Newer
Older
FoundDef = true;
if (Status != CurrDef->GetMetadataStatus()) {
CurrDef = CurrInst->SetDefMetadata(UseOp, Status);
changed = (CurrDef != CurrInst->GetLastDef());
// If source operand was memory, we have two cases.
// (1) The instruction could be a load, in which
// case we should simply terminate the
// propagation, because the prior DEF of a memory
// location is always considered live metadata
// already, and we do not want to propagate liveness
// to the address regs in the USE list.
// EXCEPTION: For safe funcs, we propagate liveness
// for stack locations.
// (2) We could have an arithmetic operation such
// as reg := reg arithop memsrc. In this case, we
// still do not want to propagate through the memsrc,
// (with the same safe func EXCEPTION),
// but the register is both DEF and USE and we need
// to propagate through the register.
if (CurrInst->HasSourceMemoryOperand()) {
if (this->SafeFunc) {
op_t MemSrcOp = CurrInst->MDGetMemUseOp();
assert(o_void != MemSrcOp.type);
if (MDIsStackAccessOpnd(MemSrcOp, this->UseFP)) {
// We have a SafeFunc stack access. This is
// the EXCEPTION case where we want to
// propagate metadata liveness for a memory
// location.
CurrUse = CurrInst->FindUse(MemSrcOp);
assert(CurrUse != CurrInst->GetLastUse());
if (this->IsGlobalName(MemSrcOp)) {
changed |= this->PropagateGlobalMetadata(MemSrcOp,
Status, CurrUse->GetSSANum());
}
else {
changed |= CurrInst->GetBlock()->PropagateLocalMetadata(MemSrcOp,
Status, CurrUse->GetSSANum());
}
} // end if stack access operand
} // end if SafeFunc
if (3 == CurrInst->GetOptType()) { // move inst
clc5q
committed
break; // load address regs are not live metadata
}
else if ((5 == CurrInst->GetOptType())
|| (NN_and == CurrInst->GetCmd().itype)
|| (NN_or == CurrInst->GetCmd().itype)
|| (NN_xor == CurrInst->GetCmd().itype)) {
// add, subtract, and, or with memsrc
// Find the DEF reg in the USE list.
CurrUse = CurrInst->FindUse(UseOp);
assert(CurrUse != CurrInst->GetLastUse());
changed |= this->PropagateGlobalMetadata(UseOp,
Status, CurrUse->GetSSANum());
break;
}
} // end if memory source
// Now, propagate the metadata status to all the
// non-memory, non-flags-reg, non-special-reg
// (i.e. regular registers) USEs.
CurrUse = CurrInst->GetFirstUse();
while (CurrUse != CurrInst->GetLastUse()) {
op_t UseOp = CurrUse->GetOp();
// NOTE: **!!** To be less conservative, we
// should propagate less for exchange category
// instructions.
if ((UseOp.type == o_reg) && (!UseOp.is_reg(R_sp))
&& (!(this->UseFP && UseOp.is_reg(R_bp)))
&& (!UseOp.is_reg(X86_FLAGS_REG))) {
changed |= this->PropagateGlobalMetadata(UseOp,
Status, CurrUse->GetSSANum());
}
else {
changed |= CurrInst->GetBlock()->PropagateLocalMetadata(UseOp,
Status, CurrUse->GetSSANum());
}
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
}
break;
}
}
}
if (!FoundDef) {
// Check the Phi functions
list<SMPBasicBlock>::iterator CurrBlock;
for (CurrBlock = this->Blocks.begin(); CurrBlock != this->Blocks.end(); ++CurrBlock) {
set<SMPPhiFunction, LessPhi>::iterator DefPhi;
DefPhi = CurrBlock->FindPhi(UseOp);
if (DefPhi != CurrBlock->GetLastPhi()) {
if (SSANum == DefPhi->GetDefSSANum()) {
if (Status != DefPhi->GetDefMetadata()) {
DefPhi = CurrBlock->SetPhiDefMetadata(UseOp, Status);
changed = true;
// If the Phi DEF has live metadata, then the Phi
// USEs each have live metadata. Propagate.
int UseSSANum;
for (size_t index = 0; index < DefPhi->GetPhiListSize(); ++index) {
UseSSANum = DefPhi->GetUseSSANum(index);
// UseSSANum can be -1 in some cases because
// we conservatively make EAX and EDX be USEs
// of all return instructions, when the function
// might have a void return type, making it
// appear as if an uninitialized EAX or EDX
// could make it to the return block.
if (0 <= UseSSANum) {
changed |= this->PropagateGlobalMetadata(UseOp,
Status, UseSSANum);
}
}
}
FoundDef = true;
break;
}
}
} // end for all blocks
} // end if !FoundDef
if (!FoundDef) {
clc5q
committed
msg("ERROR: Could not find DEF of SSANum %d for: ", SSANum);
PrintOperand(UseOp);
msg(" in function %s\n", this->GetFuncName());
}
return changed;
} // end of SMPFunction::PropagateGlobalMetadata()
// Find consecutive DEFs of the same type and mark the second one redundant.
void SMPFunction::FindRedundantMetadata(void) {
list<SMPBasicBlock>::iterator CurrBlock;
bool changed = false;
for (CurrBlock = this->Blocks.begin(); CurrBlock != this->Blocks.end(); ++CurrBlock) {
changed |= CurrBlock->FindRedundantLocalMetadata(this->SafeFunc);
}
return;
} // end of SMPFunction::FindRedundantMetadata()
// Compute SSA form data structures across the function.
