpFlag |= (0 == strcmp("_IO_sputbackc", this->GetFuncName()));
clc5q's avatar
clc5q committed
#endif
	if (DumpFlag) SMP_msg("Entered SSARename for block number %d\n", BlockNumber);

	// For each phi function at the top of the block, rename the DEF of the phi function
	//  using SSANewNumber() on the global name index.
	set<SMPPhiFunction, LessPhi>::iterator CurrPhi;
	list<SMPPhiFunction> TempPhiList;
	int GlobalNameIndex;
	for (CurrPhi = CurrBlock->GetFirstPhi(); CurrPhi != CurrBlock->GetLastPhi(); ++CurrPhi) {
		op_t PhiDefOp = CurrPhi->GetAnyOp();
		GlobalNameIndex = CurrPhi->GetIndex();
		assert(0 <= GlobalNameIndex);
		int NewSSANum = this->SSANewNumber((size_t) GlobalNameIndex);

		// Cannot change the C++ STL set item directly, as sets might become unordered.
		SMPPhiFunction TempPhi = (*CurrPhi);
		TempPhi.SetSSADef(NewSSANum);
		TempPhiList.push_back(TempPhi);
		if (o_reg == PhiDefOp.type) {
			if (DumpFlag && PhiDefOp.is_reg(R_ax)) {
				SMP_msg("New EAX Phi Def SSANum: %d Block %d\n", NewSSANum, BlockNumber);
			}
			// Map the final SSA number to the block number.
			int DefHashValue = HashGlobalNameAndSSA(PhiDefOp, NewSSANum);
			pair<int, ea_t> DefMapEntry(DefHashValue, CurrBlock->GetNumber());
			pair<map<int, ea_t>::iterator, bool> MapReturnValue;
			MapReturnValue = this->GlobalDefAddrBySSA.insert(DefMapEntry);
			assert(MapReturnValue.second);
		}
	}
	// Go back through the Phi function set and replace the items that need to be updated.
	list<SMPPhiFunction>::iterator TempIter;
	for (TempIter = TempPhiList.begin(); TempIter != TempPhiList.end(); ++TempIter) {
		// Use the op_t from the first phi use, because they are all the same.
		bool Erased = CurrBlock->ErasePhi(TempIter->GetPhiRef(0).GetOp());
		assert(Erased);
		// Now we can add back the phi function that had the DEF SSA number changed.
		bool Added = CurrBlock->AddPhi(*TempIter);
		assert(Added);
	}
	TempPhiList.clear();
	if (DumpFlag) SMP_msg("Processed phi functions at top.\n");

	// For each instruction in the block, rename all global USEs and then all global DEFs.
	list<SMPInstr *>::iterator InstIter;
	SMPInstr *CurrInst;
	for (InstIter = CurrBlock->GetFirstInstr(); InstIter != CurrBlock->GetLastInstr(); ++InstIter) {
		CurrInst = (*InstIter);
		set<DefOrUse, LessDefUse>::iterator CurrUse = CurrInst->GetFirstUse();
		ea_t InstAddr = CurrInst->GetAddr(); // for debugging break points
		while (CurrUse != CurrInst->GetLastUse()) {
			// See if Use is a global name.
			set<op_t, LessOp>::iterator GlobIter = this->GlobalNames.find(UseOp);
			if (GlobIter != this->GlobalNames.end()) { // found it
				unsigned int GlobIndex = ExtractGlobalIndex(*GlobIter);
				if (GlobIndex > this->SSAStack.size()) {
					// Get some debug info out to the log file before we crash.
					SMP_msg("Bad GlobIndex: %d at %x in %s\n", GlobIndex, InstAddr, this->GetFuncName());
					exit(EXIT_FAILURE);
				}
				// Set the SSA number for this use to the top of stack SSA # (back())
				int NewSSANum;
				if (this->SSAStack.at(GlobIndex).empty()) {
					// No top of stack entry to read.
#if SMP_DEBUG_UNINITIALIZED_SSA_NAMES
					if (!CurrInst->MDIsPopInstr() && (o_reg == UseOp.type)) {
						// POP uses the stack offset and generates spurious
						//  uninitialized variable messages for [esp+0].
						SMP_msg("WARNING: function %s : Use of uninitialized variable: ",
						SMP_msg(" Block number: %d Address: %x Instruction: %s\n", BlockNumber,
							CurrInst->GetAddr(), CurrInst->GetDisasm());
#endif
					NewSSANum = SMP_SSA_UNINIT;
				}
				else {
					NewSSANum = this->SSAStack.at(GlobIndex).back();
				}
				CurrUse = CurrInst->SetUseSSA(UseOp, NewSSANum);
				if (DumpFlag && (o_reg == UseOp.type) && UseOp.is_reg(R_ax)) {
					SMP_msg("New EAX Use SSANum: %d at %x\n", NewSSANum, CurrInst->GetAddr());
		set<DefOrUse, LessDefUse>::iterator CurrDef = CurrInst->GetFirstDef();
		while (CurrDef != CurrInst->GetLastDef()) {
			// See if Def is a global name.
			set<op_t, LessOp>::iterator GlobIter = this->GlobalNames.find(DefOp);
			if (GlobIter != this->GlobalNames.end()) { // found it
				unsigned int GlobIndex = ExtractGlobalIndex(*GlobIter);
				// Set the SSA number for this DEF to the SSANewNumber top of stack
				int NewSSANum = this->SSANewNumber(GlobIndex);
				CurrDef = CurrInst->SetDefSSA(DefOp, NewSSANum);
				if (o_reg == DefOp.type) {
					if (DumpFlag && DefOp.is_reg(R_ax)) {
						SMP_msg("New EAX Def SSANum: %d at %x\n", NewSSANum, DefAddr);
					}

