Skip to content
Snippets Groups Projects
SMPDataFlowAnalysis.cpp 373 KiB
Newer Older

	MapEntry.first = "mempcpy";  // non-standard, found in glibc
	InsertResult = ReturnRegisterTypeMap.insert(MapEntry);
	assert(InsertResult.second);

	MapEntry.first = "memmove";
	InsertResult = ReturnRegisterTypeMap.insert(MapEntry);
	assert(InsertResult.second);

	MapEntry.first = "memset";
	InsertResult = ReturnRegisterTypeMap.insert(MapEntry);
	assert(InsertResult.second);

	// Functions that return bool.
	FGEntry.SizeInfo = (FG_MASK_INTEGER | ComputeOperandBitWidthMask(DummyOp, sizeof(bool)));
	FGEntry.SignMiscInfo = FG_MASK_UNSIGNED;
	MapEntry.second = FGEntry;


	// NOTE: Add <math.h> functions later.

	return;
} // end of InitLibFuncFGInfoMaps()

clc5q's avatar
clc5q committed
// Initialize the DFACategory[] array to define instruction classes
//   for the purposes of data flow analysis.
void InitDFACategory(void) {
	// Default category is 0, not the start or end of a basic block.
	(void) memset(DFACategory, 0, sizeof(DFACategory));

DFACategory[NN_call] = CALL;                // Call Procedure
DFACategory[NN_callfi] = INDIR_CALL;              // Indirect Call Far Procedure
DFACategory[NN_callni] = INDIR_CALL;              // Indirect Call Near Procedure

DFACategory[NN_hlt] = HALT;                 // Halt

DFACategory[NN_int] = INDIR_CALL;                 // Call to Interrupt Procedure
DFACategory[NN_into] = INDIR_CALL;                // Call to Interrupt Procedure if Overflow Flag = 1
DFACategory[NN_int3] = INDIR_CALL;                // Trap to Debugger
clc5q's avatar
clc5q committed
DFACategory[NN_iretw] = RETURN;               // Interrupt Return
DFACategory[NN_iret] = RETURN;                // Interrupt Return
DFACategory[NN_iretd] = RETURN;               // Interrupt Return (use32)
DFACategory[NN_iretq] = RETURN;               // Interrupt Return (use64)
DFACategory[NN_ja] = COND_BRANCH;                  // Jump if Above (CF=0 & ZF=0)
DFACategory[NN_jae] = COND_BRANCH;                 // Jump if Above or Equal (CF=0)
DFACategory[NN_jb] = COND_BRANCH;                  // Jump if Below (CF=1)
DFACategory[NN_jbe] = COND_BRANCH;                 // Jump if Below or Equal (CF=1 | ZF=1)
DFACategory[NN_jc] = COND_BRANCH;                  // Jump if Carry (CF=1)
DFACategory[NN_jcxz] = COND_BRANCH;                // Jump if CX is 0
DFACategory[NN_jecxz] = COND_BRANCH;               // Jump if ECX is 0
DFACategory[NN_jrcxz] = COND_BRANCH;               // Jump if RCX is 0
DFACategory[NN_je] = COND_BRANCH;                  // Jump if Equal (ZF=1)
DFACategory[NN_jg] = COND_BRANCH;                  // Jump if Greater (ZF=0 & SF=OF)
DFACategory[NN_jge] = COND_BRANCH;                 // Jump if Greater or Equal (SF=OF)
DFACategory[NN_jl] = COND_BRANCH;                  // Jump if Less (SF!=OF)
DFACategory[NN_jle] = COND_BRANCH;                 // Jump if Less or Equal (ZF=1 | SF!=OF)
DFACategory[NN_jna] = COND_BRANCH;                 // Jump if Not Above (CF=1 | ZF=1)
DFACategory[NN_jnae] = COND_BRANCH;                // Jump if Not Above or Equal (CF=1)
DFACategory[NN_jnb] = COND_BRANCH;                 // Jump if Not Below (CF=0)
DFACategory[NN_jnbe] = COND_BRANCH;                // Jump if Not Below or Equal (CF=0 & ZF=0)
DFACategory[NN_jnc] = COND_BRANCH;                 // Jump if Not Carry (CF=0)
DFACategory[NN_jne] = COND_BRANCH;                 // Jump if Not Equal (ZF=0)
DFACategory[NN_jng] = COND_BRANCH;                 // Jump if Not Greater (ZF=1 | SF!=OF)
clc5q's avatar
clc5q committed
DFACategory[NN_jnge] = COND_BRANCH;                // Jump if Not Greater or Equal (SF!=OF)
clc5q's avatar
clc5q committed
DFACategory[NN_jnl] = COND_BRANCH;                 // Jump if Not Less (SF=OF)
DFACategory[NN_jnle] = COND_BRANCH;                // Jump if Not Less or Equal (ZF=0 & SF=OF)
DFACategory[NN_jno] = COND_BRANCH;                 // Jump if Not Overflow (OF=0)
DFACategory[NN_jnp] = COND_BRANCH;                 // Jump if Not Parity (PF=0)
DFACategory[NN_jns] = COND_BRANCH;                 // Jump if Not Sign (SF=0)
DFACategory[NN_jnz] = COND_BRANCH;                 // Jump if Not Zero (ZF=0)
DFACategory[NN_jo] = COND_BRANCH;                  // Jump if Overflow (OF=1)
DFACategory[NN_jp] = COND_BRANCH;                  // Jump if Parity (PF=1)
DFACategory[NN_jpe] = COND_BRANCH;                 // Jump if Parity Even (PF=1)
DFACategory[NN_jpo] = COND_BRANCH;                 // Jump if Parity Odd  (PF=0)
DFACategory[NN_js] = COND_BRANCH;                  // Jump if Sign (SF=1)
DFACategory[NN_jz] = COND_BRANCH;                  // Jump if Zero (ZF=1)
DFACategory[NN_jmp] = JUMP;                 // Jump
DFACategory[NN_jmpfi] = INDIR_JUMP;               // Indirect Far Jump
DFACategory[NN_jmpni] = INDIR_JUMP;               // Indirect Near Jump
DFACategory[NN_jmpshort] = JUMP;            // Jump Short (only in 64-bit mode)

DFACategory[NN_loopw] = COND_BRANCH;               // Loop while ECX != 0
DFACategory[NN_loop] = COND_BRANCH;                // Loop while CX != 0
DFACategory[NN_loopd] = COND_BRANCH;               // Loop while ECX != 0
DFACategory[NN_loopq] = COND_BRANCH;               // Loop while RCX != 0
DFACategory[NN_loopwe] = COND_BRANCH;              // Loop while CX != 0 and ZF=1
DFACategory[NN_loope] = COND_BRANCH;               // Loop while rCX != 0 and ZF=1
DFACategory[NN_loopde] = COND_BRANCH;              // Loop while ECX != 0 and ZF=1
DFACategory[NN_loopqe] = COND_BRANCH;              // Loop while RCX != 0 and ZF=1
DFACategory[NN_loopwne] = COND_BRANCH;             // Loop while CX != 0 and ZF=0
DFACategory[NN_loopne] = COND_BRANCH;              // Loop while rCX != 0 and ZF=0
DFACategory[NN_loopdne] = COND_BRANCH;             // Loop while ECX != 0 and ZF=0
DFACategory[NN_loopqne] = COND_BRANCH;             // Loop while RCX != 0 and ZF=0

DFACategory[NN_retn] = RETURN;                // Return Near from Procedure
DFACategory[NN_retf] = RETURN;                // Return Far from Procedure

//
//      Pentium instructions
//

DFACategory[NN_rsm] = HALT;                 // Resume from System Management Mode

//      Pentium II instructions

DFACategory[NN_sysenter] = CALL;            // Fast Transition to System Call Entry Point
DFACategory[NN_sysexit] = CALL;             // Fast Transition from System Call Entry Point

// AMD syscall/sysret instructions  NOTE: not AMD, found in Intel manual

DFACategory[NN_syscall] = CALL;             // Low latency system call
DFACategory[NN_sysret] = CALL;              // Return from system call

// VMX instructions

DFACategory[NN_vmcall] = INDIR_CALL;              // Call to VM Monitor

// Added with x86-64

// Geode LX 3DNow! extensions

// SSE2 pseudoinstructions

// SSSE4.1 instructions

// SSSE4.2 instructions

// AMD SSE4a instructions

// xsave/xrstor instructions

// Intel Safer Mode Extensions (SMX)

// AMD-V Virtualization ISA Extension

// VMX+ instructions

// Intel Atom instructions

// Intel AES instructions

// Carryless multiplication

// Returns modified by operand size prefixes

DFACategory[NN_retnw] = RETURN;               // Return Near from Procedure (use16)
DFACategory[NN_retnd] = RETURN;               // Return Near from Procedure (use32)
DFACategory[NN_retnq] = RETURN;               // Return Near from Procedure (use64)
DFACategory[NN_retfw] = RETURN;               // Return Far from Procedure (use16)
DFACategory[NN_retfd] = RETURN;               // Return Far from Procedure (use32)
DFACategory[NN_retfq] = RETURN;               // Return Far from Procedure (use64)

// RDRAND support

// new GPR instructions

// new AVX instructions

// Transactional Synchronization Extensions

// Virtual PC synthetic instructions

clc5q's avatar
clc5q committed
  return;

} // end InitDFACategory()

// Initialize the SMPDefsFlags[] array to define how we emit
//   optimizing annotations.
void InitSMPDefsFlags(void) {
	// Default value is true. Many instructions set the flags.
	(void) memset(SMPDefsFlags, true, sizeof(SMPDefsFlags));