void SMPFunction::ComputeSSA(void) {
#if SMP_DEBUG_DATAFLOW
clc5q
committed
bool DumpFlag = false;
DumpFlag |= (0 == strcmp("main", this->GetFuncName()));
DumpFlag |= (0 == strcmp("call_gmon_start", this->GetFuncName()));
DumpFlag |= (0 == strcmp("_init_proc", this->GetFuncName()));
#if 0
DebugFlag |= (0 == strcmp("call_gmon_start", this->GetFuncName()));
#endif
#if 0
DumpFlag |= (0 == strcmp("_nl_find_msg", this->GetFuncName()));
if (DumpFlag)
this->Dump();
#endif
this->ComputeIDoms();
this->ComputeDomFrontiers();
this->ComputeGlobalNames();
this->ComputeBlocksDefinedIn();
this->InsertPhiFunctions();
this->BuildDominatorTree();
list<SMPBasicBlock>::iterator CurrBlock;
for (CurrBlock = this->Blocks.begin(); CurrBlock != this->Blocks.end(); ++CurrBlock) {
CurrBlock->SetLocalNames();
CurrBlock->SSALocalRenumber();
if (DebugFlag) CurrBlock->Dump();
#if SMP_FULL_LIVENESS_ANALYSIS
CurrBlock->CreateGlobalChains();
#endif
#if 1
CurrBlock->MarkDeadRegs();
#endif
}
#if SMP_DEBUG_DATAFLOW
if (DumpFlag)
this->Dump();
#endif
return;
} // end of SMPFunction::ComputeSSA()
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
// Find memory writes (DEFs) with possible aliases
void SMPFunction::AliasAnalysis(void) {
// First task: Mark which memory DEFs MIGHT be aliased because an
// indirect memory write occurs somewhere in the DEF-USE chain.
// Memory DEF-USE chains with no possible aliasing can be subjected
// to type inference and type-based optimizing annotations, e.g. a
// register spill to memory followed by retrieval from spill memory
// followed by NUMERIC USEs should be typed as a continuous NUMERIC
// chain if there is no possibility of aliasing.
// Preparatory step: For each indirect write, mark all def-use chains
// (maintained at the basic block level) that include the indirect
// write instruction. If there are no indirect writes in the function,
// leave all DEFs marked as unaliased and exit.
if (!(this->HasIndirectWrites))
return;
list<SMPBasicBlock>::iterator CurrBlock;
for (CurrBlock = this->Blocks.begin(); CurrBlock != this->Blocks.end(); ++CurrBlock) {
list<list<SMPInstr>::iterator>::iterator CurrInst;
for (CurrInst = CurrBlock->GetFirstInstr();
CurrInst != CurrBlock->GetLastInstr();
++CurrInst) {
if ((*CurrInst)->HasIndirectMemoryWrite()) {
CurrBlock->MarkIndWriteChains((*CurrInst)->GetAddr());
// Until we get true aliasing analysis, any indirect write
// is classified as may-be-aliased.
CurrBlock->SetMaybeAliased(true);
}
} // end for all insts in block
} // end for all blocks in function
// Step one: Find only the memory DEFs to start with.
list<SMPInstr>::iterator CurrInst;
bool FoundIndWrite = false;
for (CurrInst = this->Instrs.begin(); CurrInst != this->Instrs.end(); ++CurrInst) {
if (CurrInst->HasDestMemoryOperand()) {
// Starting with the DEF instruction, traverse the control flow
// until we run into (A) the re-definition of the operand, including
// a re-definition of any of its addressing registers, or (B) an
// indirect write. Return false if condition A terminates the
// search, and true if condition B terminates the search.
this->ResetProcessedBlocks();
op_t MemDefOp = CurrInst->MDGetMemDefOp();
assert(o_void != MemDefOp.type);
set<DefOrUse, LessDefUse>::iterator CurrMemDef = CurrInst->FindDef(MemDefOp);
assert(CurrMemDef != CurrInst->GetLastDef());
int SSANum = CurrMemDef->GetSSANum();
FoundIndWrite = this->FindPossibleChainAlias(CurrInst, MemDefOp, SSANum);
if (FoundIndWrite) {
// Mark the DEF as aliased.
CurrMemDef = CurrInst->SetDefIndWrite(CurrMemDef->GetOp(), true);
break; // Don't waste time after first alias found
}
} // end if inst has dest memory operand
} // end for all instructions
return;
} // end of SMPFunction::AliasAnalysis()
// Does the DefOp DEF_USE chain have an indirect mem write starting at CurrInst?
bool SMPFunction::FindPossibleChainAlias(list<SMPInstr>::iterator CurrInst, op_t DefOp, int SSANum) {
// Starting with the DEF instruction, traverse the control flow
// until we run into (A) the re-definition of the operand, including
// a re-definition of any of its addressing registers, or (B) an
// indirect write. Return false if condition A terminates the
// search, and true if condition B terminates the search.
SMPBasicBlock *CurrBlock = CurrInst->GetBlock();
if (!(CurrBlock->IsProcessed())) {
CurrBlock->SetProcessed(true);
}
else
return false; // block already processed
// Proceed by cases:
ea_t DefAddr = CurrInst->GetAddr();
// Case 1: Local name. Return the IndWrite flag for the local Def-Use
// chain begun by CurrInst.
if (CurrBlock->IsLocalName(DefOp)) {
return CurrBlock->GetLocalDUChainIndWrite(DefOp, SSANum);
}
// Case 2: Global name.