					// Map the final SSA number to the DEF address.
					int DefHashValue = HashGlobalNameAndSSA(DefOp, NewSSANum);
					pair<int, ea_t> DefMapEntry(DefHashValue, DefAddr);
					pair<map<int, ea_t>::iterator, bool> MapReturnValue;
					MapReturnValue = this->GlobalDefAddrBySSA.insert(DefMapEntry);
					assert(MapReturnValue.second);
				}
		} //  end for all DEFs
	} // end for all instructions
	if (DumpFlag) SMP_msg("Processed all instructions.\n");

	// For all control flow graph (not dominator tree) successors, fill in the current
	//  (outgoing) SSA number in the corresponding USE slot in the phi function, for all
	//  global names appearing in phi functions.
	list<SMPBasicBlock *>::iterator SuccIter;
	for (SuccIter = CurrBlock->GetFirstSucc(); SuccIter != CurrBlock->GetLastSucc(); ++SuccIter) {
		// What position in the Preds list of this successor is CurrBlock?
		int ListPos = (*SuccIter)->GetPredPosition(BlockNumber);
		assert(0 <= ListPos);

		// Go through all phi functions in this successor. At ListPos position in the
		//  incoming arguments for that phi function, set the SSA number to the SSA number
		//  in the top of stack entry for the global name associated with that phi function.
		set<SMPPhiFunction, LessPhi>::iterator CurrPhi;
		for (CurrPhi = (*SuccIter)->GetFirstPhi(); CurrPhi != (*SuccIter)->GetLastPhi(); ++CurrPhi) {
			int GlobIndex = CurrPhi->GetIndex();
			int CurrSSA;
			if (this->SSAStack.at(GlobIndex).empty()) {
				// No top of stack entry to read.
#if SMP_DEBUG_UNINITIALIZED_SSA_NAMES
				SMP_msg("WARNING: function %s : Path to use of uninitialized variable: ",
				PrintListOperand(CurrPhi->GetAnyOp());
				SMP_msg(" Block number: %d Successor block number: %d\n", BlockNumber,
					(*SuccIter)->GetNumber());
#endif
				CurrSSA = SMP_SSA_UNINIT;
			}
			else {
				CurrSSA = this->SSAStack.at(GlobIndex).back();  // fetch from top of stack
			}
			SMPPhiFunction TempPhi = (*CurrPhi);
			TempPhi.SetSSARef(ListPos, CurrSSA);
			TempPhiList.push_back(TempPhi);
			if (DumpFlag && (BlockNumber >= 3) && (BlockNumber <= 4)) {
				SMP_msg("BlockNumber: %d  ListPos: %d\n", BlockNumber, ListPos);
			}
		} // end for all phi functions in successor
		// Go back through the Phi function set and replace the items that need to be updated.
		for (TempIter = TempPhiList.begin(); TempIter != TempPhiList.end(); ++TempIter) {
			if (DumpFlag && (BlockNumber >= 3) && (BlockNumber <= 4)) {
				set<SMPPhiFunction, LessPhi>::iterator FoundPhi;
				FoundPhi = (*SuccIter)->FindPhi(TempIter->GetAnyOp());
				FoundPhi->Dump();
			}
			// Use the op_t from the first phi use, because they are all the same.
			bool Erased = (*SuccIter)->ErasePhi(TempIter->GetPhiRef(0).GetOp());
			assert(Erased);
			// Now we can add back the phi function that had one SSA number changed.
			bool Added = (*SuccIter)->AddPhi(*TempIter);
			assert(Added);
			if (DumpFlag && (BlockNumber >= 3) && (BlockNumber <= 4)) {
				set<SMPPhiFunction, LessPhi>::iterator FoundPhi;
				FoundPhi = (*SuccIter)->FindPhi(TempIter->GetAnyOp());
				FoundPhi->Dump();
			}
		}
		TempPhiList.clear();
	} // end for all successors of CurrBlock
	if (DumpFlag) SMP_msg("Processed successor phi functions.\n");

	// For each successor in the dominator tree, recurse.
	list<int>::iterator ChildIter;
	for (ChildIter = this->DomTree[BlockNumber].second.begin();
		ChildIter != this->DomTree[BlockNumber].second.end();
		++ChildIter) {
			this->SSARename(*ChildIter);
	}
	if (DumpFlag) SMP_msg("Finished recursion.\n");

	// Pop off all SSAStack entries pushed during this block. I.e. for each global name,
	//  pop its SSAStack once per DEF and once per phi function in this block.
	for (CurrPhi = CurrBlock->GetFirstPhi(); CurrPhi != CurrBlock->GetLastPhi(); ++CurrPhi) {
		GlobalNameIndex = CurrPhi->GetIndex();
		this->SSAStack.at((size_t) GlobalNameIndex).pop_back();
	}
	if (DumpFlag) SMP_msg("Popped off entries due to phi functions.\n");
	for (InstIter = CurrBlock->GetFirstInstr(); InstIter != CurrBlock->GetLastInstr(); ++InstIter) {
		set<DefOrUse, LessDefUse>::iterator CurrDef;
		CurrInst = (*InstIter);
		for (CurrDef = CurrInst->GetFirstDef(); CurrDef != CurrInst->GetLastDef(); ++CurrDef) {
			// See if DEF is a global name.
			set<op_t, LessOp>::iterator GlobIter = this->GlobalNames.find(CurrDef->GetOp());
			if (GlobIter != this->GlobalNames.end()) { // found it
				unsigned int GlobIndex = ExtractGlobalIndex(*GlobIter);
				this->SSAStack.at((size_t) GlobIndex).pop_back();
			}
		} //  end for all DEFs
	} // end for all instructions
		SMP_msg("Popped off entries due to instructions.\n");

	return;
} // end of SMPFunction::SSARename()

