Newer
Older
5001
5002
5003
5004
5005
5006
5007
5008
5009
5010
5011
5012
5013
5014
5015
5016
5017
5018
5019
5020
5021
5022
5023
5024
5025
5026
5027
5028
5029
5030
5031
5032
5033
5034
5035
5036
5037
5038
5039
5040
5041
5042
5043
5044
5045
5046
5047
5048
5049
5050
5051
5052
5053
5054
5055
5056
5057
5058
5059
5060
5061
5062
5063
5064
5065
5066
5067
5068
5069
5070
5071
5072
5073
5074
5075
5076
5077
5078
5079
5080
5081
5082
5083
5084
5085
5086
5087
5088
5089
5090
5091
5092
5093
5094
5095
5096
5097
5098
5099
5100
5101
5102
5103
5104
5105
5106
5107
5108
5109
5110
5111
5112
5113
5114
5115
5116
5117
5118
5119
5120
5121
5122
5123
5124
5125
5126
5127
5128
5129
5130
5131
5132
5133
5134
5135
5136
5137
5138
5139
5140
5141
5142
5143
5144
5145
5146
5147
5148
5149
5150
5151
5152
5153
5154
5155
5156
5157
5158
5159
5160
5161
5162
5163
5164
5165
5166
5167
5168
5169
5170
5171
5172
5173
5174
5175
5176
5177
5178
5179
5180
5181
5182
5183
5184
5185
5186
5187
5188
5189
5190
5191
5192
5193
5194
5195
5196
5197
5198
5199
5200
5201
5202
5203
5204
5205
5206
5207
5208
5209
5210
5211
5212
5213
5214
5215
5216
5217
5218
5219
5220
5221
5222
5223
5224
5225
5226
5227
5228
5229
5230
5231
5232
5233
5234
5235
5236
5237
5238
5239
5240
5241
5242
5243
5244
5245
5246
5247
5248
5249
5250
5251
5252
5253
5254
5255
5256
5257
5258
5259
5260
5261
5262
5263
5264
5265
5266
5267
5268
5269
5270
5271
5272
5273
5274
5275
5276
5277
5278
5279
5280
5281
5282
5283
5284
5285
5286
5287
5288
5289
5290
5291
5292
5293
5294
5295
5296
5297
SMPDefsFlags[NN_vfmsub231pd] = false; // Fused Multiply-Subtract of Packed Double-Precision Floating-Point Values
SMPDefsFlags[NN_vfmsub231ps] = false; // Fused Multiply-Subtract of Packed Single-Precision Floating-Point Values
SMPDefsFlags[NN_vfmsub231sd] = false; // Fused Multiply-Subtract of Scalar Double-Precision Floating-Point Values
SMPDefsFlags[NN_vfmsub231ss] = false; // Fused Multiply-Subtract of Scalar Single-Precision Floating-Point Values
SMPDefsFlags[NN_vfmsubadd132pd] = false; // Fused Multiply-Alternating Subtract/Add of Packed Double-Precision Floating-Point Values
SMPDefsFlags[NN_vfmsubadd132ps] = false; // Fused Multiply-Alternating Subtract/Add of Packed Single-Precision Floating-Point Values
SMPDefsFlags[NN_vfmsubadd213pd] = false; // Fused Multiply-Alternating Subtract/Add of Packed Double-Precision Floating-Point Values
SMPDefsFlags[NN_vfmsubadd213ps] = false; // Fused Multiply-Alternating Subtract/Add of Packed Single-Precision Floating-Point Values
SMPDefsFlags[NN_vfmsubadd231pd] = false; // Fused Multiply-Alternating Subtract/Add of Packed Double-Precision Floating-Point Values
SMPDefsFlags[NN_vfmsubadd231ps] = false; // Fused Multiply-Alternating Subtract/Add of Packed Single-Precision Floating-Point Values
SMPDefsFlags[NN_vfnmadd132pd] = false; // Fused Negative Multiply-Add of Packed Double-Precision Floating-Point Values
SMPDefsFlags[NN_vfnmadd132ps] = false; // Fused Negative Multiply-Add of Packed Single-Precision Floating-Point Values
SMPDefsFlags[NN_vfnmadd132sd] = false; // Fused Negative Multiply-Add of Scalar Double-Precision Floating-Point Values
SMPDefsFlags[NN_vfnmadd132ss] = false; // Fused Negative Multiply-Add of Scalar Single-Precision Floating-Point Values
SMPDefsFlags[NN_vfnmadd213pd] = false; // Fused Negative Multiply-Add of Packed Double-Precision Floating-Point Values
SMPDefsFlags[NN_vfnmadd213ps] = false; // Fused Negative Multiply-Add of Packed Single-Precision Floating-Point Values
SMPDefsFlags[NN_vfnmadd213sd] = false; // Fused Negative Multiply-Add of Scalar Double-Precision Floating-Point Values
SMPDefsFlags[NN_vfnmadd213ss] = false; // Fused Negative Multiply-Add of Scalar Single-Precision Floating-Point Values
SMPDefsFlags[NN_vfnmadd231pd] = false; // Fused Negative Multiply-Add of Packed Double-Precision Floating-Point Values
SMPDefsFlags[NN_vfnmadd231ps] = false; // Fused Negative Multiply-Add of Packed Single-Precision Floating-Point Values
SMPDefsFlags[NN_vfnmadd231sd] = false; // Fused Negative Multiply-Add of Scalar Double-Precision Floating-Point Values
SMPDefsFlags[NN_vfnmadd231ss] = false; // Fused Negative Multiply-Add of Scalar Single-Precision Floating-Point Values
SMPDefsFlags[NN_vfnmsub132pd] = false; // Fused Negative Multiply-Subtract of Packed Double-Precision Floating-Point Values
SMPDefsFlags[NN_vfnmsub132ps] = false; // Fused Negative Multiply-Subtract of Packed Single-Precision Floating-Point Values
SMPDefsFlags[NN_vfnmsub132sd] = false; // Fused Negative Multiply-Subtract of Scalar Double-Precision Floating-Point Values
SMPDefsFlags[NN_vfnmsub132ss] = false; // Fused Negative Multiply-Subtract of Scalar Single-Precision Floating-Point Values
SMPDefsFlags[NN_vfnmsub213pd] = false; // Fused Negative Multiply-Subtract of Packed Double-Precision Floating-Point Values
SMPDefsFlags[NN_vfnmsub213ps] = false; // Fused Negative Multiply-Subtract of Packed Single-Precision Floating-Point Values
SMPDefsFlags[NN_vfnmsub213sd] = false; // Fused Negative Multiply-Subtract of Scalar Double-Precision Floating-Point Values
SMPDefsFlags[NN_vfnmsub213ss] = false; // Fused Negative Multiply-Subtract of Scalar Single-Precision Floating-Point Values
SMPDefsFlags[NN_vfnmsub231pd] = false; // Fused Negative Multiply-Subtract of Packed Double-Precision Floating-Point Values
SMPDefsFlags[NN_vfnmsub231ps] = false; // Fused Negative Multiply-Subtract of Packed Single-Precision Floating-Point Values
SMPDefsFlags[NN_vfnmsub231sd] = false; // Fused Negative Multiply-Subtract of Scalar Double-Precision Floating-Point Values
SMPDefsFlags[NN_vfnmsub231ss] = false; // Fused Negative Multiply-Subtract of Scalar Single-Precision Floating-Point Values
SMPDefsFlags[NN_vgatherdps] = false; // Gather Packed SP FP Values Using Signed Dword Indices
SMPDefsFlags[NN_vgatherdpd] = false; // Gather Packed DP FP Values Using Signed Dword Indices
SMPDefsFlags[NN_vgatherqps] = false; // Gather Packed SP FP Values Using Signed Qword Indices
SMPDefsFlags[NN_vgatherqpd] = false; // Gather Packed DP FP Values Using Signed Qword Indices
SMPDefsFlags[NN_vhaddpd] = false; // Add horizontally packed DP FP numbers
SMPDefsFlags[NN_vhaddps] = false; // Add horizontally packed SP FP numbers
SMPDefsFlags[NN_vhsubpd] = false; // Sub horizontally packed DP FP numbers
SMPDefsFlags[NN_vhsubps] = false; // Sub horizontally packed SP FP numbers
SMPDefsFlags[NN_vinsertf128] = false; // Insert Packed Floating-Point Values
SMPDefsFlags[NN_vinserti128] = false; // Insert Packed Integer Values
SMPDefsFlags[NN_vinsertps] = false; // Insert Packed Single Precision Floating-Point Value
SMPDefsFlags[NN_vlddqu] = false; // Load Unaligned Packed Integer Values
SMPDefsFlags[NN_vldmxcsr] = false; // Load Streaming SIMD Extensions Technology Control/Status Register
SMPDefsFlags[NN_vmaskmovdqu] = false; // Store Selected Bytes of Double Quadword with NT Hint
SMPDefsFlags[NN_vmaskmovpd] = false; // Conditionally Load Packed Double-Precision Floating-Point Values
SMPDefsFlags[NN_vmaskmovps] = false; // Conditionally Load Packed Single-Precision Floating-Point Values
SMPDefsFlags[NN_vmaxpd] = false; // Return Maximum Packed Double-Precision Floating-Point Values
SMPDefsFlags[NN_vmaxps] = false; // Packed Single-FP Maximum
SMPDefsFlags[NN_vmaxsd] = false; // Return Maximum Scalar Double-Precision Floating-Point Value
SMPDefsFlags[NN_vmaxss] = false; // Scalar Single-FP Maximum
SMPDefsFlags[NN_vminpd] = false; // Return Minimum Packed Double-Precision Floating-Point Values
SMPDefsFlags[NN_vminps] = false; // Packed Single-FP Minimum
SMPDefsFlags[NN_vminsd] = false; // Return Minimum Scalar Double-Precision Floating-Point Value
SMPDefsFlags[NN_vminss] = false; // Scalar Single-FP Minimum
SMPDefsFlags[NN_vmovapd] = false; // Move Aligned Packed Double-Precision Floating-Point Values
SMPDefsFlags[NN_vmovaps] = false; // Move Aligned Four Packed Single-FP
SMPDefsFlags[NN_vmovd] = false; // Move 32 bits
SMPDefsFlags[NN_vmovddup] = false; // Move One Double-FP and Duplicate
SMPDefsFlags[NN_vmovdqa] = false; // Move Aligned Double Quadword
SMPDefsFlags[NN_vmovdqu] = false; // Move Unaligned Double Quadword
SMPDefsFlags[NN_vmovhlps] = false; // Move High to Low Packed Single-FP
SMPDefsFlags[NN_vmovhpd] = false; // Move High Packed Double-Precision Floating-Point Values
SMPDefsFlags[NN_vmovhps] = false; // Move High Packed Single-FP
