Skip to content
Snippets Groups Projects
SMPDataFlowAnalysis.cpp 73.6 KiB
Newer Older
clc5q's avatar
clc5q committed
//
// SMPDataFlowAnalysis.cpp
//
// This module contains common types an helper classes needed for the
clc5q's avatar
clc5q committed
//   SMP project (Software Memory Protection).
//

#include <list>
#include <set>
clc5q's avatar
clc5q committed
#include <vector>
#include <algorithm>

#include <cstring>
clc5q's avatar
clc5q committed

#include <pro.h>
clc5q's avatar
clc5q committed
#include <assert.h>
clc5q's avatar
clc5q committed
#include <ida.hpp>
#include <idp.hpp>
#include <allins.hpp>
#include <auto.hpp>
#include <bytes.hpp>
#include <funcs.hpp>
#include <intel.hpp>
#include <loader.hpp>
#include <lines.hpp>
#include <name.hpp>

#include "SMPDataFlowAnalysis.h"
#include "SMPStaticAnalyzer.h"

// Set to 1 for debugging output
#define SMP_DEBUG 1
#define SMP_DEBUG2 0   // verbose
#define SMP_DEBUG3 0   // verbose
#define SMP_DEBUG_CONTROLFLOW 0  // tells what processing stage is entered
#define SMP_DEBUG_XOR 0
#define SMP_DEBUG_CHUNKS 1  // tracking down tail chunks for functions
#define SMP_DEBUG_FRAMEFIXUP 0
clc5q's avatar
clc5q committed
#define SMP_DEBUG_DATAFLOW 0

// Compute LVA/SSA or not? Turn it off for NICECAP demo on 31-JAN-2008
#define SMP_COMPUTE_LVA_SSA 0

char *RegNames[R_of + 1] =
	{ "EAX", "ECX", "EDX", "EBX", "ESP", "EBP", "ESI", "EDI",
	  "R8", "R9", "R10", "R11", "R12", "R13", "R14", "R15",
	  "AL", "CL", "DL", "BL", "AH", "CH", "DH", "BH",
	  "SPL", "BPL", "SIL", "DIL", "EIP", "ES", "CS", "SS",
	  "DS", "FS", "GS", "CF", "ZF", "SF", "OF" 
	};

clc5q's avatar
clc5q committed
// Define instruction categories for data flow analysis.
SMPitype DFACategory[NN_last+1];
clc5q's avatar
clc5q committed

// Define which instructions define and use the CPU flags.
bool SMPDefsFlags[NN_last + 1];
bool SMPUsesFlags[NN_last + 1];

// Get the size in bytes of the data type of an operand.
size_t GetOpDataSize(op_t DataOp) {
	size_t DataSize;
	switch (DataOp.dtyp) {
		case dt_byte:
			DataSize = 1;
			break;
		case dt_word:
			DataSize = 2;
			break;
		case dt_dword:
		case dt_float:
		case dt_code:
		case dt_unicode:
		case dt_string:
			DataSize = 4;
			break;
		case dt_double:
		case dt_qword:
			DataSize = 8;
			break;
		case dt_packreal:
			DataSize = 12;
			break;
		case dt_byte16:
			DataSize = 16;
			break;
		case dt_fword:
			DataSize = 6;
			break;
		case dt_3byte:
			DataSize = 3;
			break;
		default:
			msg("WARNING: unexpected data type %d in GetOpDataSize().\n", DataOp.dtyp);
			DataSize = 4;
			break;
	}
	return DataSize;
} // end of GetOpDataSize()

clc5q's avatar
clc5q committed
// We need to make subword registers equal to their containing registers when we
//  do comparisons, so that we will realize that register EAX is killed by a prior DEF
//  of register AL, for example, and vice versa. To keep sets ordered strictly,
//  we also have to make AL and AH be equal to each other as well as equal to EAX.
clc5q's avatar
clc5q committed
#define FIRST_x86_SUBWORD_REG R_al
#define LAST_x86_SUBWORD_REG R_bh
bool MDLessReg(const ushort Reg1, const ushort Reg2) {
	bool FirstSubword = ((Reg1 >= FIRST_x86_SUBWORD_REG) && (Reg1 <= LAST_x86_SUBWORD_REG));
	bool SecondSubword = ((Reg2 >= FIRST_x86_SUBWORD_REG) && (Reg2 <= LAST_x86_SUBWORD_REG));
	ushort SReg1 = Reg1;
	ushort SReg2 = Reg2;
	if (FirstSubword) {
		// See enumeration RegNo in intel.hpp.
		if (SReg1 < 20)  // AL, CL, DL or BL
			SReg1 -= 16;
		else             // AH, CH, DH or BH
			SReg1 -= 20;
	}
	if (SecondSubword) {
		if (SReg2 < 20)
			SReg2 -= 16;
		else
			SReg2 -= 20;
	return (SReg1 < SReg2);
clc5q's avatar
clc5q committed
} // end of MDLessReg()

