Skip to content
Snippets Groups Projects
SMPDataFlowAnalysis.cpp 373 KiB
Newer Older
5001 5002 5003 5004 5005 5006 5007 5008 5009 5010 5011 5012 5013 5014 5015 5016 5017 5018 5019 5020 5021 5022 5023 5024 5025 5026 5027 5028 5029 5030 5031 5032 5033 5034 5035 5036 5037 5038 5039 5040 5041 5042 5043 5044 5045 5046 5047 5048 5049 5050 5051 5052 5053 5054 5055 5056 5057 5058 5059 5060 5061 5062 5063 5064 5065 5066 5067 5068 5069 5070 5071 5072 5073 5074 5075 5076 5077 5078 5079 5080 5081 5082 5083 5084 5085 5086 5087 5088 5089 5090 5091 5092 5093 5094 5095 5096 5097 5098 5099 5100 5101 5102 5103 5104 5105 5106 5107 5108 5109 5110 5111 5112 5113 5114 5115 5116 5117 5118 5119 5120 5121 5122 5123 5124 5125 5126 5127 5128 5129 5130 5131 5132 5133 5134 5135 5136 5137 5138 5139 5140 5141 5142 5143 5144 5145 5146 5147 5148 5149 5150 5151 5152 5153 5154 5155 5156 5157 5158 5159 5160 5161 5162 5163 5164 5165 5166 5167 5168 5169 5170 5171 5172 5173 5174 5175 5176 5177 5178 5179 5180 5181 5182 5183 5184 5185 5186 5187 5188 5189 5190 5191 5192 5193 5194 5195 5196 5197 5198 5199 5200 5201 5202 5203 5204 5205 5206 5207 5208 5209 5210 5211 5212 5213 5214 5215 5216 5217 5218 5219 5220 5221 5222 5223 5224 5225 5226 5227 5228 5229 5230 5231 5232 5233 5234 5235 5236 5237 5238 5239 5240 5241 5242 5243 5244 5245 5246 5247 5248 5249 5250 5251 5252 5253 5254 5255 5256 5257 5258 5259 5260 5261 5262 5263 5264 5265 5266 5267 5268 5269 5270 5271 5272 5273 5274 5275 5276 5277 5278 5279 5280 5281 5282 5283 5284 5285 5286 5287 5288 5289 5290 5291 5292 5293 5294 5295 5296 5297 5298 5299 5300 5301 5302 5303 5304 5305 5306 5307 5308 5309 5310 5311 5312 5313 5314 5315 5316 5317 5318 5319 5320 5321 5322 5323 5324 5325 5326 5327 5328 5329 5330 5331 5332 5333 5334 5335
SMPDefsFlags[NN_vcvttps2dq] = false;           // Convert With Truncation Packed Single-Precision Floating-Point Values to Packed Doubleword Integers
SMPDefsFlags[NN_vcvttsd2si] = false;           // Convert with Truncation Scalar Double-Precision Floating-Point Value to Doubleword Integer
SMPDefsFlags[NN_vcvttss2si] = false;           // Scalar Single-FP to signed INT32 conversion (truncate)
SMPDefsFlags[NN_vdivpd] = false;               // Divide Packed Double-Precision Floating-Point Values
SMPDefsFlags[NN_vdivps] = false;               // Packed Single-FP Divide
SMPDefsFlags[NN_vdivsd] = false;               // Divide Scalar Double-Precision Floating-Point Values
SMPDefsFlags[NN_vdivss] = false;               // Scalar Single-FP Divide
SMPDefsFlags[NN_vdppd] = false;                // Dot Product of Packed Double Precision Floating-Point Values
SMPDefsFlags[NN_vdpps] = false;                // Dot Product of Packed Single Precision Floating-Point Values
SMPDefsFlags[NN_vextractf128] = false;         // Extract Packed Floating-Point Values
SMPDefsFlags[NN_vextracti128] = false;         // Extract Packed Integer Values
SMPDefsFlags[NN_vextractps] = false;           // Extract Packed Floating-Point Values
SMPDefsFlags[NN_vfmadd132pd] = false;          // Fused Multiply-Add of Packed Double-Precision Floating-Point Values
SMPDefsFlags[NN_vfmadd132ps] = false;          // Fused Multiply-Add of Packed Single-Precision Floating-Point Values
SMPDefsFlags[NN_vfmadd132sd] = false;          // Fused Multiply-Add of Scalar Double-Precision Floating-Point Values
SMPDefsFlags[NN_vfmadd132ss] = false;          // Fused Multiply-Add of Scalar Single-Precision Floating-Point Values
SMPDefsFlags[NN_vfmadd213pd] = false;          // Fused Multiply-Add of Packed Double-Precision Floating-Point Values
SMPDefsFlags[NN_vfmadd213ps] = false;          // Fused Multiply-Add of Packed Single-Precision Floating-Point Values
SMPDefsFlags[NN_vfmadd213sd] = false;          // Fused Multiply-Add of Scalar Double-Precision Floating-Point Values
SMPDefsFlags[NN_vfmadd213ss] = false;          // Fused Multiply-Add of Scalar Single-Precision Floating-Point Values
SMPDefsFlags[NN_vfmadd231pd] = false;          // Fused Multiply-Add of Packed Double-Precision Floating-Point Values
SMPDefsFlags[NN_vfmadd231ps] = false;          // Fused Multiply-Add of Packed Single-Precision Floating-Point Values
SMPDefsFlags[NN_vfmadd231sd] = false;          // Fused Multiply-Add of Scalar Double-Precision Floating-Point Values
SMPDefsFlags[NN_vfmadd231ss] = false;          // Fused Multiply-Add of Scalar Single-Precision Floating-Point Values
SMPDefsFlags[NN_vfmaddsub132pd] = false;       // Fused Multiply-Alternating Add/Subtract of Packed Double-Precision Floating-Point Values
SMPDefsFlags[NN_vfmaddsub132ps] = false;       // Fused Multiply-Alternating Add/Subtract of Packed Single-Precision Floating-Point Values
SMPDefsFlags[NN_vfmaddsub213pd] = false;       // Fused Multiply-Alternating Add/Subtract of Packed Double-Precision Floating-Point Values
SMPDefsFlags[NN_vfmaddsub213ps] = false;       // Fused Multiply-Alternating Add/Subtract of Packed Single-Precision Floating-Point Values
SMPDefsFlags[NN_vfmaddsub231pd] = false;       // Fused Multiply-Alternating Add/Subtract of Packed Double-Precision Floating-Point Values
SMPDefsFlags[NN_vfmaddsub231ps] = false;       // Fused Multiply-Alternating Add/Subtract of Packed Single-Precision Floating-Point Values
SMPDefsFlags[NN_vfmsub132pd] = false;          // Fused Multiply-Subtract of Packed Double-Precision Floating-Point Values
SMPDefsFlags[NN_vfmsub132ps] = false;          // Fused Multiply-Subtract of Packed Single-Precision Floating-Point Values
SMPDefsFlags[NN_vfmsub132sd] = false;          // Fused Multiply-Subtract of Scalar Double-Precision Floating-Point Values
SMPDefsFlags[NN_vfmsub132ss] = false;          // Fused Multiply-Subtract of Scalar Single-Precision Floating-Point Values
SMPDefsFlags[NN_vfmsub213pd] = false;          // Fused Multiply-Subtract of Packed Double-Precision Floating-Point Values
SMPDefsFlags[NN_vfmsub213ps] = false;          // Fused Multiply-Subtract of Packed Single-Precision Floating-Point Values
SMPDefsFlags[NN_vfmsub213sd] = false;          // Fused Multiply-Subtract of Scalar Double-Precision Floating-Point Values
SMPDefsFlags[NN_vfmsub213ss] = false;          // Fused Multiply-Subtract of Scalar Single-Precision Floating-Point Values
SMPDefsFlags[NN_vfmsub231pd] = false;          // Fused Multiply-Subtract of Packed Double-Precision Floating-Point Values
SMPDefsFlags[NN_vfmsub231ps] = false;          // Fused Multiply-Subtract of Packed Single-Precision Floating-Point Values
SMPDefsFlags[NN_vfmsub231sd] = false;          // Fused Multiply-Subtract of Scalar Double-Precision Floating-Point Values
SMPDefsFlags[NN_vfmsub231ss] = false;          // Fused Multiply-Subtract of Scalar Single-Precision Floating-Point Values
SMPDefsFlags[NN_vfmsubadd132pd] = false;       // Fused Multiply-Alternating Subtract/Add of Packed Double-Precision Floating-Point Values
SMPDefsFlags[NN_vfmsubadd132ps] = false;       // Fused Multiply-Alternating Subtract/Add of Packed Single-Precision Floating-Point Values
SMPDefsFlags[NN_vfmsubadd213pd] = false;       // Fused Multiply-Alternating Subtract/Add of Packed Double-Precision Floating-Point Values
SMPDefsFlags[NN_vfmsubadd213ps] = false;       // Fused Multiply-Alternating Subtract/Add of Packed Single-Precision Floating-Point Values
SMPDefsFlags[NN_vfmsubadd231pd] = false;       // Fused Multiply-Alternating Subtract/Add of Packed Double-Precision Floating-Point Values
SMPDefsFlags[NN_vfmsubadd231ps] = false;       // Fused Multiply-Alternating Subtract/Add of Packed Single-Precision Floating-Point Values
SMPDefsFlags[NN_vfnmadd132pd] = false;         // Fused Negative Multiply-Add of Packed Double-Precision Floating-Point Values
SMPDefsFlags[NN_vfnmadd132ps] = false;         // Fused Negative Multiply-Add of Packed Single-Precision Floating-Point Values
SMPDefsFlags[NN_vfnmadd132sd] = false;         // Fused Negative Multiply-Add of Scalar Double-Precision Floating-Point Values
SMPDefsFlags[NN_vfnmadd132ss] = false;         // Fused Negative Multiply-Add of Scalar Single-Precision Floating-Point Values
SMPDefsFlags[NN_vfnmadd213pd] = false;         // Fused Negative Multiply-Add of Packed Double-Precision Floating-Point Values
SMPDefsFlags[NN_vfnmadd213ps] = false;         // Fused Negative Multiply-Add of Packed Single-Precision Floating-Point Values
SMPDefsFlags[NN_vfnmadd213sd] = false;         // Fused Negative Multiply-Add of Scalar Double-Precision Floating-Point Values
SMPDefsFlags[NN_vfnmadd213ss] = false;         // Fused Negative Multiply-Add of Scalar Single-Precision Floating-Point Values
SMPDefsFlags[NN_vfnmadd231pd] = false;         // Fused Negative Multiply-Add of Packed Double-Precision Floating-Point Values
SMPDefsFlags[NN_vfnmadd231ps] = false;         // Fused Negative Multiply-Add of Packed Single-Precision Floating-Point Values
SMPDefsFlags[NN_vfnmadd231sd] = false;         // Fused Negative Multiply-Add of Scalar Double-Precision Floating-Point Values
SMPDefsFlags[NN_vfnmadd231ss] = false;         // Fused Negative Multiply-Add of Scalar Single-Precision Floating-Point Values
SMPDefsFlags[NN_vfnmsub132pd] = false;         // Fused Negative Multiply-Subtract of Packed Double-Precision Floating-Point Values
SMPDefsFlags[NN_vfnmsub132ps] = false;         // Fused Negative Multiply-Subtract of Packed Single-Precision Floating-Point Values
SMPDefsFlags[NN_vfnmsub132sd] = false;         // Fused Negative Multiply-Subtract of Scalar Double-Precision Floating-Point Values
SMPDefsFlags[NN_vfnmsub132ss] = false;         // Fused Negative Multiply-Subtract of Scalar Single-Precision Floating-Point Values
SMPDefsFlags[NN_vfnmsub213pd] = false;         // Fused Negative Multiply-Subtract of Packed Double-Precision Floating-Point Values
SMPDefsFlags[NN_vfnmsub213ps] = false;         // Fused Negative Multiply-Subtract of Packed Single-Precision Floating-Point Values
SMPDefsFlags[NN_vfnmsub213sd] = false;         // Fused Negative Multiply-Subtract of Scalar Double-Precision Floating-Point Values
SMPDefsFlags[NN_vfnmsub213ss] = false;         // Fused Negative Multiply-Subtract of Scalar Single-Precision Floating-Point Values
SMPDefsFlags[NN_vfnmsub231pd] = false;         // Fused Negative Multiply-Subtract of Packed Double-Precision Floating-Point Values