SMPDefsFlags[NN_null] = false;            // Unknown Operation
SMPDefsFlags[NN_bound] = false;               // Check Array Index Against Bounds
SMPDefsFlags[NN_call] = false;                // Call Procedure
SMPDefsFlags[NN_callfi] = false;              // Indirect Call Far Procedure
SMPDefsFlags[NN_callni] = false;              // Indirect Call Near Procedure
SMPDefsFlags[NN_cbw] = false;                 // AL -> AX (with sign)           
SMPDefsFlags[NN_cwde] = false;                // AX -> EAX (with sign)            
SMPDefsFlags[NN_cdqe] = false;                // EAX -> RAX (with sign)           
SMPDefsFlags[NN_clts] = false;                // Clear Task-Switched Flag in CR0
SMPDefsFlags[NN_cwd] = false;                 // AX -> DX:AX (with sign)
SMPDefsFlags[NN_cdq] = false;                 // EAX -> EDX:EAX (with sign)
SMPDefsFlags[NN_cqo] = false;                 // RAX -> RDX:RAX (with sign)
SMPDefsFlags[NN_enterw] = false;              // Make Stack Frame for Procedure Parameters   
SMPDefsFlags[NN_enter] = false;               // Make Stack Frame for Procedure Parameters   
SMPDefsFlags[NN_enterd] = false;              // Make Stack Frame for Procedure Parameters   
SMPDefsFlags[NN_enterq] = false;              // Make Stack Frame for Procedure Parameters   
SMPDefsFlags[NN_hlt] = false;                 // Halt
SMPDefsFlags[NN_in] = false;                  // Input from Port                          
SMPDefsFlags[NN_ins] = false;                 // Input Byte(s) from Port to String        
SMPDefsFlags[NN_iretw] = false;               // Interrupt Return
SMPDefsFlags[NN_iret] = false;                // Interrupt Return
SMPDefsFlags[NN_iretd] = false;               // Interrupt Return (use32)
SMPDefsFlags[NN_iretq] = false;               // Interrupt Return (use64)
SMPDefsFlags[NN_ja] = false;                  // Jump if Above (CF=0 & ZF=0)
SMPDefsFlags[NN_jae] = false;                 // Jump if Above or Equal (CF=0)
SMPDefsFlags[NN_jb] = false;                  // Jump if Below (CF=1)
SMPDefsFlags[NN_jbe] = false;                 // Jump if Below or Equal (CF=1 | ZF=1)
SMPDefsFlags[NN_jc] = false;                  // Jump if Carry (CF=1)
SMPDefsFlags[NN_jcxz] = false;                // Jump if CX is 0
SMPDefsFlags[NN_jecxz] = false;               // Jump if ECX is 0
SMPDefsFlags[NN_jrcxz] = false;               // Jump if RCX is 0
SMPDefsFlags[NN_je] = false;                  // Jump if Equal (ZF=1)
SMPDefsFlags[NN_jg] = false;                  // Jump if Greater (ZF=0 & SF=OF)
SMPDefsFlags[NN_jge] = false;                 // Jump if Greater or Equal (SF=OF)
SMPDefsFlags[NN_jl] = false;                  // Jump if Less (SF!=OF)
SMPDefsFlags[NN_jle] = false;                 // Jump if Less or Equal (ZF=1 | SF!=OF)
SMPDefsFlags[NN_jna] = false;                 // Jump if Not Above (CF=1 | ZF=1)
SMPDefsFlags[NN_jnae] = false;                // Jump if Not Above or Equal (CF=1)
SMPDefsFlags[NN_jnb] = false;                 // Jump if Not Below (CF=0)
SMPDefsFlags[NN_jnbe] = false;                // Jump if Not Below or Equal (CF=0 & ZF=0)
SMPDefsFlags[NN_jnc] = false;                 // Jump if Not Carry (CF=0)
SMPDefsFlags[NN_jne] = false;                 // Jump if Not Equal (ZF=0)
SMPDefsFlags[NN_jng] = false;                 // Jump if Not Greater (ZF=1 | SF!=OF)
clc5q's avatar
clc5q committed
SMPDefsFlags[NN_jnge] = false;                // Jump if Not Greater or Equal (SF!=OF)
SMPDefsFlags[NN_jnl] = false;                 // Jump if Not Less (SF=OF)
SMPDefsFlags[NN_jnle] = false;                // Jump if Not Less or Equal (ZF=0 & SF=OF)
SMPDefsFlags[NN_jno] = false;                 // Jump if Not Overflow (OF=0)
SMPDefsFlags[NN_jnp] = false;                 // Jump if Not Parity (PF=0)
SMPDefsFlags[NN_jns] = false;                 // Jump if Not Sign (SF=0)
SMPDefsFlags[NN_jnz] = false;                 // Jump if Not Zero (ZF=0)
SMPDefsFlags[NN_jo] = false;                  // Jump if Overflow (OF=1)
SMPDefsFlags[NN_jp] = false;                  // Jump if Parity (PF=1)
SMPDefsFlags[NN_jpe] = false;                 // Jump if Parity Even (PF=1)
SMPDefsFlags[NN_jpo] = false;                 // Jump if Parity Odd  (PF=0)
SMPDefsFlags[NN_js] = false;                  // Jump if Sign (SF=1)
SMPDefsFlags[NN_jz] = false;                  // Jump if Zero (ZF=1)
SMPDefsFlags[NN_jmp] = false;                 // Jump
SMPDefsFlags[NN_jmpfi] = false;               // Indirect Far Jump
SMPDefsFlags[NN_jmpni] = false;               // Indirect Near Jump
SMPDefsFlags[NN_jmpshort] = false;            // Jump Short (not used)
SMPDefsFlags[NN_lahf] = false;                // Load Flags into AH Register
SMPDefsFlags[NN_lea] = false;                 // Load Effective Address            
SMPDefsFlags[NN_leavew] = false;              // High Level Procedure Exit         
SMPDefsFlags[NN_leave] = false;               // High Level Procedure Exit         
SMPDefsFlags[NN_leaved] = false;              // High Level Procedure Exit         
SMPDefsFlags[NN_leaveq] = false;              // High Level Procedure Exit         
SMPDefsFlags[NN_lgdt] = false;                // Load Global Descriptor Table Register
SMPDefsFlags[NN_lidt] = false;                // Load Interrupt Descriptor Table Register
SMPDefsFlags[NN_lgs] = false;                 // Load Full Pointer to GS:xx
SMPDefsFlags[NN_lss] = false;                 // Load Full Pointer to SS:xx
SMPDefsFlags[NN_lds] = false;                 // Load Full Pointer to DS:xx
SMPDefsFlags[NN_les] = false;                 // Load Full Pointer to ES:xx
SMPDefsFlags[NN_lfs] = false;                 // Load Full Pointer to FS:xx
SMPDefsFlags[NN_loopw] = false;               // Loop while ECX != 0
SMPDefsFlags[NN_loop] = false;                // Loop while ECX != 0
SMPDefsFlags[NN_loopwe] = false;              // Loop while CX != 0 and ZF=1
SMPDefsFlags[NN_loope] = false;               // Loop while rCX != 0 and ZF=1
SMPDefsFlags[NN_loopde] = false;              // Loop while ECX != 0 and ZF=1
SMPDefsFlags[NN_loopqe] = false;              // Loop while RCX != 0 and ZF=1
SMPDefsFlags[NN_loopwne] = false;             // Loop while CX != 0 and ZF=0
SMPDefsFlags[NN_loopne] = false;              // Loop while rCX != 0 and ZF=0
SMPDefsFlags[NN_loopdne] = false;             // Loop while ECX != 0 and ZF=0
SMPDefsFlags[NN_loopqne] = false;             // Loop while RCX != 0 and ZF=0
SMPDefsFlags[NN_ltr] = false;                 // Load Task Register
SMPDefsFlags[NN_mov] = false;                 // Move Data
SMPDefsFlags[NN_movsp] = true;                // Move to/from Special Registers
SMPDefsFlags[NN_movs] = false;                // Move Byte(s) from String to String
SMPDefsFlags[NN_movsx] = false;               // Move with Sign-Extend
SMPDefsFlags[NN_movzx] = false;               // Move with Zero-Extend
SMPDefsFlags[NN_nop] = false;                 // No Operation
SMPDefsFlags[NN_not] = false;                 // One's Complement Negation
SMPDefsFlags[NN_out] = false;                 // Output to Port
SMPDefsFlags[NN_outs] = false;                // Output Byte(s) to Port
SMPDefsFlags[NN_pop] = false;                 // Pop a word from the Stack
SMPDefsFlags[NN_popaw] = false;               // Pop all General Registers
SMPDefsFlags[NN_popa] = false;                // Pop all General Registers
SMPDefsFlags[NN_popad] = false;               // Pop all General Registers (use32)
SMPDefsFlags[NN_popaq] = false;               // Pop all General Registers (use64)
SMPDefsFlags[NN_push] = false;                // Push Operand onto the Stack
SMPDefsFlags[NN_pushaw] = false;              // Push all General Registers
SMPDefsFlags[NN_pusha] = false;               // Push all General Registers
SMPDefsFlags[NN_pushad] = false;              // Push all General Registers (use32)
SMPDefsFlags[NN_pushaq] = false;              // Push all General Registers (use64)
SMPDefsFlags[NN_pushfw] = false;              // Push Flags Register onto the Stack
SMPDefsFlags[NN_pushf] = false;               // Push Flags Register onto the Stack
SMPDefsFlags[NN_pushfd] = false;              // Push Flags Register onto the Stack (use32)
SMPDefsFlags[NN_pushfq] = false;              // Push Flags Register onto the Stack (use64)
SMPDefsFlags[NN_rep] = false;                 // Repeat String Operation
SMPDefsFlags[NN_repe] = false;                // Repeat String Operation while ZF=1
SMPDefsFlags[NN_repne] = false;               // Repeat String Operation while ZF=0
SMPDefsFlags[NN_retn] = false;                // Return Near from Procedure
SMPDefsFlags[NN_retf] = false;                // Return Far from Procedure
SMPDefsFlags[NN_sahf] = true;                 // Store AH into flags
SMPDefsFlags[NN_shl] = true;                  // Shift Logical Left
SMPDefsFlags[NN_shr] = true;                  // Shift Logical Right
SMPDefsFlags[NN_seta] = false;                // Set Byte if Above (CF=0 & ZF=0)
SMPDefsFlags[NN_setae] = false;               // Set Byte if Above or Equal (CF=0)
SMPDefsFlags[NN_setb] = false;                // Set Byte if Below (CF=1)
SMPDefsFlags[NN_setbe] = false;               // Set Byte if Below or Equal (CF=1 | ZF=1)
SMPDefsFlags[NN_setc] = false;                // Set Byte if Carry (CF=1)
SMPDefsFlags[NN_sete] = false;                // Set Byte if Equal (ZF=1)
SMPDefsFlags[NN_setg] = false;                // Set Byte if Greater (ZF=0 & SF=OF)
SMPDefsFlags[NN_setge] = false;               // Set Byte if Greater or Equal (SF=OF)
SMPDefsFlags[NN_setl] = false;                // Set Byte if Less (SF!=OF)
SMPDefsFlags[NN_setle] = false;               // Set Byte if Less or Equal (ZF=1 | SF!=OF)
SMPDefsFlags[NN_setna] = false;               // Set Byte if Not Above (CF=1 | ZF=1)
SMPDefsFlags[NN_setnae] = false;              // Set Byte if Not Above or Equal (CF=1)
SMPDefsFlags[NN_setnb] = false;               // Set Byte if Not Below (CF=0)
SMPDefsFlags[NN_setnbe] = false;              // Set Byte if Not Below or Equal (CF=0 & ZF=0)
SMPDefsFlags[NN_setnc] = false;               // Set Byte if Not Carry (CF=0)
SMPDefsFlags[NN_setne] = false;               // Set Byte if Not Equal (ZF=0)
SMPDefsFlags[NN_setng] = false;               // Set Byte if Not Greater (ZF=1 | SF!=OF)
clc5q's avatar
clc5q committed
SMPDefsFlags[NN_setnge] = false;              // Set Byte if Not Greater or Equal (SF!=OF)
SMPDefsFlags[NN_setnl] = false;               // Set Byte if Not Less (SF=OF)
SMPDefsFlags[NN_setnle] = false;              // Set Byte if Not Less or Equal (ZF=0 & SF=OF)
SMPDefsFlags[NN_setno] = false;               // Set Byte if Not Overflow (OF=0)
SMPDefsFlags[NN_setnp] = false;               // Set Byte if Not Parity (PF=0)
SMPDefsFlags[NN_setns] = false;               // Set Byte if Not Sign (SF=0)
SMPDefsFlags[NN_setnz] = false;               // Set Byte if Not Zero (ZF=0)
SMPDefsFlags[NN_seto] = false;                // Set Byte if Overflow (OF=1)
SMPDefsFlags[NN_setp] = false;                // Set Byte if Parity (PF=1)
SMPDefsFlags[NN_setpe] = false;               // Set Byte if Parity Even (PF=1)
SMPDefsFlags[NN_setpo] = false;               // Set Byte if Parity Odd  (PF=0)
SMPDefsFlags[NN_sets] = false;                // Set Byte if Sign (SF=1)
SMPDefsFlags[NN_setz] = false;                // Set Byte if Zero (ZF=1)
SMPDefsFlags[NN_sgdt] = false;                // Store Global Descriptor Table Register
SMPDefsFlags[NN_sidt] = false;                // Store Interrupt Descriptor Table Register
SMPDefsFlags[NN_sldt] = false;                // Store Local Descriptor Table Register
SMPDefsFlags[NN_str] = false;                 // Store Task Register
SMPDefsFlags[NN_wait] = false;                // Wait until BUSY# Pin is Inactive (HIGH)
SMPDefsFlags[NN_xchg] = false;                // Exchange Register/Memory with Register
SMPDefsFlags[NN_xlat] = false;                // Table Lookup Translation

