Newer
Older
clc5q
committed
SMP_msg("Bad GlobIndex: %d at %x in %s\n", GlobIndex, InstAddr, this->GetFuncName());
exit(EXIT_FAILURE);
}
// Set the SSA number for this use to the top of stack SSA # (back())
int NewSSANum;
if (this->SSAStack.at(GlobIndex).empty()) {
// No top of stack entry to read.
#if SMP_DEBUG_UNINITIALIZED_SSA_NAMES
if (!CurrInst->MDIsPopInstr() && (o_reg == UseOp.type)) {
// POP uses the stack offset and generates spurious
// uninitialized variable messages for [esp+0].
clc5q
committed
SMP_msg("WARNING: function %s : Use of uninitialized variable: ",
this->GetFuncName());
clc5q
committed
SMP_msg(" Variable: ");
PrintListOperand(*GlobIter);
clc5q
committed
SMP_msg(" Block number: %d Address: %x Instruction: %s\n", BlockNumber,
CurrInst->GetAddr(), CurrInst->GetDisasm());
}
#endif
NewSSANum = SMP_SSA_UNINIT;
}
else {
NewSSANum = this->SSAStack.at(GlobIndex).back();
}
CurrUse = CurrInst->SetUseSSA(UseOp, NewSSANum);
if (DumpFlag && (o_reg == UseOp.type) && UseOp.is_reg(R_ax)) {
clc5q
committed
SMP_msg("New EAX Use SSANum: %d at %x\n", NewSSANum, CurrInst->GetAddr());
} // end for all USEs
set<DefOrUse, LessDefUse>::iterator CurrDef = CurrInst->GetFirstDef();
while (CurrDef != CurrInst->GetLastDef()) {
// See if Def is a global name.
DefOp = CurrDef->GetOp();
set<op_t, LessOp>::iterator GlobIter = this->GlobalNames.find(DefOp);
if (GlobIter != this->GlobalNames.end()) { // found it
unsigned int GlobIndex = ExtractGlobalIndex(*GlobIter);
// Set the SSA number for this DEF to the SSANewNumber top of stack
int NewSSANum = this->SSANewNumber(GlobIndex);
CurrDef = CurrInst->SetDefSSA(DefOp, NewSSANum);
if (o_reg == DefOp.type) {
clc5q
committed
ea_t DefAddr = InstAddr;
if (DumpFlag && DefOp.is_reg(R_ax)) {
clc5q
committed
SMP_msg("New EAX Def SSANum: %d at %x\n", NewSSANum, DefAddr);
}
// Map the final SSA number to the DEF address.
int DefHashValue = HashGlobalNameAndSSA(DefOp, NewSSANum);
pair<int, ea_t> DefMapEntry(DefHashValue, DefAddr);
pair<map<int, ea_t>::iterator, bool> MapReturnValue;
MapReturnValue = this->GlobalDefAddrBySSA.insert(DefMapEntry);
assert(MapReturnValue.second);
}
} // end for all DEFs
} // end for all instructions
clc5q
committed
if (DumpFlag) SMP_msg("Processed all instructions.\n");
// For all control flow graph (not dominator tree) successors, fill in the current
// (outgoing) SSA number in the corresponding USE slot in the phi function, for all
// global names appearing in phi functions.
list<SMPBasicBlock *>::iterator SuccIter;
for (SuccIter = CurrBlock->GetFirstSucc(); SuccIter != CurrBlock->GetLastSucc(); ++SuccIter) {
// What position in the Preds list of this successor is CurrBlock?
int ListPos = (*SuccIter)->GetPredPosition(BlockNumber);
assert(0 <= ListPos);
// Go through all phi functions in this successor. At ListPos position in the
// incoming arguments for that phi function, set the SSA number to the SSA number
// in the top of stack entry for the global name associated with that phi function.
set<SMPPhiFunction, LessPhi>::iterator CurrPhi;
for (CurrPhi = (*SuccIter)->GetFirstPhi(); CurrPhi != (*SuccIter)->GetLastPhi(); ++CurrPhi) {
int GlobIndex = CurrPhi->GetIndex();
int CurrSSA;
if (this->SSAStack.at(GlobIndex).empty()) {
// No top of stack entry to read.
#if SMP_DEBUG_UNINITIALIZED_SSA_NAMES
clc5q
committed
SMP_msg("WARNING: function %s : Path to use of uninitialized variable: ",
this->GetFuncName());
clc5q
committed
SMP_msg(" Variable: ");
PrintListOperand(CurrPhi->GetAnyOp());
clc5q
committed
SMP_msg(" Block number: %d Successor block number: %d\n", BlockNumber,
(*SuccIter)->GetNumber());
#endif
CurrSSA = SMP_SSA_UNINIT;
}
else {
CurrSSA = this->SSAStack.at(GlobIndex).back(); // fetch from top of stack
}
SMPPhiFunction TempPhi = (*CurrPhi);
TempPhi.SetSSARef(ListPos, CurrSSA);
TempPhiList.push_back(TempPhi);
if (DumpFlag && (BlockNumber >= 3) && (BlockNumber <= 4)) {
clc5q
committed
SMP_msg("BlockNumber: %d ListPos: %d\n", BlockNumber, ListPos);
}
} // end for all phi functions in successor
// Go back through the Phi function set and replace the items that need to be updated.
for (TempIter = TempPhiList.begin(); TempIter != TempPhiList.end(); ++TempIter) {
if (DumpFlag && (BlockNumber >= 3) && (BlockNumber <= 4)) {
clc5q
committed
SMP_msg("Special before phi dump:\n");
set<SMPPhiFunction, LessPhi>::iterator FoundPhi;
FoundPhi = (*SuccIter)->FindPhi(TempIter->GetAnyOp());
FoundPhi->Dump();
}
// Use the op_t from the first phi use, because they are all the same.
