Newer
Older
clc5q
committed
bool DumpFlag = false;
#if SMP_DEBUG_DATAFLOW
DumpFlag |= (0 == strcmp("uw_frame_state_for", this->GetFuncName()));
DebugFlag |= (0 == strcmp("uw_frame_state_for", this->GetFuncName()));
#if 1
if (DumpFlag)
this->Dump();
#endif
if (DebugFlag) msg("Computing IDoms.\n");
if (DebugFlag) msg("Computing Dom frontiers.\n");
this->ComputeDomFrontiers();
if (DebugFlag) msg("Computing global names.\n");
this->ComputeGlobalNames();
if (DebugFlag) msg("Computing blocks defined in.\n");
this->ComputeBlocksDefinedIn();
if (DebugFlag) msg("Inserting Phi functions.\n");
this->InsertPhiFunctions();
if (DebugFlag) msg("Building dominator tree.\n");
this->BuildDominatorTree();
if (DebugFlag) msg("Computing SSA renumbering.\n");
list<SMPBasicBlock>::iterator CurrBlock;
for (CurrBlock = this->Blocks.begin(); CurrBlock != this->Blocks.end(); ++CurrBlock) {
if (DumpFlag) CurrBlock->Dump();
if (DebugFlag) msg("Computing local names.\n");
CurrBlock->SetLocalNames();
if (DebugFlag) msg("Computing local SSA renumbering.\n");
CurrBlock->SSALocalRenumber();
if (DumpFlag) CurrBlock->Dump();
if (DebugFlag) msg("Computing global chains.\n");
CurrBlock->CreateGlobalChains();
#if 1
if (DebugFlag) msg("Marking dead registers.\n");
CurrBlock->MarkDeadRegs();
#endif
}
#if SMP_DEBUG_DATAFLOW
if (DumpFlag)
this->Dump();
// Once SSA numbers have been set into all DEFs, USES, and DU-chains, then
// the SSA numbering data structures will no longer be used and can be
// de-allocated.
this->FreeSSAMemory();
return;
} // end of SMPFunction::ComputeSSA()
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
// Find memory writes (DEFs) with possible aliases
void SMPFunction::AliasAnalysis(void) {
// First task: Mark which memory DEFs MIGHT be aliased because an
// indirect memory write occurs somewhere in the DEF-USE chain.
// Memory DEF-USE chains with no possible aliasing can be subjected
// to type inference and type-based optimizing annotations, e.g. a
// register spill to memory followed by retrieval from spill memory
// followed by NUMERIC USEs should be typed as a continuous NUMERIC
// chain if there is no possibility of aliasing.
// Preparatory step: For each indirect write, mark all def-use chains
// (maintained at the basic block level) that include the indirect
// write instruction. If there are no indirect writes in the function,
// leave all DEFs marked as unaliased and exit.
if (!(this->HasIndirectWrites))
return;
list<SMPBasicBlock>::iterator CurrBlock;
for (CurrBlock = this->Blocks.begin(); CurrBlock != this->Blocks.end(); ++CurrBlock) {
list<list<SMPInstr>::iterator>::iterator CurrInst;
for (CurrInst = CurrBlock->GetFirstInstr();
CurrInst != CurrBlock->GetLastInstr();
++CurrInst) {
if ((*CurrInst)->HasIndirectMemoryWrite()) {
CurrBlock->MarkIndWriteChains((*CurrInst)->GetAddr());
// Until we get true aliasing analysis, any indirect write
// is classified as may-be-aliased.
CurrBlock->SetMaybeAliased(true);
}
} // end for all insts in block
} // end for all blocks in function
// Step one: Find only the memory DEFs to start with.
list<SMPInstr>::iterator CurrInst;
bool FoundIndWrite = false;
for (CurrInst = this->Instrs.begin(); CurrInst != this->Instrs.end(); ++CurrInst) {
if (CurrInst->HasDestMemoryOperand()) {
// Starting with the DEF instruction, traverse the control flow
// until we run into (A) the re-definition of the operand, including
// a re-definition of any of its addressing registers, or (B) an
// indirect write. Return false if condition A terminates the
// search, and true if condition B terminates the search.
this->ResetProcessedBlocks();
op_t MemDefOp = CurrInst->MDGetMemDefOp();
assert(o_void != MemDefOp.type);
set<DefOrUse, LessDefUse>::iterator CurrMemDef = CurrInst->FindDef(MemDefOp);
assert(CurrMemDef != CurrInst->GetLastDef());
int SSANum = CurrMemDef->GetSSANum();
FoundIndWrite = this->FindPossibleChainAlias(CurrInst, MemDefOp, SSANum);
if (FoundIndWrite) {
// Mark the DEF as aliased.
CurrMemDef = CurrInst->SetDefIndWrite(CurrMemDef->GetOp(), true);
break; // Don't waste time after first alias found
}
} // end if inst has dest memory operand
} // end for all instructions
return;
} // end of SMPFunction::AliasAnalysis()
// Does the DefOp DEF_USE chain have an indirect mem write starting at CurrInst?
bool SMPFunction::FindPossibleChainAlias(list<SMPInstr>::iterator CurrInst, op_t DefOp, int SSANum) {
bool DebugFlag = false;
if (0 == strcmp("sdissect", this->GetFuncName())) {
// Next line is just a good place to set a break point.
DebugFlag = true;
}
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
// Starting with the DEF instruction, traverse the control flow
// until we run into (A) the re-definition of the operand, including
// a re-definition of any of its addressing registers, or (B) an
// indirect write. Return false if condition A terminates the
// search, and true if condition B terminates the search.