// In SSA computations, we are storing the GlobalNames index into the op_t fields
//  n, offb, and offo. This function extracts an unsigned int from these three 8-bit
//  fields.
unsigned int ExtractGlobalIndex(op_t GlobalOp) {
	unsigned int index = 0;
	index |= (((unsigned int) GlobalOp.offo) & 0x000000ff);
	index <<= 8;
	index |= (((unsigned int) GlobalOp.offb) & 0x000000ff);
	index <<= 8;
	index |= (((unsigned int) GlobalOp.n) & 0x000000ff);
clc5q's avatar
clc5q committed
	return index;
}

void SetGlobalIndex(op_t *TempOp, size_t index) {
	TempOp->n = (char) (index & 0x000000ff);
	TempOp->offb = (char) ((index & 0x0000ff00) >> 8);
	TempOp->offo = (char) ((index & 0x00ff0000) >> 16);
	return;
}

// DEBUG Print DEF and/or USE for an operand.
void PrintDefUse(ulong feature, int OpNum) {
	// CF_ macros number the operands from 1 to 6, while OpNum
	//  is a 0 to 5 index into the insn_t.Operands[] array.
	// OpNum == -1 is a signal that this is a DEF or USE or VarKillSet etc.
	//  operand and not an instruction operand.
	if (-1 == OpNum)
		return;
	switch (OpNum) {
		case 0:
			if (feature & CF_CHG1)
				msg(" DEF");
			if (feature & CF_USE1)
				msg(" USE");
			break;
		case 1:
			if (feature & CF_CHG2)
				msg(" DEF");
			if (feature & CF_USE2)
				msg(" USE");
			break;
		case 2:
			if (feature & CF_CHG3)
				msg(" DEF");
			if (feature & CF_USE3)
				msg(" USE");
			break;
		case 3:
			if (feature & CF_CHG4)
				msg(" DEF");
			if (feature & CF_USE4)
				msg(" USE");
			break;
		case 4:
			if (feature & CF_CHG5)
				msg(" DEF");
			if (feature & CF_USE5)
				msg(" USE");
			break;
		case 5:
			if (feature & CF_CHG6)
				msg(" DEF");
			if (feature & CF_USE6)
				msg(" USE");
			break;
	}
	return;
} // end PrintDefUse()

// DEBUG print SIB info for an operand.
void PrintSIB(op_t Opnd) {
	int BaseReg = sib_base(Opnd);
	short IndexReg = sib_index(Opnd);
	int ScaleFactor = sib_scale(Opnd);
#define NAME_LEN 5
	char BaseName[NAME_LEN] = {'N', 'o', 'n', 'e', '\0'};
	char IndexName[NAME_LEN] = {'N', 'o', 'n', 'e', '\0'};
#if 1
	if (!((BaseReg == R_bp) && (Opnd.type == o_mem))) // EBP can be SIB code for NO BASE REG
#endif
		qstrncpy(BaseName, RegNames[BaseReg], NAME_LEN - 1);

	if (IndexReg != R_sp) { // SIB code for NO INDEX REG
		qstrncpy(IndexName, RegNames[IndexReg], NAME_LEN -1);
	}
	msg(" Base %s Index %s Scale %d", BaseName, IndexName, ScaleFactor);
} // end PrintSIB()