bool Erased = (*SuccIter)->ErasePhi(TempIter->GetPhiRef(0).GetOp());
assert(Erased);
// Now we can add back the phi function that had one SSA number changed.
bool Added = (*SuccIter)->AddPhi(*TempIter);
assert(Added);
if (DumpFlag && (BlockNumber >= 3) && (BlockNumber <= 4)) {
clc5q
committed
SMP_msg("Special after phi dump:\n");
set<SMPPhiFunction, LessPhi>::iterator FoundPhi;
FoundPhi = (*SuccIter)->FindPhi(TempIter->GetAnyOp());
FoundPhi->Dump();
}
}
TempPhiList.clear();
} // end for all successors of CurrBlock
clc5q
committed
if (DumpFlag) SMP_msg("Processed successor phi functions.\n");
// For each successor in the dominator tree, recurse.
list<int>::iterator ChildIter;
for (ChildIter = this->DomTree[BlockNumber].second.begin();
ChildIter != this->DomTree[BlockNumber].second.end();
++ChildIter) {
this->SSARename(*ChildIter);
}
clc5q
committed
if (DumpFlag) SMP_msg("Finished recursion.\n");
// Pop off all SSAStack entries pushed during this block. I.e. for each global name,
// pop its SSAStack once per DEF and once per phi function in this block.
for (CurrPhi = CurrBlock->GetFirstPhi(); CurrPhi != CurrBlock->GetLastPhi(); ++CurrPhi) {
GlobalNameIndex = CurrPhi->GetIndex();
this->SSAStack.at((size_t) GlobalNameIndex).pop_back();
}
clc5q
committed
if (DumpFlag) SMP_msg("Popped off entries due to phi functions.\n");
for (InstIter = CurrBlock->GetFirstInstr(); InstIter != CurrBlock->GetLastInstr(); ++InstIter) {
set<DefOrUse, LessDefUse>::iterator CurrDef;
for (CurrDef = CurrInst->GetFirstDef(); CurrDef != CurrInst->GetLastDef(); ++CurrDef) {
// See if DEF is a global name.
set<op_t, LessOp>::iterator GlobIter = this->GlobalNames.find(CurrDef->GetOp());
if (GlobIter != this->GlobalNames.end()) { // found it
unsigned int GlobIndex = ExtractGlobalIndex(*GlobIter);
this->SSAStack.at((size_t) GlobIndex).pop_back();
}
} // end for all DEFs
} // end for all instructions
if (DumpFlag) {
clc5q
committed
SMP_msg("Popped off entries due to instructions.\n");
return;
} // end of SMPFunction::SSARename()
// Main driver of SSA subscript renumbering.
void SMPFunction::SSARenumber(void) {
bool DumpFlag = false;
DumpFlag |= (0 == strcmp("_IO_sputbackc", this->GetFuncName()));
#endif
if (0 >= this->GlobalNames.size())
return; // no names to renumber
// Initialize stacks and counters of SSA numbers.
size_t GlobIndex;
assert(0 == this->SSACounter.size());
for (GlobIndex = 0; GlobIndex < this->GlobalNames.size(); ++GlobIndex) {
list<int> DummyList;
this->SSACounter.push_back(0);
this->SSAStack.push_back(DummyList);
}
// Recurse through the dominator tree starting with node 0.
this->SSARename(0);
if (DumpFlag)
this->Dump();
} // end of SMPFunction::SSARenumber()
// Emit debugging output for analyzing time spent in InferTypes() ?
#define SMP_ANALYZE_INFER_TYPES_TIME 0
// Main driver for the type inference system.
void SMPFunction::InferTypes(bool FirstIter) {
// The type inference system is an iteration over four analysis steps, until
// a fixed point is reached:
// 1) Within an instruction, set types of operators based on the operator type,
// the operand types, and the instruction type category, and propagate the
// type of the SMP_ASSIGN operator to its DEF.
// 2) Propagate the type of a DEF along its SSA chain to all USEs of that SSA name.
// 3) If all USEs of an SSA name have the same type, but the DEF has no type,
// 4) If all references to a memory location have the same type, mark that memory
// location as having that type, if no aliasing occurs.
//
// The type inference system will mark DEFs and USEs in each instruction's DEF and USE
clc5q
committed
// sets with an inferred type. This inference on USEs is not conclusive for other USEs
// outside of that instruction. For example, a pointer could be read in from memory
// and used as a pointer, then hashed using an arithmetic operation. If the arithmetic
// operation always treats its source operands as NUMERIC and produces a NUMERIC
// result, e.g. SMP_BITWISE_XOR, then the USE of that pointer is NUMERIC within
// this xor instruction. If the DEF at the beginning of the SSA chain for the pointer
// is eventually marked as POINTER, then all USEs in the chain will be marked POINTER
// as well (see step 2 above). This inconsistency along the USE chain is perfectly
// acceptable in our type system. It is important to mark the USEs according to how
// we observe them being used, because consistent USEs will propagate back up to
// the DEF in step 3 above.
bool changed;
#if SMP_ANALYZE_INFER_TYPES_TIME
bool DebugFlag2 = false;
DebugFlag2 |= (0 == strcmp("Option", this->GetFuncName()));
long NewChangeCount;
long IterationCount = 0;
#endif
#if SMP_DEBUG_TYPE_INFERENCE
clc5q
committed
bool DebugFlag = false;
DebugFlag |= (0 == strcmp("__libc_csu_init", this->GetFuncName()));
list<SMPInstr *>::iterator InstIter;
SMPInstr *CurrInst;
set<DefOrUse, LessDefUse>::iterator CurrDef;
set<DefOrUse, LessDefUse>::iterator NextDef;
list<SMPBasicBlock *>::iterator BlockIter;
SMPBasicBlock *CurrBlock;
clc5q
committed
#if SMP_DEBUG_TYPE_INFERENCE
if (DebugFlag) {
this->Dump();
}
clc5q
committed
#endif
// One time only: Set the types of immediate values, flags register, stack and frame
// pointers, and floating point registers.
if (FirstIter) {
for (InstIter = this->Instrs.begin(); InstIter != this->Instrs.end(); ++InstIter) {
CurrInst = (*InstIter);
clc5q
committed
#if SMP_DEBUG_TYPE_INFERENCE
if (DebugFlag) {
clc5q
committed
SMP_msg("SetImmedTypes for inst at %x: %s\n", CurrInst->GetAddr(), CurrInst->GetDisasm());
clc5q
committed
#endif
CurrInst->SetImmedTypes(this->UseFP);
// Infer signedness, bit width, and other info from the nature of the instruction
// (e.g. loads from stack locations whose signedness has been inferred earlier
// in FindOutGoingArgSize(), or inherently signed arithmetic opcodes like signed
// or unsigned multiplies and divides).