SMPBasicBlock *CurrBlock = CurrInst->GetBlock();
if (!(CurrBlock->IsProcessed())) {
CurrBlock->SetProcessed(true);
}
else
return false; // block already processed
// Proceed by cases:
ea_t DefAddr = CurrInst->GetAddr();
// Case 1: Local name. Return the IndWrite flag for the local Def-Use
// chain begun by CurrInst.
if (CurrBlock->IsLocalName(DefOp)) {
return CurrBlock->GetLocalDUChainIndWrite(DefOp, SSANum);
}
// Case 2: Global name.
// Case 2A: If Def-Use chain within this block for this memory operand
// has its IndWrite flag set to true, then stop and return true.
else if (CurrBlock->GetGlobalDUChainIndWrite(DefOp, DefAddr)) {
return true;
}
// Case 2B: Else if Def-Use chain is not the last chain in this block
// for this operand, then there must be a later redefinition of the
// memory operand (with new SSA number assigned) later in this block.
// Because we did not fall into case 2A, we know there is no IndWrite
// within the current memory operand's chain, so we return false.
else if (CurrBlock->IsLastGlobalChain(DefOp, DefAddr)) {
return false;
}
// Case 2C: Else if current memory operand is NOT LiveOut, even though
// this is the last def-use chain in the block, then there is no more
// traversing of the control flow graph to be done. The chain has ended
// without encountering an IndWrite, so return false.
else if (!(CurrBlock->IsLiveOut(DefOp))) {
return false;
}
// Case 2D: We have passed all previous checks, so we must have a memory
// operand that reaches the end of the block without encountering an
// IndWrite and is LiveOut. Its may-alias status will be determined by
// following the control flow graph for all successor blocks and examining
// the def-use chains in those blocks.
list<list<SMPBasicBlock>::iterator>::iterator SuccBlock;
SuccBlock = CurrBlock->GetFirstSucc();
bool FoundAliasedWrite = false;
FoundAliasedWrite = this->FindChainAliasHelper((*SuccBlock), DefOp);
++SuccBlock;
} while (!FoundAliasedWrite && (SuccBlock != CurrBlock->GetLastSucc()));
return FoundAliasedWrite;
} // end of SMPFunction::FindPossibleChainAlias()
// recursive helper for global DU-chains that traverse CFG
bool SMPFunction::FindChainAliasHelper(list<SMPBasicBlock>::iterator CurrBlock, op_t DefOp) {
bool DebugFlag = false;
if (0 == strcmp("mem2chunk_check", this->GetFuncName())) {
// Next line is just a good place to set a break point.
DebugFlag = true;
}
if (!(CurrBlock->IsProcessed())) {
CurrBlock->SetProcessed(true);
}
else
return false; // block already processed
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
// The LVA sets can be used to decide whether it is possible that
// the incoming DU chain overlaps a may-alias write. We can express
// the decision making in a truth table:
//
// Case # LiveIn? Killed? AliasedWrite in block? Action to take
// ------- ------- ------- ---------------------- --------------
// 1 N N N return false
// 2 N N Y return false
// 3 N Y N return false
// 4 N Y Y return false
// 5 Y N N recurse into successors
// 6 Y N Y return true
// 7 Y Y N return false
// 8 Y Y Y check location of aliased write
//
// In the last case, if there is an aliased write before the
// incoming DEF is killed and after it is used, then the
// incoming DU chain overlaps an aliased write, otherwise
// it does not.
// If not LiveIn, incoming DU chain does not run through this block
// at all, so return false.
if (!(CurrBlock->IsLiveIn(DefOp)))
return false; // cases 1-4
bool killed = CurrBlock->IsVarKill(DefOp);
bool BlockHasAliasedWrite = CurrBlock->MaybeAliasedWrite();
if (BlockHasAliasedWrite) {
// If DefOp is LiveIn and is not killed, then any aliased
// write in the block overlaps the incoming DU chain.
if (!killed) {
return true; // case 6
}
// If DefOp is LiveIn and is killed, then the location
// of the aliased write is the determining factor.
else {
// Incoming global DU chains get a new global DU chain
// built within the block with a pseudo-DefAddr of
// one byte before the first address of the block.
ea_t PseudoDefAddr = CurrBlock->GetFirstAddr() - 1;
return CurrBlock->GetGlobalDUChainIndWrite(DefOp, PseudoDefAddr); // case 8
}
else {
// If killed, no aliased write, then cannot overlap an aliased write.
if (killed)
return false; // case 7
else {
// Need to recurse into all successors, because we passed through
// the block without seeing an aliased write and without killing
// the DefOp.
list<list<SMPBasicBlock>::iterator>::iterator SuccBlock;
SuccBlock = CurrBlock->GetFirstSucc();
bool FoundAliasedWrite = false;
while (!FoundAliasedWrite && (SuccBlock != CurrBlock->GetLastSucc())) {
FoundAliasedWrite = this->FindChainAliasHelper((*SuccBlock), DefOp);
++SuccBlock;
};
if (DebugFlag) {
msg("FindChainAliasHelper is returning %d\n", FoundAliasedWrite);
}
return FoundAliasedWrite;
}
assert(false); // statement should be unreachable
return false;
} // end of SMPFunction::FindChainAliasHelper()
// Link basic blocks to their predecessors and successors, and build the map
// of instruction addresses to basic blocks.
void SMPFunction::SetLinks(void) {
list<SMPBasicBlock>::iterator CurrBlock;
#if SMP_DEBUG_DATAFLOW_VERBOSE
msg("SetLinks called for %s\n", this->GetFuncName());
#endif
// First, set up the map of instructions to basic blocks.