SMPDefsFlags[NN_vmovlhps] = false; // Move Low to High Packed Single-FP
SMPDefsFlags[NN_vmovlpd] = false; // Move Low Packed Double-Precision Floating-Point Values
SMPDefsFlags[NN_vmovlps] = false; // Move Low Packed Single-FP
SMPDefsFlags[NN_vmovmskpd] = false; // Extract Packed Double-Precision Floating-Point Sign Mask
SMPDefsFlags[NN_vmovmskps] = false; // Move Mask to Register
SMPDefsFlags[NN_vmovntdq] = false; // Store Double Quadword Using Non-Temporal Hint
SMPDefsFlags[NN_vmovntdqa] = false; // Load Double Quadword Non-Temporal Aligned Hint
SMPDefsFlags[NN_vmovntpd] = false; // Store Packed Double-Precision Floating-Point Values Using Non-Temporal Hint
SMPDefsFlags[NN_vmovntps] = false; // Move Aligned Four Packed Single-FP Non Temporal
SMPDefsFlags[NN_vmovntsd] = false; // Move Non-Temporal Scalar Double-Precision Floating-Point
SMPDefsFlags[NN_vmovntss] = false; // Move Non-Temporal Scalar Single-Precision Floating-Point
SMPDefsFlags[NN_vmovq] = false; // Move 64 bits
SMPDefsFlags[NN_vmovsd] = false; // Move Scalar Double-Precision Floating-Point Values
SMPDefsFlags[NN_vmovshdup] = false; // Move Packed Single-FP High and Duplicate
SMPDefsFlags[NN_vmovsldup] = false; // Move Packed Single-FP Low and Duplicate
SMPDefsFlags[NN_vmovss] = false; // Move Scalar Single-FP
SMPDefsFlags[NN_vmovupd] = false; // Move Unaligned Packed Double-Precision Floating-Point Values
SMPDefsFlags[NN_vmovups] = false; // Move Unaligned Four Packed Single-FP
SMPDefsFlags[NN_vmpsadbw] = false; // Compute Multiple Packed Sums of Absolute Difference
SMPDefsFlags[NN_vmulpd] = false; // Multiply Packed Double-Precision Floating-Point Values
SMPDefsFlags[NN_vmulps] = false; // Packed Single-FP Multiply
SMPDefsFlags[NN_vmulsd] = false; // Multiply Scalar Double-Precision Floating-Point Values
SMPDefsFlags[NN_vmulss] = false; // Scalar Single-FP Multiply
SMPDefsFlags[NN_vorpd] = false; // Bitwise Logical OR of Double-Precision Floating-Point Values
SMPDefsFlags[NN_vorps] = false; // Bitwise Logical OR for Single-FP Data
SMPDefsFlags[NN_vpabsb] = false; // Packed Absolute Value Byte
SMPDefsFlags[NN_vpabsd] = false; // Packed Absolute Value Doubleword
SMPDefsFlags[NN_vpabsw] = false; // Packed Absolute Value Word
SMPDefsFlags[NN_vpackssdw] = false; // Pack with Signed Saturation (Dword->Word)
SMPDefsFlags[NN_vpacksswb] = false; // Pack with Signed Saturation (Word->Byte)
SMPDefsFlags[NN_vpackusdw] = false; // Pack with Unsigned Saturation
SMPDefsFlags[NN_vpackuswb] = false; // Pack with Unsigned Saturation (Word->Byte)
SMPDefsFlags[NN_vpaddb] = false; // Packed Add Byte
SMPDefsFlags[NN_vpaddd] = false; // Packed Add Dword
SMPDefsFlags[NN_vpaddq] = false; // Add Packed Quadword Integers
SMPDefsFlags[NN_vpaddsb] = false; // Packed Add with Saturation (Byte)
SMPDefsFlags[NN_vpaddsw] = false; // Packed Add with Saturation (Word)
SMPDefsFlags[NN_vpaddusb] = false; // Packed Add Unsigned with Saturation (Byte)
SMPDefsFlags[NN_vpaddusw] = false; // Packed Add Unsigned with Saturation (Word)
SMPDefsFlags[NN_vpaddw] = false; // Packed Add Word
SMPDefsFlags[NN_vpalignr] = false; // Packed Align Right
SMPDefsFlags[NN_vpand] = false; // Bitwise Logical And
SMPDefsFlags[NN_vpandn] = false; // Bitwise Logical And Not
SMPDefsFlags[NN_vpavgb] = false; // Packed Average (Byte)
SMPDefsFlags[NN_vpavgw] = false; // Packed Average (Word)
SMPDefsFlags[NN_vpblendd] = false; // Blend Packed Dwords
SMPDefsFlags[NN_vpblendvb] = false; // Variable Blend Packed Bytes
SMPDefsFlags[NN_vpblendw] = false; // Blend Packed Words
SMPDefsFlags[NN_vpbroadcastb] = false; // Broadcast a Byte Integer
SMPDefsFlags[NN_vpbroadcastd] = false; // Broadcast a Dword Integer
SMPDefsFlags[NN_vpbroadcastq] = false; // Broadcast a Qword Integer
SMPDefsFlags[NN_vpbroadcastw] = false; // Broadcast a Word Integer
SMPDefsFlags[NN_vpclmulqdq] = false; // Carry-Less Multiplication Quadword
SMPDefsFlags[NN_vpcmpeqb] = false; // Packed Compare for Equal (Byte)
SMPDefsFlags[NN_vpcmpeqd] = false; // Packed Compare for Equal (Dword)
SMPDefsFlags[NN_vpcmpeqq] = false; // Compare Packed Qword Data for Equal
SMPDefsFlags[NN_vpcmpeqw] = false; // Packed Compare for Equal (Word)
SMPDefsFlags[NN_vpcmpestri] = false; // Packed Compare Explicit Length Strings, Return Index
SMPDefsFlags[NN_vpcmpestrm] = false; // Packed Compare Explicit Length Strings, Return Mask
SMPDefsFlags[NN_vpcmpgtb] = false; // Packed Compare for Greater Than (Byte)
SMPDefsFlags[NN_vpcmpgtd] = false; // Packed Compare for Greater Than (Dword)
SMPDefsFlags[NN_vpcmpgtq] = false; // Compare Packed Data for Greater Than
SMPDefsFlags[NN_vpcmpgtw] = false; // Packed Compare for Greater Than (Word)
SMPDefsFlags[NN_vpcmpistri] = false; // Packed Compare Implicit Length Strings, Return Index
SMPDefsFlags[NN_vpcmpistrm] = false; // Packed Compare Implicit Length Strings, Return Mask
SMPDefsFlags[NN_vperm2f128] = false; // Permute Floating-Point Values
SMPDefsFlags[NN_vperm2i128] = false; // Permute Integer Values
SMPDefsFlags[NN_vpermd] = false; // Full Doublewords Element Permutation
SMPDefsFlags[NN_vpermilpd] = false; // Permute Double-Precision Floating-Point Values
SMPDefsFlags[NN_vpermilps] = false; // Permute Single-Precision Floating-Point Values
SMPDefsFlags[NN_vpermpd] = false; // Permute Double-Precision Floating-Point Elements
SMPDefsFlags[NN_vpermps] = false; // Permute Single-Precision Floating-Point Elements
SMPDefsFlags[NN_vpermq] = false; // Qwords Element Permutation
SMPDefsFlags[NN_vpextrb] = false; // Extract Byte
SMPDefsFlags[NN_vpextrd] = false; // Extract Dword
SMPDefsFlags[NN_vpextrq] = false; // Extract Qword
SMPDefsFlags[NN_vpextrw] = false; // Extract Word
SMPDefsFlags[NN_vpgatherdd] = false; // Gather Packed Dword Values Using Signed Dword Indices
SMPDefsFlags[NN_vpgatherdq] = false; // Gather Packed Qword Values Using Signed Dword Indices
SMPDefsFlags[NN_vpgatherqd] = false; // Gather Packed Dword Values Using Signed Qword Indices
SMPDefsFlags[NN_vpgatherqq] = false; // Gather Packed Qword Values Using Signed Qword Indices
SMPDefsFlags[NN_vphaddd] = false; // Packed Horizontal Add Doubleword
SMPDefsFlags[NN_vphaddsw] = false; // Packed Horizontal Add and Saturate
SMPDefsFlags[NN_vphaddw] = false; // Packed Horizontal Add Word
SMPDefsFlags[NN_vphminposuw] = false; // Packed Horizontal Word Minimum
SMPDefsFlags[NN_vphsubd] = false; // Packed Horizontal Subtract Doubleword
SMPDefsFlags[NN_vphsubsw] = false; // Packed Horizontal Subtract and Saturate
SMPDefsFlags[NN_vphsubw] = false; // Packed Horizontal Subtract Word
SMPDefsFlags[NN_vpinsrb] = false; // Insert Byte
SMPDefsFlags[NN_vpinsrd] = false; // Insert Dword
SMPDefsFlags[NN_vpinsrq] = false; // Insert Qword
SMPDefsFlags[NN_vpinsrw] = false; // Insert Word
SMPDefsFlags[NN_vpmaddubsw] = false; // Multiply and Add Packed Signed and Unsigned Bytes
SMPDefsFlags[NN_vpmaddwd] = false; // Packed Multiply and Add
SMPDefsFlags[NN_vpmaskmovd] = false; // Conditionally Store Dword Values Using Mask
SMPDefsFlags[NN_vpmaskmovq] = false; // Conditionally Store Qword Values Using Mask
SMPDefsFlags[NN_vpmaxsb] = false; // Maximum of Packed Signed Byte Integers
SMPDefsFlags[NN_vpmaxsd] = false; // Maximum of Packed Signed Dword Integers
SMPDefsFlags[NN_vpmaxsw] = false; // Packed Signed Integer Word Maximum
SMPDefsFlags[NN_vpmaxub] = false; // Packed Unsigned Integer Byte Maximum
SMPDefsFlags[NN_vpmaxud] = false; // Maximum of Packed Unsigned Dword Integers
SMPDefsFlags[NN_vpmaxuw] = false; // Maximum of Packed Word Integers
SMPDefsFlags[NN_vpminsb] = false; // Minimum of Packed Signed Byte Integers
SMPDefsFlags[NN_vpminsd] = false; // Minimum of Packed Signed Dword Integers
SMPDefsFlags[NN_vpminsw] = false; // Packed Signed Integer Word Minimum
SMPDefsFlags[NN_vpminub] = false; // Packed Unsigned Integer Byte Minimum
SMPDefsFlags[NN_vpminud] = false; // Minimum of Packed Unsigned Dword Integers
SMPDefsFlags[NN_vpminuw] = false; // Minimum of Packed Word Integers
SMPDefsFlags[NN_vpmovmskb] = false; // Move Byte Mask to Integer
SMPDefsFlags[NN_vpmovsxbd] = false; // Packed Move with Sign Extend
SMPDefsFlags[NN_vpmovsxbq] = false; // Packed Move with Sign Extend
SMPDefsFlags[NN_vpmovsxbw] = false; // Packed Move with Sign Extend
SMPDefsFlags[NN_vpmovsxdq] = false; // Packed Move with Sign Extend
SMPDefsFlags[NN_vpmovsxwd] = false; // Packed Move with Sign Extend