CurrInst->MDSetWidthSignInfo(this->UseFP);
}
// Check for signedness inferences from conditional branches at the end of blocks.
for (BlockIter = this->Blocks.begin(); BlockIter != this->Blocks.end(); ++BlockIter) {
CurrBlock = (*BlockIter);
CurrBlock->MarkBranchSignedness();
// Iterate until no more changes: set types in DEF and USE lists based on RTL
// operators and the instruction category, SSA DEF-USE chains, etc.
#if SMP_ANALYZE_INFER_TYPES_TIME
if (DebugFlag2)
++IterationCount;
#endif
clc5q
committed
#if 0
do {
clc5q
committed
#endif
changed = false;
#if SMP_ANALYZE_INFER_TYPES_TIME
if (DebugFlag2)
NewChangeCount = 0;
#endif
// Step one: Infer types within instructions, context free.
// Step two, propagating DEF types to all USEs, happens within step one
// whenever a DEF type is set for the first time.
for (InstIter = this->Instrs.begin(); InstIter != this->Instrs.end(); ++InstIter) {
CurrInst = (*InstIter);
clc5q
committed
#if SMP_DEBUG_TYPE_INFERENCE
clc5q
committed
if (DebugFlag) SMP_msg("Inferring types for %s\n", CurrInst->GetDisasm());
clc5q
committed
#endif
NewChange = CurrInst->InferTypes();
changed = (changed || NewChange);
#if SMP_ANALYZE_INFER_TYPES_TIME
clc5q
committed
if (DebugFlag2 && NewChange) {
ea_t InstAddr = CurrInst->GetAddr();
clc5q
committed
}
#endif
}
#if SMP_ANALYZE_INFER_TYPES_TIME
if (DebugFlag2) {
clc5q
committed
SMP_msg(" InferTypes iteration: %ld NewChangeCount: %ld \n", IterationCount, NewChangeCount);
}
clc5q
committed
#if 0
} while (changed);
clc5q
committed
#endif
#if SMP_DEBUG_TYPE_INFERENCE
clc5q
committed
if (DebugFlag) SMP_msg("Finished type inference steps 1 and 2.\n");
clc5q
committed
#endif
// Step three: If all USEs of an SSA name have the same type, but the DEF has no
// type, then infer that the DEF must have the same type.
this->TypedDefs = 0;
this->UntypedDefs = 0;
clc5q
committed
this->TypedPhiDefs = 0;
this->UntypedPhiDefs = 0;
clc5q
committed
// This step of the type inference might converge faster if we used a reverse iterator
// to go through the instructions, because we could infer a DEF, propagate it to
// the right hand side by making SMPInstr::InferOperatorType() public and calling it
// on the SMP_ASSIGN operator after we set the type of the left hand side (DEF). Any
// additional DEF inferences would be triggered mostly in the upwards direction by
// setting the type of one or more USEs in the current instruction. How much time gain
// could be achieved by doing this sequence is questionable. !!!!****!!!!****
for (InstIter = this->Instrs.begin(); InstIter != this->Instrs.end(); ++InstIter) {
CurrInst = (*InstIter);
// Find any DEF that still has type UNINIT.
CurrDef = CurrInst->GetFirstDef();
while (CurrDef != CurrInst->GetLastDef()) {
// Set erase() and insert() are needed to change types of DEFs, so
// get hold of the next iterator value now.
NextDef = CurrDef;
++NextDef;
NewChange = false;
if (UNINIT != CurrDef->GetType()) {
++(this->TypedDefs);
}
else {
bool MemDef = (DefOp.type != o_reg);
bool AliasedMemWrite = (MemDef && CurrDef->HasIndirectWrite());
++(this->UntypedDefs);
if (MDIsIndirectMemoryOpnd(DefOp, this->UseFP) // relax this?
#if 0
#endif
|| AliasedMemWrite) {
// Don't want to infer along DEF-USE chains for indirect
// memory accesses until we have alias analysis.
++CurrDef;
continue;
}
ea_t DefAddr = CurrInst->GetAddr();
// Call inference method based on whether it is a block-local
// name or a global name.
CurrBlock = CurrInst->GetBlock();
if (CurrBlock->IsLocalName(DefOp)) {
NameIter = CurrBlock->FindLocalName(DefOp);
assert(CurrBlock->GetLastLocalName() != NameIter);
unsigned int LocIndex = ExtractGlobalIndex(*NameIter);
NewChange = CurrBlock->InferLocalDefType(DefOp, LocIndex, DefAddr);
if (NewChange) {
--(this->UntypedDefs);
++(this->TypedDefs);
}
changed = (changed || NewChange);
}
else {
// global name
bool CallInst = ((CALL == CurrInst->GetDataFlowType())
|| (INDIR_CALL == CurrInst->GetDataFlowType()));
SMPOperandType DefType = UNINIT;
DefType = this->InferGlobalDefType(DefOp,
clc5q
committed
CurrDef->GetSSANum(), CurrBlock, CallInst, DefAddr);
if (IsNotEqType(UNINIT, DefType)) {
CurrDef = CurrInst->SetDefType(DefOp, DefType);
--(this->UntypedDefs);
++(this->TypedDefs);
} // end if local name ... else ...