// Main driver of SSA subscript renumbering.
void SMPFunction::SSARenumber(void) {
clc5q's avatar
clc5q committed
#if 0
	DumpFlag |= (0 == strcmp("_IO_sputbackc", this->GetFuncName()));
#endif

	if (0 >= this->GlobalNames.size())
		return;  // no names to renumber

	// Initialize stacks and counters of SSA numbers.
	size_t GlobIndex;
	assert(0 == this->SSACounter.size());
	for (GlobIndex = 0; GlobIndex < this->GlobalNames.size(); ++GlobIndex) {
		list<int> DummyList;
		this->SSACounter.push_back(0);
		this->SSAStack.push_back(DummyList);
	}
	// Recurse through the dominator tree starting with node 0.
	this->SSARename(0);
} // end of SMPFunction::SSARenumber()

// Emit debugging output for analyzing time spent in InferTypes() ?
#define SMP_ANALYZE_INFER_TYPES_TIME 0

// Main driver for the type inference system.
void SMPFunction::InferTypes(bool FirstIter) {
	// The type inference system is an iteration over four analysis steps, until
	//  a fixed point is reached:
	// 1) Within an instruction, set types of operators based on the operator type,
	//     the operand types, and the instruction type category, and propagate the
	//     type of the SMP_ASSIGN operator to its DEF.
	// 2) Propagate the type of a DEF along its SSA chain to all USEs of that SSA name.
	// 3) If all USEs of an SSA name have the same type, but the DEF has no type,
clc5q's avatar
clc5q committed
	//     then infer that the DEF must have the same type.
	// 4) If all references to a memory location have the same type, mark that memory
	//     location as having that type, if no aliasing occurs.
	//
	// The type inference system will mark DEFs and USEs in each instruction's DEF and USE
	//  sets with an inferred type. This inference on USEs is not conclusive for other USEs
	//  outside of that instruction. For example, a pointer could be read in from memory
	//  and used as a pointer, then hashed using an arithmetic operation. If the arithmetic
	//  operation always treats its source operands as NUMERIC and produces a NUMERIC
	//  result, e.g. SMP_BITWISE_XOR, then the USE of that pointer is NUMERIC within
	//  this xor instruction. If the DEF at the beginning of the SSA chain for the pointer
	//  is eventually marked as POINTER, then all USEs in the chain will be marked POINTER
	//  as well (see step 2 above). This inconsistency along the USE chain is perfectly
	//  acceptable in our type system. It is important to mark the USEs according to how
	//  we observe them being used, because consistent USEs will propagate back up to
	//  the DEF in step 3 above.

	bool changed;
clc5q's avatar
clc5q committed
	bool NewChange = false;
#if SMP_ANALYZE_INFER_TYPES_TIME
	bool DebugFlag2 = false;
	DebugFlag2 |= (0 == strcmp("Option", this->GetFuncName()));
	long NewChangeCount;
	long IterationCount = 0;
#endif
#if SMP_DEBUG_TYPE_INFERENCE
	DebugFlag |= (0 == strcmp("__libc_csu_init", this->GetFuncName()));
	list<SMPInstr *>::iterator InstIter;
	SMPInstr *CurrInst;
clc5q's avatar
clc5q committed
	set<DefOrUse, LessDefUse>::iterator CurrDef;
	set<DefOrUse, LessDefUse>::iterator NextDef;
	list<SMPBasicBlock *>::iterator BlockIter;
	SMPBasicBlock *CurrBlock;
	if (DebugFlag) {
		this->Dump();
	}
	// One time only: Set the types of immediate values, flags register, stack and frame
	//  pointers, and floating point registers.
		for (InstIter = this->Instrs.begin(); InstIter != this->Instrs.end(); ++InstIter) {
			CurrInst = (*InstIter);
				SMP_msg("SetImmedTypes for inst at %x: %s\n", CurrInst->GetAddr(), CurrInst->GetDisasm());
			CurrInst->SetImmedTypes(this->UseFP);
			// Infer signedness, bit width, and other info from the nature of the instruction
			//  (e.g. loads from stack locations whose signedness has been inferred earlier
			//  in FindOutGoingArgSize(), or inherently signed arithmetic opcodes like signed
			//  or unsigned multiplies and divides).
			CurrInst->MDSetWidthSignInfo(this->UseFP);
		}
		// Check for signedness inferences from conditional branches at the end of blocks.
		for (BlockIter = this->Blocks.begin(); BlockIter != this->Blocks.end(); ++BlockIter) {
			CurrBlock = (*BlockIter);
			CurrBlock->MarkBranchSignedness();