//
//      486 instructions
//

SMPDefsFlags[NN_bswap] = false;               // Swap bytes in register
SMPDefsFlags[NN_invd] = false;                // Invalidate Data Cache
SMPDefsFlags[NN_wbinvd] = false;              // Invalidate Data Cache (write changes)
SMPDefsFlags[NN_invlpg] = false;              // Invalidate TLB entry

//
//      Pentium instructions
//

SMPDefsFlags[NN_rdmsr] = false;               // Read Machine Status Register
SMPDefsFlags[NN_wrmsr] = false;               // Write Machine Status Register
SMPDefsFlags[NN_cpuid] = false;               // Get CPU ID
SMPDefsFlags[NN_rdtsc] = false;               // Read Time Stamp Counter

//
//      Pentium Pro instructions
//

SMPDefsFlags[NN_cmova] = false;               // Move if Above (CF=0 & ZF=0)
SMPDefsFlags[NN_cmovb] = false;               // Move if Below (CF=1)
SMPDefsFlags[NN_cmovbe] = false;              // Move if Below or Equal (CF=1 | ZF=1)
SMPDefsFlags[NN_cmovg] = false;               // Move if Greater (ZF=0 & SF=OF)
SMPDefsFlags[NN_cmovge] = false;              // Move if Greater or Equal (SF=OF)
SMPDefsFlags[NN_cmovl] = false;               // Move if Less (SF!=OF)
SMPDefsFlags[NN_cmovle] = false;              // Move if Less or Equal (ZF=1 | SF!=OF)
SMPDefsFlags[NN_cmovnb] = false;              // Move if Not Below (CF=0)
SMPDefsFlags[NN_cmovno] = false;              // Move if Not Overflow (OF=0)
SMPDefsFlags[NN_cmovnp] = false;              // Move if Not Parity (PF=0)
SMPDefsFlags[NN_cmovns] = false;              // Move if Not Sign (SF=0)
SMPDefsFlags[NN_cmovnz] = false;              // Move if Not Zero (ZF=0)
SMPDefsFlags[NN_cmovo] = false;               // Move if Overflow (OF=1)
SMPDefsFlags[NN_cmovp] = false;               // Move if Parity (PF=1)
SMPDefsFlags[NN_cmovs] = false;               // Move if Sign (SF=1)
SMPDefsFlags[NN_cmovz] = false;               // Move if Zero (ZF=1)
SMPDefsFlags[NN_fcmovb] = false;              // Floating Move if Below          
SMPDefsFlags[NN_fcmove] = false;              // Floating Move if Equal          
SMPDefsFlags[NN_fcmovbe] = false;             // Floating Move if Below or Equal 
SMPDefsFlags[NN_fcmovu] = false;              // Floating Move if Unordered      
SMPDefsFlags[NN_fcmovnb] = false;             // Floating Move if Not Below      
SMPDefsFlags[NN_fcmovne] = false;             // Floating Move if Not Equal      
SMPDefsFlags[NN_fcmovnbe] = false;            // Floating Move if Not Below or Equal
SMPDefsFlags[NN_fcmovnu] = false;             // Floating Move if Not Unordered     
SMPDefsFlags[NN_rdpmc] = false;               // Read Performance Monitor Counter

//
//      FPP instructions
4376 4377 4378 4379 4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396 4397 4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418 4419 4420 4421 4422 4423 4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444 4445 4446 4447 4448 4449 4450 4451 4452 4453 4454 4455 4456 4457 4458 4459 4460 4461 4462 4463 4464 4465 4466 4467 4468 4469 4470 4471 4472 4473 4474 4475 4476 4477 4478 4479 4480 4481 4482 4483 4484 4485 4486 4487 4488 4489 4490 4491 4492 4493 4494 4495 4496 4497 4498 4499 4500 4501 4502 4503 4504 4505 4506 4507 4508 4509 4510 4511 4512 4513 4514 4515 4516 4517 4518 4519 4520 4521 4522 4523 4524 4525 4526 4527 4528 4529 4530 4531 4532 4533 4534 4535 4536 4537 4538 4539 4540 4541 4542 4543 4544 4545 4546 4547 4548 4549 4550 4551 4552 4553 4554 4555 4556 4557 4558 4559 4560 4561 4562 4563 4564 4565 4566 4567 4568 4569 4570 4571 4572 4573 4574 4575 4576 4577 4578 4579 4580 4581 4582 4583 4584 4585 4586 4587 4588 4589 4590 4591 4592 4593 4594 4595 4596 4597 4598 4599 4600 4601 4602 4603 4604 4605 4606 4607 4608 4609 4610 4611 4612 4613 4614 4615 4616 4617 4618 4619 4620 4621 4622 4623 4624 4625 4626 4627 4628 4629 4630 4631 4632 4633 4634 4635 4636 4637 4638 4639 4640 4641 4642 4643 4644 4645 4646 4647 4648 4649 4650 4651 4652 4653 4654 4655 4656 4657 4658 4659 4660 4661 4662 4663 4664 4665 4666 4667 4668 4669 4670 4671 4672 4673 4674 4675 4676 4677 4678 4679 4680 4681 4682 4683 4684 4685 4686 4687 4688 4689 4690 4691 4692 4693 4694 4695 4696 4697 4698 4699 4700 4701 4702 4703 4704 4705 4706 4707 4708 4709 4710 4711 4712 4713 4714 4715 4716 4717 4718 4719 4720 4721 4722 4723 4724 4725 4726 4727 4728 4729 4730 4731 4732 4733 4734 4735 4736 4737 4738 4739 4740 4741 4742 4743 4744 4745 4746 4747 4748 4749 4750 4751 4752 4753 4754 4755 4756 4757 4758 4759 4760 4761 4762 4763 4764 4765 4766 4767 4768 4769 4770 4771 4772 4773 4774 4775 4776 4777 4778 4779 4780 4781 4782 4783 4784 4785 4786 4787 4788 4789 4790
//