SMPDefsFlags[NN_vfnmsub231ps] = false;         // Fused Negative Multiply-Subtract of Packed Single-Precision Floating-Point Values
SMPDefsFlags[NN_vfnmsub231sd] = false;         // Fused Negative Multiply-Subtract of Scalar Double-Precision Floating-Point Values
SMPDefsFlags[NN_vfnmsub231ss] = false;         // Fused Negative Multiply-Subtract of Scalar Single-Precision Floating-Point Values
SMPDefsFlags[NN_vgatherdps] = false;           // Gather Packed SP FP Values Using Signed Dword Indices
SMPDefsFlags[NN_vgatherdpd] = false;           // Gather Packed DP FP Values Using Signed Dword Indices
SMPDefsFlags[NN_vgatherqps] = false;           // Gather Packed SP FP Values Using Signed Qword Indices
SMPDefsFlags[NN_vgatherqpd] = false;           // Gather Packed DP FP Values Using Signed Qword Indices
SMPDefsFlags[NN_vhaddpd] = false;              // Add horizontally packed DP FP numbers
SMPDefsFlags[NN_vhaddps] = false;              // Add horizontally packed SP FP numbers
SMPDefsFlags[NN_vhsubpd] = false;              // Sub horizontally packed DP FP numbers
SMPDefsFlags[NN_vhsubps] = false;              // Sub horizontally packed SP FP numbers
SMPDefsFlags[NN_vinsertf128] = false;          // Insert Packed Floating-Point Values
SMPDefsFlags[NN_vinserti128] = false;          // Insert Packed Integer Values
SMPDefsFlags[NN_vinsertps] = false;            // Insert Packed Single Precision Floating-Point Value
SMPDefsFlags[NN_vlddqu] = false;               // Load Unaligned Packed Integer Values
SMPDefsFlags[NN_vldmxcsr] = false;             // Load Streaming SIMD Extensions Technology Control/Status Register
SMPDefsFlags[NN_vmaskmovdqu] = false;          // Store Selected Bytes of Double Quadword with NT Hint
SMPDefsFlags[NN_vmaskmovpd] = false;           // Conditionally Load Packed Double-Precision Floating-Point Values
SMPDefsFlags[NN_vmaskmovps] = false;           // Conditionally Load Packed Single-Precision Floating-Point Values
SMPDefsFlags[NN_vmaxpd] = false;               // Return Maximum Packed Double-Precision Floating-Point Values
SMPDefsFlags[NN_vmaxps] = false;               // Packed Single-FP Maximum
SMPDefsFlags[NN_vmaxsd] = false;               // Return Maximum Scalar Double-Precision Floating-Point Value
SMPDefsFlags[NN_vmaxss] = false;               // Scalar Single-FP Maximum
SMPDefsFlags[NN_vminpd] = false;               // Return Minimum Packed Double-Precision Floating-Point Values
SMPDefsFlags[NN_vminps] = false;               // Packed Single-FP Minimum
SMPDefsFlags[NN_vminsd] = false;               // Return Minimum Scalar Double-Precision Floating-Point Value
SMPDefsFlags[NN_vminss] = false;               // Scalar Single-FP Minimum
SMPDefsFlags[NN_vmovapd] = false;              // Move Aligned Packed Double-Precision Floating-Point Values
SMPDefsFlags[NN_vmovaps] = false;              // Move Aligned Four Packed Single-FP
SMPDefsFlags[NN_vmovd] = false;                // Move 32 bits
SMPDefsFlags[NN_vmovddup] = false;             // Move One Double-FP and Duplicate
SMPDefsFlags[NN_vmovdqa] = false;              // Move Aligned Double Quadword
SMPDefsFlags[NN_vmovdqu] = false;              // Move Unaligned Double Quadword
SMPDefsFlags[NN_vmovhlps] = false;             // Move High to Low Packed Single-FP
SMPDefsFlags[NN_vmovhpd] = false;              // Move High Packed Double-Precision Floating-Point Values
SMPDefsFlags[NN_vmovhps] = false;              // Move High Packed Single-FP
SMPDefsFlags[NN_vmovlhps] = false;             // Move Low to High Packed Single-FP
SMPDefsFlags[NN_vmovlpd] = false;              // Move Low Packed Double-Precision Floating-Point Values
SMPDefsFlags[NN_vmovlps] = false;              // Move Low Packed Single-FP
SMPDefsFlags[NN_vmovmskpd] = false;            // Extract Packed Double-Precision Floating-Point Sign Mask
SMPDefsFlags[NN_vmovmskps] = false;            // Move Mask to Register
SMPDefsFlags[NN_vmovntdq] = false;             // Store Double Quadword Using Non-Temporal Hint
SMPDefsFlags[NN_vmovntdqa] = false;            // Load Double Quadword Non-Temporal Aligned Hint
SMPDefsFlags[NN_vmovntpd] = false;             // Store Packed Double-Precision Floating-Point Values Using Non-Temporal Hint
SMPDefsFlags[NN_vmovntps] = false;             // Move Aligned Four Packed Single-FP Non Temporal
SMPDefsFlags[NN_vmovntsd] = false;             // Move Non-Temporal Scalar Double-Precision Floating-Point
SMPDefsFlags[NN_vmovntss] = false;             // Move Non-Temporal Scalar Single-Precision Floating-Point
SMPDefsFlags[NN_vmovq] = false;                // Move 64 bits
SMPDefsFlags[NN_vmovsd] = false;               // Move Scalar Double-Precision Floating-Point Values
SMPDefsFlags[NN_vmovshdup] = false;            // Move Packed Single-FP High and Duplicate
SMPDefsFlags[NN_vmovsldup] = false;            // Move Packed Single-FP Low and Duplicate
SMPDefsFlags[NN_vmovss] = false;               // Move Scalar Single-FP
SMPDefsFlags[NN_vmovupd] = false;              // Move Unaligned Packed Double-Precision Floating-Point Values
SMPDefsFlags[NN_vmovups] = false;              // Move Unaligned Four Packed Single-FP
SMPDefsFlags[NN_vmpsadbw] = false;             // Compute Multiple Packed Sums of Absolute Difference
SMPDefsFlags[NN_vmulpd] = false;               // Multiply Packed Double-Precision Floating-Point Values
SMPDefsFlags[NN_vmulps] = false;               // Packed Single-FP Multiply
SMPDefsFlags[NN_vmulsd] = false;               // Multiply Scalar Double-Precision Floating-Point Values
SMPDefsFlags[NN_vmulss] = false;               // Scalar Single-FP Multiply
SMPDefsFlags[NN_vorpd] = false;                // Bitwise Logical OR of Double-Precision Floating-Point Values
SMPDefsFlags[NN_vorps] = false;                // Bitwise Logical OR for Single-FP Data
SMPDefsFlags[NN_vpabsb] = false;               // Packed Absolute Value Byte
SMPDefsFlags[NN_vpabsd] = false;               // Packed Absolute Value Doubleword
SMPDefsFlags[NN_vpabsw] = false;               // Packed Absolute Value Word
SMPDefsFlags[NN_vpackssdw] = false;            // Pack with Signed Saturation (Dword->Word)
SMPDefsFlags[NN_vpacksswb] = false;            // Pack with Signed Saturation (Word->Byte)
SMPDefsFlags[NN_vpackusdw] = false;            // Pack with Unsigned Saturation
SMPDefsFlags[NN_vpackuswb] = false;            // Pack with Unsigned Saturation (Word->Byte)
SMPDefsFlags[NN_vpaddb] = false;               // Packed Add Byte
SMPDefsFlags[NN_vpaddd] = false;               // Packed Add Dword
SMPDefsFlags[NN_vpaddq] = false;               // Add Packed Quadword Integers
SMPDefsFlags[NN_vpaddsb] = false;              // Packed Add with Saturation (Byte)
SMPDefsFlags[NN_vpaddsw] = false;              // Packed Add with Saturation (Word)
SMPDefsFlags[NN_vpaddusb] = false;             // Packed Add Unsigned with Saturation (Byte)
SMPDefsFlags[NN_vpaddusw] = false;             // Packed Add Unsigned with Saturation (Word)
SMPDefsFlags[NN_vpaddw] = false;               // Packed Add Word
SMPDefsFlags[NN_vpalignr] = false;             // Packed Align Right
SMPDefsFlags[NN_vpand] = false;                // Bitwise Logical And
SMPDefsFlags[NN_vpandn] = false;               // Bitwise Logical And Not
SMPDefsFlags[NN_vpavgb] = false;               // Packed Average (Byte)
SMPDefsFlags[NN_vpavgw] = false;               // Packed Average (Word)
SMPDefsFlags[NN_vpblendd] = false;             // Blend Packed Dwords
SMPDefsFlags[NN_vpblendvb] = false;            // Variable Blend Packed Bytes
SMPDefsFlags[NN_vpblendw] = false;             // Blend Packed Words
SMPDefsFlags[NN_vpbroadcastb] = false;         // Broadcast a Byte Integer
SMPDefsFlags[NN_vpbroadcastd] = false;         // Broadcast a Dword Integer
SMPDefsFlags[NN_vpbroadcastq] = false;         // Broadcast a Qword Integer
SMPDefsFlags[NN_vpbroadcastw] = false;         // Broadcast a Word Integer
SMPDefsFlags[NN_vpclmulqdq] = false;           // Carry-Less Multiplication Quadword
SMPDefsFlags[NN_vpcmpeqb] = false;             // Packed Compare for Equal (Byte)
SMPDefsFlags[NN_vpcmpeqd] = false;             // Packed Compare for Equal (Dword)
SMPDefsFlags[NN_vpcmpeqq] = false;             // Compare Packed Qword Data for Equal
SMPDefsFlags[NN_vpcmpeqw] = false;             // Packed Compare for Equal (Word)
SMPDefsFlags[NN_vpcmpestri] = false;           // Packed Compare Explicit Length Strings, Return Index
SMPDefsFlags[NN_vpcmpestrm] = false;           // Packed Compare Explicit Length Strings, Return Mask
SMPDefsFlags[NN_vpcmpgtb] = false;             // Packed Compare for Greater Than (Byte)
SMPDefsFlags[NN_vpcmpgtd] = false;             // Packed Compare for Greater Than (Dword)
SMPDefsFlags[NN_vpcmpgtq] = false;             // Compare Packed Data for Greater Than
SMPDefsFlags[NN_vpcmpgtw] = false;             // Packed Compare for Greater Than (Word)
SMPDefsFlags[NN_vpcmpistri] = false;           // Packed Compare Implicit Length Strings, Return Index
SMPDefsFlags[NN_vpcmpistrm] = false;           // Packed Compare Implicit Length Strings, Return Mask
SMPDefsFlags[NN_vperm2f128] = false;           // Permute Floating-Point Values
SMPDefsFlags[NN_vperm2i128] = false;           // Permute Integer Values
SMPDefsFlags[NN_vpermd] = false;               // Full Doublewords Element Permutation
SMPDefsFlags[NN_vpermilpd] = false;            // Permute Double-Precision Floating-Point Values
SMPDefsFlags[NN_vpermilps] = false;            // Permute Single-Precision Floating-Point Values
SMPDefsFlags[NN_vpermpd] = false;              // Permute Double-Precision Floating-Point Elements
SMPDefsFlags[NN_vpermps] = false;              // Permute Single-Precision Floating-Point Elements
SMPDefsFlags[NN_vpermq] = false;               // Qwords Element Permutation
SMPDefsFlags[NN_vpextrb] = false;              // Extract Byte
SMPDefsFlags[NN_vpextrd] = false;              // Extract Dword
SMPDefsFlags[NN_vpextrq] = false;              // Extract Qword
SMPDefsFlags[NN_vpextrw] = false;              // Extract Word
SMPDefsFlags[NN_vpgatherdd] = false;           // Gather Packed Dword Values Using Signed Dword Indices
SMPDefsFlags[NN_vpgatherdq] = false;           // Gather Packed Qword Values Using Signed Dword Indices