SMPDefsFlags[NN_vpmovsxwq] = false; // Packed Move with Sign Extend
SMPDefsFlags[NN_vpmovzxbd] = false; // Packed Move with Zero Extend
SMPDefsFlags[NN_vpmovzxbq] = false; // Packed Move with Zero Extend
SMPDefsFlags[NN_vpmovzxbw] = false; // Packed Move with Zero Extend
SMPDefsFlags[NN_vpmovzxdq] = false; // Packed Move with Zero Extend
SMPDefsFlags[NN_vpmovzxwd] = false; // Packed Move with Zero Extend
SMPDefsFlags[NN_vpmovzxwq] = false; // Packed Move with Zero Extend
SMPDefsFlags[NN_vpmuldq] = false; // Multiply Packed Signed Dword Integers
SMPDefsFlags[NN_vpmulhrsw] = false; // Packed Multiply High with Round and Scale
SMPDefsFlags[NN_vpmulhuw] = false; // Packed Multiply High Unsigned
SMPDefsFlags[NN_vpmulhw] = false; // Packed Multiply High
SMPDefsFlags[NN_vpmulld] = false; // Multiply Packed Signed Dword Integers and Store Low Result
SMPDefsFlags[NN_vpmullw] = false; // Packed Multiply Low
SMPDefsFlags[NN_vpmuludq] = false; // Multiply Packed Unsigned Doubleword Integers
SMPDefsFlags[NN_vpor] = false; // Bitwise Logical Or
SMPDefsFlags[NN_vpsadbw] = false; // Packed Sum of Absolute Differences
SMPDefsFlags[NN_vpshufb] = false; // Packed Shuffle Bytes
SMPDefsFlags[NN_vpshufd] = false; // Shuffle Packed Doublewords
SMPDefsFlags[NN_vpshufhw] = false; // Shuffle Packed High Words
SMPDefsFlags[NN_vpshuflw] = false; // Shuffle Packed Low Words
SMPDefsFlags[NN_vpsignb] = false; // Packed SIGN Byte
SMPDefsFlags[NN_vpsignd] = false; // Packed SIGN Doubleword
SMPDefsFlags[NN_vpsignw] = false; // Packed SIGN Word
SMPDefsFlags[NN_vpslld] = false; // Packed Shift Left Logical (Dword)
SMPDefsFlags[NN_vpslldq] = false; // Shift Double Quadword Left Logical
SMPDefsFlags[NN_vpsllq] = false; // Packed Shift Left Logical (Qword)
SMPDefsFlags[NN_vpsllvd] = false; // Variable Bit Shift Left Logical (Dword)
SMPDefsFlags[NN_vpsllvq] = false; // Variable Bit Shift Left Logical (Qword)
SMPDefsFlags[NN_vpsllw] = false; // Packed Shift Left Logical (Word)
SMPDefsFlags[NN_vpsrad] = false; // Packed Shift Right Arithmetic (Dword)
SMPDefsFlags[NN_vpsravd] = false; // Variable Bit Shift Right Arithmetic
SMPDefsFlags[NN_vpsraw] = false; // Packed Shift Right Arithmetic (Word)
SMPDefsFlags[NN_vpsrld] = false; // Packed Shift Right Logical (Dword)
SMPDefsFlags[NN_vpsrldq] = false; // Shift Double Quadword Right Logical (Qword)
SMPDefsFlags[NN_vpsrlq] = false; // Packed Shift Right Logical (Qword)
SMPDefsFlags[NN_vpsrlvd] = false; // Variable Bit Shift Right Logical (Dword)
SMPDefsFlags[NN_vpsrlvq] = false; // Variable Bit Shift Right Logical (Qword)
SMPDefsFlags[NN_vpsrlw] = false; // Packed Shift Right Logical (Word)
SMPDefsFlags[NN_vpsubb] = false; // Packed Subtract Byte
SMPDefsFlags[NN_vpsubd] = false; // Packed Subtract Dword
SMPDefsFlags[NN_vpsubq] = false; // Subtract Packed Quadword Integers
SMPDefsFlags[NN_vpsubsb] = false; // Packed Subtract with Saturation (Byte)
SMPDefsFlags[NN_vpsubsw] = false; // Packed Subtract with Saturation (Word)
SMPDefsFlags[NN_vpsubusb] = false; // Packed Subtract Unsigned with Saturation (Byte)
SMPDefsFlags[NN_vpsubusw] = false; // Packed Subtract Unsigned with Saturation (Word)
SMPDefsFlags[NN_vpsubw] = false; // Packed Subtract Word
SMPDefsFlags[NN_vptest] = false; // Logical Compare
SMPDefsFlags[NN_vpunpckhbw] = false; // Unpack High Packed Data (Byte->Word)
SMPDefsFlags[NN_vpunpckhdq] = false; // Unpack High Packed Data (Dword->Qword)
SMPDefsFlags[NN_vpunpckhqdq] = false; // Unpack High Packed Data (Qword->Xmmword)
SMPDefsFlags[NN_vpunpckhwd] = false; // Unpack High Packed Data (Word->Dword)
SMPDefsFlags[NN_vpunpcklbw] = false; // Unpack Low Packed Data (Byte->Word)
SMPDefsFlags[NN_vpunpckldq] = false; // Unpack Low Packed Data (Dword->Qword)
SMPDefsFlags[NN_vpunpcklqdq] = false; // Unpack Low Packed Data (Qword->Xmmword)
SMPDefsFlags[NN_vpunpcklwd] = false; // Unpack Low Packed Data (Word->Dword)
SMPDefsFlags[NN_vpxor] = false; // Bitwise Logical Exclusive Or
SMPDefsFlags[NN_vrcpps] = false; // Packed Single-FP Reciprocal
SMPDefsFlags[NN_vrcpss] = false; // Scalar Single-FP Reciprocal
SMPDefsFlags[NN_vroundpd] = false; // Round Packed Double Precision Floating-Point Values
SMPDefsFlags[NN_vroundps] = false; // Round Packed Single Precision Floating-Point Values
SMPDefsFlags[NN_vroundsd] = false; // Round Scalar Double Precision Floating-Point Values
SMPDefsFlags[NN_vroundss] = false; // Round Scalar Single Precision Floating-Point Values
SMPDefsFlags[NN_vrsqrtps] = false; // Packed Single-FP Square Root Reciprocal
SMPDefsFlags[NN_vrsqrtss] = false; // Scalar Single-FP Square Root Reciprocal
SMPDefsFlags[NN_vshufpd] = false; // Shuffle Packed Double-Precision Floating-Point Values
SMPDefsFlags[NN_vshufps] = false; // Shuffle Single-FP
SMPDefsFlags[NN_vsqrtpd] = false; // Compute Square Roots of Packed Double-Precision Floating-Point Values
SMPDefsFlags[NN_vsqrtps] = false; // Packed Single-FP Square Root
SMPDefsFlags[NN_vsqrtsd] = false; // Compute Square Rootof Scalar Double-Precision Floating-Point Value
SMPDefsFlags[NN_vsqrtss] = false; // Scalar Single-FP Square Root
SMPDefsFlags[NN_vstmxcsr] = false; // Store Streaming SIMD Extensions Technology Control/Status Register
SMPDefsFlags[NN_vsubpd] = false; // Subtract Packed Double-Precision Floating-Point Values
SMPDefsFlags[NN_vsubps] = false; // Packed Single-FP Subtract
SMPDefsFlags[NN_vsubsd] = false; // Subtract Scalar Double-Precision Floating-Point Values
SMPDefsFlags[NN_vsubss] = false; // Scalar Single-FP Subtract
SMPDefsFlags[NN_vtestpd] = false; // Packed Double-Precision Floating-Point Bit Test
SMPDefsFlags[NN_vtestps] = false; // Packed Single-Precision Floating-Point Bit Test
SMPDefsFlags[NN_vucomisd] = false; // Unordered Compare Scalar Ordered Double-Precision Floating-Point Values and Set EFLAGS
SMPDefsFlags[NN_vucomiss] = false; // Scalar Unordered Single-FP Compare and Set EFLAGS
SMPDefsFlags[NN_vunpckhpd] = false; // Unpack and Interleave High Packed Double-Precision Floating-Point Values
SMPDefsFlags[NN_vunpckhps] = false; // Unpack High Packed Single-FP Data
SMPDefsFlags[NN_vunpcklpd] = false; // Unpack and Interleave Low Packed Double-Precision Floating-Point Values
SMPDefsFlags[NN_vunpcklps] = false; // Unpack Low Packed Single-FP Data
SMPDefsFlags[NN_vxorpd] = false; // Bitwise Logical OR of Double-Precision Floating-Point Values
SMPDefsFlags[NN_vxorps] = false; // Bitwise Logical XOR for Single-FP Data
SMPDefsFlags[NN_vzeroall] = false; // Zero All YMM Registers
SMPDefsFlags[NN_vzeroupper] = false; // Zero Upper Bits of YMM Registers
// Transactional Synchronization Extensions
SMPDefsFlags[NN_xabort] = false; // Transaction Abort
SMPDefsFlags[NN_xbegin] = false; // Transaction Begin
SMPDefsFlags[NN_xend] = false; // Transaction End
SMPDefsFlags[NN_xtest] = false; // Test If In Transactional Execution
// Virtual PC synthetic instructions
SMPDefsFlags[NN_vmgetinfo] = false; // Virtual PC - Get VM Information
SMPDefsFlags[NN_vmsetinfo] = false; // Virtual PC - Set VM Information
SMPDefsFlags[NN_vmdxdsbl] = false; // Virtual PC - Disable Direct Execution
SMPDefsFlags[NN_vmdxenbl] = false; // Virtual PC - Enable Direct Execution
SMPDefsFlags[NN_vmcpuid] = false; // Virtual PC - Virtualized CPU Information
SMPDefsFlags[NN_vmhlt] = false; // Virtual PC - Halt
SMPDefsFlags[NN_vmsplaf] = false; // Virtual PC - Spin Lock Acquisition Failed
SMPDefsFlags[NN_vmpushfd] = false; // Virtual PC - Push virtualized flags register
SMPDefsFlags[NN_vmpopfd] = false; // Virtual PC - Pop virtualized flags register
SMPDefsFlags[NN_vmcli] = false; // Virtual PC - Clear Interrupt Flag
SMPDefsFlags[NN_vmsti] = false; // Virtual PC - Set Interrupt Flag
SMPDefsFlags[NN_vmiretd] = false; // Virtual PC - Return From Interrupt
SMPDefsFlags[NN_vmsgdt] = false; // Virtual PC - Store Global Descriptor Table
SMPDefsFlags[NN_vmsidt] = false; // Virtual PC - Store Interrupt Descriptor Table
SMPDefsFlags[NN_vmsldt] = false; // Virtual PC - Store Local Descriptor Table
SMPDefsFlags[NN_vmstr] = false; // Virtual PC - Store Task Register
SMPDefsFlags[NN_vmsdte] = false; // Virtual PC - Store to Descriptor Table Entry
SMPDefsFlags[NN_vpcext] = false; // Virtual PC - ISA extension
SMPDefsFlags[NN_last] = false;
return;
} // end InitSMPDefsFlags()
// Initialize the SMPUsesFlags[] array to define how we emit
// optimizing annotations.