// Debug: print one operand from an instruction or DEF or USE list.
void PrintOneOperand(op_t Opnd, ulong features, int OpNum) { 
	if (Opnd.type == o_void)
		return;
	else if (Opnd.type == o_mem) {
		msg(" Operand %d : memory : addr: %x", OpNum, Opnd.addr);
		PrintDefUse(features, OpNum);
		if (Opnd.hasSIB) {
			PrintSIB(Opnd);
		}
	}
	else if (Opnd.type == o_phrase) {
		msg(" Operand %d : memory phrase :", OpNum);
		PrintDefUse(features, OpNum);
		if (Opnd.hasSIB) { // has SIB info
			PrintSIB(Opnd);
		}
		else { // no SIB info
			ushort BaseReg = Opnd.phrase;
			msg(" reg %s", RegNames[BaseReg]);
		}
		if (Opnd.addr != 0) {
			msg(" \n WARNING: addr for o_phrase type: %d\n", Opnd.addr);
		}
	}
	else if (Opnd.type == o_displ) {
		msg(" Operand %d : memory displ :", OpNum);
		ea_t offset = Opnd.addr;
		PrintDefUse(features, OpNum);
		if (Opnd.hasSIB) {
			PrintSIB(Opnd);
			msg(" displ %d", offset);
		}
		else {
			ushort BaseReg = Opnd.reg;
			msg(" reg %s displ %d", RegNames[BaseReg], offset);
		}
	}
	else if (Opnd.type == o_reg) {
		msg(" Operand %d : register %s", OpNum, RegNames[Opnd.reg]);
		PrintDefUse(features, OpNum);
	}
	else if (Opnd.type == o_imm) {
		msg(" Operand %d : immed", OpNum);
		PrintDefUse(features, OpNum);
	}
	else if (Opnd.type == o_far) {
		msg(" Operand %d : FarPtrImmed", OpNum);
		msg(" addr: %x", Opnd.addr);
		PrintDefUse(features, OpNum);
	}
	else if (Opnd.type == o_near) {
		msg(" Operand %d : NearPtrImmed", OpNum);
		msg(" addr: %x", Opnd.addr);
		PrintDefUse(features, OpNum);
	}
	else {
		msg(" Operand %d : unknown", OpNum);
		PrintDefUse(features, OpNum);
	}
	if (!(Opnd.showed()))
		msg(" HIDDEN ");
	return;
} // end of PrintOneOperand()

// Print an operand that has no features flags or operand position number, such
//  as the op_t types found in lists and sets throughout the blocks, phi functions, etc.
void PrintListOperand(op_t Opnd, int SSANum) {
	if (Opnd.type == o_void)
		return;
	else if (Opnd.type == o_mem) {
		msg(" Operand : memory : addr: %x", Opnd.addr);
		if (Opnd.hasSIB) {
			PrintSIB(Opnd);
		}
	}
	else if (Opnd.type == o_phrase) {
		msg(" Operand : memory phrase :");
		if (Opnd.hasSIB) { // has SIB info
			PrintSIB(Opnd);
		}
		else { // no SIB info
			ushort BaseReg = Opnd.phrase;
			msg(" reg %s", RegNames[BaseReg]);
		}
		if (Opnd.addr != 0) {
			msg(" \n WARNING: addr for o_phrase type: %d\n", Opnd.addr);
		}
	}
	else if (Opnd.type == o_displ) {
		msg(" Operand : memory displ :");
		ea_t offset = Opnd.addr;
		if (Opnd.hasSIB) {
			PrintSIB(Opnd);
			msg(" displ %d", offset);
		}
		else {
			ushort BaseReg = Opnd.reg;
			msg(" reg %s displ %d", RegNames[BaseReg], offset);
		}
	}
	else if (Opnd.type == o_reg) {
		msg(" Operand : register: %s", RegNames[Opnd.reg]);
	}
	else if (Opnd.type == o_imm) {
		msg(" Operand : immed %d", Opnd.value);
	}
	else if (Opnd.type == o_far) {
		msg(" Operand : FarPtrImmed addr: %x", Opnd.addr);
	}
	else if (Opnd.type == o_near) {
		msg(" Operand : NearPtrImmed addr: %x", Opnd.addr);
	}
	else {
		msg(" Operand : unknown");
	}
	
	msg(" SSANum: %d ", SSANum);

	if (!(Opnd.showed()))
		msg(" HIDDEN ");
	return;
} // end of PrintListOperand()

// MACHINE DEPENDENT: Is operand type a known type that we want to analyze?
bool MDKnownOperandType(op_t TempOp) {
	return ((TempOp.type >= o_reg) && (TempOp.type <= o_near));
}

clc5q's avatar
clc5q committed
// *****************************************************************
// Class DefOrUse
// *****************************************************************

// Default constructor to make the compilers happy.
DefOrUse::DefOrUse(void) {
	this->OpType = UNINIT;
	this->SSANumber = -2;
	return;
}

clc5q's avatar
clc5q committed
// Constructor.
DefOrUse::DefOrUse(op_t Ref, SMPOperandType Type, int SSASub) {
	this->Operand = Ref;
	this->OpType = Type;
	this->SSANumber = SSASub;
	return;
}

// Copy constructor.
DefOrUse::DefOrUse(const DefOrUse &CopyIn) {
	*this = CopyIn;
	return;
}