SMPDefsFlags[NN_fld] = false;                 // Load Real              
SMPDefsFlags[NN_fst] = false;                 // Store Real            
SMPDefsFlags[NN_fstp] = false;                // Store Real and Pop   
SMPDefsFlags[NN_fxch] = false;                // Exchange Registers
SMPDefsFlags[NN_fild] = false;                // Load Integer           
SMPDefsFlags[NN_fist] = false;                // Store Integer
SMPDefsFlags[NN_fistp] = false;               // Store Integer and Pop
SMPDefsFlags[NN_fbld] = false;                // Load BCD
SMPDefsFlags[NN_fbstp] = false;               // Store BCD and Pop
SMPDefsFlags[NN_fadd] = false;                // Add Real
SMPDefsFlags[NN_faddp] = false;               // Add Real and Pop
SMPDefsFlags[NN_fiadd] = false;               // Add Integer
SMPDefsFlags[NN_fsub] = false;                // Subtract Real
SMPDefsFlags[NN_fsubp] = false;               // Subtract Real and Pop
SMPDefsFlags[NN_fisub] = false;               // Subtract Integer
SMPDefsFlags[NN_fsubr] = false;               // Subtract Real Reversed
SMPDefsFlags[NN_fsubrp] = false;              // Subtract Real Reversed and Pop
SMPDefsFlags[NN_fisubr] = false;              // Subtract Integer Reversed
SMPDefsFlags[NN_fmul] = false;                // Multiply Real
SMPDefsFlags[NN_fmulp] = false;               // Multiply Real and Pop
SMPDefsFlags[NN_fimul] = false;               // Multiply Integer
SMPDefsFlags[NN_fdiv] = false;                // Divide Real
SMPDefsFlags[NN_fdivp] = false;               // Divide Real and Pop
SMPDefsFlags[NN_fidiv] = false;               // Divide Integer
SMPDefsFlags[NN_fdivr] = false;               // Divide Real Reversed
SMPDefsFlags[NN_fdivrp] = false;              // Divide Real Reversed and Pop
SMPDefsFlags[NN_fidivr] = false;              // Divide Integer Reversed
SMPDefsFlags[NN_fsqrt] = false;               // Square Root
SMPDefsFlags[NN_fscale] = false;              // Scale:  st(0) <- st(0) * 2^st(1)
SMPDefsFlags[NN_fprem] = false;               // Partial Remainder
SMPDefsFlags[NN_frndint] = false;             // Round to Integer
SMPDefsFlags[NN_fxtract] = false;             // Extract exponent and significand
SMPDefsFlags[NN_fabs] = false;                // Absolute value
SMPDefsFlags[NN_fchs] = false;                // Change Sign
SMPDefsFlags[NN_ficom] = false;               // Compare Integer
SMPDefsFlags[NN_ficomp] = false;              // Compare Integer and Pop
SMPDefsFlags[NN_ftst] = false;                // Test
SMPDefsFlags[NN_fxam] = false;                // Examine
SMPDefsFlags[NN_fptan] = false;               // Partial tangent
SMPDefsFlags[NN_fpatan] = false;              // Partial arctangent
SMPDefsFlags[NN_f2xm1] = false;               // 2^x - 1
SMPDefsFlags[NN_fyl2x] = false;               // Y * lg2(X)
SMPDefsFlags[NN_fyl2xp1] = false;             // Y * lg2(X+1)
SMPDefsFlags[NN_fldz] = false;                // Load +0.0
SMPDefsFlags[NN_fld1] = false;                // Load +1.0
SMPDefsFlags[NN_fldpi] = false;               // Load PI=3.14...
SMPDefsFlags[NN_fldl2t] = false;              // Load lg2(10)
SMPDefsFlags[NN_fldl2e] = false;              // Load lg2(e)
SMPDefsFlags[NN_fldlg2] = false;              // Load lg10(2)
SMPDefsFlags[NN_fldln2] = false;              // Load ln(2)
SMPDefsFlags[NN_finit] = false;               // Initialize Processor
SMPDefsFlags[NN_fninit] = false;              // Initialize Processor (no wait)
SMPDefsFlags[NN_fsetpm] = false;              // Set Protected Mode
SMPDefsFlags[NN_fldcw] = false;               // Load Control Word
SMPDefsFlags[NN_fstcw] = false;               // Store Control Word
SMPDefsFlags[NN_fnstcw] = false;              // Store Control Word (no wait)
SMPDefsFlags[NN_fstsw] = false;               // Store Status Word to memory or AX
SMPDefsFlags[NN_fnstsw] = false;              // Store Status Word (no wait) to memory or AX
SMPDefsFlags[NN_fclex] = false;               // Clear Exceptions
SMPDefsFlags[NN_fnclex] = false;              // Clear Exceptions (no wait)
SMPDefsFlags[NN_fstenv] = false;              // Store Environment
SMPDefsFlags[NN_fnstenv] = false;             // Store Environment (no wait)
SMPDefsFlags[NN_fldenv] = false;              // Load Environment
SMPDefsFlags[NN_fsave] = false;               // Save State
SMPDefsFlags[NN_fnsave] = false;              // Save State (no wait)
SMPDefsFlags[NN_frstor] = false;              // Restore State      
SMPDefsFlags[NN_fincstp] = false;             // Increment Stack Pointer
SMPDefsFlags[NN_fdecstp] = false;             // Decrement Stack Pointer
SMPDefsFlags[NN_ffree] = false;               // Free Register
SMPDefsFlags[NN_fnop] = false;                // No Operation
SMPDefsFlags[NN_feni] = false;                // (8087 only)
SMPDefsFlags[NN_fneni] = false;               // (no wait) (8087 only)
SMPDefsFlags[NN_fdisi] = false;               // (8087 only)
SMPDefsFlags[NN_fndisi] = false;              // (no wait) (8087 only)

//
//      80387 instructions
//

SMPDefsFlags[NN_fprem1] = false;              // Partial Remainder ( < half )
SMPDefsFlags[NN_fsincos] = false;             // t<-cos(st); st<-sin(st); push t
SMPDefsFlags[NN_fsin] = false;                // Sine
SMPDefsFlags[NN_fcos] = false;                // Cosine
SMPDefsFlags[NN_fucom] = false;               // Compare Unordered Real
SMPDefsFlags[NN_fucomp] = false;              // Compare Unordered Real and Pop
SMPDefsFlags[NN_fucompp] = false;             // Compare Unordered Real and Pop Twice

//
//      Instructions added 28.02.96
//

SMPDefsFlags[NN_svdc] = false;                // Save Register and Descriptor
SMPDefsFlags[NN_rsdc] = false;                // Restore Register and Descriptor
SMPDefsFlags[NN_svldt] = false;               // Save LDTR and Descriptor
SMPDefsFlags[NN_rsldt] = false;               // Restore LDTR and Descriptor
SMPDefsFlags[NN_svts] = false;                // Save TR and Descriptor
SMPDefsFlags[NN_rsts] = false;                // Restore TR and Descriptor
SMPDefsFlags[NN_icebp] = false;               // ICE Break Point

//
//      MMX instructions
//

SMPDefsFlags[NN_emms] = false;                // Empty MMX state
SMPDefsFlags[NN_movd] = false;                // Move 32 bits
SMPDefsFlags[NN_movq] = false;                // Move 64 bits
SMPDefsFlags[NN_packsswb] = false;            // Pack with Signed Saturation (Word->Byte)
SMPDefsFlags[NN_packssdw] = false;            // Pack with Signed Saturation (Dword->Word)
SMPDefsFlags[NN_packuswb] = false;            // Pack with Unsigned Saturation (Word->Byte)
SMPDefsFlags[NN_paddb] = false;               // Packed Add Byte
SMPDefsFlags[NN_paddw] = false;               // Packed Add Word
SMPDefsFlags[NN_paddd] = false;               // Packed Add Dword
SMPDefsFlags[NN_paddsb] = false;              // Packed Add with Saturation (Byte)
SMPDefsFlags[NN_paddsw] = false;              // Packed Add with Saturation (Word)
SMPDefsFlags[NN_paddusb] = false;             // Packed Add Unsigned with Saturation (Byte)
SMPDefsFlags[NN_paddusw] = false;             // Packed Add Unsigned with Saturation (Word)
SMPDefsFlags[NN_pand] = false;                // Bitwise Logical And
SMPDefsFlags[NN_pandn] = false;               // Bitwise Logical And Not
SMPDefsFlags[NN_pcmpeqb] = false;             // Packed Compare for Equal (Byte)
SMPDefsFlags[NN_pcmpeqw] = false;             // Packed Compare for Equal (Word)
SMPDefsFlags[NN_pcmpeqd] = false;             // Packed Compare for Equal (Dword)
SMPDefsFlags[NN_pcmpgtb] = false;             // Packed Compare for Greater Than (Byte)
SMPDefsFlags[NN_pcmpgtw] = false;             // Packed Compare for Greater Than (Word)
SMPDefsFlags[NN_pcmpgtd] = false;             // Packed Compare for Greater Than (Dword)
SMPDefsFlags[NN_pmaddwd] = false;             // Packed Multiply and Add
SMPDefsFlags[NN_pmulhw] = false;              // Packed Multiply High
SMPDefsFlags[NN_pmullw] = false;              // Packed Multiply Low
SMPDefsFlags[NN_por] = false;                 // Bitwise Logical Or
SMPDefsFlags[NN_psllw] = false;               // Packed Shift Left Logical (Word)
SMPDefsFlags[NN_pslld] = false;               // Packed Shift Left Logical (Dword)
SMPDefsFlags[NN_psllq] = false;               // Packed Shift Left Logical (Qword)
SMPDefsFlags[NN_psraw] = false;               // Packed Shift Right Arithmetic (Word)
SMPDefsFlags[NN_psrad] = false;               // Packed Shift Right Arithmetic (Dword)
SMPDefsFlags[NN_psrlw] = false;               // Packed Shift Right Logical (Word)
SMPDefsFlags[NN_psrld] = false;               // Packed Shift Right Logical (Dword)
SMPDefsFlags[NN_psrlq] = false;               // Packed Shift Right Logical (Qword)
SMPDefsFlags[NN_psubb] = false;               // Packed Subtract Byte
SMPDefsFlags[NN_psubw] = false;               // Packed Subtract Word
SMPDefsFlags[NN_psubd] = false;               // Packed Subtract Dword
SMPDefsFlags[NN_psubsb] = false;              // Packed Subtract with Saturation (Byte)
SMPDefsFlags[NN_psubsw] = false;              // Packed Subtract with Saturation (Word)
SMPDefsFlags[NN_psubusb] = false;             // Packed Subtract Unsigned with Saturation (Byte)
SMPDefsFlags[NN_psubusw] = false;             // Packed Subtract Unsigned with Saturation (Word)
SMPDefsFlags[NN_punpckhbw] = false;           // Unpack High Packed Data (Byte->Word)
SMPDefsFlags[NN_punpckhwd] = false;           // Unpack High Packed Data (Word->Dword)
SMPDefsFlags[NN_punpckhdq] = false;           // Unpack High Packed Data (Dword->Qword)
SMPDefsFlags[NN_punpcklbw] = false;           // Unpack Low Packed Data (Byte->Word)
SMPDefsFlags[NN_punpcklwd] = false;           // Unpack Low Packed Data (Word->Dword)
SMPDefsFlags[NN_punpckldq] = false;           // Unpack Low Packed Data (Dword->Qword)
SMPDefsFlags[NN_pxor] = false;                // Bitwise Logical Exclusive Or