// Case 2A: If Def-Use chain within this block for this memory operand
// has its IndWrite flag set to true, then stop and return true.
else if (CurrBlock->GetGlobalDUChainIndWrite(DefOp, DefAddr)) {
return true;
}
// Case 2B: Else if Def-Use chain is not the last chain in this block
// for this operand, then there must be a later redefinition of the
// memory operand (with new SSA number assigned) later in this block.
// Because we did not fall into case 2A, we know there is no IndWrite
// within the current memory operand's chain, so we return false.
else if (CurrBlock->IsLastGlobalChain(DefOp, DefAddr)) {
return false;
}
// Case 2C: Else if current memory operand is NOT LiveOut, even though
// this is the last def-use chain in the block, then there is no more
// traversing of the control flow graph to be done. The chain has ended
// without encountering an IndWrite, so return false.
else if (!(CurrBlock->IsLiveOut(DefOp))) {
return false;
}
// Case 2D: We have passed all previous checks, so we must have a memory
// operand that reaches the end of the block without encountering an
// IndWrite and is LiveOut. Its may-alias status will be determined by
// following the control flow graph for all successor blocks and examining
// the def-use chains in those blocks.
list<list<SMPBasicBlock>::iterator>::iterator SuccBlock;
SuccBlock = CurrBlock->GetFirstSucc();
bool FoundIndWrite = false;
do {
FoundIndWrite = this->FindChainAliasHelper((*SuccBlock), DefOp, DefAddr);
++SuccBlock;
} while (!FoundIndWrite && (SuccBlock != CurrBlock->GetLastSucc()));
return FoundIndWrite;
} // end of SMPFunction::FindPossibleChainAlias()
// recursive helper for global DU-chains that traverse CFG
bool SMPFunction::FindChainAliasHelper(list<SMPBasicBlock>::iterator CurrBlock, op_t DefOp, ea_t DefAddr) {
if (!(CurrBlock->IsProcessed())) {
CurrBlock->SetProcessed(true);
}
else
return false; // block already processed
// Proceed by global cases:
// Case 2: Global name.
// Case 2A: If Def-Use chain within this block for this memory operand
// has its IndWrite flag set to true, then stop and return true.
if (CurrBlock->GetGlobalDUChainIndWrite(DefOp, DefAddr)) {
return true;
}
// Case 2B: Else if Def-Use chain is not the last chain in this block
// for this operand, then there must be a later redefinition of the
// memory operand (with new SSA number assigned) later in this block.
// Because we did not fall into case 2A, we know there is no IndWrite
// within the current memory operand's chain, so we return false.
else if (CurrBlock->IsLastGlobalChain(DefOp, DefAddr)) {
return false;
}
// Case 2C: Else if current memory operand is NOT LiveOut, even though
// this is the last def-use chain in the block, then there is no more
// traversing of the control flow graph to be done. The chain has ended
// without encountering an IndWrite, so return false.
else if (!(CurrBlock->IsLiveOut(DefOp))) {
return false;
}
// Case 2D: We have passed all previous checks, so we must have a memory
// operand that reaches the end of the block without encountering an
// IndWrite and is LiveOut. Its may-alias status will be determined by
// following the control flow graph for all successor blocks and examining
// the def-use chains in those blocks.
list<list<SMPBasicBlock>::iterator>::iterator SuccBlock;
SuccBlock = CurrBlock->GetFirstSucc();
bool FoundIndWrite = false;
do {
FoundIndWrite = this->FindChainAliasHelper((*SuccBlock), DefOp, DefAddr);
++SuccBlock;
} while (!FoundIndWrite && (SuccBlock != CurrBlock->GetLastSucc()));
return FoundIndWrite;
} // end of SMPFunction::FindChainAliasHelper()
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
// Link basic blocks to their predecessors and successors, and build the map
// of instruction addresses to basic blocks.
void SMPFunction::SetLinks(void) {
list<SMPBasicBlock>::iterator CurrBlock;
#if SMP_DEBUG_DATAFLOW
msg("SetLinks called for %s\n", this->GetFuncName());
#endif
// First, set up the map of instructions to basic blocks.
for (CurrBlock = this->Blocks.begin(); CurrBlock != this->Blocks.end(); ++CurrBlock) {
list<list<SMPInstr>::iterator>::iterator CurrInst;
for (CurrInst = CurrBlock->GetFirstInstr();
CurrInst != CurrBlock->GetLastInstr();
++CurrInst) {
pair<ea_t, list<SMPBasicBlock>::iterator> MapItem((*CurrInst)->GetAddr(),CurrBlock);
InstBlockMap.insert(MapItem);
}
}
#if SMP_DEBUG_DATAFLOW
msg("SetLinks finished mapping: %s\n", this->GetFuncName());
#endif
// Next, set successors of each basic block, also setting up the predecessors in the
// process.
for (CurrBlock = this->Blocks.begin(); CurrBlock != this->Blocks.end(); ++CurrBlock) {
list<SMPInstr>::iterator CurrInst = *(--(CurrBlock->GetLastInstr()));
clc5q
committed
bool CondTailCall = false;
if (CurrBlock->HasReturn()) {
if (!(CurrInst->IsCondTailCall())) {
// We either have a return instruction or an unconditional
// tail call instruction. We don't want to link to the
// tail call target, and there is no link for a return
continue;
}
else {
// We have a conditional tail call. We don't want to
// link to the tail call target, but we do want fall
// through to the next instruction.