for (CurrBlock = this->Blocks.begin(); CurrBlock != this->Blocks.end(); ++CurrBlock) {
list<list<SMPInstr>::iterator>::iterator CurrInst;
for (CurrInst = CurrBlock->GetFirstInstr();
CurrInst != CurrBlock->GetLastInstr();
++CurrInst) {
pair<ea_t, list<SMPBasicBlock>::iterator> MapItem((*CurrInst)->GetAddr(),CurrBlock);
InstBlockMap.insert(MapItem);
}
}
#if SMP_DEBUG_DATAFLOW_VERBOSE
msg("SetLinks finished mapping: %s\n", this->GetFuncName());
#endif
// Next, set successors of each basic block, also setting up the predecessors in the
// process.
for (CurrBlock = this->Blocks.begin(); CurrBlock != this->Blocks.end(); ++CurrBlock) {
list<SMPInstr>::iterator CurrInst = *(--(CurrBlock->GetLastInstr()));
clc5q
committed
bool CondTailCall = false;
if (CurrBlock->HasReturn()) {
if (!(CurrInst->IsCondTailCall())) {
// We either have a return instruction or an unconditional
// tail call instruction. We don't want to link to the
// tail call target, and there is no link for a return
continue;
}
else {
// We have a conditional tail call. We don't want to
// link to the tail call target, but we do want fall
// through to the next instruction.
CondTailCall = true;
}
}
// Last instruction in block; set successors
bool CallFlag = (CALL == CurrInst->GetDataFlowType());
bool IndirCallFlag = (INDIR_CALL == CurrInst->GetDataFlowType());
clc5q
committed
bool TailCallFlag = CondTailCall && CurrInst->IsCondTailCall();
bool IndirJumpFlag = (INDIR_JUMP == CurrInst->GetDataFlowType());
bool LinkedToTarget = false;
for (bool ok = CurrXrefs.first_from(CurrInst->GetAddr(), XREF_ALL);
ok;
ok = CurrXrefs.next_from()) {
if ((CurrXrefs.to != 0) && (CurrXrefs.iscode)) {
// Found a code target, with its address in CurrXrefs.to
if ((CallFlag || IndirCallFlag || TailCallFlag)
clc5q
committed
&& (CurrXrefs.to != (CurrInst->GetAddr() + CurrInst->GetCmd().size))) {
// A call instruction will have two targets: the fall through to the
// next instruction, and the called function. We want to link to the
// fall-through instruction, but not to the called function.
// Some blocks end with a call just because the fall-through instruction
// is a jump target from elsewhere.
continue;
}
map<ea_t, list<SMPBasicBlock>::iterator>::iterator MapEntry;
MapEntry = this->InstBlockMap.find(CurrXrefs.to);
if (MapEntry == this->InstBlockMap.end()) {
msg("WARNING: addr %x not found in map for %s\n", CurrXrefs.to,
this->GetFuncName());
msg(" Referenced from %s\n", CurrInst->GetDisasm());
}
else {
list<SMPBasicBlock>::iterator Target = MapEntry->second;
// Make target block a successor of current block.
CurrBlock->LinkToSucc(Target);
// Make current block a predecessor of target block.
Target->LinkToPred(CurrBlock);
LinkedToTarget = true;
#if SMP_USE_SWITCH_TABLE_INFO
if (IndirJumpFlag) {
msg("Switch table link: jump at %x target at %x\n",
CurrInst->GetAddr(), CurrXrefs.to);
}
}
} // end for all xrefs
if (IndirJumpFlag && (!LinkedToTarget)) {
this->UnresolvedIndirectJumps = true;
msg("WARNING: Unresolved indirect jump at %x\n", CurrInst->GetAddr());
}
else if (IndirCallFlag && (!LinkedToTarget)) {
this->UnresolvedIndirectCalls = true;
msg("WARNING: Unresolved indirect call at %x\n", CurrInst->GetAddr());
} // end for all blocks
// If we have any blocks that are all no-ops and have no predecessors, remove those
// blocks. They are dead and make the CFG no longer a lattice. Any blocks that have
// no predecessors but are not all no-ops should also be removed with a different
// log message.
// NOTE: Prior to construction of hell nodes in functions with unresolved indirect jumps,
// we cannot conclude that a block with no predecessors is unreachable. Also, the block
// order might be such that removal of a block makes an already processed block
// unreachable, so we have to iterate until there are no more changes.
// NOTE: An odd new gcc recursion optimization uses indirect calls within the function, so
// they can behave like indirect jumps.
#if SMP_USE_SWITCH_TABLE_INFO
if (!(this->HasUnresolvedIndirectJumps() || this->HasUnresolvedIndirectCalls())) {
if (!(this->HasIndirectJumps() || this->HasIndirectCalls())) {
bool changed;
bool NoPredecessors;
bool OnlyPredIsItself;
list<list<SMPBasicBlock>::iterator>::iterator CurrPred;
do {
changed = false;
CurrBlock = this->Blocks.begin();
++CurrBlock; // don't delete the top block, no matter what.
while (CurrBlock != this->Blocks.end()) {
OnlyPredIsItself = false;
CurrPred = CurrBlock->GetFirstPred();
NoPredecessors = (CurrPred == CurrBlock->GetLastPred());
if (!NoPredecessors) {
if ((*CurrPred)->GetFirstAddr() == CurrBlock->GetFirstAddr()) { // self-recursion
++CurrPred; // any more preds besides itself?