void InitSMPUsesFlags(void) {
// Default value is false. Few instructions use the flags.
(void) memset(SMPUsesFlags, false, sizeof(SMPUsesFlags));
SMPUsesFlags[NN_null] = true; // Unknown Operation
clc5q
committed
SMPUsesFlags[NN_aaa] = true; // ASCII adjust after addition
SMPUsesFlags[NN_aas] = true; // ASCII adjust after subtraction
SMPUsesFlags[NN_adc] = true; // Add with Carry
SMPUsesFlags[NN_cmps] = true; // Compare Strings (uses DF direction flag)
SMPUsesFlags[NN_daa] = true; // Decimal Adjust AL after Addition
SMPUsesFlags[NN_das] = true; // Decimal Adjust AL after Subtraction
SMPUsesFlags[NN_ins] = true; // Input Byte(s) from Port to String
5320
5321
5322
5323
5324
5325
5326
5327
5328
5329
5330
5331
5332
5333
5334
5335
5336
5337
5338
5339
5340
5341
5342
5343
5344
5345
5346
5347
5348
5349
5350
5351
5352
5353
5354
SMPUsesFlags[NN_into] = true; // Call to Interrupt Procedure if Overflow Flag = 1
SMPUsesFlags[NN_ja] = true; // Jump if Above (CF=0 & ZF=0)
SMPUsesFlags[NN_jae] = true; // Jump if Above or Equal (CF=0)
SMPUsesFlags[NN_jb] = true; // Jump if Below (CF=1)
SMPUsesFlags[NN_jbe] = true; // Jump if Below or Equal (CF=1 | ZF=1)
SMPUsesFlags[NN_jc] = true; // Jump if Carry (CF=1)
SMPUsesFlags[NN_jcxz] = true; // Jump if CX is 0
SMPUsesFlags[NN_jecxz] = true; // Jump if ECX is 0
SMPUsesFlags[NN_jrcxz] = true; // Jump if RCX is 0
SMPUsesFlags[NN_je] = true; // Jump if Equal (ZF=1)
SMPUsesFlags[NN_jg] = true; // Jump if Greater (ZF=0 & SF=OF)
SMPUsesFlags[NN_jge] = true; // Jump if Greater or Equal (SF=OF)
SMPUsesFlags[NN_jl] = true; // Jump if Less (SF!=OF)
SMPUsesFlags[NN_jle] = true; // Jump if Less or Equal (ZF=1 | SF!=OF)
SMPUsesFlags[NN_jna] = true; // Jump if Not Above (CF=1 | ZF=1)
SMPUsesFlags[NN_jnae] = true; // Jump if Not Above or Equal (CF=1)
SMPUsesFlags[NN_jnb] = true; // Jump if Not Below (CF=0)
SMPUsesFlags[NN_jnbe] = true; // Jump if Not Below or Equal (CF=0 & ZF=0)
SMPUsesFlags[NN_jnc] = true; // Jump if Not Carry (CF=0)
SMPUsesFlags[NN_jne] = true; // Jump if Not Equal (ZF=0)
SMPUsesFlags[NN_jng] = true; // Jump if Not Greater (ZF=1 | SF!=OF)
SMPUsesFlags[NN_jnge] = true; // Jump if Not Greater or Equal (ZF=1)
SMPUsesFlags[NN_jnl] = true; // Jump if Not Less (SF=OF)
SMPUsesFlags[NN_jnle] = true; // Jump if Not Less or Equal (ZF=0 & SF=OF)
SMPUsesFlags[NN_jno] = true; // Jump if Not Overflow (OF=0)
SMPUsesFlags[NN_jnp] = true; // Jump if Not Parity (PF=0)
SMPUsesFlags[NN_jns] = true; // Jump if Not Sign (SF=0)
SMPUsesFlags[NN_jnz] = true; // Jump if Not Zero (ZF=0)
SMPUsesFlags[NN_jo] = true; // Jump if Overflow (OF=1)
SMPUsesFlags[NN_jp] = true; // Jump if Parity (PF=1)
SMPUsesFlags[NN_jpe] = true; // Jump if Parity Even (PF=1)
SMPUsesFlags[NN_jpo] = true; // Jump if Parity Odd (PF=0)
SMPUsesFlags[NN_js] = true; // Jump if Sign (SF=1)
SMPUsesFlags[NN_jz] = true; // Jump if Zero (ZF=1)
SMPUsesFlags[NN_lahf] = true; // Load Flags into AH Register
SMPUsesFlags[NN_lods] = true; // Load String
SMPUsesFlags[NN_loopwe] = true; // Loop while CX != 0 and ZF=1
SMPUsesFlags[NN_loope] = true; // Loop while rCX != 0 and ZF=1
SMPUsesFlags[NN_loopde] = true; // Loop while ECX != 0 and ZF=1
SMPUsesFlags[NN_loopqe] = true; // Loop while RCX != 0 and ZF=1
SMPUsesFlags[NN_loopwne] = true; // Loop while CX != 0 and ZF=0
SMPUsesFlags[NN_loopne] = true; // Loop while rCX != 0 and ZF=0
SMPUsesFlags[NN_loopdne] = true; // Loop while ECX != 0 and ZF=0
SMPUsesFlags[NN_loopqne] = true; // Loop while RCX != 0 and ZF=0
SMPUsesFlags[NN_movs] = true; // Move String (uses flags if REP prefix)
SMPUsesFlags[NN_outs] = true; // Output Byte(s) to Port
SMPUsesFlags[NN_pushfw] = true; // Push Flags Register onto the Stack
SMPUsesFlags[NN_pushf] = true; // Push Flags Register onto the Stack
SMPUsesFlags[NN_pushfd] = true; // Push Flags Register onto the Stack (use32)
SMPUsesFlags[NN_pushfq] = true; // Push Flags Register onto the Stack (use64)
SMPUsesFlags[NN_rcl] = true; // Rotate Through Carry Left
SMPUsesFlags[NN_rcr] = true; // Rotate Through Carry Right
SMPUsesFlags[NN_repe] = true; // Repeat String Operation while ZF=1
SMPUsesFlags[NN_repne] = true; // Repeat String Operation while ZF=0
SMPUsesFlags[NN_sbb] = true; // Integer Subtraction with Borrow
SMPUsesFlags[NN_scas] = true; // Compare String (uses DF direction flag)
5376
5377
5378
5379
5380
5381
5382
5383
5384
5385
5386
5387
5388
5389
5390
5391
5392
5393
5394
5395
5396
5397
5398
5399
5400
5401
5402
5403
5404
5405
5406
5407
5408
5409
5410
5411
5412
5413
5414
5415
SMPUsesFlags[NN_seta] = true; // Set Byte if Above (CF=0 & ZF=0)
SMPUsesFlags[NN_setae] = true; // Set Byte if Above or Equal (CF=0)
SMPUsesFlags[NN_setb] = true; // Set Byte if Below (CF=1)
SMPUsesFlags[NN_setbe] = true; // Set Byte if Below or Equal (CF=1 | ZF=1)
SMPUsesFlags[NN_setc] = true; // Set Byte if Carry (CF=1)
SMPUsesFlags[NN_sete] = true; // Set Byte if Equal (ZF=1)
SMPUsesFlags[NN_setg] = true; // Set Byte if Greater (ZF=0 & SF=OF)
SMPUsesFlags[NN_setge] = true; // Set Byte if Greater or Equal (SF=OF)
SMPUsesFlags[NN_setl] = true; // Set Byte if Less (SF!=OF)
SMPUsesFlags[NN_setle] = true; // Set Byte if Less or Equal (ZF=1 | SF!=OF)
SMPUsesFlags[NN_setna] = true; // Set Byte if Not Above (CF=1 | ZF=1)
SMPUsesFlags[NN_setnae] = true; // Set Byte if Not Above or Equal (CF=1)
SMPUsesFlags[NN_setnb] = true; // Set Byte if Not Below (CF=0)
SMPUsesFlags[NN_setnbe] = true; // Set Byte if Not Below or Equal (CF=0 & ZF=0)
SMPUsesFlags[NN_setnc] = true; // Set Byte if Not Carry (CF=0)
SMPUsesFlags[NN_setne] = true; // Set Byte if Not Equal (ZF=0)
SMPUsesFlags[NN_setng] = true; // Set Byte if Not Greater (ZF=1 | SF!=OF)
SMPUsesFlags[NN_setnge] = true; // Set Byte if Not Greater or Equal (ZF=1)
SMPUsesFlags[NN_setnl] = true; // Set Byte if Not Less (SF=OF)
SMPUsesFlags[NN_setnle] = true; // Set Byte if Not Less or Equal (ZF=0 & SF=OF)
SMPUsesFlags[NN_setno] = true; // Set Byte if Not Overflow (OF=0)
SMPUsesFlags[NN_setnp] = true; // Set Byte if Not Parity (PF=0)
SMPUsesFlags[NN_setns] = true; // Set Byte if Not Sign (SF=0)
SMPUsesFlags[NN_setnz] = true; // Set Byte if Not Zero (ZF=0)
SMPUsesFlags[NN_seto] = true; // Set Byte if Overflow (OF=1)
SMPUsesFlags[NN_setp] = true; // Set Byte if Parity (PF=1)
SMPUsesFlags[NN_setpe] = true; // Set Byte if Parity Even (PF=1)
SMPUsesFlags[NN_setpo] = true; // Set Byte if Parity Odd (PF=0)
SMPUsesFlags[NN_sets] = true; // Set Byte if Sign (SF=1)
SMPUsesFlags[NN_setz] = true; // Set Byte if Zero (ZF=1)
SMPUsesFlags[NN_stos] = true; // Store String
//
// 486 instructions
//
//
// Pentium instructions
//
clc5q
committed
#if 0
SMPUsesFlags[NN_cpuid] = true; // Get CPU ID
SMPUsesFlags[NN_cmpxchg8b] = true; // Compare and Exchange Eight Bytes
clc5q
committed
#endif
5420
5421
5422
5423
5424
5425
5426
5427
5428
5429
5430
5431
5432
5433
5434
5435
5436
5437
5438
5439
5440
5441
5442
5443
5444
5445
5446
5447
5448
5449
5450
//
// Pentium Pro instructions
//
SMPUsesFlags[NN_cmova] = true; // Move if Above (CF=0 & ZF=0)
SMPUsesFlags[NN_cmovb] = true; // Move if Below (CF=1)
SMPUsesFlags[NN_cmovbe] = true; // Move if Below or Equal (CF=1 | ZF=1)
SMPUsesFlags[NN_cmovg] = true; // Move if Greater (ZF=0 & SF=OF)
SMPUsesFlags[NN_cmovge] = true; // Move if Greater or Equal (SF=OF)
SMPUsesFlags[NN_cmovl] = true; // Move if Less (SF!=OF)
SMPUsesFlags[NN_cmovle] = true; // Move if Less or Equal (ZF=1 | SF!=OF)
SMPUsesFlags[NN_cmovnb] = true; // Move if Not Below (CF=0)