//
//      Undocumented Deschutes processor instructions
//

SMPDefsFlags[NN_fxsave] = false;              // Fast save FP context        
SMPDefsFlags[NN_fxrstor] = false;             // Fast restore FP context     

//      Pentium II instructions

SMPDefsFlags[NN_sysexit] = false;             // Fast Transition from System Call Entry Point

//      3DNow! instructions

SMPDefsFlags[NN_pavgusb] = false;             // Packed 8-bit Unsigned Integer Averaging
SMPDefsFlags[NN_pfadd] = false;               // Packed Floating-Point Addition
SMPDefsFlags[NN_pfsub] = false;               // Packed Floating-Point Subtraction
SMPDefsFlags[NN_pfsubr] = false;              // Packed Floating-Point Reverse Subtraction
SMPDefsFlags[NN_pfacc] = false;               // Packed Floating-Point Accumulate
SMPDefsFlags[NN_pfcmpge] = false;             // Packed Floating-Point Comparison, Greater or Equal
SMPDefsFlags[NN_pfcmpgt] = false;             // Packed Floating-Point Comparison, Greater
SMPDefsFlags[NN_pfcmpeq] = false;             // Packed Floating-Point Comparison, Equal
SMPDefsFlags[NN_pfmin] = false;               // Packed Floating-Point Minimum
SMPDefsFlags[NN_pfmax] = false;               // Packed Floating-Point Maximum
SMPDefsFlags[NN_pi2fd] = false;               // Packed 32-bit Integer to Floating-Point
SMPDefsFlags[NN_pf2id] = false;               // Packed Floating-Point to 32-bit Integer
SMPDefsFlags[NN_pfrcp] = false;               // Packed Floating-Point Reciprocal Approximation
SMPDefsFlags[NN_pfrsqrt] = false;             // Packed Floating-Point Reciprocal Square Root Approximation
SMPDefsFlags[NN_pfmul] = false;               // Packed Floating-Point Multiplication
SMPDefsFlags[NN_pfrcpit1] = false;            // Packed Floating-Point Reciprocal First Iteration Step
SMPDefsFlags[NN_pfrsqit1] = false;            // Packed Floating-Point Reciprocal Square Root First Iteration Step
SMPDefsFlags[NN_pfrcpit2] = false;            // Packed Floating-Point Reciprocal Second Iteration Step
SMPDefsFlags[NN_pmulhrw] = false;             // Packed Floating-Point 16-bit Integer Multiply with rounding
SMPDefsFlags[NN_femms] = false;               // Faster entry/exit of the MMX or floating-point state
SMPDefsFlags[NN_prefetch] = false;            // Prefetch at least a 32-byte line into L1 data cache
SMPDefsFlags[NN_prefetchw] = false;           // Prefetch processor cache line into L1 data cache (mark as modified)


//      Pentium III instructions

SMPDefsFlags[NN_addps] = false;               // Packed Single-FP Add
SMPDefsFlags[NN_addss] = false;               // Scalar Single-FP Add
SMPDefsFlags[NN_andnps] = false;              // Bitwise Logical And Not for Single-FP
SMPDefsFlags[NN_andps] = false;               // Bitwise Logical And for Single-FP
SMPDefsFlags[NN_cmpps] = false;               // Packed Single-FP Compare
SMPDefsFlags[NN_cmpss] = false;               // Scalar Single-FP Compare
SMPDefsFlags[NN_cvtpi2ps] = false;            // Packed signed INT32 to Packed Single-FP conversion
SMPDefsFlags[NN_cvtps2pi] = false;            // Packed Single-FP to Packed INT32 conversion
SMPDefsFlags[NN_cvtsi2ss] = false;            // Scalar signed INT32 to Single-FP conversion
SMPDefsFlags[NN_cvtss2si] = false;            // Scalar Single-FP to signed INT32 conversion
SMPDefsFlags[NN_cvttps2pi] = false;           // Packed Single-FP to Packed INT32 conversion (truncate)
SMPDefsFlags[NN_cvttss2si] = false;           // Scalar Single-FP to signed INT32 conversion (truncate)
SMPDefsFlags[NN_divps] = false;               // Packed Single-FP Divide
SMPDefsFlags[NN_divss] = false;               // Scalar Single-FP Divide
SMPDefsFlags[NN_ldmxcsr] = false;             // Load Streaming SIMD Extensions Technology Control/Status Register
SMPDefsFlags[NN_maxps] = false;               // Packed Single-FP Maximum
SMPDefsFlags[NN_maxss] = false;               // Scalar Single-FP Maximum
SMPDefsFlags[NN_minps] = false;               // Packed Single-FP Minimum
SMPDefsFlags[NN_minss] = false;               // Scalar Single-FP Minimum
SMPDefsFlags[NN_movaps] = false;              // Move Aligned Four Packed Single-FP  
SMPDefsFlags[NN_movhlps] = false;             // Move High to Low Packed Single-FP
SMPDefsFlags[NN_movhps] = false;              // Move High Packed Single-FP
SMPDefsFlags[NN_movlhps] = false;             // Move Low to High Packed Single-FP
SMPDefsFlags[NN_movlps] = false;              // Move Low Packed Single-FP
SMPDefsFlags[NN_movmskps] = false;            // Move Mask to Register
SMPDefsFlags[NN_movss] = false;               // Move Scalar Single-FP
SMPDefsFlags[NN_movups] = false;              // Move Unaligned Four Packed Single-FP
SMPDefsFlags[NN_mulps] = false;               // Packed Single-FP Multiply
SMPDefsFlags[NN_mulss] = false;               // Scalar Single-FP Multiply
SMPDefsFlags[NN_orps] = false;                // Bitwise Logical OR for Single-FP Data
SMPDefsFlags[NN_rcpps] = false;               // Packed Single-FP Reciprocal
SMPDefsFlags[NN_rcpss] = false;               // Scalar Single-FP Reciprocal
SMPDefsFlags[NN_rsqrtps] = false;             // Packed Single-FP Square Root Reciprocal
SMPDefsFlags[NN_rsqrtss] = false;             // Scalar Single-FP Square Root Reciprocal
SMPDefsFlags[NN_shufps] = false;              // Shuffle Single-FP
SMPDefsFlags[NN_sqrtps] = false;              // Packed Single-FP Square Root
SMPDefsFlags[NN_sqrtss] = false;              // Scalar Single-FP Square Root
SMPDefsFlags[NN_stmxcsr] = false;             // Store Streaming SIMD Extensions Technology Control/Status Register 
SMPDefsFlags[NN_subps] = false;               // Packed Single-FP Subtract
SMPDefsFlags[NN_subss] = false;               // Scalar Single-FP Subtract
SMPDefsFlags[NN_unpckhps] = false;            // Unpack High Packed Single-FP Data
SMPDefsFlags[NN_unpcklps] = false;            // Unpack Low Packed Single-FP Data
SMPDefsFlags[NN_xorps] = false;               // Bitwise Logical XOR for Single-FP Data
SMPDefsFlags[NN_pavgb] = false;               // Packed Average (Byte)
SMPDefsFlags[NN_pavgw] = false;               // Packed Average (Word)
SMPDefsFlags[NN_pextrw] = false;              // Extract Word
SMPDefsFlags[NN_pinsrw] = false;              // Insert Word
SMPDefsFlags[NN_pmaxsw] = false;              // Packed Signed Integer Word Maximum
SMPDefsFlags[NN_pmaxub] = false;              // Packed Unsigned Integer Byte Maximum
SMPDefsFlags[NN_pminsw] = false;              // Packed Signed Integer Word Minimum
SMPDefsFlags[NN_pminub] = false;              // Packed Unsigned Integer Byte Minimum
SMPDefsFlags[NN_pmovmskb] = false;            // Move Byte Mask to Integer
SMPDefsFlags[NN_pmulhuw] = false;             // Packed Multiply High Unsigned
SMPDefsFlags[NN_psadbw] = false;              // Packed Sum of Absolute Differences
SMPDefsFlags[NN_pshufw] = false;              // Packed Shuffle Word
SMPDefsFlags[NN_maskmovq] = false;            // Byte Mask write  
SMPDefsFlags[NN_movntps] = false;             // Move Aligned Four Packed Single-FP Non Temporal
SMPDefsFlags[NN_movntq] = false;              // Move 64 Bits Non Temporal   
SMPDefsFlags[NN_prefetcht0] = false;          // Prefetch to all cache levels
SMPDefsFlags[NN_prefetcht1] = false;          // Prefetch to all cache levels
SMPDefsFlags[NN_prefetcht2] = false;          // Prefetch to L2 cache
SMPDefsFlags[NN_prefetchnta] = false;         // Prefetch to L1 cache
SMPDefsFlags[NN_sfence] = false;              // Store Fence

// Pentium III Pseudo instructions

SMPDefsFlags[NN_cmpeqps] = false;             // Packed Single-FP Compare EQ
SMPDefsFlags[NN_cmpltps] = false;             // Packed Single-FP Compare LT
SMPDefsFlags[NN_cmpleps] = false;             // Packed Single-FP Compare LE
SMPDefsFlags[NN_cmpunordps] = false;          // Packed Single-FP Compare UNORD
SMPDefsFlags[NN_cmpneqps] = false;            // Packed Single-FP Compare NOT EQ
SMPDefsFlags[NN_cmpnltps] = false;            // Packed Single-FP Compare NOT LT
SMPDefsFlags[NN_cmpnleps] = false;            // Packed Single-FP Compare NOT LE
SMPDefsFlags[NN_cmpordps] = false;            // Packed Single-FP Compare ORDERED
SMPDefsFlags[NN_cmpeqss] = false;             // Scalar Single-FP Compare EQ
SMPDefsFlags[NN_cmpltss] = false;             // Scalar Single-FP Compare LT
SMPDefsFlags[NN_cmpless] = false;             // Scalar Single-FP Compare LE
SMPDefsFlags[NN_cmpunordss] = false;          // Scalar Single-FP Compare UNORD
SMPDefsFlags[NN_cmpneqss] = false;            // Scalar Single-FP Compare NOT EQ
SMPDefsFlags[NN_cmpnltss] = false;            // Scalar Single-FP Compare NOT LT
SMPDefsFlags[NN_cmpnless] = false;            // Scalar Single-FP Compare NOT LE
SMPDefsFlags[NN_cmpordss] = false;            // Scalar Single-FP Compare ORDERED