CondTailCall = true;
}
}
// Last instruction in block; set successors
bool CallFlag = (CALL == CurrInst->GetDataFlowType());
bool IndirCallFlag = (INDIR_CALL == CurrInst->GetDataFlowType());
clc5q
committed
bool TailCallFlag = CondTailCall && CurrInst->IsCondTailCall();
bool IndirJumpFlag = (INDIR_JUMP == CurrInst->GetDataFlowType());
bool LinkedToTarget = false;
for (bool ok = CurrXrefs.first_from(CurrInst->GetAddr(), XREF_ALL);
ok;
ok = CurrXrefs.next_from()) {
if ((CurrXrefs.to != 0) && (CurrXrefs.iscode)) {
// Found a code target, with its address in CurrXrefs.to
if ((CallFlag || IndirCallFlag || TailCallFlag)
clc5q
committed
&& (CurrXrefs.to != (CurrInst->GetAddr() + CurrInst->GetCmd().size))) {
// A call instruction will have two targets: the fall through to the
// next instruction, and the called function. We want to link to the
// fall-through instruction, but not to the called function.
// Some blocks end with a call just because the fall-through instruction
// is a jump target from elsewhere.
continue;
}
map<ea_t, list<SMPBasicBlock>::iterator>::iterator MapEntry;
MapEntry = this->InstBlockMap.find(CurrXrefs.to);
if (MapEntry == this->InstBlockMap.end()) {
msg("WARNING: addr %x not found in map for %s\n", CurrXrefs.to,
this->GetFuncName());
msg(" Referenced from %s\n", CurrInst->GetDisasm());
}
else {
list<SMPBasicBlock>::iterator Target = MapEntry->second;
// Make target block a successor of current block.
CurrBlock->LinkToSucc(Target);
// Make current block a predecessor of target block.
Target->LinkToPred(CurrBlock);
LinkedToTarget = true;
#if SMP_USE_SWITCH_TABLE_INFO
if (IndirJumpFlag) {
msg("Switch table link: jump at %x target at %x\n",
CurrInst->GetAddr(), CurrXrefs.to);
}
}
} // end for all xrefs
if (IndirJumpFlag && (!LinkedToTarget)) {
this->UnresolvedIndirectJumps = true;
msg("WARNING: Unresolved indirect jump at %x\n", CurrInst->GetAddr());
}
else if (IndirCallFlag && (!LinkedToTarget)) {
this->UnresolvedIndirectCalls = true;
msg("WARNING: Unresolved indirect call at %x\n", CurrInst->GetAddr());
} // end for all blocks
// If we have any blocks that are all no-ops and have no predecessors, remove those
// blocks. They are dead and make the CFG no longer a lattice. Any blocks that have
// no predecessors but are not all no-ops should also be removed with a different
// log message.
// NOTE: Prior to construction of hell nodes in functions with unresolved indirect jumps,
// we cannot conclude that a block with no predecessors is unreachable. Also, the block
// order might be such that removal of a block makes an already processed block
// unreachable, so we have to iterate until there are no more changes.
#if SMP_USE_SWITCH_TABLE_INFO
if (!(this->HasUnresolvedIndirectJumps())) {
#else
if (!(this->HasIndirectJumps())) {
bool changed;
do {
changed = false;
CurrBlock = this->Blocks.begin();
++CurrBlock; // don't delete the top block, no matter what.
while (CurrBlock != this->Blocks.end()) {
if (CurrBlock->GetFirstPred() == CurrBlock->GetLastPred()) {
if (CurrBlock->AllNops())
msg("Removing all nops block at %x\n", CurrBlock->GetFirstAddr());
else
msg("Removing block with no predecessors at %x\n", CurrBlock->GetFirstAddr());
// Remove this block from the predecessors list of its successors.
list<list<SMPBasicBlock>::iterator>::iterator SuccIter;
ea_t TempAddr = CurrBlock->GetFirstAddr();
for (SuccIter = CurrBlock->GetFirstSucc(); SuccIter != CurrBlock->GetLastSucc(); ++SuccIter) {
(*SuccIter)->ErasePred(TempAddr);
}
// Remove the unreachable instructions from the function inst list.
list<list<SMPInstr>::iterator>::iterator InstIter;
for (InstIter = CurrBlock->GetFirstInstr(); InstIter != CurrBlock->GetLastInstr(); ++InstIter) {
list<SMPInstr>::iterator DummyIter = this->Instrs.erase(*InstIter);
}
// Finally, remove the block from the blocks list.
CurrBlock = this->Blocks.erase(CurrBlock);
this->BlockCount -= 1;
changed = true;
}
else
++CurrBlock;
} // end while all blocks after the first one
} while (changed);
} // end if not indirect jumps
return;
} // end of SMPFunction::SetLinks()
// Number all basic blocks in reverse postorder (RPO) and set RPOBlocks vector to
// access them.
void SMPFunction::RPONumberBlocks(void) {
#if SMP_DEBUG_DATAFLOW
clc5q
committed
bool DebugFlag = false;
DebugFlag = (0 == strcmp("__ieee754_pow", this->GetFuncName()));
if (DebugFlag) msg("Entered RPONumberBlocks\n");
#endif
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
int CurrNum = 0;
list<list<SMPBasicBlock>::iterator> WorkList;
// Number the first block with 0.
list<SMPBasicBlock>::iterator CurrBlock = this->Blocks.begin();
#if 0
if (this->RPOBlocks.capacity() <= (size_t) this->BlockCount) {
msg("Reserving %d RPOBlocks old value: %d\n", 2+this->BlockCount, this->RPOBlocks.capacity());
this->RPOBlocks.reserve(2 + this->BlockCount);
this->RPOBlocks.assign(2 + this->BlockCount, this->Blocks.end());
}
#endif
CurrBlock->SetNumber(CurrNum);
this->RPOBlocks.push_back(CurrBlock);
++CurrNum;
// Push the first block's successors onto the work list.