SMPDefsFlags[NN_vpgatherqd] = false;           // Gather Packed Dword Values Using Signed Qword Indices
SMPDefsFlags[NN_vpgatherqq] = false;           // Gather Packed Qword Values Using Signed Qword Indices
SMPDefsFlags[NN_vphaddd] = false;              // Packed Horizontal Add Doubleword
SMPDefsFlags[NN_vphaddsw] = false;          // Packed Horizontal Add and Saturate
SMPDefsFlags[NN_vphaddw] = false;           // Packed Horizontal Add Word
SMPDefsFlags[NN_vphminposuw] = false;       // Packed Horizontal Word Minimum
SMPDefsFlags[NN_vphsubd] = false;           // Packed Horizontal Subtract Doubleword
SMPDefsFlags[NN_vphsubsw] = false;          // Packed Horizontal Subtract and Saturate
SMPDefsFlags[NN_vphsubw] = false;           // Packed Horizontal Subtract Word
SMPDefsFlags[NN_vpinsrb] = false;           // Insert Byte
SMPDefsFlags[NN_vpinsrd] = false;           // Insert Dword
SMPDefsFlags[NN_vpinsrq] = false;           // Insert Qword
SMPDefsFlags[NN_vpinsrw] = false;           // Insert Word
SMPDefsFlags[NN_vpmaddubsw] = false;        // Multiply and Add Packed Signed and Unsigned Bytes
SMPDefsFlags[NN_vpmaddwd] = false;          // Packed Multiply and Add
SMPDefsFlags[NN_vpmaskmovd] = false;        // Conditionally Store Dword Values Using Mask
SMPDefsFlags[NN_vpmaskmovq] = false;        // Conditionally Store Qword Values Using Mask
SMPDefsFlags[NN_vpmaxsb] = false;           // Maximum of Packed Signed Byte Integers
SMPDefsFlags[NN_vpmaxsd] = false;           // Maximum of Packed Signed Dword Integers
SMPDefsFlags[NN_vpmaxsw] = false;           // Packed Signed Integer Word Maximum
SMPDefsFlags[NN_vpmaxub] = false;           // Packed Unsigned Integer Byte Maximum
SMPDefsFlags[NN_vpmaxud] = false;           // Maximum of Packed Unsigned Dword Integers
SMPDefsFlags[NN_vpmaxuw] = false;           // Maximum of Packed Word Integers
SMPDefsFlags[NN_vpminsb] = false;           // Minimum of Packed Signed Byte Integers
SMPDefsFlags[NN_vpminsd] = false;           // Minimum of Packed Signed Dword Integers
SMPDefsFlags[NN_vpminsw] = false;           // Packed Signed Integer Word Minimum
SMPDefsFlags[NN_vpminub] = false;           // Packed Unsigned Integer Byte Minimum
SMPDefsFlags[NN_vpminud] = false;           // Minimum of Packed Unsigned Dword Integers
SMPDefsFlags[NN_vpminuw] = false;           // Minimum of Packed Word Integers
SMPDefsFlags[NN_vpmovmskb] = false;         // Move Byte Mask to Integer
SMPDefsFlags[NN_vpmovsxbd] = false;         // Packed Move with Sign Extend
SMPDefsFlags[NN_vpmovsxbq] = false;         // Packed Move with Sign Extend
SMPDefsFlags[NN_vpmovsxbw] = false;         // Packed Move with Sign Extend
SMPDefsFlags[NN_vpmovsxdq] = false;         // Packed Move with Sign Extend
SMPDefsFlags[NN_vpmovsxwd] = false;         // Packed Move with Sign Extend
SMPDefsFlags[NN_vpmovsxwq] = false;         // Packed Move with Sign Extend
SMPDefsFlags[NN_vpmovzxbd] = false;         // Packed Move with Zero Extend
SMPDefsFlags[NN_vpmovzxbq] = false;         // Packed Move with Zero Extend
SMPDefsFlags[NN_vpmovzxbw] = false;         // Packed Move with Zero Extend
SMPDefsFlags[NN_vpmovzxdq] = false;         // Packed Move with Zero Extend
SMPDefsFlags[NN_vpmovzxwd] = false;         // Packed Move with Zero Extend
SMPDefsFlags[NN_vpmovzxwq] = false;         // Packed Move with Zero Extend
SMPDefsFlags[NN_vpmuldq] = false;           // Multiply Packed Signed Dword Integers
SMPDefsFlags[NN_vpmulhrsw] = false;         // Packed Multiply High with Round and Scale
SMPDefsFlags[NN_vpmulhuw] = false;          // Packed Multiply High Unsigned
SMPDefsFlags[NN_vpmulhw] = false;           // Packed Multiply High
SMPDefsFlags[NN_vpmulld] = false;           // Multiply Packed Signed Dword Integers and Store Low Result
SMPDefsFlags[NN_vpmullw] = false;           // Packed Multiply Low
SMPDefsFlags[NN_vpmuludq] = false;          // Multiply Packed Unsigned Doubleword Integers
SMPDefsFlags[NN_vpor] = false;              // Bitwise Logical Or
SMPDefsFlags[NN_vpsadbw] = false;           // Packed Sum of Absolute Differences
SMPDefsFlags[NN_vpshufb] = false;           // Packed Shuffle Bytes
SMPDefsFlags[NN_vpshufd] = false;           // Shuffle Packed Doublewords
SMPDefsFlags[NN_vpshufhw] = false;          // Shuffle Packed High Words
SMPDefsFlags[NN_vpshuflw] = false;          // Shuffle Packed Low Words
SMPDefsFlags[NN_vpsignb] = false;           // Packed SIGN Byte
SMPDefsFlags[NN_vpsignd] = false;           // Packed SIGN Doubleword
SMPDefsFlags[NN_vpsignw] = false;           // Packed SIGN Word
SMPDefsFlags[NN_vpslld] = false;            // Packed Shift Left Logical (Dword)
SMPDefsFlags[NN_vpslldq] = false;           // Shift Double Quadword Left Logical
SMPDefsFlags[NN_vpsllq] = false;            // Packed Shift Left Logical (Qword)
SMPDefsFlags[NN_vpsllvd] = false;           // Variable Bit Shift Left Logical (Dword)
SMPDefsFlags[NN_vpsllvq] = false;           // Variable Bit Shift Left Logical (Qword)
SMPDefsFlags[NN_vpsllw] = false;            // Packed Shift Left Logical (Word)
SMPDefsFlags[NN_vpsrad] = false;            // Packed Shift Right Arithmetic (Dword)
SMPDefsFlags[NN_vpsravd] = false;           // Variable Bit Shift Right Arithmetic
SMPDefsFlags[NN_vpsraw] = false;            // Packed Shift Right Arithmetic (Word)
SMPDefsFlags[NN_vpsrld] = false;            // Packed Shift Right Logical (Dword)
SMPDefsFlags[NN_vpsrldq] = false;           // Shift Double Quadword Right Logical (Qword)
SMPDefsFlags[NN_vpsrlq] = false;            // Packed Shift Right Logical (Qword)
SMPDefsFlags[NN_vpsrlvd] = false;           // Variable Bit Shift Right Logical (Dword)
SMPDefsFlags[NN_vpsrlvq] = false;           // Variable Bit Shift Right Logical (Qword)
SMPDefsFlags[NN_vpsrlw] = false;            // Packed Shift Right Logical (Word)
SMPDefsFlags[NN_vpsubb] = false;            // Packed Subtract Byte
SMPDefsFlags[NN_vpsubd] = false;            // Packed Subtract Dword
SMPDefsFlags[NN_vpsubq] = false;            // Subtract Packed Quadword Integers
SMPDefsFlags[NN_vpsubsb] = false;           // Packed Subtract with Saturation (Byte)
SMPDefsFlags[NN_vpsubsw] = false;           // Packed Subtract with Saturation (Word)
SMPDefsFlags[NN_vpsubusb] = false;          // Packed Subtract Unsigned with Saturation (Byte)
SMPDefsFlags[NN_vpsubusw] = false;          // Packed Subtract Unsigned with Saturation (Word)
SMPDefsFlags[NN_vpsubw] = false;            // Packed Subtract Word
SMPDefsFlags[NN_vptest] = false;            // Logical Compare
SMPDefsFlags[NN_vpunpckhbw] = false;        // Unpack High Packed Data (Byte->Word)
SMPDefsFlags[NN_vpunpckhdq] = false;        // Unpack High Packed Data (Dword->Qword)
SMPDefsFlags[NN_vpunpckhqdq] = false;       // Unpack High Packed Data (Qword->Xmmword)
SMPDefsFlags[NN_vpunpckhwd] = false;        // Unpack High Packed Data (Word->Dword)
SMPDefsFlags[NN_vpunpcklbw] = false;        // Unpack Low Packed Data (Byte->Word)
SMPDefsFlags[NN_vpunpckldq] = false;        // Unpack Low Packed Data (Dword->Qword)
SMPDefsFlags[NN_vpunpcklqdq] = false;       // Unpack Low Packed Data (Qword->Xmmword)
SMPDefsFlags[NN_vpunpcklwd] = false;        // Unpack Low Packed Data (Word->Dword)
SMPDefsFlags[NN_vpxor] = false;             // Bitwise Logical Exclusive Or
SMPDefsFlags[NN_vrcpps] = false;            // Packed Single-FP Reciprocal
SMPDefsFlags[NN_vrcpss] = false;            // Scalar Single-FP Reciprocal
SMPDefsFlags[NN_vroundpd] = false;          // Round Packed Double Precision Floating-Point Values
SMPDefsFlags[NN_vroundps] = false;          // Round Packed Single Precision Floating-Point Values
SMPDefsFlags[NN_vroundsd] = false;          // Round Scalar Double Precision Floating-Point Values
SMPDefsFlags[NN_vroundss] = false;          // Round Scalar Single Precision Floating-Point Values
SMPDefsFlags[NN_vrsqrtps] = false;          // Packed Single-FP Square Root Reciprocal
SMPDefsFlags[NN_vrsqrtss] = false;          // Scalar Single-FP Square Root Reciprocal
SMPDefsFlags[NN_vshufpd] = false;           // Shuffle Packed Double-Precision Floating-Point Values
SMPDefsFlags[NN_vshufps] = false;           // Shuffle Single-FP
SMPDefsFlags[NN_vsqrtpd] = false;           // Compute Square Roots of Packed Double-Precision Floating-Point Values
SMPDefsFlags[NN_vsqrtps] = false;           // Packed Single-FP Square Root
SMPDefsFlags[NN_vsqrtsd] = false;           // Compute Square Rootof Scalar Double-Precision Floating-Point Value
SMPDefsFlags[NN_vsqrtss] = false;           // Scalar Single-FP Square Root
SMPDefsFlags[NN_vstmxcsr] = false;          // Store Streaming SIMD Extensions Technology Control/Status Register
SMPDefsFlags[NN_vsubpd] = false;            // Subtract Packed Double-Precision Floating-Point Values
SMPDefsFlags[NN_vsubps] = false;            // Packed Single-FP Subtract
SMPDefsFlags[NN_vsubsd] = false;            // Subtract Scalar Double-Precision Floating-Point Values
SMPDefsFlags[NN_vsubss] = false;            // Scalar Single-FP Subtract
SMPDefsFlags[NN_vtestpd] = false;           // Packed Double-Precision Floating-Point Bit Test
SMPDefsFlags[NN_vtestps] = false;           // Packed Single-Precision Floating-Point Bit Test
SMPDefsFlags[NN_vucomisd] = false;          // Unordered Compare Scalar Ordered Double-Precision Floating-Point Values and Set EFLAGS
SMPDefsFlags[NN_vucomiss] = false;          // Scalar Unordered Single-FP Compare and Set EFLAGS
SMPDefsFlags[NN_vunpckhpd] = false;         // Unpack and Interleave High Packed Double-Precision Floating-Point Values
SMPDefsFlags[NN_vunpckhps] = false;         // Unpack High Packed Single-FP Data
SMPDefsFlags[NN_vunpcklpd] = false;         // Unpack and Interleave Low Packed Double-Precision Floating-Point Values
SMPDefsFlags[NN_vunpcklps] = false;         // Unpack Low Packed Single-FP Data
SMPDefsFlags[NN_vxorpd] = false;            // Bitwise Logical OR of Double-Precision Floating-Point Values
SMPDefsFlags[NN_vxorps] = false;            // Bitwise Logical XOR for Single-FP Data
SMPDefsFlags[NN_vzeroall] = false;          // Zero All YMM Registers
SMPDefsFlags[NN_vzeroupper] = false;        // Zero Upper Bits of YMM Registers