} // end if (UNINIT != CurrDef->GetType()) .. else ...
CurrDef = NextDef;
} // end while all DEFs in the DEF set
} // end for all instructions
clc5q
committed
#if SMP_DEBUG_TYPE_INFERENCE
clc5q
committed
if (DebugFlag) SMP_msg("Finished type inference step 3.\n");
clc5q
committed
for (BlockIter = this->Blocks.begin(); BlockIter != this->Blocks.end(); ++BlockIter) {
CurrBlock = (*BlockIter);
clc5q
committed
changed |= CurrBlock->InferAllPhiDefTypes();
clc5q
committed
#if SMP_DEBUG_TYPE_INFERENCE
clc5q
committed
if (DebugFlag) SMP_msg("Finished unconditional phi type inference.\n");
clc5q
committed
#endif
#if SMP_CONDITIONAL_TYPE_PROPAGATION
if (!changed) { // Try conditional type propagation
changed |= this->ConditionalTypePropagation();
clc5q
committed
#if SMP_DEBUG_TYPE_INFERENCE
if (DebugFlag) {
clc5q
committed
SMP_msg("changed = %d after conditional type propagation.\n", changed);
clc5q
committed
}
#endif
}
#endif
// With type inference finished, infer signedness from the types, e.g.
// POINTER and CODEPOINTER types must be UNSIGNED.
if (FirstIter) { // Don't want profiler-dependent signedness in the system yet.
for (InstIter = this->Instrs.begin(); InstIter != this->Instrs.end(); ++InstIter) {
(*InstIter)->InferSignednessFromSMPTypes(this->UsesFramePointer());
}
}
// Record the meet of all register types that reach RETURN instructions.
this->MDFindReturnTypes();
return;
} // end of SMPFunction::InferTypes()
// determine signedness and width info for all operands
void SMPFunction::InferFGInfo(void) {
bool changed, NewChange;
unsigned short IterCount = 0;
list<SMPInstr *>::iterator InstIter;
list<SMPBasicBlock *>::iterator BlockIter;
SMPBasicBlock *CurrBlock;
do {
changed = false;
++IterCount;
for (InstIter = this->Instrs.begin(); InstIter != this->Instrs.end(); ++InstIter) {
SMPInstr *CurrInst = (*InstIter);
NewChange = CurrInst->InferFGInfo(IterCount);
changed = (changed || NewChange);
}
if (changed) {
for (BlockIter = this->Blocks.begin(); BlockIter != this->Blocks.end(); ++BlockIter) {
CurrBlock = (*BlockIter);
CurrBlock->PropagatePhiFGInfo();
}
}
} while (changed);
return;
} // end of SMPFunction::InferFGInfo()
// Apply the profiler information to this function once we've inferred everything we can about it.
void SMPFunction::ApplyProfilerInformation(ProfilerInformation* pi)
{
assert(pi);
// If no profiler annotations are available, save time.
if (0 == pi->GetProfilerAnnotationCount())
return;
SetIsSpeculative(true);
list<SMPInstr *>::iterator InstIter;
set<DefOrUse, LessDefUse>::iterator CurrDef, NextDef;
bool DebugFlag = false;
DebugFlag |= (0 == strcmp("dohanoi", this->GetFuncName()));
#endif
// for each instruction in this function
for (InstIter = this->Instrs.begin(); InstIter != this->Instrs.end(); ++InstIter) {
SMPInstr *CurrInst = (*InstIter);
// lookup whether a load at this instruction was profiled as always numeric
InstructionInformation* ii = pi->GetInfo(CurrInst->GetAddr());
clc5q
committed
SMP_msg("Found instruction information for %x\n", CurrInst->GetAddr());
if (ii && ii->isNumeric()) {
#if SMP_DEBUG_PROFILED_TYPE_INFERENCE
clc5q
committed
SMP_msg("Found instruction information for %x and it's numeric!\n", CurrInst->GetAddr());
CurrInst->UpdateMemLoadTypes((SMPOperandType)(NUMERIC|PROF_BASE));
}
// lookup whether this instruction has been profiled as an indirect call
set<ea_t> indirect_call_targets = pi->GetIndirectCallTargets(CurrInst->GetAddr());
for (set<ea_t>::iterator ict_iter = indirect_call_targets.begin();
ict_iter != indirect_call_targets.end();
++ict_iter)
ea_t target = *ict_iter;
if (vector_exists(target, IndirectCallTargets))
IndirectCallTargets.push_back(target);
if (vector_exists(target, AllCallTargets))
AllCallTargets.push_back(target);
}
return;
} // end of SMPFunction::ApplyProfilerInformation
clc5q
committed
// For the UNINIT type DEF DefOp, see if all its USEs have a single type.
// If so, set the DEF to that type and return type,
clc5q
committed
// If DefAddr == BADADDR, then the DEF is in a Phi function, not an instruction.
SMPOperandType SMPFunction::InferGlobalDefType(op_t DefOp, int SSANum, SMPBasicBlock *DefBlock, bool CallInst, ea_t DefAddr) {
bool DebugFlag = false;
bool FoundNumeric = false;
bool FoundPointer = false;
bool FoundUnknown = false;
bool FoundUninit = false;
clc5q
committed
bool FoundDEF;
bool DefEscapes = true;
#if SMP_DEBUG_TYPE_INFERENCE
DebugFlag |= (0 == strcmp("mem_init", this->GetFuncName()));
clc5q
committed
SMP_msg("InferGlobalDefType for SSANum %d of ", SSANum);
clc5q
committed
SMP_msg("\n");
list<SMPInstr *>::iterator InstIter;
clc5q
committed
set<DefOrUse, LessDefUse>::iterator CurrUse, CurrDef;
// Go through all instructions in the block and find the instructions
// that have USEs of DefOp with SSANum. If all USEs in the chain have
// a single type (other than UNINIT), change the DEF type to match the
// USE type and set changed to true.