list<list<SMPBasicBlock>::iterator>::iterator CurrSucc = CurrBlock->GetFirstSucc();
while (CurrSucc != CurrBlock->GetLastSucc()) {
WorkList.push_back(*CurrSucc);
++CurrSucc;
}
// Use the WorkList to iterate through all blocks in the function
list<list<SMPBasicBlock>::iterator>::iterator CurrListItem = WorkList.begin();
bool change;
while (!WorkList.empty()) {
change = false;
while (CurrListItem != WorkList.end()) {
if ((*CurrListItem)->GetNumber() != SMP_BLOCKNUM_UNINIT) {
// Duplicates get pushed onto the WorkList because a block
// can be the successor of multiple other blocks. If it is
// already numbered, it is a duplicate and can be removed
// from the list.
CurrListItem = WorkList.erase(CurrListItem);
change = true;
continue;
}
if ((*CurrListItem)->AllPredecessorsNumbered()) {
// Ready to be numbered.
(*CurrListItem)->SetNumber(CurrNum);
#if 0
msg("Set RPO number %d\n", CurrNum);
if (DebugFlag && (7 == CurrNum))
this->Dump();
#endif
this->RPOBlocks.push_back(*CurrListItem);
++CurrNum;
change = true;
// Push its unnumbered successors onto the work list.
CurrSucc = (*CurrListItem)->GetFirstSucc();
while (CurrSucc != (*CurrListItem)->GetLastSucc()) {
if ((*CurrSucc)->GetNumber() == SMP_BLOCKNUM_UNINIT)
WorkList.push_back(*CurrSucc);
++CurrSucc;
}
CurrListItem = WorkList.erase(CurrListItem);
}
else {
++CurrListItem;
}
} // end while (CurrListItem != WorkList.end())
if (change) {
// Reset CurrListItem to beginning of work list for next iteration.
CurrListItem = WorkList.begin();
}
else {
// Loops can cause us to not be able to find a WorkList item that has
// all predecessors numbered. Take the WorkList item with the lowest address
// and number it so we can proceed.
CurrListItem = WorkList.begin();
ea_t LowAddr = (*CurrListItem)->GetFirstAddr();
list<list<SMPBasicBlock>::iterator>::iterator SaveItem = CurrListItem;
++CurrListItem;
while (CurrListItem != WorkList.end()) {
if (LowAddr > (*CurrListItem)->GetFirstAddr()) {
SaveItem = CurrListItem;
LowAddr = (*CurrListItem)->GetFirstAddr();
}
++CurrListItem;
}
// SaveItem should now be numbered.
(*SaveItem)->SetNumber(CurrNum);
#if SMP_DEBUG_DATAFLOW
msg("Picked LowAddr %x and set RPO number %d\n", LowAddr, CurrNum);
this->RPOBlocks.push_back(*SaveItem);
++CurrNum;
// Push its unnumbered successors onto the work list.
CurrSucc = (*SaveItem)->GetFirstSucc();
while (CurrSucc != (*SaveItem)->GetLastSucc()) {
if ((*CurrSucc)->GetNumber() == SMP_BLOCKNUM_UNINIT)
WorkList.push_back(*CurrSucc);
++CurrSucc;
}
CurrListItem = WorkList.erase(SaveItem);
CurrListItem = WorkList.begin();
} // end if (change) ... else ...
} // end while work list is nonempty
// Prior to construction of hell nodes for functions with indirect jumps, there
// could still be unnumbered blocks because they appear to be unreachable
// (no predecessors from SetLinks() because they are reached only via indirect
// jumps). We need to number these and push them on the RPOBlocks vector so
// that the vector contains all the blocks.
if (this->HasIndirectJumps()) {
for (CurrBlock = this->Blocks.begin(); CurrBlock != this->Blocks.end(); ++CurrBlock) {
if (SMP_BLOCKNUM_UNINIT == CurrBlock->GetNumber()) {
msg("Numbering indirectly reachable block at %x\n", CurrBlock->GetFirstAddr());
CurrBlock->SetNumber(CurrNum);
this->RPOBlocks.push_back(CurrBlock);
++CurrNum;
}
}
}
return;
} // end of SMPFunction::RPONumberBlocks()
// Perform live variable analysis on all blocks in the function.
// See chapter 9 of Cooper/Torczon, Engineering a Compiler, for the algorithm.
void SMPFunction::LiveVariableAnalysis(void) {
list<SMPBasicBlock>::iterator CurrBlock;
#if SMP_DEBUG_DATAFLOW
msg("LiveVariableAnalysis for %s\n", this->GetFuncName());
bool DebugFlag = (0 == strcmp("_IO_file_close_mmap", this->GetFuncName()));
clc5q
committed
#endif
for (CurrBlock = this->Blocks.begin(); CurrBlock != this->Blocks.end(); ++CurrBlock) {
// Initialize the Killed and UpwardExposed sets for each block.
CurrBlock->InitKilledExposed();
}
bool changed;
// Iterate over each block, updating LiveOut sets until no more changes are made.
// NOTE: LVA is more efficient when computed over a reverse post-order list of blocks
// from the inverted CFG. We have an RPO list from the forward CFG, so it is just as
// good to simply iterate through the blocks in layout order.