		// Find counter variables (e.g. init to zero or small constant, then just add or subtract small
		//  constant values. These cannot be POINTER and can be marked as NUMERIC.
		this->FindCounterVariables();
	// Iterate until no more changes: set types in DEF and USE lists based on RTL
clc5q's avatar
clc5q committed
	//  operators and the instruction category, SSA DEF-USE chains, etc.
#if SMP_ANALYZE_INFER_TYPES_TIME
		if (DebugFlag2)
			++IterationCount;
#endif
#if SMP_ANALYZE_INFER_TYPES_TIME
			if (DebugFlag2)
				NewChangeCount = 0;
#endif
			// Step one: Infer types within instructions, context free.
			// Step two, propagating DEF types to all USEs, happens within step one
			//  whenever a DEF type is set for the first time.
			for (InstIter = this->Instrs.begin(); InstIter != this->Instrs.end(); ++InstIter) {
				CurrInst = (*InstIter);
				if (DebugFlag) SMP_msg("Inferring types for %s\n", CurrInst->GetDisasm());
				NewChange = CurrInst->InferTypes();
				changed = (changed || NewChange);
#if SMP_ANALYZE_INFER_TYPES_TIME
				if (DebugFlag2 && NewChange) {
					ea_t InstAddr = CurrInst->GetAddr();
#endif
			}
#if SMP_ANALYZE_INFER_TYPES_TIME
			if (DebugFlag2) {
				SMP_msg(" InferTypes iteration: %ld NewChangeCount: %ld \n", IterationCount, NewChangeCount);
		if (DebugFlag) SMP_msg("Finished type inference steps 1 and 2.\n");
clc5q's avatar
clc5q committed
		// Step three: If all USEs of an SSA name have the same type, but the DEF has no
		//  type, then infer that the DEF must have the same type.
		this->TypedDefs = 0;
		this->UntypedDefs = 0;
		this->TypedPhiDefs = 0;
		this->UntypedPhiDefs = 0;
		// This step of the type inference might converge faster if we used a reverse iterator
		//  to go through the instructions, because we could infer a DEF, propagate it to
		//  the right hand side by making SMPInstr::InferOperatorType() public and calling it
		//  on the SMP_ASSIGN operator after we set the type of the left hand side (DEF). Any
		//  additional DEF inferences would be triggered mostly in the upwards direction by
		//  setting the type of one or more USEs in the current instruction. How much time gain
		//  could be achieved by doing this sequence is questionable.  !!!!****!!!!****
		for (InstIter = this->Instrs.begin(); InstIter != this->Instrs.end(); ++InstIter) {
			CurrInst = (*InstIter);
clc5q's avatar
clc5q committed
			// Find any DEF that still has type UNINIT.
			CurrDef = CurrInst->GetFirstDef();
			while (CurrDef != CurrInst->GetLastDef()) {
				// Set erase() and insert() are needed to change types of DEFs, so
				//  get hold of the next iterator value now.
				NextDef = CurrDef;
				++NextDef;
				if (UNINIT != CurrDef->GetType()) {
					++(this->TypedDefs);
				}
				else {
clc5q's avatar
clc5q committed
					op_t DefOp = CurrDef->GetOp();
					bool MemDef = (DefOp.type != o_reg);
					bool AliasedMemWrite = (MemDef && CurrDef->HasIndirectWrite());
					++(this->UntypedDefs);
					if (MDIsIndirectMemoryOpnd(DefOp, this->UseFP)  // relax this?
						|| (o_mem == DefOp.type)
						// Don't want to infer along DEF-USE chains for indirect
						//  memory accesses until we have alias analysis.
						++CurrDef;
						continue;
					}
clc5q's avatar
clc5q committed
					ea_t DefAddr = CurrInst->GetAddr();
					// Call inference method based on whether it is a block-local
					//  name or a global name.
					CurrBlock = CurrInst->GetBlock();
					if (CurrBlock->IsLocalName(DefOp)) {
clc5q's avatar
clc5q committed
						set<op_t, LessOp>::iterator NameIter;
						NameIter = CurrBlock->FindLocalName(DefOp);
						assert(CurrBlock->GetLastLocalName() != NameIter);
clc5q's avatar
clc5q committed
						unsigned int LocIndex = ExtractGlobalIndex(*NameIter);
						NewChange = CurrBlock->InferLocalDefType(DefOp, LocIndex, DefAddr);
						if (NewChange) {
							--(this->UntypedDefs);
							++(this->TypedDefs);
						}
clc5q's avatar
clc5q committed
						changed = (changed || NewChange);
					}
					else {
						// global name
						bool CallInst = ((CALL == CurrInst->GetDataFlowType())
							|| (INDIR_CALL == CurrInst->GetDataFlowType()));
						int DefSSANum = CurrDef->GetSSANum();
						SMPOperandType DefType = UNINIT;
						DefType = this->InferGlobalDefType(DefOp,
							DefSSANum, CurrBlock, CallInst, DefAddr);
						if (IsNotEqType(UNINIT, DefType)) {
							CurrDef = CurrInst->SetDefType(DefOp, DefType);
							--(this->UntypedDefs);
							++(this->TypedDefs);
							NewChange = true;
							// If we have one or more USEs of type POINTER and the
							//  other USEs are UNINIT, then InferGlobalDefType() will
							//  infer that it is a POINTER. We want to propagate POINTER
							//  to all the USEs now.
							if (IsDataPtr(DefType)) {
								CurrInst->GetBlock()->PropagateGlobalDefType(DefOp, DefType, DefSSANum, IsMemOperand(DefOp));
							}
clc5q's avatar
clc5q committed
						changed = (changed || NewChange);
					} // end if local name ... else ...
				} // end if (UNINIT != CurrDef->GetType()) .. else ...
clc5q's avatar
clc5q committed
				CurrDef = NextDef;
			} // end while all DEFs in the DEF set
		} // end for all instructions
		if (DebugFlag) SMP_msg("Finished type inference step 3.\n");
		for (BlockIter = this->Blocks.begin(); BlockIter != this->Blocks.end(); ++BlockIter) {
			CurrBlock = (*BlockIter);
			changed |= CurrBlock->InferAllPhiDefTypes();
		if (DebugFlag) SMP_msg("Finished unconditional phi type inference.\n");