SMPUsesFlags[NN_cmovno] = true; // Move if Not Overflow (OF=0)
SMPUsesFlags[NN_cmovnp] = true; // Move if Not Parity (PF=0)
SMPUsesFlags[NN_cmovns] = true; // Move if Not Sign (SF=0)
SMPUsesFlags[NN_cmovnz] = true; // Move if Not Zero (ZF=0)
SMPUsesFlags[NN_cmovo] = true; // Move if Overflow (OF=1)
SMPUsesFlags[NN_cmovp] = true; // Move if Parity (PF=1)
SMPUsesFlags[NN_cmovs] = true; // Move if Sign (SF=1)
SMPUsesFlags[NN_cmovz] = true; // Move if Zero (ZF=1)
SMPUsesFlags[NN_fcmovb] = true; // Floating Move if Below
SMPUsesFlags[NN_fcmove] = true; // Floating Move if Equal
SMPUsesFlags[NN_fcmovbe] = true; // Floating Move if Below or Equal
SMPUsesFlags[NN_fcmovu] = true; // Floating Move if Unordered
SMPUsesFlags[NN_fcmovnb] = true; // Floating Move if Not Below
SMPUsesFlags[NN_fcmovne] = true; // Floating Move if Not Equal
SMPUsesFlags[NN_fcmovnbe] = true; // Floating Move if Not Below or Equal
SMPUsesFlags[NN_fcmovnu] = true; // Floating Move if Not Unordered
//
clc5q
committed
// FPP instructions
5452
5453
5454
5455
5456
5457
5458
5459
5460
5461
5462
5463
5464
5465
5466
5467
5468
5469
5470
5471
5472
5473
5474
5475
5476
5477
5478
5479
5480
5481
5482
5483
5484
5485
5486
5487
5488
5489
5490
5491
5492
5493
5494
5495
5496
5497
5498
5499
5500
5501
5502
5503
5504
5505
5506
5507
5508
5509
5510
5511
5512
5513
5514
5515
5516
//
//
// 80387 instructions
//
//
// Instructions added 28.02.96
//
SMPUsesFlags[NN_setalc] = true; // Set AL to Carry Flag
//
// MMX instructions
//
//
// Undocumented Deschutes processor instructions
//
// Pentium II instructions
// 3DNow! instructions
// Pentium III instructions
// Pentium III Pseudo instructions
// AMD K7 instructions
// Revisit AMD if we port to it.
// Undocumented FP instructions (thanks to norbert.juffa@adm.com)
// Pentium 4 instructions
// AMD syscall/sysret instructions NOTE: not AMD, found in Intel manual
// AMD64 instructions NOTE: not AMD, found in Intel manual
// New Pentium instructions (SSE3)
// Missing AMD64 instructions NOTE: also found in Intel manual
// SSE3 instructions
// SSSE3 instructions
// VMX instructions
5517
5518
5519
5520
5521
5522
5523
5524
5525
5526
5527
5528
5529
5530
5531
5532
5533
5534
5535
5536
5537
5538
5539
5540
5541
// Added with x86-64
// Geode LX 3DNow! extensions
// SSE2 pseudoinstructions
// SSSE4.1 instructions
// SSSE4.2 instructions
// AMD SSE4a instructions
// xsave/xrstor instructions
// Intel Safer Mode Extensions (SMX)
// AMD-V Virtualization ISA Extension
// VMX+ instructions
// Intel Atom instructions
// Intel AES instructions
// Carryless multiplication
// Returns modified by operand size prefixes
// RDRAND support
// new GPR instructions
SMPUsesFlags[NN_adcx] = true; // Unsigned Integer Addition of Two Operands with Carry Flag
SMPUsesFlags[NN_adox] = true; // Unsigned Integer Addition of Two Operands with Overflow Flag
// new AVX instructions
// Transactional Synchronization Extensions
// Virtual PC synthetic instructions
SMPUsesFlags[NN_last] = false;
return;
} // end InitSMPUsesFlags()
// Initialize the SMPTypeCategory[] array to define how we infer
// numeric or pointer operand types for optimizing annotations.
void InitTypeCategory(void) {
// Default category is 0, no type inference without knowing context.
(void) memset(SMPTypeCategory, 0, sizeof(SMPTypeCategory));
// Category 1 instructions will need no mmStrata instrumentation
// and are irrelevant to our type system, so we do not attempt
// to make type inferences. Many of these operate on numeric
// operands such as floating point or MMX/SSE registers. mmStrata
// assumes that such registers are always numeric, so we do not
// need annotations informing mmStrata that FP/MMX/SSE regs are numeric.
// Category 2 instructions always have a result type of 'n' (number).
// Category 3 instructions have a result type of 'n' (number)
// whenever the second source operand is an operand of type 'n'.
// NOTE: MOV is the only current example, and this will take some thought if
// other examples arise.
// Category 4 instructions have a result type identical to the 1st source operand type.
// NOTE: This is currently set for single-operand instructions such as
// INC, DEC. As a result, these are treated pretty much as if
// they were category 1 instructions, as there is no metadata update,
// even if the operand is a memory operand.
// If new instructions are added to this category that are not single
// operand and do require some updating, the category should be split.
// Category 5 instructions have a result type identical to the 1st source operand
// type whenever the 2nd source operand is an operand of type 'n' & vice versa.
// Examples are add, sub, adc, and sbb. There are subtle exceptions
// handled in the SMPInstr::EmitTypeAnnotations() method.
// Category 6 instructions always have a result type of 'p' (pointer).
// Category 7 instructions are category 2 instructions with two destinations,
// such as multiply and divide instructions that affect EDX:EAX. There are
// forms of these instructions that only have one destination, so they have
// to be distinguished via the operand info.
// Category 8 instructions implicitly write a numeric value to EDX:EAX, but
// EDX and EAX are not listed as operands. RDTSC, RDPMC, RDMSR, and other
// instructions that copy machine registers into EDX:EAX are category 8.
// Some instructions in category 8 also write to ECX.
// Category 9 instructions are floating point instructions that either
// have a memory destination (treat as category 13) or a FP reg destination
// (treat as category 1, as FP regs are always 'n' and ignored in our system).
// Category 10 instructions have 'n' results if the sources are all 'n';
// we cannot infer the type of the result if the sources are of mixed types.
// Bitwise OR and AND and LEA (load effective address) are examples.
// Category 11 instructions need to have their types and locations on the stack
// frame tracked, e.g. push and pop instructions. No direct type inference.
// Category 12 instructions are similar to category 10, except that we do not
// output 'n' annotations when all sources are 'n'; rather, the instruction can
// be simply ignored (not instrumented by mmStrata) in that case. Conditional
// exchange instructions are examples; we do or do not
// move a numeric value into a register that already has numeric metadata.
// Category 13 instructions imply that their memory destination is 'n'.
// Category 14 instructions imply that their reg or memory source operand is 'n';
// if source is not memory, they are category 1 (inferences, but no instrumentation).
// There should never be a memory destination (usual destination is fpreg or flags).
// Category 15 instructions always have 'n' source AND destination operands;
// if addressed using indirect or indexed addressing, they are a subset of category 0
// (must be instrumented by mmStrata to keep index in bounds). Memory destinations
// are common in this category.
// NOTE: The Memory Monitor SDT needs just three categories, corresponding
// to categories 0, 1, and all others. For all categories > 1, the
// annotation should tell the SDT exactly how to update its metadata.
// For example, a division instruction will write type 'n' (NUM) as
// the metadata for result registers EDX:EAX. So, the annotation should
// list 'n', EDX, EAX, and a terminator of ZZ. CWD (convert word to
// doubleword) should have a list of n EAX ZZ.