#if 1
do {
changed = false;
for (CurrBlock = this->Blocks.begin(); CurrBlock != this->Blocks.end(); ++CurrBlock) {
changed |= CurrBlock->UpdateLiveOut();
}
} while (changed);
#else // Use reverse postorder
do {
changed = false;
for (size_t index = 0; index < this->RPOBlocks.size(); ++index) {
CurrBlock = this->RPOBlocks[index];
changed |= CurrBlock->UpdateLiveOut();
}
} while (changed);
#if SMP_USE_SSA_FNOP_MARKER
// Create DEFs in the marker instruction for all names in the LiveInSet
// of the first block. These are the names for the function that
// would otherwise look like USEs of uninitialized variables later.
// Note that the LiveVariableAnalysis work does not actually populate
// a LiveInSet for the first block, so we simulate it with its
// dataflow equation, UpExposed union (LiveOut minus VarKill).
set<op_t, LessOp>::iterator UpExposedIter, LiveOutIter;
list<SMPInstr>::iterator MarkerInst = this->Instrs.begin();
for (UpExposedIter = this->Blocks.begin()->GetFirstUpExposed();
UpExposedIter != this->Blocks.begin()->GetLastUpExposed();
++UpExposedIter) {
// Add DEF with SSANum of 0.
MarkerInst->AddDef(*UpExposedIter, UNINIT, 0);
clc5q
committed
// Add to the VarKill and LiveIn sets.
this->Blocks.begin()->AddVarKill(*UpExposedIter);
clc5q
committed
this->Blocks.begin()->AddLiveIn(*UpExposedIter);
}
for (LiveOutIter = this->Blocks.begin()->GetFirstLiveOut();
LiveOutIter != this->Blocks.begin()->GetLastLiveOut();
++LiveOutIter) {
if (!(this->Blocks.begin()->IsVarKill(*LiveOutIter))) {
// Add DEF with SSANum of 0.
MarkerInst->AddDef(*LiveOutIter, UNINIT, 0);
clc5q
committed
// Add to the VarKill and LiveIn sets.
this->Blocks.begin()->AddVarKill(*LiveOutIter);
clc5q
committed
this->Blocks.begin()->AddLiveIn(*LiveOutIter);
}
#endif
#if SMP_DEBUG_DATAFLOW
if (DebugFlag) msg("Exiting LiveVariableAnalysis\n");
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
#endif
return;
} // end of SMPFunction::LiveVariableAnalysis()
// Return the IDom index that is the end of the intersection prefix of the Dom sets of
// the two blocks designated by the RPO numbers passed in.
// See Cooper & Torczon, "Engineering a Compiler" 1st edition figure 9.8.
int SMPFunction::IntersectDoms(int block1, int block2) const {
int finger1 = block1;
int finger2 = block2;
while (finger1 != finger2) {
while (finger1 > finger2)
finger1 = this->IDom.at(finger1);
while (finger2 > finger1)
finger2 = this->IDom.at(finger2);
}
return finger1;
} // end of SMPFunction::IntersectDoms()
// Compute immediate dominators of all blocks into IDom[] vector.
void SMPFunction::ComputeIDoms(void) {
bool DebugFlag = false;
#if SMP_DEBUG_DATAFLOW
DebugFlag = (0 == strcmp("__ieee754_pow", this->GetFuncName()));
if (DebugFlag) msg("Entered ComputeIDoms\n");
#endif
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
// Initialize the IDom[] vector to uninitialized values for all blocks.
this->IDom.reserve(this->BlockCount);
this->IDom.assign(this->BlockCount, SMP_BLOCKNUM_UNINIT);
if (DebugFlag) msg("BlockCount = %d\n", this->BlockCount);
this->IDom[0] = 0; // Start block dominated only by itself
bool changed;
do {
changed = false;
for (size_t RPONum = 1; RPONum < (size_t) this->BlockCount; ++RPONum) {
if (DebugFlag) msg("RPONum %d\n", RPONum);
if (DebugFlag) {
msg("RPOBlocks vector size: %d\n", this->RPOBlocks.size());
for (size_t index = 0; index < this->RPOBlocks.size(); ++index) {
msg("RPOBlocks entry %d is %d\n", index, RPOBlocks[index]->GetNumber());
}
}
list<SMPBasicBlock>::iterator CurrBlock = this->RPOBlocks.at(RPONum);
// if (DebugFlag) msg("CurrBlock: %x\n", CurrBlock._Ptr);
list<list<SMPBasicBlock>::iterator>::iterator CurrPred;
// Initialize NewIdom to the first processed predecessor of block RPONum.
int NewIdom = SMP_BLOCKNUM_UNINIT;
for (CurrPred = CurrBlock->GetFirstPred(); CurrPred != CurrBlock->GetLastPred(); ++CurrPred) {
int PredNum = (*CurrPred)->GetNumber();
if (DebugFlag) msg("Pred: %d\n", PredNum);
// **!!** See comment below about unreachable blocks.
if (SMP_BLOCKNUM_UNINIT == PredNum)
continue;
int PredIDOM = this->IDom.at(PredNum);
if (DebugFlag) msg("Pred IDom: %d\n", PredIDOM);
if (SMP_BLOCKNUM_UNINIT != PredIDOM) {
NewIdom = PredNum;
if (NewIdom == SMP_BLOCKNUM_UNINIT) {
msg("Failure on NewIdom in ComputeIDoms for %s\n", this->GetFuncName());
if (this->HasIndirectJumps()) {
// Might be reachable only through indirect jumps.
NewIdom = 0; // make it dominated by entry block
}
}
assert(NewIdom != SMP_BLOCKNUM_UNINIT);
// Loop through all predecessors of block RPONum except block NewIdom.