#if SMP_CONDITIONAL_TYPE_PROPAGATION
		if (!changed) { // Try conditional type propagation
			changed |= this->ConditionalTypePropagation();
#if SMP_DEBUG_TYPE_INFERENCE
			if (DebugFlag) {
				SMP_msg("changed = %d after conditional type propagation.\n", changed);
	} while (changed);
	// With type inference finished, infer signedness from the types, e.g.
	//  POINTER and CODEPOINTER types must be UNSIGNED.
	if (FirstIter) { // Don't want profiler-dependent signedness in the system yet.
		for (InstIter = this->Instrs.begin(); InstIter != this->Instrs.end(); ++InstIter) {
			(*InstIter)->InferSignednessFromSMPTypes(this->UsesFramePointer());
	// Record the meet of all register types that reach RETURN instructions.
	this->MDFindReturnTypes();
	return;
} // end of SMPFunction::InferTypes()
// determine signedness and width info for all operands
void SMPFunction::InferFGInfo(void) {
	bool changed, NewChange;
	unsigned short IterCount = 0;
	list<SMPInstr *>::iterator InstIter;
	list<SMPBasicBlock *>::iterator BlockIter;
	SMPBasicBlock *CurrBlock;
		for (InstIter = this->Instrs.begin(); InstIter != this->Instrs.end(); ++InstIter) {
			SMPInstr *CurrInst = (*InstIter);
			NewChange = CurrInst->InferFGInfo(IterCount);
			changed = (changed || NewChange);
		}
			for (BlockIter = this->Blocks.begin(); BlockIter != this->Blocks.end(); ++BlockIter) {
				CurrBlock = (*BlockIter);
#if STARS_AGGRESSIVE_SIGNEDNESS_PROPAGATION
		if (!changed) {
			changed = this->PropagateSignedness();
		}
#endif
	return;
} // end of SMPFunction::InferFGInfo()

// Apply the profiler information to this function once we've inferred everything we can about it.
void SMPFunction::ApplyProfilerInformation(ProfilerInformation* pi)
{
	assert(pi);

	// If no profiler annotations are available, save time.
	if (0 == pi->GetProfilerAnnotationCount())
		return;

	list<SMPInstr *>::iterator InstIter;
	set<DefOrUse, LessDefUse>::iterator CurrDef, NextDef;
	
	bool DebugFlag = false;
clc5q's avatar
clc5q committed
#if SMP_DEBUG_PROFILED_TYPE_INFERENCE
	DebugFlag |= (0 == strcmp("dohanoi", this->GetFuncName()));
#endif

	// for each instruction in this function 
	for (InstIter = this->Instrs.begin(); InstIter != this->Instrs.end(); ++InstIter) {
		SMPInstr *CurrInst = (*InstIter);
		// lookup whether a load at this instruction was profiled as always numeric 
		InstructionInformation* ii = pi->GetInfo(CurrInst->GetAddr());
clc5q's avatar
clc5q committed
		if (ii && DebugFlag)
			SMP_msg("Found instruction information for %x\n", CurrInst->GetAddr());
clc5q's avatar
clc5q committed
		if (ii && ii->isNumeric()) {
#if SMP_DEBUG_PROFILED_TYPE_INFERENCE
			SMP_msg("Found instruction information for %x and it's numeric!\n", CurrInst->GetAddr());
clc5q's avatar
clc5q committed
#endif
			CurrInst->UpdateMemLoadTypes((SMPOperandType)(NUMERIC|PROF_BASE));
		}

		// lookup whether this instruction has been profiled as an indirect call
clc5q's avatar
clc5q committed
		set<ea_t> indirect_call_targets = pi->GetIndirectCallTargets(CurrInst->GetAddr());
clc5q's avatar
clc5q committed
		for (set<ea_t>::iterator ict_iter = indirect_call_targets.begin();
			ict_iter != indirect_call_targets.end();
			++ict_iter)
clc5q's avatar
clc5q committed
			ea_t target = *ict_iter;
			if (vector_exists(target, IndirectCallTargets))
				IndirectCallTargets.push_back(target);
			if (vector_exists(target, AllCallTargets))
				AllCallTargets.push_back(target);

		}

}	// end of SMPFunction::ApplyProfilerInformation

// For the UNINIT type DEF DefOp, see if all its USEs have a single type.
//  If so, set the DEF to that type and return type,
//  else return UNINIT.
// If DefAddr == BADADDR, then the DEF is in a Phi function, not an instruction.
SMPOperandType SMPFunction::InferGlobalDefType(op_t DefOp, int SSANum, SMPBasicBlock *DefBlock, bool CallInst, ea_t DefAddr) {
	bool DebugFlag = false;
	bool FoundNumeric = false;
	bool FoundPointer = false;
	bool FoundUnknown = false;
	bool FoundUninit = false;
#if SMP_DEBUG_TYPE_INFERENCE
	DebugFlag |= (0 == strcmp("mem_init", this->GetFuncName()));
clc5q's avatar
clc5q committed

	if (DebugFlag) {
		SMP_msg("InferGlobalDefType for SSANum %d of ", SSANum);
clc5q's avatar
clc5q committed
		PrintOperand(DefOp);
	list<SMPInstr *>::iterator InstIter;
clc5q's avatar
clc5q committed

	assert(0 <= SSANum);
	set<DefOrUse, LessDefUse>::iterator CurrUse, CurrDef;
	// Go through all instructions in the block and find the instructions
clc5q's avatar
clc5q committed
	//  that have USEs of DefOp with SSANum. If all USEs in the chain have
	//  a single type (other than UNINIT), change the DEF type to match the
	//  USE type and set changed to true.
	SMPOperandType UseType = UNINIT;
	SMPOperandType PtrType = UNINIT;
clc5q's avatar
clc5q committed