// Assignment operator for copy constructor use.
DefOrUse &DefOrUse::operator=(const DefOrUse &rhs) {
	this->Operand = rhs.Operand;
	this->OpType = rhs.OpType;
	this->SSANumber = rhs.SSANumber;
	return *this;
}

// Debug printing.
void DefOrUse::Dump(void) const {
	PrintListOperand(this->Operand, this->SSANumber);
	if (this->OpType == NUMERIC)
		msg("N ");
	else if (this->OpType == POINTER)
		msg("P ");
	else if (this->OpType == UNKNOWN)
		msg("U ");
	// Don't write anything for UNINIT OpType
	return;
} // end of DefOrUse::Dump()

clc5q's avatar
clc5q committed
// *****************************************************************
// Class DefOrUseList
// *****************************************************************

// Default constructor.
DefOrUseList::DefOrUseList(void) {
	return;
}

// Set a Def or Use into the list, along with its type.
clc5q's avatar
clc5q committed
void DefOrUseList::SetRef(op_t Ref, SMPOperandType Type, int SSASub) {
	DefOrUse CurrRef(Ref, Type, SSASub);
	this->Refs.push_back(CurrRef);
clc5q's avatar
clc5q committed
	return;
}

// Get a reference by index.
clc5q's avatar
clc5q committed
DefOrUse DefOrUseList::GetRef(size_t index) const {
clc5q's avatar
clc5q committed
	return Refs[index];
}

// Change the SSA subscript for a reference.
void DefOrUseList::SetSSANum(size_t index, int NewSSASub) {
	this->Refs[index].SetSSANum(NewSSASub);
	return;
}

// Change the operand type for a reference.
void DefOrUseList::SetType(size_t index, SMPOperandType Type) {
	this->Refs[index].SetType(Type);
	return;
}

// Debug printing.
void DefOrUseList::Dump(void) const {
	for (size_t index = 0; index < this->Refs.size(); ++index) {
		Refs[index].Dump();
	}
	msg("\n");
	return;
}

// Erase duplicate entries, in case SMPInstr::MDFixupDefUseLists() adds one.
void DefOrUseList::EraseDuplicates(void) {
	set<op_t, LessOp> TempRefs; // Use STL set to find duplicates
	set<op_t, LessOp>::iterator TempIter;
	vector<DefOrUse>::iterator RefIter;

	RefIter = this->Refs.begin();
	while (RefIter != this->Refs.end()) {
		TempIter = TempRefs.find(RefIter->GetOp());
		if (TempIter == TempRefs.end()) { // not already in set
			TempRefs.insert(RefIter->GetOp());
			++RefIter;
		}
		else { // found it in set already
			RefIter = this->Refs.erase(RefIter);
		}
	}
	return;
} // end of DefOrUseList::EraseDuplicates()


clc5q's avatar
clc5q committed
// *****************************************************************
// Class SMPPhiFunction
// *****************************************************************

// Constructor
SMPPhiFunction::SMPPhiFunction(int GlobIndex, const DefOrUse &Def) {
clc5q's avatar
clc5q committed
	this->index = GlobIndex;
clc5q's avatar
clc5q committed
	return;
clc5q's avatar
clc5q committed
}

clc5q's avatar
clc5q committed
// Add a phi item to the list
void SMPPhiFunction::PushBack(DefOrUse Ref) {
	this->SubscriptedOps.SetRef(Ref.GetOp(), Ref.GetType(), Ref.GetSSANum());
	return;
}

// Set the SSA number of the defined variable.
void SMPPhiFunction::SetSSADef(int NewSSASub) {
	this->DefName.SetSSANum(NewSSASub);
	return;
}

// Set the SSA number of the input variable.
void SMPPhiFunction::SetSSARef(size_t index, int NewSSASub) {
	this->SubscriptedOps.SetSSANum(index, NewSSASub);
	return;
}

// Debug printing.
void SMPPhiFunction::Dump(void) const {
	msg(" DEF: ");
	this->DefName.Dump();
	msg(" USEs: ");
	this->SubscriptedOps.Dump();
	return;
}

// *****************************************************************
// Class SMPDefUseChain
// *****************************************************************

// Constructors
SMPDefUseChain::SMPDefUseChain(void) {
	this->SSAName.type = o_void;
	this->RefInstrs.push_back(BADADDR);
	return;
}

SMPDefUseChain::SMPDefUseChain(op_t Name, ea_t Def) {
	this->SSAName = Name;
	this->RefInstrs.push_back(Def);
	return;
}