OnlyPredIsItself = (CurrPred == CurrBlock->GetLastPred());
// Only predecessor was the self-recursion if no more preds
}
}
if (NoPredecessors || OnlyPredIsItself) {
if (CurrBlock->AllNops())
msg("Removing all nops block at %x\n", CurrBlock->GetFirstAddr());
else
msg("Removing block with no predecessors at %x\n", CurrBlock->GetFirstAddr());
// Remove this block from the predecessors list of its successors.
list<list<SMPBasicBlock>::iterator>::iterator SuccIter;
ea_t TempAddr = CurrBlock->GetFirstAddr();
for (SuccIter = CurrBlock->GetFirstSucc(); SuccIter != CurrBlock->GetLastSucc(); ++SuccIter) {
(*SuccIter)->ErasePred(TempAddr);
}
// Remove the unreachable instructions from the function inst list.
list<list<SMPInstr>::iterator>::iterator InstIter;
for (InstIter = CurrBlock->GetFirstInstr(); InstIter != CurrBlock->GetLastInstr(); ++InstIter) {
list<SMPInstr>::iterator DummyIter = this->Instrs.erase(*InstIter);
}
// Finally, remove the block from the blocks list.
CurrBlock = this->Blocks.erase(CurrBlock);
this->BlockCount -= 1;
changed = true;
}
else
++CurrBlock;
} // end while all blocks after the first one
} while (changed);
} // end if not indirect jumps
return;
} // end of SMPFunction::SetLinks()
// Number all basic blocks in reverse postorder (RPO) and set RPOBlocks vector to
// access them.
void SMPFunction::RPONumberBlocks(void) {
#if SMP_DEBUG_DATAFLOW
clc5q
committed
bool DebugFlag = false;
DebugFlag = (0 == strcmp("uw_frame_state_for", this->GetFuncName()));
if (DebugFlag) msg("Entered RPONumberBlocks\n");
#endif
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
int CurrNum = 0;
list<list<SMPBasicBlock>::iterator> WorkList;
// Number the first block with 0.
list<SMPBasicBlock>::iterator CurrBlock = this->Blocks.begin();
#if 0
if (this->RPOBlocks.capacity() <= (size_t) this->BlockCount) {
msg("Reserving %d RPOBlocks old value: %d\n", 2+this->BlockCount, this->RPOBlocks.capacity());
this->RPOBlocks.reserve(2 + this->BlockCount);
this->RPOBlocks.assign(2 + this->BlockCount, this->Blocks.end());
}
#endif
CurrBlock->SetNumber(CurrNum);
this->RPOBlocks.push_back(CurrBlock);
++CurrNum;
// Push the first block's successors onto the work list.
list<list<SMPBasicBlock>::iterator>::iterator CurrSucc = CurrBlock->GetFirstSucc();
while (CurrSucc != CurrBlock->GetLastSucc()) {
WorkList.push_back(*CurrSucc);
++CurrSucc;
}
// Use the WorkList to iterate through all blocks in the function
list<list<SMPBasicBlock>::iterator>::iterator CurrListItem = WorkList.begin();
bool change;
while (!WorkList.empty()) {
change = false;
while (CurrListItem != WorkList.end()) {
if ((*CurrListItem)->GetNumber() != SMP_BLOCKNUM_UNINIT) {
// Duplicates get pushed onto the WorkList because a block
// can be the successor of multiple other blocks. If it is
// already numbered, it is a duplicate and can be removed
// from the list.
CurrListItem = WorkList.erase(CurrListItem);
change = true;
continue;
}
if ((*CurrListItem)->AllPredecessorsNumbered()) {
// Ready to be numbered.
(*CurrListItem)->SetNumber(CurrNum);
#if 0
msg("Set RPO number %d\n", CurrNum);
if (DebugFlag && (7 == CurrNum))
this->Dump();
#endif
this->RPOBlocks.push_back(*CurrListItem);
++CurrNum;
change = true;
// Push its unnumbered successors onto the work list.
CurrSucc = (*CurrListItem)->GetFirstSucc();
while (CurrSucc != (*CurrListItem)->GetLastSucc()) {
if ((*CurrSucc)->GetNumber() == SMP_BLOCKNUM_UNINIT)
WorkList.push_back(*CurrSucc);
++CurrSucc;
}
CurrListItem = WorkList.erase(CurrListItem);
}
else {
++CurrListItem;
}
} // end while (CurrListItem != WorkList.end())
if (change) {
// Reset CurrListItem to beginning of work list for next iteration.
CurrListItem = WorkList.begin();
}
else {
// Loops can cause us to not be able to find a WorkList item that has
// all predecessors numbered. Take the WorkList item with the lowest address
// and number it so we can proceed.
CurrListItem = WorkList.begin();
ea_t LowAddr = (*CurrListItem)->GetFirstAddr();
list<list<SMPBasicBlock>::iterator>::iterator SaveItem = CurrListItem;
++CurrListItem;
while (CurrListItem != WorkList.end()) {
if (LowAddr > (*CurrListItem)->GetFirstAddr()) {
SaveItem = CurrListItem;
LowAddr = (*CurrListItem)->GetFirstAddr();
}
++CurrListItem;
}
// SaveItem should now be numbered.
(*SaveItem)->SetNumber(CurrNum);
#if SMP_DEBUG_DATAFLOW
msg("Picked LowAddr %x and set RPO number %d\n", LowAddr, CurrNum);
this->RPOBlocks.push_back(*SaveItem);
++CurrNum;
// Push its unnumbered successors onto the work list.
CurrSucc = (*SaveItem)->GetFirstSucc();
while (CurrSucc != (*SaveItem)->GetLastSucc()) {
if ((*CurrSucc)->GetNumber() == SMP_BLOCKNUM_UNINIT)
WorkList.push_back(*CurrSucc);
++CurrSucc;
}
CurrListItem = WorkList.erase(SaveItem);
CurrListItem = WorkList.begin();
} // end if (change) ... else ...