// Transactional Synchronization Extensions

SMPDefsFlags[NN_xabort] = false;               // Transaction Abort
SMPDefsFlags[NN_xbegin] = false;               // Transaction Begin
SMPDefsFlags[NN_xend] = false;                 // Transaction End
SMPDefsFlags[NN_xtest] = false;                // Test If In Transactional Execution

// Virtual PC synthetic instructions

SMPDefsFlags[NN_vmgetinfo] = false;            // Virtual PC - Get VM Information
SMPDefsFlags[NN_vmsetinfo] = false;            // Virtual PC - Set VM Information
SMPDefsFlags[NN_vmdxdsbl] = false;             // Virtual PC - Disable Direct Execution
SMPDefsFlags[NN_vmdxenbl] = false;             // Virtual PC - Enable Direct Execution
SMPDefsFlags[NN_vmcpuid] = false;              // Virtual PC - Virtualized CPU Information
SMPDefsFlags[NN_vmhlt] = false;                // Virtual PC - Halt
SMPDefsFlags[NN_vmsplaf] = false;              // Virtual PC - Spin Lock Acquisition Failed
SMPDefsFlags[NN_vmpushfd] = false;             // Virtual PC - Push virtualized flags register
SMPDefsFlags[NN_vmpopfd] = false;              // Virtual PC - Pop virtualized flags register
SMPDefsFlags[NN_vmcli] = false;                // Virtual PC - Clear Interrupt Flag
SMPDefsFlags[NN_vmsti] = false;                // Virtual PC - Set Interrupt Flag
SMPDefsFlags[NN_vmiretd] = false;              // Virtual PC - Return From Interrupt
SMPDefsFlags[NN_vmsgdt] = false;               // Virtual PC - Store Global Descriptor Table
SMPDefsFlags[NN_vmsidt] = false;               // Virtual PC - Store Interrupt Descriptor Table
SMPDefsFlags[NN_vmsldt] = false;               // Virtual PC - Store Local Descriptor Table
SMPDefsFlags[NN_vmstr] = false;                // Virtual PC - Store Task Register
SMPDefsFlags[NN_vmsdte] = false;               // Virtual PC - Store to Descriptor Table Entry
SMPDefsFlags[NN_vpcext] = false;               // Virtual PC - ISA extension

#endif // 599 < IDA_SDK_VERSION

SMPDefsFlags[NN_last] = false;

  return;

} // end InitSMPDefsFlags()

// Initialize the SMPUsesFlags[] array to define how we emit
//   optimizing annotations.
void InitSMPUsesFlags(void) {
	// Default value is false. Few instructions use the flags.
	(void) memset(SMPUsesFlags, false, sizeof(SMPUsesFlags));