// Set the variable name.
void SMPDefUseChain::SetName(op_t Name) {
	this->SSAName = Name;
	return;
}

// Set the DEF instruction.
void SMPDefUseChain::SetDef(ea_t Def) {
	this->RefInstrs[0] = Def;
	return;
}

// Push a USE onto the list
void SMPDefUseChain::PushUse(ea_t Use) {
	this->RefInstrs.push_back(Use);
	return;
}

// DEBUG dump.
void SMPDefUseChain::Dump(int SSANum) {
	msg("DEF-USE chain for: ");
	PrintListOperand(this->SSAName, SSANum);
	if (this->RefInstrs.size() < 1) {
		msg(" no references.\n");
		return;
	}
	msg("\n DEF: %x USEs: ", this->RefInstrs.at(0));
	size_t index;
	for (index = 1; index < this->RefInstrs.size(); ++index)
		msg("%x ", this->RefInstrs.at(index));
	msg("\n");
	return;
} // end of SMPDefUseChain::Dump()

// *****************************************************************
// Class SMPDUChainArray
// *****************************************************************
SMPDUChainArray::SMPDUChainArray(void) {
	this->SSAName.type = o_void;
	return;
}

SMPDUChainArray::SMPDUChainArray(op_t Name) {
	this->SSAName = Name;
	return;
}

void SMPDUChainArray::SetName(op_t Name) {
	this->SSAName = Name;
	return;
}

// DEBUG dump.
void SMPDUChainArray::Dump(void) {
	size_t index;
	for (index = 0; index < this->DUChains.size(); ++index) {
		this->DUChains.at(index).Dump((int) index);
	}
	return;
}

// *****************************************************************
// Class SMPCompleteDUChains
// *****************************************************************

// DEBUG dump.
void SMPCompleteDUChains::Dump(void) {
	size_t index;
	for (index = 0; index < this->ChainsByName.size(); ++index) {
		this->ChainsByName.at(index).Dump();
	}
	return;
} // end of SMPCompleteDUChains::Dump()

clc5q's avatar
clc5q committed
// Initialize the DFACategory[] array to define instruction classes
//   for the purposes of data flow analysis.
void InitDFACategory(void) {
	// Default category is 0, not the start or end of a basic block.
	(void) memset(DFACategory, 0, sizeof(DFACategory));

DFACategory[NN_call] = CALL;                // Call Procedure
DFACategory[NN_callfi] = INDIR_CALL;              // Indirect Call Far Procedure
DFACategory[NN_callni] = INDIR_CALL;              // Indirect Call Near Procedure