SMPTypeCategory[NN_null] = 0; // Unknown Operation
SMPTypeCategory[NN_aaa] = 2; // ASCII Adjust after Addition
SMPTypeCategory[NN_aad] = 2; // ASCII Adjust AX before Division
SMPTypeCategory[NN_aam] = 2; // ASCII Adjust AX after Multiply
SMPTypeCategory[NN_aas] = 2; // ASCII Adjust AL after Subtraction
SMPTypeCategory[NN_adc] = 5; // Add with Carry
SMPTypeCategory[NN_add] = 5; // Add
SMPTypeCategory[NN_and] = 10; // Logical AND
SMPTypeCategory[NN_arpl] = 1; // Adjust RPL Field of Selector
SMPTypeCategory[NN_bound] = 1; // Check Array Index Against Bounds
SMPTypeCategory[NN_bsf] = 2; // Bit Scan Forward
SMPTypeCategory[NN_bsr] = 2; // Bit Scan Reverse
SMPTypeCategory[NN_bt] = 10; // Bit Test
SMPTypeCategory[NN_btc] = 10; // Bit Test and Complement
SMPTypeCategory[NN_btr] = 10; // Bit Test and Reset
SMPTypeCategory[NN_bts] = 10; // Bit Test and Set
5647
5648
5649
5650
5651
5652
5653
5654
5655
5656
5657
5658
5659
5660
5661
5662
5663
5664
5665
5666
5667
5668
5669
5670
5671
5672
5673
5674
5675
5676
SMPTypeCategory[NN_call] = 1; // Call Procedure
SMPTypeCategory[NN_callfi] = 1; // Indirect Call Far Procedure
SMPTypeCategory[NN_callni] = 1; // Indirect Call Near Procedure
SMPTypeCategory[NN_cbw] = 2; // AL -> AX (with sign) ** No ops?
SMPTypeCategory[NN_cwde] = 2; // AX -> EAX (with sign) **
SMPTypeCategory[NN_cdqe] = 2; // EAX -> RAX (with sign) **
SMPTypeCategory[NN_clc] = 1; // Clear Carry Flag
SMPTypeCategory[NN_cld] = 1; // Clear Direction Flag
SMPTypeCategory[NN_cli] = 1; // Clear Interrupt Flag
SMPTypeCategory[NN_clts] = 1; // Clear Task-Switched Flag in CR0
SMPTypeCategory[NN_cmc] = 1; // Complement Carry Flag
SMPTypeCategory[NN_cmp] = 1; // Compare Two Operands
SMPTypeCategory[NN_cmps] = 14; // Compare Strings
SMPTypeCategory[NN_cwd] = 2; // AX -> DX:AX (with sign)
SMPTypeCategory[NN_cdq] = 2; // EAX -> EDX:EAX (with sign)
SMPTypeCategory[NN_cqo] = 2; // RAX -> RDX:RAX (with sign)
SMPTypeCategory[NN_daa] = 2; // Decimal Adjust AL after Addition
SMPTypeCategory[NN_das] = 2; // Decimal Adjust AL after Subtraction
SMPTypeCategory[NN_dec] = 4; // Decrement by 1
SMPTypeCategory[NN_div] = 7; // Unsigned Divide
SMPTypeCategory[NN_enterw] = 0; // Make Stack Frame for Procedure Parameters **
SMPTypeCategory[NN_enter] = 0; // Make Stack Frame for Procedure Parameters **
SMPTypeCategory[NN_enterd] = 0; // Make Stack Frame for Procedure Parameters **
SMPTypeCategory[NN_enterq] = 0; // Make Stack Frame for Procedure Parameters **
SMPTypeCategory[NN_hlt] = 0; // Halt
SMPTypeCategory[NN_idiv] = 7; // Signed Divide
SMPTypeCategory[NN_imul] = 7; // Signed Multiply
SMPTypeCategory[NN_in] = 0; // Input from Port **
SMPTypeCategory[NN_inc] = 4; // Increment by 1
SMPTypeCategory[NN_ins] = 2; // Input Byte(s) from Port to String **
SMPTypeCategory[NN_int] = 0; // Call to Interrupt Procedure
SMPTypeCategory[NN_into] = 0; // Call to Interrupt Procedure if Overflow Flag = 1
SMPTypeCategory[NN_int3] = 0; // Trap to Debugger
SMPTypeCategory[NN_iretw] = 0; // Interrupt Return
SMPTypeCategory[NN_iret] = 0; // Interrupt Return
SMPTypeCategory[NN_iretd] = 0; // Interrupt Return (use32)
SMPTypeCategory[NN_iretq] = 0; // Interrupt Return (use64)
5684
5685
5686
5687
5688
5689
5690
5691
5692
5693
5694
5695
5696
5697
5698
5699
5700
5701
5702
5703
5704
5705
5706
5707
5708
5709
5710
5711
5712
5713
5714
5715
5716
5717
5718
5719
5720
5721
5722
SMPTypeCategory[NN_ja] = 1; // Jump if Above (CF=0 & ZF=0)
SMPTypeCategory[NN_jae] = 1; // Jump if Above or Equal (CF=0)
SMPTypeCategory[NN_jb] = 1; // Jump if Below (CF=1)
SMPTypeCategory[NN_jbe] = 1; // Jump if Below or Equal (CF=1 | ZF=1)
SMPTypeCategory[NN_jc] = 1; // Jump if Carry (CF=1)
SMPTypeCategory[NN_jcxz] = 1; // Jump if CX is 0
SMPTypeCategory[NN_jecxz] = 1; // Jump if ECX is 0
SMPTypeCategory[NN_jrcxz] = 1; // Jump if RCX is 0
SMPTypeCategory[NN_je] = 1; // Jump if Equal (ZF=1)
SMPTypeCategory[NN_jg] = 1; // Jump if Greater (ZF=0 & SF=OF)
SMPTypeCategory[NN_jge] = 1; // Jump if Greater or Equal (SF=OF)
SMPTypeCategory[NN_jl] = 1; // Jump if Less (SF!=OF)
SMPTypeCategory[NN_jle] = 1; // Jump if Less or Equal (ZF=1 | SF!=OF)
SMPTypeCategory[NN_jna] = 1; // Jump if Not Above (CF=1 | ZF=1)
SMPTypeCategory[NN_jnae] = 1; // Jump if Not Above or Equal (CF=1)
SMPTypeCategory[NN_jnb] = 1; // Jump if Not Below (CF=0)
SMPTypeCategory[NN_jnbe] = 1; // Jump if Not Below or Equal (CF=0 & ZF=0)
SMPTypeCategory[NN_jnc] = 1; // Jump if Not Carry (CF=0)
SMPTypeCategory[NN_jne] = 1; // Jump if Not Equal (ZF=0)
SMPTypeCategory[NN_jng] = 1; // Jump if Not Greater (ZF=1 | SF!=OF)
SMPTypeCategory[NN_jnge] = 1; // Jump if Not Greater or Equal (ZF=1)
SMPTypeCategory[NN_jnl] = 1; // Jump if Not Less (SF=OF)
SMPTypeCategory[NN_jnle] = 1; // Jump if Not Less or Equal (ZF=0 & SF=OF)
SMPTypeCategory[NN_jno] = 1; // Jump if Not Overflow (OF=0)
SMPTypeCategory[NN_jnp] = 1; // Jump if Not Parity (PF=0)
SMPTypeCategory[NN_jns] = 1; // Jump if Not Sign (SF=0)
SMPTypeCategory[NN_jnz] = 1; // Jump if Not Zero (ZF=0)
SMPTypeCategory[NN_jo] = 1; // Jump if Overflow (OF=1)
SMPTypeCategory[NN_jp] = 1; // Jump if Parity (PF=1)
SMPTypeCategory[NN_jpe] = 1; // Jump if Parity Even (PF=1)
SMPTypeCategory[NN_jpo] = 1; // Jump if Parity Odd (PF=0)
SMPTypeCategory[NN_js] = 1; // Jump if Sign (SF=1)
SMPTypeCategory[NN_jz] = 1; // Jump if Zero (ZF=1)
SMPTypeCategory[NN_jmp] = 1; // Jump
SMPTypeCategory[NN_jmpfi] = 1; // Indirect Far Jump
SMPTypeCategory[NN_jmpni] = 1; // Indirect Near Jump
SMPTypeCategory[NN_jmpshort] = 1; // Jump Short (not used)
SMPTypeCategory[NN_lahf] = 2; // Load Flags into AH Register
SMPTypeCategory[NN_lar] = 2; // Load Access Rights Byte
SMPTypeCategory[NN_lea] = 10; // Load Effective Address **
5724
5725
5726
5727
5728
5729
5730
5731
5732
5733
5734
5735
5736
5737
5738
5739
5740
5741
5742
5743
5744
5745
5746
5747
5748
5749
5750
5751
5752
5753
5754
5755
5756
5757
5758
SMPTypeCategory[NN_leavew] = 0; // High Level Procedure Exit **
SMPTypeCategory[NN_leave] = 0; // High Level Procedure Exit **
SMPTypeCategory[NN_leaved] = 0; // High Level Procedure Exit **
SMPTypeCategory[NN_leaveq] = 0; // High Level Procedure Exit **
SMPTypeCategory[NN_lgdt] = 0; // Load Global Descriptor Table Register
SMPTypeCategory[NN_lidt] = 0; // Load Interrupt Descriptor Table Register
SMPTypeCategory[NN_lgs] = 6; // Load Full Pointer to GS:xx
SMPTypeCategory[NN_lss] = 6; // Load Full Pointer to SS:xx
SMPTypeCategory[NN_lds] = 6; // Load Full Pointer to DS:xx
SMPTypeCategory[NN_les] = 6; // Load Full Pointer to ES:xx
SMPTypeCategory[NN_lfs] = 6; // Load Full Pointer to FS:xx
SMPTypeCategory[NN_lldt] = 0; // Load Local Descriptor Table Register
SMPTypeCategory[NN_lmsw] = 1; // Load Machine Status Word
SMPTypeCategory[NN_lock] = 1; // Assert LOCK# Signal Prefix
SMPTypeCategory[NN_lods] = 0; // Load String
SMPTypeCategory[NN_loopw] = 1; // Loop while ECX != 0
SMPTypeCategory[NN_loop] = 1; // Loop while CX != 0
SMPTypeCategory[NN_loopd] = 1; // Loop while ECX != 0
SMPTypeCategory[NN_loopq] = 1; // Loop while RCX != 0
SMPTypeCategory[NN_loopwe] = 1; // Loop while CX != 0 and ZF=1
SMPTypeCategory[NN_loope] = 1; // Loop while rCX != 0 and ZF=1
SMPTypeCategory[NN_loopde] = 1; // Loop while ECX != 0 and ZF=1
SMPTypeCategory[NN_loopqe] = 1; // Loop while RCX != 0 and ZF=1
SMPTypeCategory[NN_loopwne] = 1; // Loop while CX != 0 and ZF=0
SMPTypeCategory[NN_loopne] = 1; // Loop while rCX != 0 and ZF=0
SMPTypeCategory[NN_loopdne] = 1; // Loop while ECX != 0 and ZF=0
SMPTypeCategory[NN_loopqne] = 1; // Loop while RCX != 0 and ZF=0
SMPTypeCategory[NN_lsl] = 6; // Load Segment Limit
SMPTypeCategory[NN_ltr] = 1; // Load Task Register
SMPTypeCategory[NN_mov] = 3; // Move Data
SMPTypeCategory[NN_movsp] = 3; // Move to/from Special Registers
SMPTypeCategory[NN_movs] = 0; // Move Byte(s) from String to String
SMPTypeCategory[NN_movsx] = 3; // Move with Sign-Extend
SMPTypeCategory[NN_movzx] = 3; // Move with Zero-Extend
SMPTypeCategory[NN_mul] = 7; // Unsigned Multiplication of AL or AX
clc5q
committed
SMPTypeCategory[NN_neg] = 2; // Two's Complement Negation !!!!****!!!! Change this when mmStrata handles NEGATEDPTR type.