// AMD K7 instructions

// Revisit AMD if we port to it.
SMPDefsFlags[NN_pf2iw] = false;               // Packed Floating-Point to Integer with Sign Extend
SMPDefsFlags[NN_pfnacc] = false;              // Packed Floating-Point Negative Accumulate
SMPDefsFlags[NN_pfpnacc] = false;             // Packed Floating-Point Mixed Positive-Negative Accumulate
SMPDefsFlags[NN_pi2fw] = false;               // Packed 16-bit Integer to Floating-Point
SMPDefsFlags[NN_pswapd] = false;              // Packed Swap Double Word

// Undocumented FP instructions (thanks to norbert.juffa@adm.com)

SMPDefsFlags[NN_fstp1] = false;               // Alias of Store Real and Pop
SMPDefsFlags[NN_fxch4] = false;               // Alias of Exchange Registers
SMPDefsFlags[NN_ffreep] = false;              // Free Register and Pop
SMPDefsFlags[NN_fxch7] = false;               // Alias of Exchange Registers
SMPDefsFlags[NN_fstp8] = false;               // Alias of Store Real and Pop
SMPDefsFlags[NN_fstp9] = false;               // Alias of Store Real and Pop

// Pentium 4 instructions

SMPDefsFlags[NN_addpd] = false;               // Add Packed Double-Precision Floating-Point Values
SMPDefsFlags[NN_addsd] = false;               // Add Scalar Double-Precision Floating-Point Values
SMPDefsFlags[NN_andnpd] = false;              // Bitwise Logical AND NOT of Packed Double-Precision Floating-Point Values
SMPDefsFlags[NN_andpd] = false;               // Bitwise Logical AND of Packed Double-Precision Floating-Point Values
SMPDefsFlags[NN_clflush] = false;             // Flush Cache Line
SMPDefsFlags[NN_cmppd] = false;               // Compare Packed Double-Precision Floating-Point Values
SMPDefsFlags[NN_cmpsd] = false;               // Compare Scalar Double-Precision Floating-Point Values
SMPDefsFlags[NN_cvtdq2pd] = false;            // Convert Packed Doubleword Integers to Packed Single-Precision Floating-Point Values
SMPDefsFlags[NN_cvtdq2ps] = false;            // Convert Packed Doubleword Integers to Packed Double-Precision Floating-Point Values
SMPDefsFlags[NN_cvtpd2dq] = false;            // Convert Packed Double-Precision Floating-Point Values to Packed Doubleword Integers
SMPDefsFlags[NN_cvtpd2pi] = false;            // Convert Packed Double-Precision Floating-Point Values to Packed Doubleword Integers
SMPDefsFlags[NN_cvtpd2ps] = false;            // Convert Packed Double-Precision Floating-Point Values to Packed Single-Precision Floating-Point Values
SMPDefsFlags[NN_cvtpi2pd] = false;            // Convert Packed Doubleword Integers to Packed Double-Precision Floating-Point Values
SMPDefsFlags[NN_cvtps2dq] = false;            // Convert Packed Single-Precision Floating-Point Values to Packed Doubleword Integers
SMPDefsFlags[NN_cvtps2pd] = false;            // Convert Packed Single-Precision Floating-Point Values to Packed Double-Precision Floating-Point Values
SMPDefsFlags[NN_cvtsd2si] = false;            // Convert Scalar Double-Precision Floating-Point Value to Doubleword Integer
SMPDefsFlags[NN_cvtsd2ss] = false;            // Convert Scalar Double-Precision Floating-Point Value to Scalar Single-Precision Floating-Point Value
SMPDefsFlags[NN_cvtsi2sd] = false;            // Convert Doubleword Integer to Scalar Double-Precision Floating-Point Value
SMPDefsFlags[NN_cvtss2sd] = false;            // Convert Scalar Single-Precision Floating-Point Value to Scalar Double-Precision Floating-Point Value
SMPDefsFlags[NN_cvttpd2dq] = false;           // Convert With Truncation Packed Double-Precision Floating-Point Values to Packed Doubleword Integers
SMPDefsFlags[NN_cvttpd2pi] = false;           // Convert with Truncation Packed Double-Precision Floating-Point Values to Packed Doubleword Integers
SMPDefsFlags[NN_cvttps2dq] = false;           // Convert With Truncation Packed Single-Precision Floating-Point Values to Packed Doubleword Integers
SMPDefsFlags[NN_cvttsd2si] = false;           // Convert with Truncation Scalar Double-Precision Floating-Point Value to Doubleword Integer
SMPDefsFlags[NN_divpd] = false;               // Divide Packed Double-Precision Floating-Point Values
SMPDefsFlags[NN_divsd] = false;               // Divide Scalar Double-Precision Floating-Point Values
SMPDefsFlags[NN_lfence] = false;              // Load Fence
SMPDefsFlags[NN_maskmovdqu] = false;          // Store Selected Bytes of Double Quadword 
SMPDefsFlags[NN_maxpd] = false;               // Return Maximum Packed Double-Precision Floating-Point Values
SMPDefsFlags[NN_maxsd] = false;               // Return Maximum Scalar Double-Precision Floating-Point Value
SMPDefsFlags[NN_mfence] = false;              // Memory Fence
SMPDefsFlags[NN_minpd] = false;               // Return Minimum Packed Double-Precision Floating-Point Values
SMPDefsFlags[NN_minsd] = false;               // Return Minimum Scalar Double-Precision Floating-Point Value
SMPDefsFlags[NN_movapd] = false;              // Move Aligned Packed Double-Precision Floating-Point Values 
SMPDefsFlags[NN_movdq2q] = false;             // Move Quadword from XMM to MMX Register
SMPDefsFlags[NN_movdqa] = false;              // Move Aligned Double Quadword  
SMPDefsFlags[NN_movdqu] = false;              // Move Unaligned Double Quadword  
SMPDefsFlags[NN_movhpd] = false;              // Move High Packed Double-Precision Floating-Point Values 
SMPDefsFlags[NN_movlpd] = false;              // Move Low Packed Double-Precision Floating-Point Values 
SMPDefsFlags[NN_movmskpd] = false;            // Extract Packed Double-Precision Floating-Point Sign Mask
SMPDefsFlags[NN_movntdq] = false;             // Store Double Quadword Using Non-Temporal Hint
SMPDefsFlags[NN_movnti] = false;              // Store Doubleword Using Non-Temporal Hint
SMPDefsFlags[NN_movntpd] = false;             // Store Packed Double-Precision Floating-Point Values Using Non-Temporal Hint
SMPDefsFlags[NN_movq2dq] = false;             // Move Quadword from MMX to XMM Register
SMPDefsFlags[NN_movsd] = false;               // Move Scalar Double-Precision Floating-Point Values
SMPDefsFlags[NN_movupd] = false;              // Move Unaligned Packed Double-Precision Floating-Point Values
SMPDefsFlags[NN_mulpd] = false;               // Multiply Packed Double-Precision Floating-Point Values
SMPDefsFlags[NN_mulsd] = false;               // Multiply Scalar Double-Precision Floating-Point Values
SMPDefsFlags[NN_orpd] = false;                // Bitwise Logical OR of Double-Precision Floating-Point Values
SMPDefsFlags[NN_paddq] = false;               // Add Packed Quadword Integers
SMPDefsFlags[NN_pause] = false;               // Spin Loop Hint
SMPDefsFlags[NN_pmuludq] = false;             // Multiply Packed Unsigned Doubleword Integers
SMPDefsFlags[NN_pshufd] = false;              // Shuffle Packed Doublewords
SMPDefsFlags[NN_pshufhw] = false;             // Shuffle Packed High Words
SMPDefsFlags[NN_pshuflw] = false;             // Shuffle Packed Low Words
SMPDefsFlags[NN_pslldq] = false;              // Shift Double Quadword Left Logical
SMPDefsFlags[NN_psrldq] = false;              // Shift Double Quadword Right Logical
SMPDefsFlags[NN_psubq] = false;               // Subtract Packed Quadword Integers
SMPDefsFlags[NN_punpckhqdq] = false;          // Unpack High Data
SMPDefsFlags[NN_punpcklqdq] = false;          // Unpack Low Data
SMPDefsFlags[NN_shufpd] = false;              // Shuffle Packed Double-Precision Floating-Point Values
SMPDefsFlags[NN_sqrtpd] = false;              // Compute Square Roots of Packed Double-Precision Floating-Point Values
SMPDefsFlags[NN_sqrtsd] = false;              // Compute Square Rootof Scalar Double-Precision Floating-Point Value
SMPDefsFlags[NN_subpd] = false;               // Subtract Packed Double-Precision Floating-Point Values
SMPDefsFlags[NN_subsd] = false;               // Subtract Scalar Double-Precision Floating-Point Values
SMPDefsFlags[NN_unpckhpd] = false;            // Unpack and Interleave High Packed Double-Precision Floating-Point Values
SMPDefsFlags[NN_unpcklpd] = false;            // Unpack and Interleave Low Packed Double-Precision Floating-Point Values
SMPDefsFlags[NN_xorpd] = false;               // Bitwise Logical OR of Double-Precision Floating-Point Values


// AMD syscall/sysret instructions  NOTE: not AMD, found in Intel manual


// AMD64 instructions    NOTE: not AMD, found in Intel manual

SMPDefsFlags[NN_swapgs] = false;              // Exchange GS base with KernelGSBase MSR