SMPOperandType UseType = UNINIT;
SMPOperandType PtrType = UNINIT;
clc5q
committed
5534
5535
5536
5537
5538
5539
5540
5541
5542
5543
5544
5545
5546
5547
5548
5549
5550
5551
5552
5553
5554
5555
5556
5557
5558
5559
5560
5561
5562
if (BADADDR == DefAddr) { // DEF is in a Phi function
FoundDEF = true;
}
else { // DEF is in an instruction
FoundDEF = false; // need to see the DefAddr first
}
for (InstIter = DefBlock->GetFirstInstr(); InstIter != DefBlock->GetLastInstr(); ++InstIter) {
SMPInstr *CurrInst = (*InstIter);
if ((!FoundDEF) && (DefAddr == CurrInst->GetAddr())) {
FoundDEF = true;
}
else if (FoundDEF) {
CurrDef = CurrInst->FindDef(DefOp);
if (CurrDef != CurrInst->GetLastDef()) {
// Found re-DEF of DefOp.
DefEscapes = false;
}
}
CurrUse = CurrInst->FindUse(DefOp);
if (CurrUse != CurrInst->GetLastUse()) { // found a USE of DefOp
if (CurrUse->GetSSANum() == SSANum) { // matched SSA number
UseType = CurrUse->GetType();
FoundNumeric |= (IsNumeric(UseType));
FoundUnknown |= (IsUnknown(UseType));
FoundUninit |= (IsEqType(UNINIT, UseType));
if (IsDataPtr(UseType)) {
if (FoundPointer) {
if (IsNotEqType(PtrType, UseType)) {
clc5q
committed
SMP_msg("WARNING: Differing ptr types in global chain:");
SMP_msg(" Prev: %d Current: %d %s\n", PtrType, UseType,
clc5q
committed
CurrInst->GetDisasm());
clc5q
committed
5571
5572
5573
5574
5575
5576
5577
5578
5579
5580
5581
5582
5583
5584
5585
5586
5587
5588
5589
5590
5591
5592
5593
5594
5595
5596
5597
5598
5599
5600
else {
FoundPointer = true;
PtrType = UseType;
}
}
} // end if matched SSA #
} // end if found a USE of DefOp
} // end for all instructions
if (DefEscapes) { // did not find re-def
DefEscapes = DefBlock->IsLiveOut(DefOp);
}
if (DefEscapes) { // Need to recurse into successor blocks
list<SMPBasicBlock *>::iterator SuccIter;
ea_t TempAddr;
this->ResetProcessedBlocks(); // set up recursion
for (SuccIter = DefBlock->GetFirstSucc(); SuccIter != DefBlock->GetLastSucc(); ++SuccIter) {
SMPBasicBlock *CurrBlock = (*SuccIter);
set<SMPPhiFunction, LessPhi>::iterator PhiIter = CurrBlock->FindPhi(DefOp);
TempAddr = DefAddr;
if (PhiIter != CurrBlock->GetLastPhi()) {
TempAddr = BADADDR; // signals that DefOp will get re-DEFed in a Phi function.
}
else if (BADADDR == TempAddr) { // was BADADDR coming in to this function
// We don't want to pass BADADDR down the recursion chain, because it will be interpreted
// by each successor block to mean that DefOp was a Phi USE that got re-DEFed in a Phi function
// within itself. Pass the dummy address that indicates LiveIn to the block.
TempAddr = CurrBlock->GetFirstAddr() - 1;
clc5q
committed
// Should we screen the recursive call below using CurrBlock->IsLiveIn(DefOp) for speed? !!!!****!!!!
CurrBlock->InferGlobalDefType(DefOp, SSANum, TempAddr, FoundNumeric, FoundPointer, FoundUnknown, FoundUninit, PtrType);
clc5q
committed
// Do we have a consistent type?
// If we see any definite POINTER uses, we must set the DEF
// to type POINTER or a refinement of it.
if (FoundPointer)
UseType = PtrType;
else if (FoundNumeric && !FoundUninit && !FoundUnknown)
UseType = NUMERIC;
else
return UNINIT; // no POINTER, but no consistent type
assert(UNINIT != UseType);
clc5q
committed
if (DebugFlag) SMP_msg("Inferring global DEF of type %d\n", UseType);
clc5q
committed
#define SMP_SIMPLE_CONDITIONAL_TYPE_PROPAGATION 1
#if SMP_SIMPLE_CONDITIONAL_TYPE_PROPAGATION
// The simple form of conditional type propagation observes that we
// simply need to apply the meet operator over Phi function USEs and
// then propagate any DEF type changes using PropagateGlobalDefType().
// The outermost iteration over all type inference methods in InferTypes()
// will take care of all the propagation that is handled by the work list
// processing in the textbook algorithm.
// Iteration convergence might be slower in the simple approach, but the code
// is much simpler to debug.
bool SMPFunction::ConditionalTypePropagation(void) {
bool changed = false;
SMPBasicBlock *CurrBlock;
vector<SMPBasicBlock *>::iterator CurrRPO;
set<SMPPhiFunction, LessPhi>::iterator CurrPhi;
for (CurrRPO = this->RPOBlocks.begin(); CurrRPO != this->RPOBlocks.end(); ++CurrRPO) {
CurrBlock = *CurrRPO;
SMPOperandType MeetType;
for (CurrPhi = CurrBlock->GetFirstPhi(); CurrPhi != CurrBlock->GetLastPhi(); ++CurrPhi) {
MeetType = CurrPhi->ConditionalMeetType();
// Here we use a straight equality test, not our macros,
// because we consider it a change if the MeetType is
// profiler derived and the DEFType is not.
if (MeetType == CurrPhi->GetDefType())
continue;
// Change the DEF type to the MeetType and propagate.