DFACategory[NN_hlt] = HALT;                 // Halt

DFACategory[NN_int] = CALL;                 // Call to Interrupt Procedure
DFACategory[NN_into] = CALL;                // Call to Interrupt Procedure if Overflow Flag = 1
DFACategory[NN_int3] = CALL;                // Trap to Debugger
DFACategory[NN_iretw] = RETURN;               // Interrupt Return
DFACategory[NN_iret] = RETURN;                // Interrupt Return
DFACategory[NN_iretd] = RETURN;               // Interrupt Return (use32)
DFACategory[NN_iretq] = RETURN;               // Interrupt Return (use64)
DFACategory[NN_ja] = COND_BRANCH;                  // Jump if Above (CF=0 & ZF=0)
DFACategory[NN_jae] = COND_BRANCH;                 // Jump if Above or Equal (CF=0)
DFACategory[NN_jb] = COND_BRANCH;                  // Jump if Below (CF=1)
DFACategory[NN_jbe] = COND_BRANCH;                 // Jump if Below or Equal (CF=1 | ZF=1)
DFACategory[NN_jc] = COND_BRANCH;                  // Jump if Carry (CF=1)
DFACategory[NN_jcxz] = COND_BRANCH;                // Jump if CX is 0
DFACategory[NN_jecxz] = COND_BRANCH;               // Jump if ECX is 0
DFACategory[NN_jrcxz] = COND_BRANCH;               // Jump if RCX is 0
DFACategory[NN_je] = COND_BRANCH;                  // Jump if Equal (ZF=1)
DFACategory[NN_jg] = COND_BRANCH;                  // Jump if Greater (ZF=0 & SF=OF)
DFACategory[NN_jge] = COND_BRANCH;                 // Jump if Greater or Equal (SF=OF)
DFACategory[NN_jl] = COND_BRANCH;                  // Jump if Less (SF!=OF)
DFACategory[NN_jle] = COND_BRANCH;                 // Jump if Less or Equal (ZF=1 | SF!=OF)
DFACategory[NN_jna] = COND_BRANCH;                 // Jump if Not Above (CF=1 | ZF=1)
DFACategory[NN_jnae] = COND_BRANCH;                // Jump if Not Above or Equal (CF=1)
DFACategory[NN_jnb] = COND_BRANCH;                 // Jump if Not Below (CF=0)
DFACategory[NN_jnbe] = COND_BRANCH;                // Jump if Not Below or Equal (CF=0 & ZF=0)
DFACategory[NN_jnc] = COND_BRANCH;                 // Jump if Not Carry (CF=0)
DFACategory[NN_jne] = COND_BRANCH;                 // Jump if Not Equal (ZF=0)
DFACategory[NN_jng] = COND_BRANCH;                 // Jump if Not Greater (ZF=1 | SF!=OF)
DFACategory[NN_jnge] = COND_BRANCH;                // Jump if Not Greater or Equal (ZF=1)
DFACategory[NN_jnl] = COND_BRANCH;                 // Jump if Not Less (SF=OF)
DFACategory[NN_jnle] = COND_BRANCH;                // Jump if Not Less or Equal (ZF=0 & SF=OF)
DFACategory[NN_jno] = COND_BRANCH;                 // Jump if Not Overflow (OF=0)
DFACategory[NN_jnp] = COND_BRANCH;                 // Jump if Not Parity (PF=0)
DFACategory[NN_jns] = COND_BRANCH;                 // Jump if Not Sign (SF=0)
DFACategory[NN_jnz] = COND_BRANCH;                 // Jump if Not Zero (ZF=0)
DFACategory[NN_jo] = COND_BRANCH;                  // Jump if Overflow (OF=1)
DFACategory[NN_jp] = COND_BRANCH;                  // Jump if Parity (PF=1)
DFACategory[NN_jpe] = COND_BRANCH;                 // Jump if Parity Even (PF=1)
DFACategory[NN_jpo] = COND_BRANCH;                 // Jump if Parity Odd  (PF=0)
DFACategory[NN_js] = COND_BRANCH;                  // Jump if Sign (SF=1)
DFACategory[NN_jz] = COND_BRANCH;                  // Jump if Zero (ZF=1)
DFACategory[NN_jmp] = JUMP;                 // Jump
DFACategory[NN_jmpfi] = INDIR_JUMP;               // Indirect Far Jump
DFACategory[NN_jmpni] = INDIR_JUMP;               // Indirect Near Jump
DFACategory[NN_jmpshort] = JUMP;            // Jump Short (only in 64-bit mode)

DFACategory[NN_loopw] = COND_BRANCH;               // Loop while ECX != 0
DFACategory[NN_loop] = COND_BRANCH;                // Loop while CX != 0
DFACategory[NN_loopd] = COND_BRANCH;               // Loop while ECX != 0
DFACategory[NN_loopq] = COND_BRANCH;               // Loop while RCX != 0
DFACategory[NN_loopwe] = COND_BRANCH;              // Loop while CX != 0 and ZF=1
DFACategory[NN_loope] = COND_BRANCH;               // Loop while rCX != 0 and ZF=1
DFACategory[NN_loopde] = COND_BRANCH;              // Loop while ECX != 0 and ZF=1
DFACategory[NN_loopqe] = COND_BRANCH;              // Loop while RCX != 0 and ZF=1
DFACategory[NN_loopwne] = COND_BRANCH;             // Loop while CX != 0 and ZF=0
DFACategory[NN_loopne] = COND_BRANCH;              // Loop while rCX != 0 and ZF=0
DFACategory[NN_loopdne] = COND_BRANCH;             // Loop while ECX != 0 and ZF=0
DFACategory[NN_loopqne] = COND_BRANCH;             // Loop while RCX != 0 and ZF=0

DFACategory[NN_retn] = RETURN;                // Return Near from Procedure
DFACategory[NN_retf] = RETURN;                // Return Far from Procedure

//
//      Pentium instructions
//

DFACategory[NN_rsm] = HALT;                 // Resume from System Management Mode

//      Pentium II instructions

DFACategory[NN_sysenter] = CALL;            // Fast Transition to System Call Entry Point
DFACategory[NN_sysexit] = CALL;             // Fast Transition from System Call Entry Point

// AMD syscall/sysret instructions  NOTE: not AMD, found in Intel manual

DFACategory[NN_syscall] = CALL;             // Low latency system call
DFACategory[NN_sysret] = CALL;              // Return from system call