	if (BADADDR == DefAddr) { // DEF is in a Phi function
		FoundDEF = true;
	}
	else { // DEF is in an instruction
		FoundDEF = false; // need to see the DefAddr first
	}

	for (InstIter = DefBlock->GetFirstInstr(); InstIter != DefBlock->GetLastInstr(); ++InstIter) {
		SMPInstr *CurrInst = (*InstIter);
		if ((!FoundDEF) && (DefAddr == CurrInst->GetAddr())) {
			FoundDEF = true;
		}
		else if (FoundDEF) {
			CurrDef = CurrInst->FindDef(DefOp);
			if (CurrDef != CurrInst->GetLastDef()) {
				// Found re-DEF of DefOp.
				DefEscapes = false;
			}
		}
		CurrUse = CurrInst->FindUse(DefOp);
		if (CurrUse != CurrInst->GetLastUse()) { // found a USE of DefOp
			if (CurrUse->GetSSANum() == SSANum) { // matched SSA number
				UseType = CurrUse->GetType();
				FoundNumeric |= (IsNumeric(UseType));
				FoundUnknown |= (IsUnknown(UseType));
				FoundUninit |= (IsEqType(UNINIT, UseType));
				if (IsDataPtr(UseType)) {
					if (FoundPointer) {
						if (IsNotEqType(PtrType, UseType)) {
clc5q's avatar
clc5q committed
#if SMP_DEBUG_TYPE_INFERENCE
							SMP_msg("WARNING: Differing ptr types in global chain:");
							SMP_msg(" Prev: %d Current: %d %s\n", PtrType, UseType,
clc5q's avatar
clc5q committed
#endif
							PtrType = POINTER;
						}
					else {
						FoundPointer = true;
						PtrType = UseType;
					}
				}
			} // end if matched SSA #
		} // end if found a USE of DefOp
	} // end for all instructions

	if (DefEscapes) { // did not find re-def
		DefEscapes = DefBlock->IsLiveOut(DefOp);
	}


	if (DefEscapes) { // Need to recurse into successor blocks
		list<SMPBasicBlock *>::iterator SuccIter;
		ea_t TempAddr;
		this->ResetProcessedBlocks(); // set up recursion
		for (SuccIter = DefBlock->GetFirstSucc(); SuccIter != DefBlock->GetLastSucc(); ++SuccIter) {
			SMPBasicBlock *CurrBlock = (*SuccIter);
			set<SMPPhiFunction, LessPhi>::iterator PhiIter = CurrBlock->FindPhi(DefOp);
			TempAddr = DefAddr;
			if (PhiIter != CurrBlock->GetLastPhi()) {
				TempAddr = BADADDR;  // signals that DefOp will get re-DEFed in a Phi function.
			}
			else if (BADADDR == TempAddr) { // was BADADDR coming in to this function
				// We don't want to pass BADADDR down the recursion chain, because it will be interpreted
				//  by each successor block to mean that DefOp was a Phi USE that got re-DEFed in a Phi function
				//  within itself. Pass the dummy address that indicates LiveIn to the block.
				TempAddr = CurrBlock->GetFirstAddr() - 1;
clc5q's avatar
clc5q committed
			}
			// Should we screen the recursive call below using CurrBlock->IsLiveIn(DefOp) for speed?  !!!!****!!!!
			CurrBlock->InferGlobalDefType(DefOp, SSANum, TempAddr, FoundNumeric, FoundPointer, FoundUnknown, FoundUninit, PtrType);
clc5q's avatar
clc5q committed
	}
	// Do we have a consistent type?
	// If we see any definite POINTER uses, we must set the DEF
	//  to type POINTER or a refinement of it.
	if (FoundPointer)
		UseType = PtrType;
	else if (FoundNumeric && !FoundUninit && !FoundUnknown)
		UseType = NUMERIC;
	else
		return UNINIT; // no POINTER, but no consistent type

	assert(UNINIT != UseType);
	if (DebugFlag) SMP_msg("Inferring global DEF of type %d\n", UseType);
	return UseType;
clc5q's avatar
clc5q committed
} // end of SMPFunction::InferGlobalDefType()

// Mark NUMERIC (and propagate) any DEF that starts at small immed. value and gets only small inc/dec operations.
void SMPFunction::FindCounterVariables(void) {
	// We define a counter variable as one that starts out as a small immediate value and then is only updated
	//  via small additions and subtractions. This cannot produce a POINTER, so it must be NUMERIC. This routine
	//  helps get the NUMERIC inference past the phi function barrier, e.g.:
	//
	//  mov eax,0    ; might be NULL POINTER or might be NUMERIC
	//  eax2 := phi(eax1, eax0)  ; still don't know type
	//  label1:    ; top of loop
	//   :
	//  add eax,4  ; increment induction variable; eax1 := eax0 + 4
	//  cmp eax,looplimit
	//  jl label1
	//
	//  Viewed in isolation, adding 4 to EAX could be a pointer operation or a numeric operation, and
	//   the same is true for initializing to zero. Viewed together, these statements obviously cannot be
	//   producing a POINTER value, as 0,4,8, etc. are not a sequence of POINTER values.