op_t DefOp = CurrPhi->GetAnyOp();
bool IsMemOp = (o_reg != DefOp.type);
CurrPhi = CurrBlock->SetPhiDefType(DefOp, MeetType);
changed = true;
this->ResetProcessedBlocks();
changed |= CurrBlock->PropagateGlobalDefType(DefOp,
MeetType, CurrPhi->GetDefSSANum(), IsMemOp);
5657
5658
5659
5660
5661
5662
5663
5664
5665
5666
5667
5668
5669
5670
5671
5672
5673
5674
5675
5676
5677
5678
5679
5680
5681
5682
5683
5684
5685
5686
5687
5688
5689
} // end for all phi functions in the current block
} // end for all blocks
return changed;
} // end of SMPFunction::ConditionalTypePropagation()
#else // not SMP_SIMPLE_CONDITIONAL_TYPE_PROPAGATION
// Apply the SCC (Sparse Conditional Constant) propagation algorithm to
// propagate types starting from unresolved Phi DEFs.
bool SMPFunction::ConditionalTypePropagation(void) {
bool changed = false;
// Collections of Phi functions and instructions that have a DEF
// with type UNINIT for the current global name.
map<int, set<SMPPhiFunction, LessPhi>::iterator> UninitDEFPhis;
vector<list<SMPInstr>::iterator> UninitDEFInsts;
// Work lists of Phi functions and instructions that need to be processed
// according to the SCC algorithm.
list<map<int, set<SMPPhiFunction, LessPhi>::iterator>::iterator> PhiWorkList;
list<vector<list<SMPInstr>::iterator>::iterator> InstWorkList;
// Iterate through all global names that are either (1) registers
// or (2) stack locations in SAFE functions.
set<op_t, LessOp>::iterator CurrGlob;
for (CurrGlob = this->GetFirstGlobalName(); CurrGlob != this->GetLastGlobalName(); ++CurrGlob) {
op_t GlobalOp = *CurrGlob;
list<SMPBasicBlock>::iterator CurrBlock;
vector<list<SMPBasicBlock>::iterator>::iterator CurrRPO;
if (MDIsIndirectMemoryOpnd(GlobalOp, this->UseFP))
continue; // need alias analysis to process indirect accesses
if ((GlobalOp.type != o_reg)
&& (!((this->GetReturnAddressStatus() == FUNC_SAFE) && MDIsStackAccessOpnd(GlobalOp, this->UseFP))))
5691
5692
5693
5694
5695
5696
5697
5698
5699
5700
5701
5702
5703
5704
5705
5706
5707
5708
5709
5710
5711
5712
5713
5714
5715
5716
5717
5718
5719
continue; // not register, not safe stack access
// Set up a map (indexed by SSANum) of iterators to Phi functions
// for the current global name that have UNINIT as the Phi DEF type.
UninitDEFPhis.clear();
UninitDEFInsts.clear();
for (CurrRPO = this->RPOBlocks.begin(); CurrRPO != this->RPOBlocks.end(); ++CurrRPO) {
CurrBlock = *CurrRPO;
set<SMPPhiFunction, LessPhi>::iterator CurrPhi;
CurrPhi = CurrBlock->FindPhi(GlobalOp);
if (CurrPhi != CurrBlock->GetLastPhi()) {
// Found Phi function for current global name.
if (IsEqType(CurrPhi->GetDefType(), UNINIT)) {
// Phi DEF is UNINIT; add Phi to the map.
pair<int, set<SMPPhiFunction, LessPhi>::iterator> TempPair(CurrPhi->GetDefSSANum(), CurrPhi);
bool Inserted = false;
map<int, set<SMPPhiFunction, LessPhi>::iterator>::iterator WhereIns;
pair<map<int, set<SMPPhiFunction, LessPhi>::iterator>::iterator, bool> Result(WhereIns, Inserted);
Result = UninitDEFPhis.insert(TempPair);
assert(Result.second == true);
}
}
} // end for all blocks
// If any Phi DEF had UNINIT as its type, set up a vector of
// iterators to instructions that have UNINIT as the DEF type
// for the current global name.
if (UninitDEFPhis.empty())
continue;
list<SMPInstr *>::iterator InstIter;
for (InstIter = this->Instrs.begin(); InstIter != this->Instrs.end(); ++InstIter) {
SMPInstr *CurrInst = (*InstIter);
5723
5724
5725
5726
5727
5728
5729
5730
5731
5732
5733
5734
5735
5736
5737
5738
5739
5740
5741
5742
5743
5744
5745
5746
5747
5748
5749
5750
5751
5752
5753
5754
5755
5756
5757
5758
5759
5760
5761
5762
5763
5764
5765
5766
5767
5768
5769
5770
5771
5772
5773
5774
5775
5776
5777
5778
5779
5780
5781
5782
5783
5784
5785
5786
5787
5788
5789
5790
5791
5792
5793
5794
5795
5796
5797
5798
5799
5800
5801
5802
5803
5804
set<DefOrUse, LessDefUse>::iterator CurrDef = CurrInst->FindDef(GlobalOp);
if (CurrDef != CurrInst->GetLastDef()) {
// Found DEF of current global name.
if (IsEqType(UNINIT, CurrDef->GetType())) {
UninitDEFInsts.push_back(CurrInst);
}
}
} // end for all instructions
// Put all UNINIT Phi DEFs that have at least one USE
// that is not UNINIT onto the PhiWorkList.
map<int, set<SMPPhiFunction, LessPhi>::iterator>::iterator CurrUnPhi;
for (CurrUnPhi = UninitDEFPhis.begin(); CurrUnPhi != UninitDEFPhis.end(); ++CurrUnPhi) {
pair<int, set<SMPPhiFunction, LessPhi>::iterator> PhiDefPair(*CurrUnPhi);
if (PhiDefPair.second->HasTypedUses()) {
PhiWorkList.push_back(CurrUnPhi);
}
}
// Iterate until both work lists are empty:
while (!(PhiWorkList.empty() && InstWorkList.empty())) {
// Process Phi items first.