// VMX instructions

DFACategory[NN_vmcall] = INDIR_CALL;              // Call to VM Monitor

  return;

} // end InitDFACategory()
679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311

// Initialize the SMPDefsFlags[] array to define how we emit
//   optimizing annotations.
void InitSMPDefsFlags(void) {
	// Default value is true. Many instructions set the flags.
	(void) memset(SMPDefsFlags, true, sizeof(SMPDefsFlags));

SMPDefsFlags[NN_null] = false;            // Unknown Operation
SMPDefsFlags[NN_bound] = false;               // Check Array Index Against Bounds
SMPDefsFlags[NN_call] = false;                // Call Procedure
SMPDefsFlags[NN_callfi] = false;              // Indirect Call Far Procedure
SMPDefsFlags[NN_callni] = false;              // Indirect Call Near Procedure
SMPDefsFlags[NN_cbw] = false;                 // AL -> AX (with sign)           
SMPDefsFlags[NN_cwde] = false;                // AX -> EAX (with sign)            
SMPDefsFlags[NN_cdqe] = false;                // EAX -> RAX (with sign)           
SMPDefsFlags[NN_clts] = false;                // Clear Task-Switched Flag in CR0
SMPDefsFlags[NN_cwd] = false;                 // AX -> DX:AX (with sign)
SMPDefsFlags[NN_cdq] = false;                 // EAX -> EDX:EAX (with sign)
SMPDefsFlags[NN_cqo] = false;                 // RAX -> RDX:RAX (with sign)
SMPDefsFlags[NN_enterw] = false;              // Make Stack Frame for Procedure Parameters   
SMPDefsFlags[NN_enter] = false;               // Make Stack Frame for Procedure Parameters   
SMPDefsFlags[NN_enterd] = false;              // Make Stack Frame for Procedure Parameters   
SMPDefsFlags[NN_enterq] = false;              // Make Stack Frame for Procedure Parameters   
SMPDefsFlags[NN_hlt] = false;                 // Halt
SMPDefsFlags[NN_in] = false;                  // Input from Port                          
SMPDefsFlags[NN_ins] = false;                 // Input Byte(s) from Port to String        
SMPDefsFlags[NN_iretw] = false;               // Interrupt Return
SMPDefsFlags[NN_iret] = false;                // Interrupt Return
SMPDefsFlags[NN_iretd] = false;               // Interrupt Return (use32)
SMPDefsFlags[NN_iretq] = false;               // Interrupt Return (use64)
SMPDefsFlags[NN_ja] = false;                  // Jump if Above (CF=0 & ZF=0)
SMPDefsFlags[NN_jae] = false;                 // Jump if Above or Equal (CF=0)
SMPDefsFlags[NN_jb] = false;                  // Jump if Below (CF=1)
SMPDefsFlags[NN_jbe] = false;                 // Jump if Below or Equal (CF=1 | ZF=1)
SMPDefsFlags[NN_jc] = false;                  // Jump if Carry (CF=1)
SMPDefsFlags[NN_jcxz] = false;                // Jump if CX is 0
SMPDefsFlags[NN_jecxz] = false;               // Jump if ECX is 0
SMPDefsFlags[NN_jrcxz] = false;               // Jump if RCX is 0
SMPDefsFlags[NN_je] = false;                  // Jump if Equal (ZF=1)
SMPDefsFlags[NN_jg] = false;                  // Jump if Greater (ZF=0 & SF=OF)
SMPDefsFlags[NN_jge] = false;                 // Jump if Greater or Equal (SF=OF)
SMPDefsFlags[NN_jl] = false;                  // Jump if Less (SF!=OF)
SMPDefsFlags[NN_jle] = false;                 // Jump if Less or Equal (ZF=1 | SF!=OF)
SMPDefsFlags[NN_jna] = false;                 // Jump if Not Above (CF=1 | ZF=1)
SMPDefsFlags[NN_jnae] = false;                // Jump if Not Above or Equal (CF=1)
SMPDefsFlags[NN_jnb] = false;                 // Jump if Not Below (CF=0)
SMPDefsFlags[NN_jnbe] = false;                // Jump if Not Below or Equal (CF=0 & ZF=0)
SMPDefsFlags[NN_jnc] = false;                 // Jump if Not Carry (CF=0)
SMPDefsFlags[NN_jne] = false;                 // Jump if Not Equal (ZF=0)
SMPDefsFlags[NN_jng] = false;                 // Jump if Not Greater (ZF=1 | SF!=OF)