// New Pentium instructions (SSE3)

SMPDefsFlags[NN_movddup] = false;             // Move One Double-FP and Duplicate
SMPDefsFlags[NN_movshdup] = false;            // Move Packed Single-FP High and Duplicate
SMPDefsFlags[NN_movsldup] = false;            // Move Packed Single-FP Low and Duplicate

// Missing AMD64 instructions  NOTE: also found in Intel manual

SMPDefsFlags[NN_movsxd] = false;              // Move with Sign-Extend Doubleword

// SSE3 instructions

SMPDefsFlags[NN_addsubpd] = false;            // Add /Sub packed DP FP numbers
SMPDefsFlags[NN_addsubps] = false;            // Add /Sub packed SP FP numbers
SMPDefsFlags[NN_haddpd] = false;              // Add horizontally packed DP FP numbers
SMPDefsFlags[NN_haddps] = false;              // Add horizontally packed SP FP numbers
SMPDefsFlags[NN_hsubpd] = false;              // Sub horizontally packed DP FP numbers
SMPDefsFlags[NN_hsubps] = false;              // Sub horizontally packed SP FP numbers
SMPDefsFlags[NN_monitor] = false;             // Set up a linear address range to be monitored by hardware
SMPDefsFlags[NN_mwait] = false;               // Wait until write-back store performed within the range specified by the MONITOR instruction
SMPDefsFlags[NN_fisttp] = false;              // Store ST in intXX (chop) and pop
SMPDefsFlags[NN_lddqu] = false;               // Load unaligned integer 128-bit

// SSSE3 instructions

SMPDefsFlags[NN_psignb] = false;              // Packed SIGN Byte
SMPDefsFlags[NN_psignw] = false;              // Packed SIGN Word
SMPDefsFlags[NN_psignd] = false;              // Packed SIGN Doubleword
SMPDefsFlags[NN_pshufb] = false;              // Packed Shuffle Bytes
SMPDefsFlags[NN_pmulhrsw] = false;            // Packed Multiply High with Round and Scale
SMPDefsFlags[NN_pmaddubsw] = false;           // Multiply and Add Packed Signed and Unsigned Bytes
SMPDefsFlags[NN_phsubsw] = false;             // Packed Horizontal Subtract and Saturate
SMPDefsFlags[NN_phaddsw] = false;             // Packed Horizontal Add and Saturate
SMPDefsFlags[NN_phaddw] = false;              // Packed Horizontal Add Word
SMPDefsFlags[NN_phaddd] = false;              // Packed Horizontal Add Doubleword
SMPDefsFlags[NN_phsubw] = false;              // Packed Horizontal Subtract Word
SMPDefsFlags[NN_phsubd] = false;              // Packed Horizontal Subtract Doubleword
SMPDefsFlags[NN_palignr] = false;             // Packed Align Right
SMPDefsFlags[NN_pabsb] = false;               // Packed Absolute Value Byte
SMPDefsFlags[NN_pabsw] = false;               // Packed Absolute Value Word
SMPDefsFlags[NN_pabsd] = false;               // Packed Absolute Value Doubleword

// VMX instructions

#if 599 < IDA_SDK_VERSION

SMPDefsFlags[NN_ud2] = false;                 // Undefined Instruction

// Added with x86-64

SMPDefsFlags[NN_rdtscp] = false;              // Read Time-Stamp Counter and Processor ID

// Geode LX 3DNow! extensions

SMPDefsFlags[NN_pfrcpv] = false;              // Reciprocal Approximation for a Pair of 32-bit Floats
SMPDefsFlags[NN_pfrsqrtv] = false;            // Reciprocal Square Root Approximation for a Pair of 32-bit Floats

// SSE2 pseudoinstructions

SMPDefsFlags[NN_cmpeqpd] = false;             // Packed Double-FP Compare EQ
SMPDefsFlags[NN_cmpltpd] = false;             // Packed Double-FP Compare LT
SMPDefsFlags[NN_cmplepd] = false;             // Packed Double-FP Compare LE
SMPDefsFlags[NN_cmpunordpd] = false;          // Packed Double-FP Compare UNORD
SMPDefsFlags[NN_cmpneqpd] = false;            // Packed Double-FP Compare NOT EQ
SMPDefsFlags[NN_cmpnltpd] = false;            // Packed Double-FP Compare NOT LT
SMPDefsFlags[NN_cmpnlepd] = false;            // Packed Double-FP Compare NOT LE
SMPDefsFlags[NN_cmpordpd] = false;            // Packed Double-FP Compare ORDERED
SMPDefsFlags[NN_cmpeqsd] = false;             // Scalar Double-FP Compare EQ
SMPDefsFlags[NN_cmpltsd] = false;             // Scalar Double-FP Compare LT
SMPDefsFlags[NN_cmplesd] = false;             // Scalar Double-FP Compare LE
SMPDefsFlags[NN_cmpunordsd] = false;          // Scalar Double-FP Compare UNORD
SMPDefsFlags[NN_cmpneqsd] = false;            // Scalar Double-FP Compare NOT EQ
SMPDefsFlags[NN_cmpnltsd] = false;            // Scalar Double-FP Compare NOT LT
SMPDefsFlags[NN_cmpnlesd] = false;            // Scalar Double-FP Compare NOT LE
SMPDefsFlags[NN_cmpordsd] = false;            // Scalar Double-FP Compare ORDERED

// SSSE4.1 instructions

SMPDefsFlags[NN_blendpd] = false;              // Blend Packed Double Precision Floating-Point Values
SMPDefsFlags[NN_blendps] = false;              // Blend Packed Single Precision Floating-Point Values
SMPDefsFlags[NN_blendvpd] = false;             // Variable Blend Packed Double Precision Floating-Point Values
SMPDefsFlags[NN_blendvps] = false;             // Variable Blend Packed Single Precision Floating-Point Values
SMPDefsFlags[NN_dppd] = false;                 // Dot Product of Packed Double Precision Floating-Point Values
SMPDefsFlags[NN_dpps] = false;                 // Dot Product of Packed Single Precision Floating-Point Values
SMPDefsFlags[NN_extractps] = 2;            // Extract Packed Single Precision Floating-Point Value
SMPDefsFlags[NN_insertps] = false;             // Insert Packed Single Precision Floating-Point Value
SMPDefsFlags[NN_movntdqa] = false;             // Load Double Quadword Non-Temporal Aligned Hint
SMPDefsFlags[NN_mpsadbw] = false;              // Compute Multiple Packed Sums of Absolute Difference
SMPDefsFlags[NN_packusdw] = false;             // Pack with Unsigned Saturation
SMPDefsFlags[NN_pblendvb] = false;             // Variable Blend Packed Bytes
SMPDefsFlags[NN_pblendw] = false;              // Blend Packed Words
SMPDefsFlags[NN_pcmpeqq] = false;              // Compare Packed Qword Data for Equal
SMPDefsFlags[NN_pextrb] = false;               // Extract Byte
SMPDefsFlags[NN_pextrd] = false;               // Extract Dword
SMPDefsFlags[NN_pextrq] = false;               // Extract Qword
SMPDefsFlags[NN_phminposuw] = false;           // Packed Horizontal Word Minimum
SMPDefsFlags[NN_pinsrb] = false;               // Insert Byte
SMPDefsFlags[NN_pinsrd] = false;               // Insert Dword
SMPDefsFlags[NN_pinsrq] = false;               // Insert Qword
SMPDefsFlags[NN_pmaxsb] = false;               // Maximum of Packed Signed Byte Integers
SMPDefsFlags[NN_pmaxsd] = false;               // Maximum of Packed Signed Dword Integers
SMPDefsFlags[NN_pmaxud] = false;               // Maximum of Packed Unsigned Dword Integers
SMPDefsFlags[NN_pmaxuw] = false;               // Maximum of Packed Word Integers
SMPDefsFlags[NN_pminsb] = false;               // Minimum of Packed Signed Byte Integers
SMPDefsFlags[NN_pminsd] = false;               // Minimum of Packed Signed Dword Integers
SMPDefsFlags[NN_pminud] = false;               // Minimum of Packed Unsigned Dword Integers
SMPDefsFlags[NN_pminuw] = false;               // Minimum of Packed Word Integers
SMPDefsFlags[NN_pmovsxbw] = false;             // Packed Move with Sign Extend
SMPDefsFlags[NN_pmovsxbd] = false;             // Packed Move with Sign Extend
SMPDefsFlags[NN_pmovsxbq] = false;             // Packed Move with Sign Extend
SMPDefsFlags[NN_pmovsxwd] = false;             // Packed Move with Sign Extend
SMPDefsFlags[NN_pmovsxwq] = false;             // Packed Move with Sign Extend
SMPDefsFlags[NN_pmovsxdq] = false;             // Packed Move with Sign Extend
SMPDefsFlags[NN_pmovzxbw] = false;             // Packed Move with Zero Extend
SMPDefsFlags[NN_pmovzxbd] = false;             // Packed Move with Zero Extend
SMPDefsFlags[NN_pmovzxbq] = false;             // Packed Move with Zero Extend
SMPDefsFlags[NN_pmovzxwd] = false;             // Packed Move with Zero Extend
SMPDefsFlags[NN_pmovzxwq] = false;             // Packed Move with Zero Extend
SMPDefsFlags[NN_pmovzxdq] = false;             // Packed Move with Zero Extend
SMPDefsFlags[NN_pmuldq] = false;               // Multiply Packed Signed Dword Integers
SMPDefsFlags[NN_pmulld] = false;               // Multiply Packed Signed Dword Integers and Store Low Result
SMPDefsFlags[NN_roundpd] = false;              // Round Packed Double Precision Floating-Point Values
SMPDefsFlags[NN_roundps] = false;              // Round Packed Single Precision Floating-Point Values
SMPDefsFlags[NN_roundsd] = false;              // Round Scalar Double Precision Floating-Point Values
SMPDefsFlags[NN_roundss] = false;              // Round Scalar Single Precision Floating-Point Values