} // end while work list is nonempty
// Prior to construction of hell nodes for functions with indirect jumps, there
// could still be unnumbered blocks because they appear to be unreachable
// (no predecessors from SetLinks() because they are reached only via indirect
// jumps). We need to number these and push them on the RPOBlocks vector so
// that the vector contains all the blocks.
// NOTE: Odd new gcc recursion optimization seems to use indirect calls to reach
// some blocks within a recursive function, operating somewhat like an indirect
// jump.
if (this->HasIndirectJumps() || this->HasIndirectCalls()) {
for (CurrBlock = this->Blocks.begin(); CurrBlock != this->Blocks.end(); ++CurrBlock) {
if (SMP_BLOCKNUM_UNINIT == CurrBlock->GetNumber()) {
msg("WARNING: Numbering indirectly reachable block at %x\n", CurrBlock->GetFirstAddr());
CurrBlock->SetNumber(CurrNum);
this->RPOBlocks.push_back(CurrBlock);
++CurrNum;
}
}
}
clc5q
committed
// If we still have unnumbered blocks, it is not because of indirect jumps or calls.
// We have some mysterious dead code.
if (this->BlockCount > this->RPOBlocks.size()) {
msg("SERIOUS WARNING: RPONumberBlocks method: Function %s has BlockCount %d and RPOBlocks size %u\n",
this->GetFuncName(), this->BlockCount, this->RPOBlocks.size());
clc5q
committed
for (CurrBlock = this->Blocks.begin(); CurrBlock != this->Blocks.end(); ++CurrBlock) {
if (SMP_BLOCKNUM_UNINIT == CurrBlock->GetNumber()) {
msg("WARNING: Numbering apparently unreachable block at %x\n", CurrBlock->GetFirstAddr());
CurrBlock->SetNumber(CurrNum);
this->RPOBlocks.push_back(CurrBlock);
++CurrNum;
}
}
}
return;
} // end of SMPFunction::RPONumberBlocks()
// Perform live variable analysis on all blocks in the function.
// See chapter 9 of Cooper/Torczon, Engineering a Compiler, for the algorithm.
void SMPFunction::LiveVariableAnalysis(void) {
list<SMPBasicBlock>::iterator CurrBlock;
#if SMP_DEBUG_DATAFLOW
bool DebugFlag = (0 == strcmp("uw_frame_state_for", this->GetFuncName()));
#endif
#if SMP_DEBUG_DATAFLOW_VERBOSE
msg("LiveVariableAnalysis for %s\n", this->GetFuncName());
clc5q
committed
#endif
for (CurrBlock = this->Blocks.begin(); CurrBlock != this->Blocks.end(); ++CurrBlock) {
// Initialize the Killed and UpwardExposed sets for each block.
CurrBlock->InitKilledExposed();
}
bool changed;
// Iterate over each block, updating LiveOut sets until no more changes are made.
// NOTE: LVA is more efficient when computed over a reverse post-order list of blocks
// from the inverted CFG. We have an RPO list from the forward CFG, so it is just as
// good to simply iterate through the blocks in layout order.
#if 1
do {
changed = false;
for (CurrBlock = this->Blocks.begin(); CurrBlock != this->Blocks.end(); ++CurrBlock) {
changed |= CurrBlock->UpdateLiveOut();
}
} while (changed);
#else // Use reverse postorder
do {
changed = false;
for (size_t index = 0; index < this->RPOBlocks.size(); ++index) {
CurrBlock = this->RPOBlocks[index];
changed |= CurrBlock->UpdateLiveOut();
}
} while (changed);
#if SMP_USE_SSA_FNOP_MARKER
// Create DEFs in the marker instruction for all names in the LiveInSet
// of the first block. These are the names for the function that
// would otherwise look like USEs of uninitialized variables later.
// Note that the LiveVariableAnalysis work does not actually populate
// a LiveInSet for the first block, so we simulate it with its
// dataflow equation, UpExposed union (LiveOut minus VarKill).
set<op_t, LessOp>::iterator UpExposedIter, LiveOutIter;
list<SMPInstr>::iterator MarkerInst = this->Instrs.begin();
for (UpExposedIter = this->Blocks.begin()->GetFirstUpExposed();
UpExposedIter != this->Blocks.begin()->GetLastUpExposed();
++UpExposedIter) {
// Add DEF with SSANum of 0.
MarkerInst->AddDef(*UpExposedIter, UNINIT, 0);
clc5q
committed
// Add to the VarKill and LiveIn sets.
this->Blocks.begin()->AddVarKill(*UpExposedIter);
clc5q
committed
this->Blocks.begin()->AddLiveIn(*UpExposedIter);
}
for (LiveOutIter = this->Blocks.begin()->GetFirstLiveOut();
LiveOutIter != this->Blocks.begin()->GetLastLiveOut();
++LiveOutIter) {
if (!(this->Blocks.begin()->IsVarKill(*LiveOutIter))) {
// Add DEF with SSANum of 0.
MarkerInst->AddDef(*LiveOutIter, UNINIT, 0);
clc5q
committed
// Add to the VarKill and LiveIn sets.
this->Blocks.begin()->AddVarKill(*LiveOutIter);
clc5q
committed
this->Blocks.begin()->AddLiveIn(*LiveOutIter);
}
#endif
#if SMP_DEBUG_DATAFLOW_VERBOSE
if (DebugFlag) msg("Exiting LiveVariableAnalysis\n");
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
#endif
return;
} // end of SMPFunction::LiveVariableAnalysis()
// Return the IDom index that is the end of the intersection prefix of the Dom sets of
// the two blocks designated by the RPO numbers passed in.