while (!PhiWorkList.empty()) {
// If applying the meet operator over the Phi USE types
// would produce a new DEF type, change the DEF type and
// propagate it, adding Phi functions and instructions that
// received the propagated type to their respective work lists.
map<int, set<SMPPhiFunction, LessPhi>::iterator>::iterator MapIter;
MapIter = PhiWorkList.front();
PhiWorkList.pop_front(); // remove from work list
pair<int, set<SMPPhiFunction, LessPhi>::iterator> PhiDefPair;
PhiDefPair.first = MapIter->first;
PhiDefPair.second = MapIter->second;
set<SMPPhiFunction, LessPhi>::iterator CurrPhi = PhiDefPair.second;
SMPOperandType MeetType = CurrPhi->ConditionalMeetType();
// Here we use a straight equality test, not our macros,
// because we consider it a change if the MeetType is
// profiler derived and the DEFType is not.
if (MeetType == CurrPhi->GetDefType())
continue;
// At this point, we need to set the DEFType to the MeetType
// and propagate the change. We have a map of all the
// critical Phi functions for this global name, as well
// as a vector of the relevant instructions for this name.
CurrPhi->SetDefType(MeetType);
changed = true;
int DefSSANum = CurrPhi->GetDefSSANum();
map<int, set<SMPPhiFunction, LessPhi>::iterator>::iterator PhiIter;
vector<list<SMPInstr>::iterator>::iterator InstIter;
// Propagate to Phi functions first.
for (PhiIter = UninitDEFPhis.begin(); PhiIter != UninitDEFPhis.end(); ++PhiIter) {
if (DefSSANum == PhiIter->first)
continue; // Skip the Phi that we just changed
for (size_t index = 0; index < PhiIter->second->GetPhiListSize(); ++index) {
if (DefSSANum == PhiIter->second->GetUseSSANum(index)) {
// Matched SSA # to USE. Propagate new type.
PhiIter->second->SetRefType(index, MeetType);
// Add this phi function to the work list.
PhiWorkList.push_back(PhiIter);
}
}
}
#define SMP_COND_TYPE_PROP_TO_INSTS 0
#if SMP_COND_TYPE_PROP_TO_INSTS
// Propagate to instructions with uninit DEFs of global name.
// The idea is that the instructions that hold up type propagation
// are the ones that USE and then DEF the same global name.
// For example, "increment EAX" has to know the type of
// the USE of EAX in order to set the type of the DEF.
#endif
} // end while the PhiWorkList is not empty
#if SMP_COND_TYPE_PROP_TO_INSTS
// The PhiWorkList is empty at this point, so process
// instructions on the InstWorkList.
#endif
} // end while both work lists are not empty
} // end for all global names
return changed;
} // end of SMPFunction::ConditionalTypePropagation()
#endif // end if SMP_SIMPLE_CONDITIONAL_TYPE_PROPAGATION else ...
// Emit all annotations for the function, including all per-instruction
// annotations.
void SMPFunction::EmitAnnotations(FILE *AnnotFile, FILE *InfoAnnotFile) {
// Emit annotation for the function as a whole.
list<SMPBasicBlock *>::iterator BlockIter;
SMPBasicBlock *CurrBlock;
bool FuncHasProblems = ((!this->AnalyzedSP) || (!this->HasGoodRTLs()) || (this->HasUnresolvedIndirectCalls())
|| (this->HasUnresolvedIndirectJumps()) || (this->HasSharedChunks()));
if (this->StaticFunc) {
clc5q
committed
SMP_fprintf(AnnotFile, "%10x %6zu FUNC LOCAL %s ", this->FuncInfo.startEA,
clc5q
committed
SMP_fprintf(AnnotFile, "%10x %6zu FUNC GLOBAL %s ", this->FuncInfo.startEA,
switch (this->GetReturnAddressStatus())
{
case FUNC_UNKNOWN:
{
clc5q
committed
SMP_fprintf(AnnotFile, "FUNC_UNKNOWN ");
break;
}
case FUNC_SAFE:
{
clc5q
committed
SMP_fprintf(AnnotFile, "FUNC_SAFE ");
break;
}
case FUNC_UNSAFE:
{
clc5q
committed
SMP_fprintf(AnnotFile, "FUNC_UNSAFE ");
break;
}
default:
assert(0);
}
clc5q
committed
SMP_fprintf(AnnotFile, "USEFP ");
clc5q
committed
SMP_fprintf(AnnotFile, "NOFP ");
}
if (this->FuncInfo.does_return()) {
clc5q
committed
SMP_fprintf(AnnotFile, "RET ");
clc5q
committed
SMP_fprintf(AnnotFile, "NORET ");
clc5q
committed
SMP_fprintf(AnnotFile, "FUNC_LEAF ");
clc5q
committed
SMP_fprintf(AnnotFile,"%10x ", this->FuncInfo.endEA - 1);
clc5q
committed
SMP_fprintf(AnnotFile, "LIBRARY ");
SMP_fprintf(AnnotFile, "\n");
// Emit annotations about how to restore register values
clc5q
committed
SMP_fprintf(AnnotFile, "%10x %6d FUNC FRAMERESTORE ", this->FuncInfo.startEA, 0);
clc5q
committed
for(int i = R_ax; i <= R_di; i++)
clc5q
committed
SMP_fprintf(AnnotFile, "%d %d %d ", i, this->SavedRegLoc[i], this->ReturnRegTypes[i]);
clc5q
committed
SMP_fprintf(AnnotFile, "ZZ\n");
clc5q
committed
SMP_fprintf(AnnotFile, "%10x %6d FUNC MMSAFENESS ", this->FuncInfo.startEA, 0);
clc5q
committed
SMP_fprintf(AnnotFile, "UNSAFE\n");
clc5q
committed
SMP_fprintf(AnnotFile, "SPECSAFE\n");
clc5q
committed
SMP_fprintf(AnnotFile, "SAFE\n");
// If function has problems that limited our analyses, emit an information annotation so that
// other tools can be aware of which analyses will be sound.