// SSSE4.2 instructions
SMPDefsFlags[NN_crc32] = false;                // Accumulate CRC32 Value
SMPDefsFlags[NN_pcmpgtq] = false;              // Compare Packed Data for Greater Than

// AMD SSE4a instructions

SMPDefsFlags[NN_extrq] = false;                // Extract Field From Register
SMPDefsFlags[NN_insertq] = false;              // Insert Field
SMPDefsFlags[NN_movntsd] = false;              // Move Non-Temporal Scalar Double-Precision Floating-Point
SMPDefsFlags[NN_movntss] = false;              // Move Non-Temporal Scalar Single-Precision Floating-Point

// xsave/xrstor instructions

SMPDefsFlags[NN_xgetbv] = false;               // Get Value of Extended Control Register
SMPDefsFlags[NN_xrstor] = false;               // Restore Processor Extended States
SMPDefsFlags[NN_xsave] = false;                // Save Processor Extended States
SMPDefsFlags[NN_xsetbv] = false;               // Set Value of Extended Control Register

// Intel Safer Mode Extensions (SMX)

// AMD-V Virtualization ISA Extension

SMPDefsFlags[NN_invlpga] = false;              // Invalidate TLB Entry in a Specified ASID
SMPDefsFlags[NN_skinit] = false;               // Secure Init and Jump with Attestation
SMPDefsFlags[NN_vmexit] = false;               // Stop Executing Guest, Begin Executing Host
SMPDefsFlags[NN_vmload] = false;               // Load State from VMCB
SMPDefsFlags[NN_vmmcall] = false;              // Call VMM
SMPDefsFlags[NN_vmrun] = false;                // Run Virtual Machine
SMPDefsFlags[NN_vmsave] = false;               // Save State to VMCB

// VMX+ instructions

SMPDefsFlags[NN_invept] = false;               // Invalidate Translations Derived from EPT
SMPDefsFlags[NN_invvpid] = false;              // Invalidate Translations Based on VPID

// Intel Atom instructions

SMPDefsFlags[NN_movbe] = false;                // Move Data After Swapping Bytes

// Intel AES instructions

SMPDefsFlags[NN_aesenc] = false;                // Perform One Round of an AES Encryption Flow
SMPDefsFlags[NN_aesenclast] = false;            // Perform the Last Round of an AES Encryption Flow
SMPDefsFlags[NN_aesdec] = false;                // Perform One Round of an AES Decryption Flow
SMPDefsFlags[NN_aesdeclast] = false;            // Perform the Last Round of an AES Decryption Flow
SMPDefsFlags[NN_aesimc] = false;                // Perform the AES InvMixColumn Transformation
SMPDefsFlags[NN_aeskeygenassist] = false;       // AES Round Key Generation Assist

// Carryless multiplication

SMPDefsFlags[NN_pclmulqdq] = false;            // Carry-Less Multiplication Quadword

// Returns modified by operand size prefixes

SMPDefsFlags[NN_retnw] = false;               // Return Near from Procedure (use16)
SMPDefsFlags[NN_retnd] = false;               // Return Near from Procedure (use32)
SMPDefsFlags[NN_retnq] = false;               // Return Near from Procedure (use64)
SMPDefsFlags[NN_retfw] = false;               // Return Far from Procedure (use16)
SMPDefsFlags[NN_retfd] = false;               // Return Far from Procedure (use32)
SMPDefsFlags[NN_retfq] = false;               // Return Far from Procedure (use64)

// RDRAND support

// new GPR instructions

SMPDefsFlags[NN_mulx] = false;                 // Unsigned Multiply Without Affecting Flags
SMPDefsFlags[NN_pdep] = false;                 // Parallel Bits Deposit
SMPDefsFlags[NN_pext] = false;                 // Parallel Bits Extract
SMPDefsFlags[NN_rorx] = false;                 // Rotate Right Logical Without Affecting Flags
SMPDefsFlags[NN_sarx] = false;                 // Shift Arithmetically Right Without Affecting Flags
SMPDefsFlags[NN_shlx] = false;                 // Shift Logically Left Without Affecting Flags
SMPDefsFlags[NN_shrx] = false;                 // Shift Logically Right Without Affecting Flags

SMPDefsFlags[NN_xsaveopt] = false;             // Save Processor Extended States Optimized
SMPDefsFlags[NN_invpcid] =  false;             // Invalidate Processor Context ID
SMPDefsFlags[NN_rdseed] = false;               // Read Random Seed
SMPDefsFlags[NN_rdfsbase] = false;             // Read FS Segment Base
SMPDefsFlags[NN_rdgsbase] = false;             // Read GS Segment Base
SMPDefsFlags[NN_wrfsbase] = false;             // Write FS Segment Base
SMPDefsFlags[NN_wrgsbase] = false;             // Write GS Segment Base

// new AVX instructions

SMPDefsFlags[NN_vaddpd] = false;               // Add Packed Double-Precision Floating-Point Values
SMPDefsFlags[NN_vaddps] = false;               // Packed Single-FP Add
SMPDefsFlags[NN_vaddsd] = false;               // Add Scalar Double-Precision Floating-Point Values
SMPDefsFlags[NN_vaddss] = false;               // Scalar Single-FP Add
SMPDefsFlags[NN_vaddsubpd] = false;            // Add /Sub packed DP FP numbers
SMPDefsFlags[NN_vaddsubps] = false;            // Add /Sub packed SP FP numbers
SMPDefsFlags[NN_vaesdec] = false;              // Perform One Round of an AES Decryption Flow
SMPDefsFlags[NN_vaesdeclast] = false;          // Perform the Last Round of an AES Decryption Flow
SMPDefsFlags[NN_vaesenc] = false;              // Perform One Round of an AES Encryption Flow
SMPDefsFlags[NN_vaesenclast] = false;          // Perform the Last Round of an AES Encryption Flow
SMPDefsFlags[NN_vaesimc] = false;              // Perform the AES InvMixColumn Transformation
SMPDefsFlags[NN_vaeskeygenassist] = false;     // AES Round Key Generation Assist
SMPDefsFlags[NN_vandnpd] = false;              // Bitwise Logical AND NOT of Packed Double-Precision Floating-Point Values
SMPDefsFlags[NN_vandnps] = false;              // Bitwise Logical And Not for Single-FP
SMPDefsFlags[NN_vandpd] = false;               // Bitwise Logical AND of Packed Double-Precision Floating-Point Values
SMPDefsFlags[NN_vandps] = false;               // Bitwise Logical And for Single-FP
SMPDefsFlags[NN_vblendpd] = false;             // Blend Packed Double Precision Floating-Point Values
SMPDefsFlags[NN_vblendps] = false;             // Blend Packed Single Precision Floating-Point Values
SMPDefsFlags[NN_vblendvpd] = false;            // Variable Blend Packed Double Precision Floating-Point Values
SMPDefsFlags[NN_vblendvps] = false;            // Variable Blend Packed Single Precision Floating-Point Values
SMPDefsFlags[NN_vbroadcastf128] = false;       // Broadcast 128 Bits of Floating-Point Data
SMPDefsFlags[NN_vbroadcasti128] = false;       // Broadcast 128 Bits of Integer Data
SMPDefsFlags[NN_vbroadcastsd] = false;         // Broadcast Double-Precision Floating-Point Element
SMPDefsFlags[NN_vbroadcastss] = false;         // Broadcast Single-Precision Floating-Point Element
SMPDefsFlags[NN_vcmppd] = false;               // Compare Packed Double-Precision Floating-Point Values
SMPDefsFlags[NN_vcmpps] = false;               // Packed Single-FP Compare
SMPDefsFlags[NN_vcmpsd] = false;               // Compare Scalar Double-Precision Floating-Point Values
SMPDefsFlags[NN_vcmpss] = false;               // Scalar Single-FP Compare
SMPDefsFlags[NN_vcomisd] = false;              // Compare Scalar Ordered Double-Precision Floating-Point Values and Set EFLAGS
SMPDefsFlags[NN_vcomiss] = false;              // Scalar Ordered Single-FP Compare and Set EFLAGS
SMPDefsFlags[NN_vcvtdq2pd] = false;            // Convert Packed Doubleword Integers to Packed Single-Precision Floating-Point Values
SMPDefsFlags[NN_vcvtdq2ps] = false;            // Convert Packed Doubleword Integers to Packed Double-Precision Floating-Point Values
SMPDefsFlags[NN_vcvtpd2dq] = false;            // Convert Packed Double-Precision Floating-Point Values to Packed Doubleword Integers
SMPDefsFlags[NN_vcvtpd2ps] = false;            // Convert Packed Double-Precision Floating-Point Values to Packed Single-Precision Floating-Point Values
SMPDefsFlags[NN_vcvtph2ps] = false;            // Convert 16-bit FP Values to Single-Precision FP Values
SMPDefsFlags[NN_vcvtps2dq] = false;            // Convert Packed Single-Precision Floating-Point Values to Packed Doubleword Integers
SMPDefsFlags[NN_vcvtps2pd] = false;            // Convert Packed Single-Precision Floating-Point Values to Packed Double-Precision Floating-Point Values
SMPDefsFlags[NN_vcvtps2ph] = false;            // Convert Single-Precision FP value to 16-bit FP value
SMPDefsFlags[NN_vcvtsd2si] = false;            // Convert Scalar Double-Precision Floating-Point Value to Doubleword Integer
SMPDefsFlags[NN_vcvtsd2ss] = false;            // Convert Scalar Double-Precision Floating-Point Value to Scalar Single-Precision Floating-Point Value
SMPDefsFlags[NN_vcvtsi2sd] = false;            // Convert Doubleword Integer to Scalar Double-Precision Floating-Point Value
SMPDefsFlags[NN_vcvtsi2ss] = false;            // Scalar signed INT32 to Single-FP conversion
SMPDefsFlags[NN_vcvtss2sd] = false;            // Convert Scalar Single-Precision Floating-Point Value to Scalar Double-Precision Floating-Point Value
SMPDefsFlags[NN_vcvtss2si] = false;            // Scalar Single-FP to signed INT32 conversion
SMPDefsFlags[NN_vcvttpd2dq] = false;           // Convert With Truncation Packed Double-Precision Floating-Point Values to Packed Doubleword Integers