// See Cooper & Torczon, "Engineering a Compiler" 1st edition figure 9.8.
int SMPFunction::IntersectDoms(int block1, int block2) const {
int finger1 = block1;
int finger2 = block2;
while (finger1 != finger2) {
while (finger1 > finger2)
finger1 = this->IDom.at(finger1);
while (finger2 > finger1)
finger2 = this->IDom.at(finger2);
}
return finger1;
} // end of SMPFunction::IntersectDoms()
// Compute immediate dominators of all blocks into IDom[] vector.
void SMPFunction::ComputeIDoms(void) {
bool DebugFlag = false;
#if SMP_DEBUG_DATAFLOW
clc5q
committed
DebugFlag = (0 == strcmp("_ZN6soplex7NameSetC2Eiidd", this->GetFuncName()));
if (DebugFlag) msg("Entered ComputeIDoms\n");
#endif
// Initialize the IDom[] vector to uninitialized values for all blocks.
this->IDom.reserve(this->BlockCount);
this->IDom.assign(this->BlockCount, SMP_BLOCKNUM_UNINIT);
clc5q
committed
if (DebugFlag) {
msg("BlockCount = %d RPOBlocks size = %u\n", this->BlockCount, this->RPOBlocks.size());
clc5q
committed
}
if (this->BlockCount != this->RPOBlocks.size()) {
msg("SERIOUS WARNING: Function %s has BlockCount of %d and RPOBlocks size of %u\n",
this->GetFuncName(), this->BlockCount, this->RPOBlocks.size());
clc5q
committed
}
this->IDom[0] = 0; // Start block dominated only by itself
bool changed;
do {
changed = false;
for (size_t RPONum = 1; RPONum < (size_t) this->BlockCount; ++RPONum) {
if (DebugFlag) msg("RPONum %u\n", RPONum);
clc5q
committed
#if 0
if (DebugFlag) {
msg("RPOBlocks vector size: %d\n", this->RPOBlocks.size());
for (size_t index = 0; index < this->RPOBlocks.size(); ++index) {
msg("RPOBlocks entry %d is %d\n", index, RPOBlocks[index]->GetNumber());
}
}
clc5q
committed
#endif
// To avoid infinite loops on blocks that dominate themselves but otherwise have no
// predecessors (probably reachable only through indirect jumps), we stop processing
// the blocks once the IDom becomes the top (entry) block. This probably saves time
// on other blocks as well.
if (0 == this->IDom[RPONum])
continue;
list<SMPBasicBlock>::iterator CurrBlock = this->RPOBlocks.at(RPONum);
// if (DebugFlag) msg("CurrBlock: %x\n", CurrBlock._Ptr);
list<list<SMPBasicBlock>::iterator>::iterator CurrPred;
// Initialize NewIdom to the first processed predecessor of block RPONum.
int NewIdom = SMP_BLOCKNUM_UNINIT;
for (CurrPred = CurrBlock->GetFirstPred(); CurrPred != CurrBlock->GetLastPred(); ++CurrPred) {
int PredNum = (*CurrPred)->GetNumber();
if (DebugFlag) msg("Pred: %d\n", PredNum);
// **!!** See comment below about unreachable blocks.
if (SMP_BLOCKNUM_UNINIT == PredNum)
continue;
int PredIDOM = this->IDom.at(PredNum);
if (DebugFlag) msg("Pred IDom: %d\n", PredIDOM);
if (SMP_BLOCKNUM_UNINIT != PredIDOM) {
NewIdom = PredNum;
if (NewIdom == SMP_BLOCKNUM_UNINIT) {
msg("Failure on NewIdom in ComputeIDoms for %s\n", this->GetFuncName());
if (this->HasIndirectJumps() || this->HasIndirectCalls()) {
// Might be reachable only through indirect jumps.
NewIdom = 0; // make it dominated by entry block
clc5q
committed
msg("Assuming block %d at address %d is reachable indirectly.\n",
CurrBlock->GetNumber(), CurrBlock->GetFirstAddr());
}
else {
// Might be exception handling code, reachable only by call stack walking.
NewIdom = 0; // make it be dominated by entry block
msg("Assuming block %d at address %d is reachable by exception handling.\n",
CurrBlock->GetNumber(), CurrBlock->GetFirstAddr());
}
}
assert(NewIdom != SMP_BLOCKNUM_UNINIT);
// Loop through all predecessors of block RPONum except block NewIdom.
// Set NewIdom to the intersection of its Dom set and the Doms set of
// each predecessor that has had its Doms set computed.
for (CurrPred = CurrBlock->GetFirstPred(); CurrPred != CurrBlock->GetLastPred(); ++CurrPred) {
int PredNum = (*CurrPred)->GetNumber();
if (DebugFlag) msg("PredNum: %d\n", PredNum);
// **!!** We can avoid failure on unreachable basic blocks
// by executing a continue statement if PredNum is -1. Long term solution
clc5q
committed
// is to prune out unreachable basic blocks, or better yet, create hell nodes
// if the function has indirect jumps.
if (PredNum == SMP_BLOCKNUM_UNINIT)
continue;
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
int PredIDOM = this->IDom.at(PredNum);
if (DebugFlag) msg("PredIDOM: %d\n", PredIDOM);
if ((SMP_BLOCKNUM_UNINIT == PredIDOM) || (NewIdom == PredIDOM)) {
// Skip predecessors that have uncomputed Dom sets, or are the
// current NewIdom.
continue;
}
if (DebugFlag) msg("Old NewIdom value: %d\n", NewIdom);
NewIdom = this->IntersectDoms(PredNum, NewIdom);
if (DebugFlag) msg("New NewIdom value: %d\n", NewIdom);
}
// If NewIdom is not the value currently in vector IDom[], update the
// vector entry and set changed to true.