5760
5761
5762
5763
5764
5765
5766
5767
5768
5769
5770
5771
5772
5773
5774
5775
5776
5777
5778
5779
5780
5781
5782
5783
5784
5785
5786
5787
5788
5789
5790
5791
5792
5793
5794
5795
5796
5797
5798
5799
5800
5801
5802
5803
5804
5805
5806
5807
5808
5809
5810
5811
5812
5813
5814
5815
5816
5817
5818
5819
5820
5821
5822
5823
5824
5825
5826
5827
5828
5829
5830
5831
5832
5833
5834
5835
5836
5837
5838
5839
5840
5841
5842
5843
5844
SMPTypeCategory[NN_nop] = 1; // No Operation
SMPTypeCategory[NN_not] = 2; // One's Complement Negation
SMPTypeCategory[NN_or] = 10; // Logical Inclusive OR
SMPTypeCategory[NN_out] = 0; // Output to Port
SMPTypeCategory[NN_outs] = 0; // Output Byte(s) to Port
SMPTypeCategory[NN_pop] = 11; // Pop a word from the Stack
SMPTypeCategory[NN_popaw] = 11; // Pop all General Registers
SMPTypeCategory[NN_popa] = 11; // Pop all General Registers
SMPTypeCategory[NN_popad] = 11; // Pop all General Registers (use32)
SMPTypeCategory[NN_popaq] = 11; // Pop all General Registers (use64)
SMPTypeCategory[NN_popfw] = 11; // Pop Stack into Flags Register **
SMPTypeCategory[NN_popf] = 11; // Pop Stack into Flags Register **
SMPTypeCategory[NN_popfd] = 11; // Pop Stack into Eflags Register **
SMPTypeCategory[NN_popfq] = 11; // Pop Stack into Rflags Register **
SMPTypeCategory[NN_push] = 11; // Push Operand onto the Stack
SMPTypeCategory[NN_pushaw] = 11; // Push all General Registers
SMPTypeCategory[NN_pusha] = 11; // Push all General Registers
SMPTypeCategory[NN_pushad] = 11; // Push all General Registers (use32)
SMPTypeCategory[NN_pushaq] = 11; // Push all General Registers (use64)
SMPTypeCategory[NN_pushfw] = 11; // Push Flags Register onto the Stack
SMPTypeCategory[NN_pushf] = 11; // Push Flags Register onto the Stack
SMPTypeCategory[NN_pushfd] = 11; // Push Flags Register onto the Stack (use32)
SMPTypeCategory[NN_pushfq] = 11; // Push Flags Register onto the Stack (use64)
SMPTypeCategory[NN_rcl] = 2; // Rotate Through Carry Left
SMPTypeCategory[NN_rcr] = 2; // Rotate Through Carry Right
SMPTypeCategory[NN_rol] = 2; // Rotate Left
SMPTypeCategory[NN_ror] = 2; // Rotate Right
SMPTypeCategory[NN_rep] = 0; // Repeat String Operation
SMPTypeCategory[NN_repe] = 0; // Repeat String Operation while ZF=1
SMPTypeCategory[NN_repne] = 0; // Repeat String Operation while ZF=0
SMPTypeCategory[NN_retn] = 0; // Return Near from Procedure
SMPTypeCategory[NN_retf] = 0; // Return Far from Procedure
SMPTypeCategory[NN_sahf] = 14; // Store AH into Flags Register
SMPTypeCategory[NN_sal] = 2; // Shift Arithmetic Left
SMPTypeCategory[NN_sar] = 2; // Shift Arithmetic Right
SMPTypeCategory[NN_shl] = 2; // Shift Logical Left
SMPTypeCategory[NN_shr] = 2; // Shift Logical Right
SMPTypeCategory[NN_sbb] = 5; // Integer Subtraction with Borrow
SMPTypeCategory[NN_scas] = 14; // Compare String
SMPTypeCategory[NN_seta] = 2; // Set Byte if Above (CF=0 & ZF=0)
SMPTypeCategory[NN_setae] = 2; // Set Byte if Above or Equal (CF=0)
SMPTypeCategory[NN_setb] = 2; // Set Byte if Below (CF=1)
SMPTypeCategory[NN_setbe] = 2; // Set Byte if Below or Equal (CF=1 | ZF=1)
SMPTypeCategory[NN_setc] = 2; // Set Byte if Carry (CF=1)
SMPTypeCategory[NN_sete] = 2; // Set Byte if Equal (ZF=1)
SMPTypeCategory[NN_setg] = 2; // Set Byte if Greater (ZF=0 & SF=OF)
SMPTypeCategory[NN_setge] = 2; // Set Byte if Greater or Equal (SF=OF)
SMPTypeCategory[NN_setl] = 2; // Set Byte if Less (SF!=OF)
SMPTypeCategory[NN_setle] = 2; // Set Byte if Less or Equal (ZF=1 | SF!=OF)
SMPTypeCategory[NN_setna] = 2; // Set Byte if Not Above (CF=1 | ZF=1)
SMPTypeCategory[NN_setnae] = 2; // Set Byte if Not Above or Equal (CF=1)
SMPTypeCategory[NN_setnb] = 2; // Set Byte if Not Below (CF=0)
SMPTypeCategory[NN_setnbe] = 2; // Set Byte if Not Below or Equal (CF=0 & ZF=0)
SMPTypeCategory[NN_setnc] = 2; // Set Byte if Not Carry (CF=0)
SMPTypeCategory[NN_setne] = 2; // Set Byte if Not Equal (ZF=0)
SMPTypeCategory[NN_setng] = 2; // Set Byte if Not Greater (ZF=1 | SF!=OF)
SMPTypeCategory[NN_setnge] = 2; // Set Byte if Not Greater or Equal (ZF=1)
SMPTypeCategory[NN_setnl] = 2; // Set Byte if Not Less (SF=OF)
SMPTypeCategory[NN_setnle] = 2; // Set Byte if Not Less or Equal (ZF=0 & SF=OF)
SMPTypeCategory[NN_setno] = 2; // Set Byte if Not Overflow (OF=0)
SMPTypeCategory[NN_setnp] = 2; // Set Byte if Not Parity (PF=0)
SMPTypeCategory[NN_setns] = 2; // Set Byte if Not Sign (SF=0)
SMPTypeCategory[NN_setnz] = 2; // Set Byte if Not Zero (ZF=0)
SMPTypeCategory[NN_seto] = 2; // Set Byte if Overflow (OF=1)
SMPTypeCategory[NN_setp] = 2; // Set Byte if Parity (PF=1)
SMPTypeCategory[NN_setpe] = 2; // Set Byte if Parity Even (PF=1)
SMPTypeCategory[NN_setpo] = 2; // Set Byte if Parity Odd (PF=0)
SMPTypeCategory[NN_sets] = 2; // Set Byte if Sign (SF=1)
SMPTypeCategory[NN_setz] = 2; // Set Byte if Zero (ZF=1)
SMPTypeCategory[NN_sgdt] = 0; // Store Global Descriptor Table Register
SMPTypeCategory[NN_sidt] = 0; // Store Interrupt Descriptor Table Register
SMPTypeCategory[NN_shld] = 2; // Double Precision Shift Left
SMPTypeCategory[NN_shrd] = 2; // Double Precision Shift Right
SMPTypeCategory[NN_sldt] = 6; // Store Local Descriptor Table Register
SMPTypeCategory[NN_smsw] = 2; // Store Machine Status Word
SMPTypeCategory[NN_stc] = 1; // Set Carry Flag
SMPTypeCategory[NN_std] = 1; // Set Direction Flag
SMPTypeCategory[NN_sti] = 1; // Set Interrupt Flag
SMPTypeCategory[NN_stos] = 0; // Store String
SMPTypeCategory[NN_str] = 6; // Store Task Register
SMPTypeCategory[NN_sub] = 5; // Integer Subtraction
SMPTypeCategory[NN_test] = 1; // Logical Compare
SMPTypeCategory[NN_verr] = 1; // Verify a Segment for Reading
SMPTypeCategory[NN_verw] = 1; // Verify a Segment for Writing
SMPTypeCategory[NN_wait] = 1; // Wait until BUSY# Pin is Inactive (HIGH)
SMPTypeCategory[NN_xchg] = 12; // Exchange Register/Memory with Register
5846
5847
5848
5849
5850
5851
5852
5853
5854
5855
5856
5857
5858
5859
5860
5861
5862
5863
5864
5865
5866
5867
5868
5869
5870
5871
5872
5873
5874
SMPTypeCategory[NN_xlat] = 0; // Table Lookup Translation
SMPTypeCategory[NN_xor] = 2; // Logical Exclusive OR
//
// 486 instructions
//
SMPTypeCategory[NN_cmpxchg] = 12; // Compare and Exchange
SMPTypeCategory[NN_bswap] = 1; // Swap bytes in register
SMPTypeCategory[NN_xadd] = 12; // t<-dest; dest<-src+dest; src<-t
SMPTypeCategory[NN_invd] = 1; // Invalidate Data Cache
SMPTypeCategory[NN_wbinvd] = 1; // Invalidate Data Cache (write changes)
SMPTypeCategory[NN_invlpg] = 1; // Invalidate TLB entry
//
// Pentium instructions
//
SMPTypeCategory[NN_rdmsr] = 8; // Read Machine Status Register
SMPTypeCategory[NN_wrmsr] = 1; // Write Machine Status Register
SMPTypeCategory[NN_cpuid] = 8; // Get CPU ID
SMPTypeCategory[NN_cmpxchg8b] = 12; // Compare and Exchange Eight Bytes
SMPTypeCategory[NN_rdtsc] = 8; // Read Time Stamp Counter
SMPTypeCategory[NN_rsm] = 1; // Resume from System Management Mode
//
// Pentium Pro instructions
//
SMPTypeCategory[NN_cmova] = 0; // Move if Above (CF=0 & ZF=0)