SMPUsesFlags[NN_null] = true;            // Unknown Operation
SMPUsesFlags[NN_aaa] = true;                 // ASCII adjust after addition
SMPUsesFlags[NN_aas] = true;				 // ASCII adjust after subtraction
SMPUsesFlags[NN_adc] = true;                 // Add with Carry
SMPUsesFlags[NN_cmps] = true;                // Compare Strings (uses DF direction flag)
SMPUsesFlags[NN_daa] = true;                 // Decimal Adjust AL after Addition
SMPUsesFlags[NN_das] = true;                 // Decimal Adjust AL after Subtraction
SMPUsesFlags[NN_ins] = true;                 // Input Byte(s) from Port to String        
SMPUsesFlags[NN_into] = true;                // Call to Interrupt Procedure if Overflow Flag = 1
SMPUsesFlags[NN_ja] = true;                  // Jump if Above (CF=0 & ZF=0)
SMPUsesFlags[NN_jae] = true;                 // Jump if Above or Equal (CF=0)
SMPUsesFlags[NN_jb] = true;                  // Jump if Below (CF=1)
SMPUsesFlags[NN_jbe] = true;                 // Jump if Below or Equal (CF=1 | ZF=1)
SMPUsesFlags[NN_jc] = true;                  // Jump if Carry (CF=1)
SMPUsesFlags[NN_jcxz] = true;                // Jump if CX is 0
SMPUsesFlags[NN_jecxz] = true;               // Jump if ECX is 0
SMPUsesFlags[NN_jrcxz] = true;               // Jump if RCX is 0
SMPUsesFlags[NN_je] = true;                  // Jump if Equal (ZF=1)
SMPUsesFlags[NN_jg] = true;                  // Jump if Greater (ZF=0 & SF=OF)
SMPUsesFlags[NN_jge] = true;                 // Jump if Greater or Equal (SF=OF)
SMPUsesFlags[NN_jl] = true;                  // Jump if Less (SF!=OF)
SMPUsesFlags[NN_jle] = true;                 // Jump if Less or Equal (ZF=1 | SF!=OF)
SMPUsesFlags[NN_jna] = true;                 // Jump if Not Above (CF=1 | ZF=1)
SMPUsesFlags[NN_jnae] = true;                // Jump if Not Above or Equal (CF=1)
SMPUsesFlags[NN_jnb] = true;                 // Jump if Not Below (CF=0)
SMPUsesFlags[NN_jnbe] = true;                // Jump if Not Below or Equal (CF=0 & ZF=0)
SMPUsesFlags[NN_jnc] = true;                 // Jump if Not Carry (CF=0)
SMPUsesFlags[NN_jne] = true;                 // Jump if Not Equal (ZF=0)
SMPUsesFlags[NN_jng] = true;                 // Jump if Not Greater (ZF=1 | SF!=OF)
clc5q's avatar
clc5q committed
SMPUsesFlags[NN_jnge] = true;                // Jump if Not Greater or Equal (SF!=OF)
SMPUsesFlags[NN_jnl] = true;                 // Jump if Not Less (SF=OF)
SMPUsesFlags[NN_jnle] = true;                // Jump if Not Less or Equal (ZF=0 & SF=OF)
SMPUsesFlags[NN_jno] = true;                 // Jump if Not Overflow (OF=0)
SMPUsesFlags[NN_jnp] = true;                 // Jump if Not Parity (PF=0)
SMPUsesFlags[NN_jns] = true;                 // Jump if Not Sign (SF=0)
SMPUsesFlags[NN_jnz] = true;                 // Jump if Not Zero (ZF=0)
SMPUsesFlags[NN_jo] = true;                  // Jump if Overflow (OF=1)
SMPUsesFlags[NN_jp] = true;                  // Jump if Parity (PF=1)
SMPUsesFlags[NN_jpe] = true;                 // Jump if Parity Even (PF=1)
SMPUsesFlags[NN_jpo] = true;                 // Jump if Parity Odd  (PF=0)
SMPUsesFlags[NN_js] = true;                  // Jump if Sign (SF=1)
SMPUsesFlags[NN_jz] = true;                  // Jump if Zero (ZF=1)
SMPUsesFlags[NN_lahf] = true;                // Load Flags into AH Register
SMPUsesFlags[NN_lods] = true;                // Load String
SMPUsesFlags[NN_loopwe] = true;              // Loop while CX != 0 and ZF=1
SMPUsesFlags[NN_loope] = true;               // Loop while rCX != 0 and ZF=1
SMPUsesFlags[NN_loopde] = true;              // Loop while ECX != 0 and ZF=1
SMPUsesFlags[NN_loopqe] = true;              // Loop while RCX != 0 and ZF=1
SMPUsesFlags[NN_loopwne] = true;             // Loop while CX != 0 and ZF=0
SMPUsesFlags[NN_loopne] = true;              // Loop while rCX != 0 and ZF=0
SMPUsesFlags[NN_loopdne] = true;             // Loop while ECX != 0 and ZF=0
SMPUsesFlags[NN_loopqne] = true;             // Loop while RCX != 0 and ZF=0
SMPUsesFlags[NN_movs] = true;  		         // Move String (uses flags if REP prefix)
SMPUsesFlags[NN_outs] = true;                // Output Byte(s) to Port
SMPUsesFlags[NN_pushfw] = true;              // Push Flags Register onto the Stack
SMPUsesFlags[NN_pushf] = true;               // Push Flags Register onto the Stack
SMPUsesFlags[NN_pushfd] = true;              // Push Flags Register onto the Stack (use32)
SMPUsesFlags[NN_pushfq] = true;              // Push Flags Register onto the Stack (use64)
SMPUsesFlags[NN_rcl] = true;                 // Rotate Through Carry Left
SMPUsesFlags[NN_rcr] = true;                 // Rotate Through Carry Right
SMPUsesFlags[NN_repe] = true;                // Repeat String Operation while ZF=1
SMPUsesFlags[NN_repne] = true;               // Repeat String Operation while ZF=0
SMPUsesFlags[NN_sbb] = true;                 // Integer Subtraction with Borrow
SMPUsesFlags[NN_scas] = true;                // Compare String (uses DF direction flag)
SMPUsesFlags[NN_seta] = true;                // Set Byte if Above (CF=0 & ZF=0)
SMPUsesFlags[NN_setae] = true;               // Set Byte if Above or Equal (CF=0)
SMPUsesFlags[NN_setb] = true;                // Set Byte if Below (CF=1)
SMPUsesFlags[NN_setbe] = true;               // Set Byte if Below or Equal (CF=1 | ZF=1)
SMPUsesFlags[NN_setc] = true;                // Set Byte if Carry (CF=1)
SMPUsesFlags[NN_sete] = true;                // Set Byte if Equal (ZF=1)
SMPUsesFlags[NN_setg] = true;                // Set Byte if Greater (ZF=0 & SF=OF)
SMPUsesFlags[NN_setge] = true;               // Set Byte if Greater or Equal (SF=OF)
SMPUsesFlags[NN_setl] = true;                // Set Byte if Less (SF!=OF)
SMPUsesFlags[NN_setle] = true;               // Set Byte if Less or Equal (ZF=1 | SF!=OF)
SMPUsesFlags[NN_setna] = true;               // Set Byte if Not Above (CF=1 | ZF=1)
SMPUsesFlags[NN_setnae] = true;              // Set Byte if Not Above or Equal (CF=1)
SMPUsesFlags[NN_setnb] = true;               // Set Byte if Not Below (CF=0)
SMPUsesFlags[NN_setnbe] = true;              // Set Byte if Not Below or Equal (CF=0 & ZF=0)
SMPUsesFlags[NN_setnc] = true;               // Set Byte if Not Carry (CF=0)
SMPUsesFlags[NN_setne] = true;               // Set Byte if Not Equal (ZF=0)
SMPUsesFlags[NN_setng] = true;               // Set Byte if Not Greater (ZF=1 | SF!=OF)
clc5q's avatar
clc5q committed
SMPUsesFlags[NN_setnge] = true;              // Set Byte if Not Greater or Equal (SF!=OF)
SMPUsesFlags[NN_setnl] = true;               // Set Byte if Not Less (SF=OF)
SMPUsesFlags[NN_setnle] = true;              // Set Byte if Not Less or Equal (ZF=0 & SF=OF)
SMPUsesFlags[NN_setno] = true;               // Set Byte if Not Overflow (OF=0)
SMPUsesFlags[NN_setnp] = true;               // Set Byte if Not Parity (PF=0)
SMPUsesFlags[NN_setns] = true;               // Set Byte if Not Sign (SF=0)
SMPUsesFlags[NN_setnz] = true;               // Set Byte if Not Zero (ZF=0)
SMPUsesFlags[NN_seto] = true;                // Set Byte if Overflow (OF=1)
SMPUsesFlags[NN_setp] = true;                // Set Byte if Parity (PF=1)
SMPUsesFlags[NN_setpe] = true;               // Set Byte if Parity Even (PF=1)
SMPUsesFlags[NN_setpo] = true;               // Set Byte if Parity Odd  (PF=0)
SMPUsesFlags[NN_sets] = true;                // Set Byte if Sign (SF=1)
SMPUsesFlags[NN_setz] = true;                // Set Byte if Zero (ZF=1)
SMPUsesFlags[NN_stos] = true;                // Store String

//
//      486 instructions
//

//
//      Pentium instructions
//

SMPUsesFlags[NN_cpuid] = true;               // Get CPU ID
SMPUsesFlags[NN_cmpxchg8b] = true;           // Compare and Exchange Eight Bytes

//
//      Pentium Pro instructions
//

SMPUsesFlags[NN_cmova] = true;               // Move if Above (CF=0 & ZF=0)
SMPUsesFlags[NN_cmovb] = true;               // Move if Below (CF=1)
SMPUsesFlags[NN_cmovbe] = true;              // Move if Below or Equal (CF=1 | ZF=1)
SMPUsesFlags[NN_cmovg] = true;               // Move if Greater (ZF=0 & SF=OF)
SMPUsesFlags[NN_cmovge] = true;              // Move if Greater or Equal (SF=OF)
SMPUsesFlags[NN_cmovl] = true;               // Move if Less (SF!=OF)
SMPUsesFlags[NN_cmovle] = true;              // Move if Less or Equal (ZF=1 | SF!=OF)
SMPUsesFlags[NN_cmovnb] = true;              // Move if Not Below (CF=0)
SMPUsesFlags[NN_cmovno] = true;              // Move if Not Overflow (OF=0)
SMPUsesFlags[NN_cmovnp] = true;              // Move if Not Parity (PF=0)
SMPUsesFlags[NN_cmovns] = true;              // Move if Not Sign (SF=0)
SMPUsesFlags[NN_cmovnz] = true;              // Move if Not Zero (ZF=0)
SMPUsesFlags[NN_cmovo] = true;               // Move if Overflow (OF=1)
SMPUsesFlags[NN_cmovp] = true;               // Move if Parity (PF=1)
SMPUsesFlags[NN_cmovs] = true;               // Move if Sign (SF=1)
SMPUsesFlags[NN_cmovz] = true;               // Move if Zero (ZF=1)
SMPUsesFlags[NN_fcmovb] = true;              // Floating Move if Below          
SMPUsesFlags[NN_fcmove] = true;              // Floating Move if Equal          
SMPUsesFlags[NN_fcmovbe] = true;             // Floating Move if Below or Equal 
SMPUsesFlags[NN_fcmovu] = true;              // Floating Move if Unordered      
SMPUsesFlags[NN_fcmovnb] = true;             // Floating Move if Not Below      
SMPUsesFlags[NN_fcmovne] = true;             // Floating Move if Not Equal      
SMPUsesFlags[NN_fcmovnbe] = true;            // Floating Move if Not Below or Equal
SMPUsesFlags[NN_fcmovnu] = true;             // Floating Move if Not Unordered     

//
//


//
//      80387 instructions
//


//
//      Instructions added 28.02.96
//

SMPUsesFlags[NN_setalc] = true;              // Set AL to Carry Flag      

//
//      MMX instructions
//


//
//      Undocumented Deschutes processor instructions
//


//      Pentium II instructions


//      3DNow! instructions


//      Pentium III instructions


// Pentium III Pseudo instructions


// AMD K7 instructions

// Revisit AMD if we port to it.