// Set NewIdom to the intersection of its Dom set and the Doms set of
// each predecessor that has had its Doms set computed.
for (CurrPred = CurrBlock->GetFirstPred(); CurrPred != CurrBlock->GetLastPred(); ++CurrPred) {
int PredNum = (*CurrPred)->GetNumber();
if (DebugFlag) msg("PredNum: %d\n", PredNum);
// **!!** We could avoid failure on unreachable basic blocks
// by executing a continue statement if PredNum is -1. Long term solution
// is to prune out unreachable basic blocks.
if (PredNum == SMP_BLOCKNUM_UNINIT)
continue;
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
int PredIDOM = this->IDom.at(PredNum);
if (DebugFlag) msg("PredIDOM: %d\n", PredIDOM);
if ((SMP_BLOCKNUM_UNINIT == PredIDOM) || (NewIdom == PredIDOM)) {
// Skip predecessors that have uncomputed Dom sets, or are the
// current NewIdom.
continue;
}
if (DebugFlag) msg("Old NewIdom value: %d\n", NewIdom);
NewIdom = this->IntersectDoms(PredNum, NewIdom);
if (DebugFlag) msg("New NewIdom value: %d\n", NewIdom);
}
// If NewIdom is not the value currently in vector IDom[], update the
// vector entry and set changed to true.
if (NewIdom != this->IDom.at(RPONum)) {
if (DebugFlag) msg("IDOM changed from %d to %d\n", this->IDom.at(RPONum), NewIdom);
this->IDom[RPONum] = NewIdom;
changed = true;
}
}
} while (changed);
return;
} // end of SMPFunction::ComputeIDoms()
// Compute dominance frontier sets for each block.
void SMPFunction::ComputeDomFrontiers(void) {
list<SMPBasicBlock>::iterator CurrBlock;
list<SMPBasicBlock>::iterator RunnerBlock;
for (CurrBlock = this->Blocks.begin(); CurrBlock != this->Blocks.end(); ++CurrBlock) {
// We look only at join points in the CFG, as per Cooper/Torczon chapter 9.
if (1 < CurrBlock->GetNumPreds()) { // join point; more than 1 predecessor
int runner;
list<list<SMPBasicBlock>::iterator>::iterator CurrPred;
for (CurrPred = CurrBlock->GetFirstPred(); CurrPred != CurrBlock->GetLastPred(); ++CurrPred) {
// For each predecessor, we run up the IDom[] vector and add CurrBlock to the
// DomFrontier for all blocks that are between CurrPred and IDom[CurrBlock],
// not including IDom[CurrBlock] itself.
runner = (*CurrPred)->GetNumber();
while (runner != this->IDom.at(CurrBlock->GetNumber())) {
// Cooper/Harvey/Kennedy paper does not quite agree with the later
// text by Cooper/Torczon. Text says that the start node has no IDom
// in the example on pages 462-463, but it shows an IDOM for the
// root node in Figure 9.9 of value == itself. The first edition text
// on p.463 seems correct, as the start node dominates every node and
// thus should have no dominance frontier.
if (SMP_TOP_BLOCK == runner)
break;
RunnerBlock = this->RPOBlocks.at(runner);
RunnerBlock->AddToDomFrontier(CurrBlock->GetNumber());
runner = this->IDom.at(runner);
}
} // end for all predecessors
} // end if join point
} // end for all blocks
return;
} // end of SMPFunction::ComputeDomFrontiers()
// Compute the GlobalNames set, which includes all operands that are used in more than
// one basic block. It is the union of all UpExposedSets of all blocks.
void SMPFunction::ComputeGlobalNames(void) {
set<op_t, LessOp>::iterator SetIter;
list<SMPBasicBlock>::iterator CurrBlock;
unsigned int index = 0;
if (this->Blocks.size() < 2)
return; // cannot have global names if there is only one block
bool DebugFlag = false;
#if SMP_DEBUG_DATAFLOW
DebugFlag = (0 == strcmp("__ieee754_pow", this->GetFuncName()));
#endif
for (CurrBlock = this->Blocks.begin(); CurrBlock != this->Blocks.end(); ++CurrBlock) {
for (SetIter = CurrBlock->GetFirstUpExposed(); SetIter != CurrBlock->GetLastUpExposed(); ++SetIter) {
op_t TempOp = *SetIter;
// The GlobalNames set will have the complete collection of operands that we are
// going to number in our SSA computations. We now assign an operand number
// within the op_t structure for each, so that we can index into the
// BlocksUsedIn[] vector, for example. This operand number is not to be
// confused with SSA numbers.
// We use the operand number field op_t.n for the lower 8 bits, and the offset
// fields op_t.offb:op_t.offo for the upper 16 bits. We are overwriting IDA
// values here, but operands in the data flow analysis sets should never be
// inserted back into the program anyway.
SetGlobalIndex(&TempOp, index);
#if SMP_DEBUG_DATAFLOW
clc5q
committed
if (DebugFlag) {
msg("Global Name: ");
PrintListOperand(TempOp);
}
#endif
set<op_t, LessOp>::iterator AlreadyInSet;
pair<set<op_t, LessOp>::iterator, bool> InsertResult;
InsertResult = this->GlobalNames.insert(TempOp);
if (!InsertResult.second) {
// Already in GlobalNames, so don't assign an index number.