if (NewIdom != this->IDom.at(RPONum)) {
if (DebugFlag) msg("IDOM changed from %d to %d\n", this->IDom.at(RPONum), NewIdom);
this->IDom[RPONum] = NewIdom;
changed = true;
}
}
} while (changed);
return;
} // end of SMPFunction::ComputeIDoms()
// Compute dominance frontier sets for each block.
void SMPFunction::ComputeDomFrontiers(void) {
list<SMPBasicBlock>::iterator CurrBlock;
list<SMPBasicBlock>::iterator RunnerBlock;
for (CurrBlock = this->Blocks.begin(); CurrBlock != this->Blocks.end(); ++CurrBlock) {
// We look only at join points in the CFG, as per Cooper/Torczon chapter 9.
if (1 < CurrBlock->GetNumPreds()) { // join point; more than 1 predecessor
int runner;
list<list<SMPBasicBlock>::iterator>::iterator CurrPred;
for (CurrPred = CurrBlock->GetFirstPred(); CurrPred != CurrBlock->GetLastPred(); ++CurrPred) {
// For each predecessor, we run up the IDom[] vector and add CurrBlock to the
// DomFrontier for all blocks that are between CurrPred and IDom[CurrBlock],
// not including IDom[CurrBlock] itself.
runner = (*CurrPred)->GetNumber();
while (runner != this->IDom.at(CurrBlock->GetNumber())) {
// Cooper/Harvey/Kennedy paper does not quite agree with the later
// text by Cooper/Torczon. Text says that the start node has no IDom
// in the example on pages 462-463, but it shows an IDOM for the
// root node in Figure 9.9 of value == itself. The first edition text
// on p.463 seems correct, as the start node dominates every node and
// thus should have no dominance frontier.
if (SMP_TOP_BLOCK == runner)
break;
RunnerBlock = this->RPOBlocks.at(runner);
RunnerBlock->AddToDomFrontier(CurrBlock->GetNumber());
runner = this->IDom.at(runner);
}
} // end for all predecessors
} // end if join point
} // end for all blocks
return;
} // end of SMPFunction::ComputeDomFrontiers()
// Compute the GlobalNames set, which includes all operands that are used in more than
// one basic block. It is the union of all UpExposedSets of all blocks.
void SMPFunction::ComputeGlobalNames(void) {
set<op_t, LessOp>::iterator SetIter;
list<SMPBasicBlock>::iterator CurrBlock;
unsigned int index = 0;
if (this->Blocks.size() < 2)
return; // cannot have global names if there is only one block
bool DebugFlag = false;
#if SMP_DEBUG_DATAFLOW
DebugFlag = (0 == strcmp("uw_frame_state_for", this->GetFuncName()));
for (CurrBlock = this->Blocks.begin(); CurrBlock != this->Blocks.end(); ++CurrBlock) {
for (SetIter = CurrBlock->GetFirstUpExposed(); SetIter != CurrBlock->GetLastUpExposed(); ++SetIter) {
op_t TempOp = *SetIter;
// The GlobalNames set will have the complete collection of operands that we are
// going to number in our SSA computations. We now assign an operand number
// within the op_t structure for each, so that we can index into the
// BlocksUsedIn[] vector, for example. This operand number is not to be
// confused with SSA numbers.
// We use the operand number field op_t.n for the lower 8 bits, and the offset
// fields op_t.offb:op_t.offo for the upper 16 bits. We are overwriting IDA
// values here, but operands in the data flow analysis sets should never be
// inserted back into the program anyway.
SetGlobalIndex(&TempOp, index);
#if SMP_DEBUG_DATAFLOW
clc5q
committed
if (DebugFlag) {
msg("Global Name: ");
PrintListOperand(TempOp);
}
#endif
set<op_t, LessOp>::iterator AlreadyInSet;
pair<set<op_t, LessOp>::iterator, bool> InsertResult;
InsertResult = this->GlobalNames.insert(TempOp);
if (!InsertResult.second) {
// Already in GlobalNames, so don't assign an index number.
;
#if SMP_DEBUG_DATAFLOW
clc5q
committed
if (DebugFlag) {
msg(" already in GlobalNames.\n");
}
#endif
}
else {
++index;
#if SMP_DEBUG_DATAFLOW
clc5q
committed
if (DebugFlag) {
msg(" inserted as index %d\n", ExtractGlobalIndex(TempOp));
}
#endif
}
} // for each upward exposed item in the current block
} // for each basic block
assert(16777215 >= this->GlobalNames.size()); // index fits in 24 bits
return;
} // end of SMPFunction::ComputeGlobalNames()
// For each item in GlobalNames, record the blocks that DEF the item.
void SMPFunction::ComputeBlocksDefinedIn(void) {
// Loop through all basic blocks and examine all DEFs. For Global DEFs, record
// the block number in BlocksDefinedIn. The VarKillSet records DEFs without
// having to examine every instruction.
list<SMPBasicBlock>::iterator CurrBlock;
this->BlocksDefinedIn.clear();
for (size_t i = 0; i < this->GlobalNames.size(); ++i) {
list<int> TempList;
this->BlocksDefinedIn.push_back(TempList);
}
#if SMP_DEBUG_DATAFLOW_VERBOSE
msg("Number of GlobalNames: %d\n", this->GlobalNames.size());
msg("Size of BlocksDefinedIn: %d\n", this->BlocksDefinedIn.size());
#endif
for (CurrBlock = this->Blocks.begin(); CurrBlock != this->Blocks.end(); ++CurrBlock) {
set<op_t, LessOp>::iterator KillIter;
for (KillIter = CurrBlock->GetFirstVarKill(); KillIter != CurrBlock->GetLastVarKill(); ++KillIter) {
// If killed item is not a block-local item (it is global), record it.