// Undocumented FP instructions (thanks to norbert.juffa@adm.com)

// Pentium 4 instructions



// AMD syscall/sysret instructions  NOTE: not AMD, found in Intel manual

// AMD64 instructions    NOTE: not AMD, found in Intel manual


// New Pentium instructions (SSE3)


// Missing AMD64 instructions  NOTE: also found in Intel manual


// SSE3 instructions


// SSSE3 instructions


// VMX instructions

// Added with x86-64

// Geode LX 3DNow! extensions

// SSE2 pseudoinstructions

// SSSE4.1 instructions

// SSSE4.2 instructions

// AMD SSE4a instructions

// xsave/xrstor instructions

// Intel Safer Mode Extensions (SMX)

// AMD-V Virtualization ISA Extension

// VMX+ instructions

// Intel Atom instructions

// Intel AES instructions

// Carryless multiplication
// Returns modified by operand size prefixes

// RDRAND support

// new GPR instructions

SMPUsesFlags[NN_adcx] = true;                 // Unsigned Integer Addition of Two Operands with Carry Flag
SMPUsesFlags[NN_adox] = true;                 // Unsigned Integer Addition of Two Operands with Overflow Flag

// new AVX instructions

// Transactional Synchronization Extensions

// Virtual PC synthetic instructions

SMPUsesFlags[NN_last] = false;

  return;

} // end InitSMPUsesFlags()


// Initialize the SMPTypeCategory[] array to define how we infer
//   numeric or pointer operand types for optimizing annotations.
void InitTypeCategory(void) {
	// Default category is 0, no type inference without knowing context.
	(void) memset(SMPTypeCategory, 0, sizeof(SMPTypeCategory));
	// Category 1 instructions will need no mmStrata instrumentation
	//  and are irrelevant to our type system, so we do not attempt
	//  to make type inferences. Many of these operate on numeric
	//  operands such as floating point or MMX/SSE registers. mmStrata
	//  assumes that such registers are always numeric, so we do not
	//  need annotations informing mmStrata that FP/MMX/SSE regs are numeric.
	// Category 2 instructions always have a result type of 'n' (number).
	// Category 3 instructions have a result type of 'n' (number)
	//  whenever the second source operand is an operand of type 'n'.
	//  NOTE: MOV is the only current example, and this will take some thought if 
    //   other examples arise.
	// Category 4 instructions have a result type identical to the 1st source operand type.
	//  NOTE: This is currently set for single-operand instructions such as
	//   INC, DEC. As a result, these are treated pretty much as if
	//   they were category 1 instructions, as there is no metadata update,
	//   even if the operand is a memory operand.
	//   If new instructions are added to this category that are not single
	//   operand and do require some updating, the category should be split.
	// Category 5 instructions have a result type identical to the 1st source operand
	//  type whenever the 2nd source operand is an operand of type 'n' & vice versa.
	//  Examples are add, sub, adc, and sbb. There are subtle exceptions
	//  handled in the SMPInstr::EmitTypeAnnotations() method.
	// Category 6 instructions always have a result type of 'p' (pointer).
	// Category 7 instructions are category 2 instructions with two destinations,
	//  such as multiply and divide instructions that affect EDX:EAX. There are
	//  forms of these instructions that only have one destination, so they have
	//  to be distinguished via the operand info.
    // Category 8 instructions implicitly write a numeric value to EDX:EAX, but
    //  EDX and EAX are not listed as operands. RDTSC, RDPMC, RDMSR, and other
    //  instructions that copy machine registers into EDX:EAX are category 8.
	//  Some instructions in category 8 also write to ECX.
    // Category 9 instructions are floating point instructions that either
    //  have a memory destination (treat as category 13) or a FP reg destination
    //  (treat as category 1, as FP regs are always 'n' and ignored in our system).
	// Category 10 instructions have 'n' results if the sources are all 'n';
	//  we cannot infer the type of the result if the sources are of mixed types.
	//  Bitwise OR and AND and LEA (load effective address) are examples.
	// Category 11 instructions need to have their types and locations on the stack
	//  frame tracked, e.g. push and pop instructions. No direct type inference.
	// Category 12 instructions are similar to category 10, except that we do not
	//  output 'n' annotations when all sources are 'n'; rather, the instruction can
	//  be simply ignored (not instrumented by mmStrata) in that case. Conditional
	//  exchange instructions are examples; we do or do not
	//  move a numeric value into a register that already has numeric metadata.
	// Category 13 instructions imply that their memory destination is 'n'.
	// Category 14 instructions imply that their reg or memory source operand is 'n';
	//  if source is not memory, they are category 1 (inferences, but no instrumentation).
	//  There should never be a memory destination (usual destination is fpreg or flags).
	// Category 15 instructions always have 'n' source AND destination operands;
	//  if addressed using indirect or indexed addressing, they are a subset of category 0
	//  (must be instrumented by mmStrata to keep index in bounds). Memory destinations
	//  are common in this category.

	// NOTE: The Memory Monitor SDT needs just three categories, corresponding
	//  to categories 0, 1, and all others. For all categories > 1, the
	//  annotation should tell the SDT exactly how to update its metadata.
	//  For example, a division instruction will write type 'n' (NUM) as
	//  the metadata for result registers EDX:EAX. So, the annotation should
	//  list 'n', EDX, EAX, and a terminator of ZZ. CWD (convert word to
	//  doubleword) should have a list of n EAX ZZ.