	list<SMPInstr *>::iterator InstIter;
	for (InstIter = this->Instrs.begin(); InstIter != this->Instrs.end(); ++InstIter) {
		SMPInstr *CurrInst = (*InstIter);
		bool ValueFound;
		uval_t ConstValue;
		if (CurrInst->MDIsSimpleAssignment(ValueFound, ConstValue)) {
			if (ValueFound && (0 == ConstValue)) {
				// Start small: Find init to zero, then track it. Init to small values after we test.
				set<DefOrUse, LessDefUse>::iterator DefIter = CurrInst->GetFirstNonFlagsDef();
				if (DefIter == CurrInst->GetLastDef()) {
					// Must have been a simple assignment to a flag, e.g. clc (clear the carry flag).
					continue;
				}
				op_t DefOp = DefIter->GetOp();
				if (o_reg == DefOp.type) {
					list<pair<int, ea_t> > CounterSSANums;  // SSA numbers that are definitely counters for DefOp
					int DefSSANum = DefIter->GetSSANum();
					ea_t DefAddr = CurrInst->GetAddr();
					pair<int, ea_t> ListItem(DefSSANum, DefAddr);
					CounterSSANums.push_back(ListItem);
					SMPBasicBlock *CurrBlock = CurrInst->GetBlock();
					int BlockNum = CurrBlock->GetNumber();
					bool LocalName = CurrBlock->IsLocalName(DefOp);
					if (this->CounterVarHelper(DefOp, DefSSANum, BlockNum, LocalName, CounterSSANums)) {
						while (!CounterSSANums.empty()) {
							int CurrSSANum = CounterSSANums.front().first;
							ea_t CurrDefAddr = CounterSSANums.front().second;
							bool Propagated;
							if (LocalName) {
								Propagated = CurrBlock->PropagateLocalDefType(DefOp, NUMERIC, CurrDefAddr, CurrSSANum, false);
							}
							else {
								this->ResetProcessedBlocks();
								Propagated = CurrBlock->PropagateGlobalDefType(DefOp, NUMERIC, CurrSSANum, false);
							}
							CounterSSANums.pop_front();
						}
					}
				} // end if o_reg type
			} // end if const value of 0
		} // end if simple assignment
	} // end for all instructions

	return;
} // end of SMPFunction::FindCounterVariables()

// recursive helper for FindCounterVariables()
// Return true if we added to the DefSSANums list.
bool SMPFunction::CounterVarHelper(op_t DefOp, int DefSSANum, int BlockNum, bool LocalName, list<pair<int, ea_t> > CounterSSANums) {
	bool ListExpanded = false;
	size_t IncomingListSize = CounterSSANums.size();
	set<int> NonEscapingRegisterHashes;

	// First, examine the Phi list to find uses of DefOp/DefSSANum.
	// Next, examine instructions to find uses of DefOp/DefSSANum. They must be counter operations if DefOp is re-defed.

	// As a first cut, we will just find the following pattern:
	// 1. Counter-style DEF reaches the end of the current block.
	// 2. Successor block is a single-block loop with counter DEF appearing as a USE in a phi function.
	// 3. Within the single-block loop, Phi DEF is used in a counter-style operation, with new DEF becoming a Phi USE at top of block.
	// We will expand this to loops that are not in a single block later.
	SMPBasicBlock *CurrBlock = this->GetBlockByNum((size_t) BlockNum);
	assert(NULL != CurrBlock);
	ea_t DefAddr = CounterSSANums.front().second;
	if (CurrBlock->DoesDefReachBlockEnd(DefAddr, DefOp, DefSSANum, NonEscapingRegisterHashes)) {
		NonEscapingRegisterHashes.clear(); // Not memoizing for this use of DoesDefReachBlockEnd()
		bool LoopSuccFound = false;
		list<SMPBasicBlock *>::iterator SuccIter;
		SMPBasicBlock *SuccBlock;
		int PhiDefSSANum;
		set<SMPPhiFunction, LessPhi>::iterator PhiIter;
		for (SuccIter = CurrBlock->GetFirstSucc(); SuccIter != CurrBlock->GetLastSucc(); ++SuccIter) {
			SuccBlock = (*SuccIter);
			if (SuccBlock->IsSelfLoop()) {
				PhiIter = SuccBlock->FindPhi(DefOp);
				if (PhiIter != SuccBlock->GetLastPhi()) { // Found a Phi function that could match
					size_t PhiSize = PhiIter->GetPhiListSize();
					for (size_t index = 0; index < PhiSize; ++index) {
						int PhiUseSSANum = PhiIter->GetUseSSANum(index);
						if (PhiUseSSANum == DefSSANum) {
							// Our DEF is a USE in the phi function at the top of SuccBlock. Success.
							PhiDefSSANum = PhiIter->GetDefSSANum();
							LoopSuccFound = true;
							break;
						}
					}
				}
				if (LoopSuccFound) {
					break;
				}
			}
		}
		if (LoopSuccFound) {
			// SuccBlock points to a one-block loop with PhiIter pointing to a phi function that has
			//  DefOp/DefSSANum as a phi use, and DefOp/PhiDefSSANum as its phi def. Are the uses of
			//  DefOp/PhiDefSSANum within SuccBlock merely counter redefinitions?
			list<SMPInstr *>::iterator InstIter;
			for (InstIter = SuccBlock->GetFirstInstr(); InstIter != SuccBlock->GetLastInstr(); ++InstIter) {
				set<DefOrUse, LessDefUse>::iterator DefIter, UseIter;
				SMPInstr *CurrInst = (*InstIter);
				DefIter = CurrInst->FindDef(DefOp);
				if (DefIter != CurrInst->GetLastDef()) {
					// Found a redefinition of DefOp. Is it just a counter operation that redefines DefOp?
					if (CurrInst->IsCounterOperation()) {
						// We will add the new DEF SSA # to the list of counter SSAs.
						pair<int, ea_t> CounterPair(DefIter->GetSSANum(), CurrInst->GetAddr());
						CounterSSANums.push_back(CounterPair);
						// We don't need to push the PhiDefSSANum discovered earlier, because if
						//  it follows the simple pattern of only using two counter DEFs as its USEs,
						//  one from before the loop and one from within the loop, then both of its USEs
						//  will get set to NUMERIC and propagation will occur naturally. If it does not
						//  fit this simple pattern, we don't want to force it to be NUMERIC yet.
					}
					else {
						// Problem: we redefined DefOp with a non-counter operation. We want to terminate
						//  the chain of detection of counter variables.
						break;
					}
				}
				else {
					UseIter = CurrInst->FindUse(DefOp);
					if (UseIter != CurrInst->GetLastUse()) {
						// Found USE of DefOp. See if it is a POINTER use, which would
						//  invalidate the hypothesis that DefOp is a counter.
						SMPOperandType UseType = UseIter->GetType();
						if (IsDataPtr(UseType) || IsEqType(UseType, CODEPTR)) {
							// Any apparent counter operations so far have really been pointer arithmetic.
							//  We need to restore the list to its incoming state.
							while (IncomingListSize < CounterSSANums.size()) {
								CounterSSANums.pop_back();
							}
							break; // terminate search
						}
					}
				}
			} // end for all insts in SuccBlock
		} // end if LoopSuccFound
	} // end if original pre-loop DEF reaches the end of its block