SMPTypeCategory[NN_cmovb] = 0; // Move if Below (CF=1)
SMPTypeCategory[NN_cmovbe] = 0; // Move if Below or Equal (CF=1 | ZF=1)
SMPTypeCategory[NN_cmovg] = 0; // Move if Greater (ZF=0 & SF=OF)
SMPTypeCategory[NN_cmovge] = 0; // Move if Greater or Equal (SF=OF)
SMPTypeCategory[NN_cmovl] = 0; // Move if Less (SF!=OF)
SMPTypeCategory[NN_cmovle] = 0; // Move if Less or Equal (ZF=1 | SF!=OF)
SMPTypeCategory[NN_cmovnb] = 0; // Move if Not Below (CF=0)
SMPTypeCategory[NN_cmovno] = 0; // Move if Not Overflow (OF=0)
SMPTypeCategory[NN_cmovnp] = 0; // Move if Not Parity (PF=0)
SMPTypeCategory[NN_cmovns] = 0; // Move if Not Sign (SF=0)
SMPTypeCategory[NN_cmovnz] = 0; // Move if Not Zero (ZF=0)
SMPTypeCategory[NN_cmovo] = 0; // Move if Overflow (OF=1)
SMPTypeCategory[NN_cmovp] = 0; // Move if Parity (PF=1)
SMPTypeCategory[NN_cmovs] = 0; // Move if Sign (SF=1)
SMPTypeCategory[NN_cmovz] = 0; // Move if Zero (ZF=1)
5891
5892
5893
5894
5895
5896
5897
5898
5899
5900
5901
5902
5903
5904
5905
5906
5907
5908
5909
5910
5911
5912
5913
5914
5915
5916
5917
5918
5919
5920
5921
5922
5923
5924
5925
5926
5927
5928
5929
5930
5931
5932
5933
5934
5935
5936
5937
5938
5939
5940
5941
5942
5943
5944
5945
5946
5947
5948
5949
5950
5951
5952
5953
5954
5955
5956
5957
5958
5959
5960
5961
5962
5963
5964
5965
5966
5967
5968
5969
5970
5971
5972
5973
5974
5975
5976
5977
5978
5979
5980
5981
5982
5983
5984
5985
5986
5987
5988
5989
5990
5991
5992
5993
5994
5995
5996
5997
5998
5999
6000
SMPTypeCategory[NN_fcmovb] = 1; // Floating Move if Below
SMPTypeCategory[NN_fcmove] = 1; // Floating Move if Equal
SMPTypeCategory[NN_fcmovbe] = 1; // Floating Move if Below or Equal
SMPTypeCategory[NN_fcmovu] = 1; // Floating Move if Unordered
SMPTypeCategory[NN_fcmovnb] = 1; // Floating Move if Not Below
SMPTypeCategory[NN_fcmovne] = 1; // Floating Move if Not Equal
SMPTypeCategory[NN_fcmovnbe] = 1; // Floating Move if Not Below or Equal
SMPTypeCategory[NN_fcmovnu] = 1; // Floating Move if Not Unordered
SMPTypeCategory[NN_fcomi] = 1; // FP Compare, result in EFLAGS
SMPTypeCategory[NN_fucomi] = 1; // FP Unordered Compare, result in EFLAGS
SMPTypeCategory[NN_fcomip] = 1; // FP Compare, result in EFLAGS, pop stack
SMPTypeCategory[NN_fucomip] = 1; // FP Unordered Compare, result in EFLAGS, pop stack
SMPTypeCategory[NN_rdpmc] = 8; // Read Performance Monitor Counter
//
// FPP instructions
//
SMPTypeCategory[NN_fld] = 14; // Load Real ** Infer src is 'n'
SMPTypeCategory[NN_fst] = 9; // Store Real
SMPTypeCategory[NN_fstp] = 9; // Store Real and Pop
SMPTypeCategory[NN_fxch] = 1; // Exchange Registers
SMPTypeCategory[NN_fild] = 14; // Load Integer ** Infer src is 'n'
SMPTypeCategory[NN_fist] = 13; // Store Integer
SMPTypeCategory[NN_fistp] = 13; // Store Integer and Pop
SMPTypeCategory[NN_fbld] = 1; // Load BCD
SMPTypeCategory[NN_fbstp] = 13; // Store BCD and Pop
SMPTypeCategory[NN_fadd] = 14; // Add Real
SMPTypeCategory[NN_faddp] = 14; // Add Real and Pop
SMPTypeCategory[NN_fiadd] = 14; // Add Integer
SMPTypeCategory[NN_fsub] = 14; // Subtract Real
SMPTypeCategory[NN_fsubp] = 14; // Subtract Real and Pop
SMPTypeCategory[NN_fisub] = 14; // Subtract Integer
SMPTypeCategory[NN_fsubr] = 14; // Subtract Real Reversed
SMPTypeCategory[NN_fsubrp] = 14; // Subtract Real Reversed and Pop
SMPTypeCategory[NN_fisubr] = 14; // Subtract Integer Reversed
SMPTypeCategory[NN_fmul] = 14; // Multiply Real
SMPTypeCategory[NN_fmulp] = 14; // Multiply Real and Pop
SMPTypeCategory[NN_fimul] = 14; // Multiply Integer
SMPTypeCategory[NN_fdiv] = 14; // Divide Real
SMPTypeCategory[NN_fdivp] = 14; // Divide Real and Pop
SMPTypeCategory[NN_fidiv] = 14; // Divide Integer
SMPTypeCategory[NN_fdivr] = 14; // Divide Real Reversed
SMPTypeCategory[NN_fdivrp] = 14; // Divide Real Reversed and Pop
SMPTypeCategory[NN_fidivr] = 14; // Divide Integer Reversed
SMPTypeCategory[NN_fsqrt] = 1; // Square Root
SMPTypeCategory[NN_fscale] = 1; // Scale: st(0) <- st(0) * 2^st(1)
SMPTypeCategory[NN_fprem] = 1; // Partial Remainder
SMPTypeCategory[NN_frndint] = 1; // Round to Integer
SMPTypeCategory[NN_fxtract] = 1; // Extract exponent and significand
SMPTypeCategory[NN_fabs] = 1; // Absolute value
SMPTypeCategory[NN_fchs] = 1; // Change Sign
SMPTypeCategory[NN_fcom] = 1; // Compare Real
SMPTypeCategory[NN_fcomp] = 1; // Compare Real and Pop
SMPTypeCategory[NN_fcompp] = 1; // Compare Real and Pop Twice
SMPTypeCategory[NN_ficom] = 1; // Compare Integer
SMPTypeCategory[NN_ficomp] = 1; // Compare Integer and Pop
SMPTypeCategory[NN_ftst] = 1; // Test
SMPTypeCategory[NN_fxam] = 1; // Examine
SMPTypeCategory[NN_fptan] = 1; // Partial tangent
SMPTypeCategory[NN_fpatan] = 1; // Partial arctangent
SMPTypeCategory[NN_f2xm1] = 1; // 2^x - 1
SMPTypeCategory[NN_fyl2x] = 1; // Y * lg2(X)
SMPTypeCategory[NN_fyl2xp1] = 1; // Y * lg2(X+1)
SMPTypeCategory[NN_fldz] = 1; // Load +0.0
SMPTypeCategory[NN_fld1] = 1; // Load +1.0
SMPTypeCategory[NN_fldpi] = 1; // Load PI=3.14...
SMPTypeCategory[NN_fldl2t] = 1; // Load lg2(10)
SMPTypeCategory[NN_fldl2e] = 1; // Load lg2(e)
SMPTypeCategory[NN_fldlg2] = 1; // Load lg10(2)
SMPTypeCategory[NN_fldln2] = 1; // Load ln(2)
SMPTypeCategory[NN_finit] = 1; // Initialize Processor
SMPTypeCategory[NN_fninit] = 1; // Initialize Processor (no wait)
SMPTypeCategory[NN_fsetpm] = 1; // Set Protected Mode
SMPTypeCategory[NN_fldcw] = 14; // Load Control Word
SMPTypeCategory[NN_fstcw] = 13; // Store Control Word
SMPTypeCategory[NN_fnstcw] = 13; // Store Control Word (no wait)
SMPTypeCategory[NN_fstsw] = 2; // Store Status Word to memory or AX
SMPTypeCategory[NN_fnstsw] = 2; // Store Status Word (no wait) to memory or AX
SMPTypeCategory[NN_fclex] = 1; // Clear Exceptions
SMPTypeCategory[NN_fnclex] = 1; // Clear Exceptions (no wait)
SMPTypeCategory[NN_fstenv] = 13; // Store Environment
SMPTypeCategory[NN_fnstenv] = 13; // Store Environment (no wait)
SMPTypeCategory[NN_fldenv] = 14; // Load Environment
SMPTypeCategory[NN_fsave] = 13; // Save State
SMPTypeCategory[NN_fnsave] = 13; // Save State (no wait)
SMPTypeCategory[NN_frstor] = 14; // Restore State ** infer src is 'n'
SMPTypeCategory[NN_fincstp] = 1; // Increment Stack Pointer
SMPTypeCategory[NN_fdecstp] = 1; // Decrement Stack Pointer
SMPTypeCategory[NN_ffree] = 1; // Free Register
SMPTypeCategory[NN_fnop] = 1; // No Operation
SMPTypeCategory[NN_feni] = 1; // (8087 only)
SMPTypeCategory[NN_fneni] = 1; // (no wait) (8087 only)
SMPTypeCategory[NN_fdisi] = 1; // (8087 only)
SMPTypeCategory[NN_fndisi] = 1; // (no wait) (8087 only)
//
// 80387 instructions
//
SMPTypeCategory[NN_fprem1] = 1; // Partial Remainder ( < half )
SMPTypeCategory[NN_fsincos] = 1; // t<-cos(st); st<-sin(st); push t
SMPTypeCategory[NN_fsin] = 1; // Sine
SMPTypeCategory[NN_fcos] = 1; // Cosine
SMPTypeCategory[NN_fucom] = 1; // Compare Unordered Real
SMPTypeCategory[NN_fucomp] = 1; // Compare Unordered Real and Pop
SMPTypeCategory[NN_fucompp] = 1; // Compare Unordered Real and Pop Twice
//
// Instructions added 28.02.96