SMPTypeCategory[NN_null] = 0;            // Unknown Operation
SMPTypeCategory[NN_aaa] = 2;                 // ASCII Adjust after Addition
SMPTypeCategory[NN_aad] = 2;                 // ASCII Adjust AX before Division
SMPTypeCategory[NN_aam] = 2;                 // ASCII Adjust AX after Multiply
SMPTypeCategory[NN_aas] = 2;                 // ASCII Adjust AL after Subtraction
SMPTypeCategory[NN_adc] = 5;                 // Add with Carry
SMPTypeCategory[NN_add] = 5;                 // Add
SMPTypeCategory[NN_and] = 10;                // Logical AND
SMPTypeCategory[NN_arpl] = 1;                // Adjust RPL Field of Selector
SMPTypeCategory[NN_bound] = 1;               // Check Array Index Against Bounds
SMPTypeCategory[NN_bsf] = 2;                 // Bit Scan Forward
SMPTypeCategory[NN_bsr] = 2;                 // Bit Scan Reverse
SMPTypeCategory[NN_bt] = 10;                  // Bit Test
SMPTypeCategory[NN_btc] = 10;                 // Bit Test and Complement
SMPTypeCategory[NN_btr] = 10;                 // Bit Test and Reset
SMPTypeCategory[NN_bts] = 10;                 // Bit Test and Set
SMPTypeCategory[NN_call] = 1;                // Call Procedure
SMPTypeCategory[NN_callfi] = 1;              // Indirect Call Far Procedure
SMPTypeCategory[NN_callni] = 1;              // Indirect Call Near Procedure
SMPTypeCategory[NN_cbw] = 2;                 // AL -> AX (with sign)            ** No ops?
SMPTypeCategory[NN_cwde] = 2;                // AX -> EAX (with sign)           **
SMPTypeCategory[NN_cdqe] = 2;                // EAX -> RAX (with sign)          **
SMPTypeCategory[NN_clc] = 1;                 // Clear Carry Flag
SMPTypeCategory[NN_cld] = 1;                 // Clear Direction Flag
SMPTypeCategory[NN_cli] = 1;                 // Clear Interrupt Flag
SMPTypeCategory[NN_clts] = 1;                // Clear Task-Switched Flag in CR0
SMPTypeCategory[NN_cmc] = 1;                 // Complement Carry Flag
SMPTypeCategory[NN_cmp] = 1;                 // Compare Two Operands
SMPTypeCategory[NN_cmps] = 14;                // Compare Strings
SMPTypeCategory[NN_cwd] = 2;                 // AX -> DX:AX (with sign)
SMPTypeCategory[NN_cdq] = 2;                 // EAX -> EDX:EAX (with sign)
SMPTypeCategory[NN_cqo] = 2;                 // RAX -> RDX:RAX (with sign)
SMPTypeCategory[NN_daa] = 2;                 // Decimal Adjust AL after Addition
SMPTypeCategory[NN_das] = 2;                 // Decimal Adjust AL after Subtraction
SMPTypeCategory[NN_dec] = 4;                 // Decrement by 1
SMPTypeCategory[NN_div] = 7;                 // Unsigned Divide
SMPTypeCategory[NN_enterw] = 0;              // Make Stack Frame for Procedure Parameters  **
SMPTypeCategory[NN_enter] = 0;               // Make Stack Frame for Procedure Parameters  **
SMPTypeCategory[NN_enterd] = 0;              // Make Stack Frame for Procedure Parameters  **
SMPTypeCategory[NN_enterq] = 0;              // Make Stack Frame for Procedure Parameters  **
SMPTypeCategory[NN_hlt] = 0;                 // Halt
SMPTypeCategory[NN_idiv] = 7;                // Signed Divide
SMPTypeCategory[NN_imul] = 7;                // Signed Multiply
SMPTypeCategory[NN_in] = 0;                  // Input from Port                         **
SMPTypeCategory[NN_inc] = 4;                 // Increment by 1
SMPTypeCategory[NN_ins] = 2;                 // Input Byte(s) from Port to String       **
SMPTypeCategory[NN_int] = 0;                 // Call to Interrupt Procedure
SMPTypeCategory[NN_into] = 0;                // Call to Interrupt Procedure if Overflow Flag = 1
SMPTypeCategory[NN_int3] = 0;                // Trap to Debugger
SMPTypeCategory[NN_iretw] = 0;               // Interrupt Return
SMPTypeCategory[NN_iret] = 0;                // Interrupt Return
SMPTypeCategory[NN_iretd] = 0;               // Interrupt Return (use32)
SMPTypeCategory[NN_iretq] = 0;               // Interrupt Return (use64)
SMPTypeCategory[NN_ja] = 1;                  // Jump if Above (CF=0 & ZF=0)
SMPTypeCategory[NN_jae] = 1;                 // Jump if Above or Equal (CF=0)
SMPTypeCategory[NN_jb] = 1;                  // Jump if Below (CF=1)
SMPTypeCategory[NN_jbe] = 1;                 // Jump if Below or Equal (CF=1 | ZF=1)
SMPTypeCategory[NN_jc] = 1;                  // Jump if Carry (CF=1)
SMPTypeCategory[NN_jcxz] = 1;                // Jump if CX is 0
SMPTypeCategory[NN_jecxz] = 1;               // Jump if ECX is 0
SMPTypeCategory[NN_jrcxz] = 1;               // Jump if RCX is 0
SMPTypeCategory[NN_je] = 1;                  // Jump if Equal (ZF=1)
SMPTypeCategory[NN_jg] = 1;                  // Jump if Greater (ZF=0 & SF=OF)
SMPTypeCategory[NN_jge] = 1;                 // Jump if Greater or Equal (SF=OF)
SMPTypeCategory[NN_jl] = 1;                  // Jump if Less (SF!=OF)
SMPTypeCategory[NN_jle] = 1;                 // Jump if Less or Equal (ZF=1 | SF!=OF)
SMPTypeCategory[NN_jna] = 1;                 // Jump if Not Above (CF=1 | ZF=1)
SMPTypeCategory[NN_jnae] = 1;                // Jump if Not Above or Equal (CF=1)
SMPTypeCategory[NN_jnb] = 1;                 // Jump if Not Below (CF=0)
SMPTypeCategory[NN_jnbe] = 1;                // Jump if Not Below or Equal (CF=0 & ZF=0)
SMPTypeCategory[NN_jnc] = 1;                 // Jump if Not Carry (CF=0)
SMPTypeCategory[NN_jne] = 1;                 // Jump if Not Equal (ZF=0)
SMPTypeCategory[NN_jng] = 1;                 // Jump if Not Greater (ZF=1 | SF!=OF)
clc5q's avatar
clc5q committed
SMPTypeCategory[NN_jnge] = 1;                // Jump if Not Greater or Equal (SF!=OF)
SMPTypeCategory[NN_jnl] = 1;                 // Jump if Not Less (SF=OF)
SMPTypeCategory[NN_jnle] = 1;                // Jump if Not Less or Equal (ZF=0 & SF=OF)
SMPTypeCategory[NN_jno] = 1;                 // Jump if Not Overflow (OF=0)
SMPTypeCategory[NN_jnp] = 1;                 // Jump if Not Parity (PF=0)
SMPTypeCategory[NN_jns] = 1;                 // Jump if Not Sign (SF=0)
SMPTypeCategory[NN_jnz] = 1;                 // Jump if Not Zero (ZF=0)
SMPTypeCategory[NN_jo] = 1;                  // Jump if Overflow (OF=1)
SMPTypeCategory[NN_jp] = 1;                  // Jump if Parity (PF=1)
SMPTypeCategory[NN_jpe] = 1;                 // Jump if Parity Even (PF=1)
SMPTypeCategory[NN_jpo] = 1;                 // Jump if Parity Odd  (PF=0)
SMPTypeCategory[NN_js] = 1;                  // Jump if Sign (SF=1)
SMPTypeCategory[NN_jz] = 1;                  // Jump if Zero (ZF=1)
SMPTypeCategory[NN_jmp] = 1;                 // Jump
SMPTypeCategory[NN_jmpfi] = 1;               // Indirect Far Jump
SMPTypeCategory[NN_jmpni] = 1;               // Indirect Near Jump
SMPTypeCategory[NN_jmpshort] = 1;            // Jump Short (not used)
SMPTypeCategory[NN_lahf] = 2;                // Load Flags into AH Register
SMPTypeCategory[NN_lar] = 2;                 // Load Access Rights Byte
SMPTypeCategory[NN_lea] = 10;                // Load Effective Address           **
SMPTypeCategory[NN_leavew] = 0;              // High Level Procedure Exit        **
SMPTypeCategory[NN_leave] = 0;               // High Level Procedure Exit        **
SMPTypeCategory[NN_leaved] = 0;              // High Level Procedure Exit        **
SMPTypeCategory[NN_leaveq] = 0;              // High Level Procedure Exit        **
SMPTypeCategory[NN_lgdt] = 0;                // Load Global Descriptor Table Register
SMPTypeCategory[NN_lidt] = 0;                // Load Interrupt Descriptor Table Register
SMPTypeCategory[NN_lgs] = 6;                 // Load Full Pointer to GS:xx
SMPTypeCategory[NN_lss] = 6;                 // Load Full Pointer to SS:xx
SMPTypeCategory[NN_lds] = 6;                 // Load Full Pointer to DS:xx
SMPTypeCategory[NN_les] = 6;                 // Load Full Pointer to ES:xx
SMPTypeCategory[NN_lfs] = 6;                 // Load Full Pointer to FS:xx
SMPTypeCategory[NN_lldt] = 0;                // Load Local Descriptor Table Register
SMPTypeCategory[NN_lmsw] = 1;                // Load Machine Status Word
SMPTypeCategory[NN_lock] = 1;                // Assert LOCK# Signal Prefix
SMPTypeCategory[NN_lods] = 0;                // Load String
SMPTypeCategory[NN_loopw] = 1;               // Loop while ECX != 0
SMPTypeCategory[NN_loop] = 1;                // Loop while CX != 0
SMPTypeCategory[NN_loopd] = 1;               // Loop while ECX != 0
SMPTypeCategory[NN_loopq] = 1;               // Loop while RCX != 0
SMPTypeCategory[NN_loopwe] = 1;              // Loop while CX != 0 and ZF=1
SMPTypeCategory[NN_loope] = 1;               // Loop while rCX != 0 and ZF=1
SMPTypeCategory[NN_loopde] = 1;              // Loop while ECX != 0 and ZF=1
SMPTypeCategory[NN_loopqe] = 1;              // Loop while RCX != 0 and ZF=1
SMPTypeCategory[NN_loopwne] = 1;             // Loop while CX != 0 and ZF=0
SMPTypeCategory[NN_loopne] = 1;              // Loop while rCX != 0 and ZF=0
SMPTypeCategory[NN_loopdne] = 1;             // Loop while ECX != 0 and ZF=0
SMPTypeCategory[NN_loopqne] = 1;             // Loop while RCX != 0 and ZF=0
SMPTypeCategory[NN_lsl] = 6;                 // Load Segment Limit
SMPTypeCategory[NN_ltr] = 1;                 // Load Task Register
SMPTypeCategory[NN_mov] = 3;                 // Move Data
SMPTypeCategory[NN_movsp] = 3;               // Move to/from Special Registers
SMPTypeCategory[NN_movs] = 0;                // Move Byte(s) from String to String
SMPTypeCategory[NN_movsx] = 3;               // Move with Sign-Extend
SMPTypeCategory[NN_movzx] = 3;               // Move with Zero-Extend
SMPTypeCategory[NN_mul] = 7;                 // Unsigned Multiplication of AL or AX
SMPTypeCategory[NN_neg] = 2;                 // Two's Complement Negation   !!!!****!!!! Change this when mmStrata handles NEGATEDPTR type.
SMPTypeCategory[NN_nop] = 1;                 // No Operation
SMPTypeCategory[NN_not] = 2;                 // One's Complement Negation
SMPTypeCategory[NN_or] = 10;                  // Logical Inclusive OR
SMPTypeCategory[NN_out] = 0;                 // Output to Port
SMPTypeCategory[NN_outs] = 0;                // Output Byte(s) to Port
SMPTypeCategory[NN_pop] = 11;                 // Pop a word from the Stack
SMPTypeCategory[NN_popaw] = 11;               // Pop all General Registers
SMPTypeCategory[NN_popa] = 11;                // Pop all General Registers
SMPTypeCategory[NN_popad] = 11;               // Pop all General Registers (use32)
SMPTypeCategory[NN_popaq] = 11;               // Pop all General Registers (use64)
SMPTypeCategory[NN_popfw] = 11;               // Pop Stack into Flags Register         **
SMPTypeCategory[NN_popf] = 11;                // Pop Stack into Flags Register         **
SMPTypeCategory[NN_popfd] = 11;               // Pop Stack into Eflags Register        **
SMPTypeCategory[NN_popfq] = 11;               // Pop Stack into Rflags Register        **
SMPTypeCategory[NN_push] = 11;                // Push Operand onto the Stack
SMPTypeCategory[NN_pushaw] = 11;              // Push all General Registers
SMPTypeCategory[NN_pusha] = 11;               // Push all General Registers
SMPTypeCategory[NN_pushad] = 11;              // Push all General Registers (use32)
SMPTypeCategory[NN_pushaq] = 11;              // Push all General Registers (use64)
SMPTypeCategory[NN_pushfw] = 11;              // Push Flags Register onto the Stack
SMPTypeCategory[NN_pushf] = 11;               // Push Flags Register onto the Stack
SMPTypeCategory[NN_pushfd] = 11;              // Push Flags Register onto the Stack (use32)
SMPTypeCategory[NN_pushfq] = 11;              // Push Flags Register onto the Stack (use64)
SMPTypeCategory[NN_rcl] = 2;                 // Rotate Through Carry Left
SMPTypeCategory[NN_rcr] = 2;                 // Rotate Through Carry Right
SMPTypeCategory[NN_rol] = 2;                 // Rotate Left
SMPTypeCategory[NN_ror] = 2;                 // Rotate Right
SMPTypeCategory[NN_rep] = 0;                 // Repeat String Operation
SMPTypeCategory[NN_repe] = 0;                // Repeat String Operation while ZF=1
SMPTypeCategory[NN_repne] = 0;               // Repeat String Operation while ZF=0
SMPTypeCategory[NN_retn] = 0;                // Return Near from Procedure
SMPTypeCategory[NN_retf] = 0;                // Return Far from Procedure
SMPTypeCategory[NN_sahf] = 14;                // Store AH into Flags Register
SMPTypeCategory[NN_sal] = 2;                 // Shift Arithmetic Left
SMPTypeCategory[NN_sar] = 2;                 // Shift Arithmetic Right
SMPTypeCategory[NN_shl] = 2;                 // Shift Logical Left
SMPTypeCategory[NN_shr] = 2;                 // Shift Logical Right
SMPTypeCategory[NN_sbb] = 5;                 // Integer Subtraction with Borrow
SMPTypeCategory[NN_scas] = 14;                // Compare String
SMPTypeCategory[NN_seta] = 2;                // Set Byte if Above (CF=0 & ZF=0)
SMPTypeCategory[NN_setae] = 2;               // Set Byte if Above or Equal (CF=0)
SMPTypeCategory[NN_setb] = 2;                // Set Byte if Below (CF=1)
SMPTypeCategory[NN_setbe] = 2;               // Set Byte if Below or Equal (CF=1 | ZF=1)
SMPTypeCategory[NN_setc] = 2;                // Set Byte if Carry (CF=1)
SMPTypeCategory[NN_sete] = 2;                // Set Byte if Equal (ZF=1)
SMPTypeCategory[NN_setg] = 2;                // Set Byte if Greater (ZF=0 & SF=OF)
SMPTypeCategory[NN_setge] = 2;               // Set Byte if Greater or Equal (SF=OF)
SMPTypeCategory[NN_setl] = 2;                // Set Byte if Less (SF!=OF)
SMPTypeCategory[NN_setle] = 2;               // Set Byte if Less or Equal (ZF=1 | SF!=OF)
SMPTypeCategory[NN_setna] = 2;               // Set Byte if Not Above (CF=1 | ZF=1)
SMPTypeCategory[NN_setnae] = 2;              // Set Byte if Not Above or Equal (CF=1)
SMPTypeCategory[NN_setnb] = 2;               // Set Byte if Not Below (CF=0)
SMPTypeCategory[NN_setnbe] = 2;              // Set Byte if Not Below or Equal (CF=0 & ZF=0)
SMPTypeCategory[NN_setnc] = 2;               // Set Byte if Not Carry (CF=0)
SMPTypeCategory[NN_setne] = 2;               // Set Byte if Not Equal (ZF=0)
SMPTypeCategory[NN_setng] = 2;               // Set Byte if Not Greater (ZF=1 | SF!=OF)
clc5q's avatar
clc5q committed
SMPTypeCategory[NN_setnge] = 2;              // Set Byte if Not Greater or Equal (SF!=OF)
SMPTypeCategory[NN_setnl] = 2;               // Set Byte if Not Less (SF=OF)
SMPTypeCategory[NN_setnle] = 2;              // Set Byte if Not Less or Equal (ZF=0 & SF=OF)
SMPTypeCategory[NN_setno] = 2;               // Set Byte if Not Overflow (OF=0)
SMPTypeCategory[NN_setnp] = 2;               // Set Byte if Not Parity (PF=0)
SMPTypeCategory[NN_setns] = 2;               // Set Byte if Not Sign (SF=0)
SMPTypeCategory[NN_setnz] = 2;               // Set Byte if Not Zero (ZF=0)
SMPTypeCategory[NN_seto] = 2;                // Set Byte if Overflow (OF=1)
SMPTypeCategory[NN_setp] = 2;                // Set Byte if Parity (PF=1)
SMPTypeCategory[NN_setpe] = 2;               // Set Byte if Parity Even (PF=1)
SMPTypeCategory[NN_setpo] = 2;               // Set Byte if Parity Odd  (PF=0)
SMPTypeCategory[NN_sets] = 2;                // Set Byte if Sign (SF=1)
SMPTypeCategory[NN_setz] = 2;                // Set Byte if Zero (ZF=1)
SMPTypeCategory[NN_sgdt] = 0;                // Store Global Descriptor Table Register
SMPTypeCategory[NN_sidt] = 0;                // Store Interrupt Descriptor Table Register
SMPTypeCategory[NN_shld] = 2;                // Double Precision Shift Left
SMPTypeCategory[NN_shrd] = 2;                // Double Precision Shift Right
SMPTypeCategory[NN_sldt] = 6;                // Store Local Descriptor Table Register
SMPTypeCategory[NN_smsw] = 2;                // Store Machine Status Word
SMPTypeCategory[NN_stc] = 1;                 // Set Carry Flag
SMPTypeCategory[NN_std] = 1;                 // Set Direction Flag
SMPTypeCategory[NN_sti] = 1;                 // Set Interrupt Flag
SMPTypeCategory[NN_stos] = 0;                // Store String
SMPTypeCategory[NN_str] = 6;                 // Store Task Register
SMPTypeCategory[NN_sub] = 5;                 // Integer Subtraction
SMPTypeCategory[NN_test] = 1;                // Logical Compare
SMPTypeCategory[NN_verr] = 1;                // Verify a Segment for Reading
SMPTypeCategory[NN_verw] = 1;                // Verify a Segment for Writing
SMPTypeCategory[NN_wait] = 1;                // Wait until BUSY# Pin is Inactive (HIGH)
SMPTypeCategory[NN_xchg] = 12;               // Exchange Register/Memory with Register
SMPTypeCategory[NN_xlat] = 0;                // Table Lookup Translation
SMPTypeCategory[NN_xor] = 2;                 // Logical Exclusive OR