	ListExpanded = (CounterSSANums.size() > IncomingListSize);
	return ListExpanded;
} // end of SMPFunction::CounterVarHelper()

#define SMP_SIMPLE_CONDITIONAL_TYPE_PROPAGATION 1
#if SMP_SIMPLE_CONDITIONAL_TYPE_PROPAGATION
// The simple form of conditional type propagation observes that we
//  simply need to apply the meet operator over Phi function USEs and
//  then propagate any DEF type changes using PropagateGlobalDefType().
//  The outermost iteration over all type inference methods in InferTypes()
//  will take care of all the propagation that is handled by the work list
//  processing in the textbook algorithm.
// Iteration convergence might be slower in the simple approach, but the code
//  is much simpler to debug.
bool SMPFunction::ConditionalTypePropagation(void) {
	bool changed = false;
	SMPBasicBlock *CurrBlock;
	vector<SMPBasicBlock *>::iterator CurrRPO;
	set<SMPPhiFunction, LessPhi>::iterator CurrPhi;

	for (CurrRPO = this->RPOBlocks.begin(); CurrRPO != this->RPOBlocks.end(); ++CurrRPO) {
		CurrBlock = *CurrRPO;
		SMPOperandType MeetType;
		for (CurrPhi = CurrBlock->GetFirstPhi(); CurrPhi != CurrBlock->GetLastPhi(); ++CurrPhi) {
			MeetType = CurrPhi->ConditionalMeetType();
			// Here we use a straight equality test, not our macros,
			//  because we consider it a change if the MeetType is
			//  profiler derived and the DEFType is not.
			if (MeetType == CurrPhi->GetDefType())
				continue;
			// Change the DEF type to the MeetType and propagate.
			op_t DefOp = CurrPhi->GetAnyOp();
			bool IsMemOp = (o_reg != DefOp.type);
			CurrPhi = CurrBlock->SetPhiDefType(DefOp, MeetType);
			changed = true;
			this->ResetProcessedBlocks();
			changed |= CurrBlock->PropagateGlobalDefType(DefOp,
				MeetType, CurrPhi->GetDefSSANum(), IsMemOp);
		} // end for all phi functions in the current block
	} // end for all blocks

	return changed;
} // end of SMPFunction::ConditionalTypePropagation()

#else  // not SMP_SIMPLE_CONDITIONAL_TYPE_PROPAGATION

// Apply the SCC (Sparse Conditional Constant) propagation algorithm to
//  propagate types starting from unresolved Phi DEFs.
bool SMPFunction::ConditionalTypePropagation(void) {
	bool changed = false;

	// Collections of Phi functions and instructions that have a DEF
	//  with type UNINIT for the current global name.
	map<int, set<SMPPhiFunction, LessPhi>::iterator> UninitDEFPhis;
	vector<list<SMPInstr>::iterator> UninitDEFInsts;

	// Work lists of Phi functions and instructions that need to be processed
	//  according to the SCC algorithm.
	list<map<int, set<SMPPhiFunction, LessPhi>::iterator>::iterator> PhiWorkList;
	list<vector<list<SMPInstr>::iterator>::iterator> InstWorkList;

	// Iterate through all global names that are either (1) registers
	//  or (2) stack locations in SAFE functions.
	set<op_t, LessOp>::iterator CurrGlob;
	for (CurrGlob = this->GetFirstGlobalName(); CurrGlob != this->GetLastGlobalName(); ++CurrGlob) {
		op_t GlobalOp = *CurrGlob;
		list<SMPBasicBlock>::iterator CurrBlock;
		vector<list<SMPBasicBlock>::iterator>::iterator CurrRPO;
		if (MDIsIndirectMemoryOpnd(GlobalOp, this->UseFP))
			continue; // need alias analysis to process indirect accesses
		if ((GlobalOp.type != o_reg)
			&& (!((this->GetReturnAddressStatus() == FUNC_SAFE) && MDIsStackAccessOpnd(GlobalOp, this->UseFP))))
			continue; // not register, not safe stack access

		// Set up a map (indexed by SSANum) of iterators to Phi functions
		//  for the current global name that have UNINIT as the Phi DEF type.
		UninitDEFPhis.clear();
		UninitDEFInsts.clear();
		for (CurrRPO = this->RPOBlocks.begin(); CurrRPO != this->RPOBlocks.end(); ++CurrRPO) {
			CurrBlock = *CurrRPO;
			set<SMPPhiFunction, LessPhi>::iterator CurrPhi;
			CurrPhi = CurrBlock->FindPhi(GlobalOp);