set<op_t, LessOp>::iterator NameIter = this->GlobalNames.find(*KillIter);
if (NameIter != this->GlobalNames.end()) { // found in GlobalNames set
// We have a kill of a global name. Get index from three 8-bit fields.
unsigned int index = ExtractGlobalIndex(*NameIter);
if (index >= this->GlobalNames.size()) {
// We are about to assert false.
msg("ComputeBlocksDefinedIn: Bad index: %d limit: %u\n", index,
this->GlobalNames.size());
msg("Block number %d\n", CurrBlock->GetNumber());
msg("Killed item: ");
PrintListOperand(*KillIter);
msg("\n");
msg("This is a fatal error.\n");
}
assert(index < this->GlobalNames.size());
// index is a valid subscript for the BlocksDefinedIn vector. Push the
// current block number onto the list of blocks that define this global name.
this->BlocksDefinedIn[index].push_back(CurrBlock->GetNumber());
}
}
}
return;
} // end of SMPFunction::ComputeBlocksDefinedIn()
// Compute the phi functions at the entry point of each basic block that is a join point.
void SMPFunction::InsertPhiFunctions(void) {
set<op_t, LessOp>::iterator NameIter;
list<int> WorkList; // list of block numbers
bool DebugFlag = false;
#if SMP_DEBUG_DATAFLOW
DebugFlag = (0 == strcmp("uw_frame_state_for", this->GetFuncName()));
if (DebugFlag) msg("GlobalNames size: %u\n", this->GlobalNames.size());
for (NameIter = this->GlobalNames.begin(); NameIter != this->GlobalNames.end(); ++NameIter) {
int CurrNameIndex = (int) (ExtractGlobalIndex(*NameIter));
if (DebugFlag) msg("CurrNameIndex: %d\n", CurrNameIndex);
#if 0
DebugFlag = (DebugFlag && (6 == CurrNameIndex));
#endif
// Initialize the work list to all blocks that define the current name.
WorkList.clear();
list<int>::iterator WorkIter;
for (WorkIter = this->BlocksDefinedIn.at((size_t) CurrNameIndex).begin();
WorkIter != this->BlocksDefinedIn.at((size_t) CurrNameIndex).end();
++WorkIter) {
WorkList.push_back(*WorkIter);
}
// Iterate through the work list, inserting phi functions for the current name
// into all the blocks in the dominance frontier of each work list block.
// Insert into the work list each block that had a phi function added.
while (!WorkList.empty()) {
#if SMP_DEBUG_DATAFLOW_VERBOSE
if (DebugFlag) msg("WorkList size: %d\n", WorkList.size());
list<int>::iterator WorkIter = WorkList.begin();
while (WorkIter != WorkList.end()) {
set<int>::iterator DomFrontIter;
#if SMP_DEBUG_DATAFLOW_VERBOSE
if (DebugFlag) msg("WorkIter: %d\n", *WorkIter);
#endif
if (DebugFlag && (*WorkIter > this->BlockCount)) {
msg("ERROR: WorkList block # %d out of range.\n", *WorkIter);
}
list<SMPBasicBlock>::iterator WorkBlock = this->RPOBlocks[*WorkIter];
for (DomFrontIter = WorkBlock->GetFirstDomFrontier();
DomFrontIter != WorkBlock->GetLastDomFrontier();
++DomFrontIter) {
#if SMP_DEBUG_DATAFLOW_VERBOSE
if (DebugFlag) msg("DomFront: %d\n", *DomFrontIter);
#endif
if (DebugFlag && (*DomFrontIter > this->BlockCount)) {
msg("ERROR: DomFront block # %d out of range.\n", *DomFrontIter);
}
list<SMPBasicBlock>::iterator PhiBlock = this->RPOBlocks[*DomFrontIter];
// Before inserting a phi function for the current name in *PhiBlock,
// see if the current name is LiveIn for *PhiBlock. If not, there
// is no need for the phi function. This check is what makes the SSA
// a fully pruned SSA.
if (PhiBlock->IsLiveIn(*NameIter)) {
size_t NumPreds = PhiBlock->GetNumPreds();
DefOrUse CurrRef(*NameIter);
SMPPhiFunction CurrPhi(CurrNameIndex, CurrRef);
for (size_t NumCopies = 0; NumCopies < NumPreds; ++NumCopies) {
CurrPhi.PushBack(CurrRef); // inputs to phi
}
if (PhiBlock->AddPhi(CurrPhi)) {
// If not already in Phi set, new phi function was inserted.
WorkList.push_back(PhiBlock->GetNumber());
#if SMP_DEBUG_DATAFLOW_VERBOSE
if (DebugFlag) msg("Added phi for name %d at top of block %d\n", CurrNameIndex, PhiBlock->GetNumber());
#endif
}
}
else {
if (DebugFlag) {
msg("Global %d not LiveIn for block %d\n", CurrNameIndex, PhiBlock->GetNumber());
}
}
} // end for all blocks in the dominance frontier
// Remove current block number from the work list
if (DebugFlag) {
msg("Removing block %d from work list.\n", *WorkIter);
}
WorkIter = WorkList.erase(WorkIter);
} // end for all block numbers in the work list
} // end while the work list is not empty
if (DebugFlag) msg("WorkList empty.\n");
} // end for all elements of the GlobalNames set
return;
} // end of SMPFunction::InsertPhiFunctions()