//
//      486 instructions
//

SMPTypeCategory[NN_cmpxchg] = 12;             // Compare and Exchange
SMPTypeCategory[NN_bswap] = 1;               // Swap bytes in register
SMPTypeCategory[NN_xadd] = 12;                // t<-dest; dest<-src+dest; src<-t
SMPTypeCategory[NN_invd] = 1;                // Invalidate Data Cache
SMPTypeCategory[NN_wbinvd] = 1;              // Invalidate Data Cache (write changes)
SMPTypeCategory[NN_invlpg] = 1;              // Invalidate TLB entry

//
//      Pentium instructions
//

SMPTypeCategory[NN_rdmsr] = 8;               // Read Machine Status Register
SMPTypeCategory[NN_wrmsr] = 1;               // Write Machine Status Register
SMPTypeCategory[NN_cpuid] = 8;               // Get CPU ID
SMPTypeCategory[NN_cmpxchg8b] = 12;           // Compare and Exchange Eight Bytes
SMPTypeCategory[NN_rdtsc] = 8;               // Read Time Stamp Counter
SMPTypeCategory[NN_rsm] = 1;                 // Resume from System Management Mode

//
//      Pentium Pro instructions
//

SMPTypeCategory[NN_cmova] = 0;               // Move if Above (CF=0 & ZF=0)
SMPTypeCategory[NN_cmovb] = 0;               // Move if Below (CF=1)
SMPTypeCategory[NN_cmovbe] = 0;              // Move if Below or Equal (CF=1 | ZF=1)
SMPTypeCategory[NN_cmovg] = 0;               // Move if Greater (ZF=0 & SF=OF)
SMPTypeCategory[NN_cmovge] = 0;              // Move if Greater or Equal (SF=OF)
SMPTypeCategory[NN_cmovl] = 0;               // Move if Less (SF!=OF)
SMPTypeCategory[NN_cmovle] = 0;              // Move if Less or Equal (ZF=1 | SF!=OF)
SMPTypeCategory[NN_cmovnb] = 0;              // Move if Not Below (CF=0)
SMPTypeCategory[NN_cmovno] = 0;              // Move if Not Overflow (OF=0)
SMPTypeCategory[NN_cmovnp] = 0;              // Move if Not Parity (PF=0)
SMPTypeCategory[NN_cmovns] = 0;              // Move if Not Sign (SF=0)
SMPTypeCategory[NN_cmovnz] = 0;              // Move if Not Zero (ZF=0)
SMPTypeCategory[NN_cmovo] = 0;               // Move if Overflow (OF=1)
SMPTypeCategory[NN_cmovp] = 0;               // Move if Parity (PF=1)
SMPTypeCategory[NN_cmovs] = 0;               // Move if Sign (SF=1)
SMPTypeCategory[NN_cmovz] = 0;               // Move if Zero (ZF=1)
SMPTypeCategory[NN_fcmovb] = 1;              // Floating Move if Below          
SMPTypeCategory[NN_fcmove] = 1;              // Floating Move if Equal          
SMPTypeCategory[NN_fcmovbe] = 1;             // Floating Move if Below or Equal 
SMPTypeCategory[NN_fcmovu] = 1;              // Floating Move if Unordered      
SMPTypeCategory[NN_fcmovnb] = 1;             // Floating Move if Not Below      
SMPTypeCategory[NN_fcmovne] = 1;             // Floating Move if Not Equal      
SMPTypeCategory[NN_fcmovnbe] = 1;            // Floating Move if Not Below or Equal
SMPTypeCategory[NN_fcmovnu] = 1;             // Floating Move if Not Unordered     
SMPTypeCategory[NN_fcomi] = 1;               // FP Compare, result in EFLAGS
SMPTypeCategory[NN_fucomi] = 1;              // FP Unordered Compare, result in EFLAGS
SMPTypeCategory[NN_fcomip] = 1;              // FP Compare, result in EFLAGS, pop stack
SMPTypeCategory[NN_fucomip] = 1;             // FP Unordered Compare, result in EFLAGS, pop stack
SMPTypeCategory[NN_rdpmc] = 8;               // Read Performance Monitor Counter

//
//      FPP instructions
//

SMPTypeCategory[NN_fld] = 14;                 // Load Real             ** Infer src is 'n'
SMPTypeCategory[NN_fst] = 9;                 // Store Real            
SMPTypeCategory[NN_fstp] = 9;                // Store Real and Pop   
SMPTypeCategory[NN_fxch] = 1;                // Exchange Registers
SMPTypeCategory[NN_fild] = 14;                // Load Integer          ** Infer src is 'n'
SMPTypeCategory[NN_fist] = 13;                // Store Integer
SMPTypeCategory[NN_fistp] = 13;               // Store Integer and Pop
SMPTypeCategory[NN_fbld] = 1;                // Load BCD
SMPTypeCategory[NN_fbstp] = 13;               // Store BCD and Pop
SMPTypeCategory[NN_fadd] = 14;                // Add Real
SMPTypeCategory[NN_faddp] = 14;               // Add Real and Pop
SMPTypeCategory[NN_fiadd] = 14;               // Add Integer
SMPTypeCategory[NN_fsub] = 14;                // Subtract Real
SMPTypeCategory[NN_fsubp] = 14;               // Subtract Real and Pop
SMPTypeCategory[NN_fisub] = 14;               // Subtract Integer
SMPTypeCategory[NN_fsubr] = 14;               // Subtract Real Reversed
SMPTypeCategory[NN_fsubrp] = 14;              // Subtract Real Reversed and Pop
SMPTypeCategory[NN_fisubr] = 14;              // Subtract Integer Reversed
SMPTypeCategory[NN_fmul] = 14;                // Multiply Real
SMPTypeCategory[NN_fmulp] = 14;               // Multiply Real and Pop
SMPTypeCategory[NN_fimul] = 14;               // Multiply Integer
SMPTypeCategory[NN_fdiv] = 14;                // Divide Real
SMPTypeCategory[NN_fdivp] = 14;               // Divide Real and Pop
SMPTypeCategory[NN_fidiv] = 14;               // Divide Integer
SMPTypeCategory[NN_fdivr] = 14;               // Divide Real Reversed
SMPTypeCategory[NN_fdivrp] = 14;              // Divide Real Reversed and Pop
SMPTypeCategory[NN_fidivr] = 14;              // Divide Integer Reversed
SMPTypeCategory[NN_fsqrt] = 1;               // Square Root
SMPTypeCategory[NN_fscale] = 1;              // Scale:  st(0) <- st(0) * 2^st(1)
SMPTypeCategory[NN_fprem] = 1;               // Partial Remainder
SMPTypeCategory[NN_frndint] = 1;             // Round to Integer
SMPTypeCategory[NN_fxtract] = 1;             // Extract exponent and significand
SMPTypeCategory[NN_fabs] = 1;                // Absolute value
SMPTypeCategory[NN_fchs] = 1;                // Change Sign
SMPTypeCategory[NN_fcom] = 1;                // Compare Real
SMPTypeCategory[NN_fcomp] = 1;               // Compare Real and Pop
SMPTypeCategory[NN_fcompp] = 1;              // Compare Real and Pop Twice
SMPTypeCategory[NN_ficom] = 1;               // Compare Integer
SMPTypeCategory[NN_ficomp] = 1;              // Compare Integer and Pop
SMPTypeCategory[NN_ftst] = 1;                // Test
SMPTypeCategory[NN_fxam] = 1;                // Examine
SMPTypeCategory[NN_fptan] = 1;               // Partial tangent
SMPTypeCategory[NN_fpatan] = 1;              // Partial arctangent
SMPTypeCategory[NN_f2xm1] = 1;               // 2^x - 1
SMPTypeCategory[NN_fyl2x] = 1;               // Y * lg2(X)
SMPTypeCategory[NN_fyl2xp1] = 1;             // Y * lg2(X+1)
SMPTypeCategory[NN_fldz] = 1;                // Load +0.0
SMPTypeCategory[NN_fld1] = 1;                // Load +1.0
SMPTypeCategory[NN_fldpi] = 1;               // Load PI=3.14...
SMPTypeCategory[NN_fldl2t] = 1;              // Load lg2(10)
SMPTypeCategory[NN_fldl2e] = 1;              // Load lg2(e)
SMPTypeCategory[NN_fldlg2] = 1;              // Load lg10(2)
SMPTypeCategory[NN_fldln2] = 1;              // Load ln(2)
SMPTypeCategory[NN_finit] = 1;               // Initialize Processor