;
#if SMP_DEBUG_DATAFLOW
clc5q
committed
if (DebugFlag) {
msg(" already in GlobalNames.\n");
}
#endif
}
else {
++index;
#if SMP_DEBUG_DATAFLOW
clc5q
committed
if (DebugFlag) {
msg(" inserted as index %d\n", ExtractGlobalIndex(TempOp));
}
#endif
}
} // for each upward exposed item in the current block
} // for each basic block
assert(16777215 >= this->GlobalNames.size()); // index fits in 24 bits
return;
} // end of SMPFunction::ComputeGlobalNames()
// For each item in GlobalNames, record the blocks that DEF the item.
void SMPFunction::ComputeBlocksDefinedIn(void) {
// Loop through all basic blocks and examine all DEFs. For Global DEFs, record
// the block number in BlocksDefinedIn. The VarKillSet records DEFs without
// having to examine every instruction.
list<SMPBasicBlock>::iterator CurrBlock;
this->BlocksDefinedIn.clear();
for (size_t i = 0; i < this->GlobalNames.size(); ++i) {
list<int> TempList;
this->BlocksDefinedIn.push_back(TempList);
}
#if SMP_DEBUG_DATAFLOW
msg("Number of GlobalNames: %d\n", this->GlobalNames.size());
msg("Size of BlocksDefinedIn: %d\n", this->BlocksDefinedIn.size());
#endif
for (CurrBlock = this->Blocks.begin(); CurrBlock != this->Blocks.end(); ++CurrBlock) {
set<op_t, LessOp>::iterator KillIter;
for (KillIter = CurrBlock->GetFirstVarKill(); KillIter != CurrBlock->GetLastVarKill(); ++KillIter) {
// If killed item is not a block-local item (it is global), record it.
set<op_t, LessOp>::iterator NameIter = this->GlobalNames.find(*KillIter);
if (NameIter != this->GlobalNames.end()) { // found in GlobalNames set
// We have a kill of a global name. Get index from three 8-bit fields.
unsigned int index = ExtractGlobalIndex(*NameIter);
if (index >= this->GlobalNames.size()) {
// We are about to assert false.
msg("ComputeBlocksDefinedIn: Bad index: %d limit: %d\n", index,
this->GlobalNames.size());
msg("Block number %d\n", CurrBlock->GetNumber());
msg("Killed item: ");
PrintListOperand(*KillIter);
msg("\n");
msg("This is a fatal error.\n");
}
assert(index < this->GlobalNames.size());
// index is a valid subscript for the BlocksDefinedIn vector. Push the
// current block number onto the list of blocks that define this global name.
this->BlocksDefinedIn[index].push_back(CurrBlock->GetNumber());
}
}
}
return;
} // end of SMPFunction::ComputeBlocksDefinedIn()
// Compute the phi functions at the entry point of each basic block that is a join point.
void SMPFunction::InsertPhiFunctions(void) {
set<op_t, LessOp>::iterator NameIter;
list<int> WorkList; // list of block numbers
bool DebugFlag = false;
#if SMP_DEBUG_DATAFLOW
DebugFlag = (0 == strcmp("__ieee754_pow", this->GetFuncName()));
#endif
if (DebugFlag) msg("GlobalNames size: %d\n", this->GlobalNames.size());
for (NameIter = this->GlobalNames.begin(); NameIter != this->GlobalNames.end(); ++NameIter) {
int CurrNameIndex = (int) (ExtractGlobalIndex(*NameIter));
if (DebugFlag) msg("CurrNameIndex: %d\n", CurrNameIndex);
#if 0
DebugFlag = (DebugFlag && (6 == CurrNameIndex));
#endif
// Initialize the work list to all blocks that define the current name.
WorkList.clear();
list<int>::iterator WorkIter;
for (WorkIter = this->BlocksDefinedIn.at((size_t) CurrNameIndex).begin();
WorkIter != this->BlocksDefinedIn.at((size_t) CurrNameIndex).end();
++WorkIter) {
WorkList.push_back(*WorkIter);
}
// Iterate through the work list, inserting phi functions for the current name
// into all the blocks in the dominance frontier of each work list block.
// Insert into the work list each block that had a phi function added.
while (!WorkList.empty()) {
#if SMP_DEBUG_DATAFLOW
msg("WorkList size: %d\n", WorkList.size());
list<int>::iterator WorkIter = WorkList.begin();
while (WorkIter != WorkList.end()) {
set<int>::iterator DomFrontIter;
#if SMP_DEBUG_DATAFLOW
msg("WorkIter: %d\n", *WorkIter);
#endif
if (DebugFlag && (*WorkIter > this->BlockCount)) {
msg("ERROR: WorkList block # %d out of range.\n", *WorkIter);
}
list<SMPBasicBlock>::iterator WorkBlock = this->RPOBlocks[*WorkIter];
for (DomFrontIter = WorkBlock->GetFirstDomFrontier();
DomFrontIter != WorkBlock->GetLastDomFrontier();
++DomFrontIter) {
#if SMP_DEBUG_DATAFLOW
msg("DomFront: %d\n", *DomFrontIter);
#endif
if (DebugFlag && (*DomFrontIter > this->BlockCount)) {
msg("ERROR: DomFront block # %d out of range.\n", *DomFrontIter);
}
list<SMPBasicBlock>::iterator PhiBlock = this->RPOBlocks[*DomFrontIter];
// Before inserting a phi function for the current name in *PhiBlock,
// see if the current name is LiveIn for *PhiBlock. If not, there
// is no need for the phi function. This check is what makes the SSA
// a fully pruned SSA.
if (PhiBlock->IsLiveIn(*NameIter)) {
size_t NumPreds = PhiBlock->GetNumPreds();
DefOrUse CurrRef(*NameIter);