if (FuncHasProblems) {
clc5q
committed
SMP_fprintf(InfoAnnotFile, "%10x %6zu FUNC PROBLEM %s ", this->FuncInfo.startEA,
if (!this->AnalyzedSP) {
clc5q
committed
SMP_fprintf(InfoAnnotFile, "STACKANALYSIS ");
}
if (this->HasSharedChunks()) {
clc5q
committed
SMP_fprintf(InfoAnnotFile, "CHUNKS ");
}
if (this->HasUnresolvedIndirectJumps()) {
clc5q
committed
SMP_fprintf(InfoAnnotFile, "JUMPUNRESOLVED ");
}
if (this->HasUnresolvedIndirectCalls()) {
clc5q
committed
SMP_fprintf(InfoAnnotFile, "CALLUNRESOLVED ");
}
if (!this->HasGoodRTLs()) {
clc5q
committed
SMP_fprintf(InfoAnnotFile, "BADRTLS ");
clc5q
committed
SMP_fprintf(InfoAnnotFile, "\n");
// Loop through all instructions in the function.
// Output optimization annotations for those
// instructions that do not require full computation
// of their memory metadata by the Memory Monitor SDT.
list<SMPInstr *>::iterator InstIter = Instrs.begin();
#if SMP_USE_SSA_FNOP_MARKER
++InstIter; // skip marker instruction
#endif
bool AllocSeen = false; // Reached LocalVarsAllocInstr yet?
bool DeallocTrigger = false;
for ( ; InstIter != Instrs.end(); ++InstIter) {
SMPInstr *CurrInst = (*InstIter);
ea_t addr = CurrInst->GetAddr();
clc5q
committed
SMP_fprintf(AnnotFile, "%10x %6d INSTR BELONGTO %x \n", addr, 0, GetStartAddr());
if (this->LocalVarsAllocInstr == addr) {
AllocSeen = true;
clc5q
committed
this->EmitStackFrameAnnotations(AnnotFile, CurrInst);
clc5q
committed
int OptType = CurrInst->GetOptType();
if (5 == OptType) { // ADD or SUB
// Prevent mmStrata from extending the caller's stack frame
// to include the new allocation.
clc5q
committed
SMP_fprintf(AnnotFile, "%10x %6d INSTR LOCAL SafeFrameAlloc %s \n",
clc5q
committed
addr, -1, CurrInst->GetDisasm());
}
else if (CurrInst->MDIsPushInstr()) {
clc5q
committed
SMP_fprintf(AnnotFile, "%10x %6d INSTR LOCAL NoWarn %s \n",
clc5q
committed
addr, -3, CurrInst->GetDisasm());
}
clc5q
committed
// mmStrata ignores the DATAREF annotations anyway, so even though
// they are not needed, emit them for use by Strata and other tools
// in other projects besides MEDS.
this->EmitStackFrameAnnotations(AnnotFile, CurrInst);
}
// If this is the instruction which deallocated space
// for local variables, we set a flag to remind us to
// emit an annotation on the next instruction.
// mmStrata wants the instruction AFTER the
// deallocating instruction, so that it processes
// the deallocation after it happens. It inserts
// instrumentation before an instruction, not
// after, so it will insert the deallocating
// instrumentation before the first POP of callee-saved regs,
// if there are any, or before the return, otherwise.
if (addr == this->LocalVarsDeallocInstr) {
DeallocTrigger = true;
}
else if (DeallocTrigger) { // Time for annotation
clc5q
committed
SMP_fprintf(AnnotFile, "%10x %6d DEALLOC STACK esp - %d %s\n", addr,
this->LocalVarsSize, this->LocalVarsSize, CurrInst->GetDisasm());
DeallocTrigger = false;
}
#ifndef SMP_REDUCED_ANALYSIS
if (this->HasGoodRTLs() && !this->HasUnresolvedIndirectJumps() && !this->HasSharedChunks()) {
CurrInst->EmitTypeAnnotations(this->UseFP, AllocSeen, this->NeedsStackReferent, AnnotFile, InfoAnnotFile);
CurrInst->EmitIntegerErrorAnnotations(InfoAnnotFile);
else
#endif
CurrInst->EmitAnnotations(this->UseFP, AllocSeen, this->NeedsStackReferent, AnnotFile, InfoAnnotFile);
if (CurrInst->MDIsReturnInstr() && this->GetReturnAddressStatus() == FUNC_SAFE)
CurrInst->EmitSafeReturn(AnnotFile);
} // end for all instructions
// Loop through all basic blocks and emit profiling request annotations
// for those blocks that have unsafe memory writes in them.
this->SafeBlocks = 0;
this->UnsafeBlocks = 0;
for (BlockIter = this->Blocks.begin(); BlockIter != this->Blocks.end(); ++BlockIter) {
CurrBlock = (*BlockIter);
if (CurrBlock->MaybeAliasedWrite()) {
++(this->UnsafeBlocks);
clc5q
committed
#if SMP_OPTIMIZE_BLOCK_PROFILING
list<SMPInstr *>::iterator CurrInst;
CurrInst = CurrBlock->GetFirstInstr();
ea_t addr = (*CurrInst)->GetAddr();
clc5q
committed
SMP_fprintf(AnnotFile, "%10x %6d BLOCK PROFILECOUNT %s\n", addr,
(*CurrInst)->GetCmd().size, (*CurrInst)->GetDisasm());
clc5q
committed
#endif
}
else {
++(this->SafeBlocks);
}
}
return;
} // end of SMPFunction::EmitAnnotations()
// Debug output dump.
void SMPFunction::Dump(void) {
list<SMPBasicBlock *>::iterator CurrBlock;