SMPDefsFlags[NN_jnge] = false;                // Jump if Not Greater or Equal (ZF=1)
SMPDefsFlags[NN_jnl] = false;                 // Jump if Not Less (SF=OF)
SMPDefsFlags[NN_jnle] = false;                // Jump if Not Less or Equal (ZF=0 & SF=OF)
SMPDefsFlags[NN_jno] = false;                 // Jump if Not Overflow (OF=0)
SMPDefsFlags[NN_jnp] = false;                 // Jump if Not Parity (PF=0)
SMPDefsFlags[NN_jns] = false;                 // Jump if Not Sign (SF=0)
SMPDefsFlags[NN_jnz] = false;                 // Jump if Not Zero (ZF=0)
SMPDefsFlags[NN_jo] = false;                  // Jump if Overflow (OF=1)
SMPDefsFlags[NN_jp] = false;                  // Jump if Parity (PF=1)
SMPDefsFlags[NN_jpe] = false;                 // Jump if Parity Even (PF=1)
SMPDefsFlags[NN_jpo] = false;                 // Jump if Parity Odd  (PF=0)
SMPDefsFlags[NN_js] = false;                  // Jump if Sign (SF=1)
SMPDefsFlags[NN_jz] = false;                  // Jump if Zero (ZF=1)
SMPDefsFlags[NN_jmp] = false;                 // Jump
SMPDefsFlags[NN_jmpfi] = false;               // Indirect Far Jump
SMPDefsFlags[NN_jmpni] = false;               // Indirect Near Jump
SMPDefsFlags[NN_jmpshort] = false;            // Jump Short (not used)
SMPDefsFlags[NN_lahf] = false;                // Load Flags into AH Register
SMPDefsFlags[NN_lea] = false;                 // Load Effective Address            
SMPDefsFlags[NN_leavew] = false;              // High Level Procedure Exit         
SMPDefsFlags[NN_leave] = false;               // High Level Procedure Exit         
SMPDefsFlags[NN_leaved] = false;              // High Level Procedure Exit         
SMPDefsFlags[NN_leaveq] = false;              // High Level Procedure Exit         
SMPDefsFlags[NN_lgdt] = false;                // Load Global Descriptor Table Register
SMPDefsFlags[NN_lidt] = false;                // Load Interrupt Descriptor Table Register
SMPDefsFlags[NN_lgs] = false;                 // Load Full Pointer to GS:xx
SMPDefsFlags[NN_lss] = false;                 // Load Full Pointer to SS:xx
SMPDefsFlags[NN_lds] = false;                 // Load Full Pointer to DS:xx
SMPDefsFlags[NN_les] = false;                 // Load Full Pointer to ES:xx
SMPDefsFlags[NN_lfs] = false;                 // Load Full Pointer to FS:xx
SMPDefsFlags[NN_loopwe] = false;              // Loop while CX != 0 and ZF=1
SMPDefsFlags[NN_loope] = false;               // Loop while rCX != 0 and ZF=1
SMPDefsFlags[NN_loopde] = false;              // Loop while ECX != 0 and ZF=1
SMPDefsFlags[NN_loopqe] = false;              // Loop while RCX != 0 and ZF=1
SMPDefsFlags[NN_loopwne] = false;             // Loop while CX != 0 and ZF=0
SMPDefsFlags[NN_loopne] = false;              // Loop while rCX != 0 and ZF=0
SMPDefsFlags[NN_loopdne] = false;             // Loop while ECX != 0 and ZF=0
SMPDefsFlags[NN_loopqne] = false;             // Loop while RCX != 0 and ZF=0
SMPDefsFlags[NN_ltr] = false;                 // Load Task Register
SMPDefsFlags[NN_mov] = false;                 // Move Data
SMPDefsFlags[NN_movsp] = false;               // Move to/from Special Registers
SMPDefsFlags[NN_movs] = false;                // Move Byte(s) from String to String
SMPDefsFlags[NN_movsx] = false;               // Move with Sign-Extend
SMPDefsFlags[NN_movzx] = false;               // Move with Zero-Extend
SMPDefsFlags[NN_nop] = false;                 // No Operation
SMPDefsFlags[NN_out] = false;                 // Output to Port
SMPDefsFlags[NN_outs] = false;                // Output Byte(s) to Port
SMPDefsFlags[NN_pop] = false;                 // Pop a word from the Stack
SMPDefsFlags[NN_popaw] = false;               // Pop all General Registers
SMPDefsFlags[NN_popa] = false;                // Pop all General Registers
SMPDefsFlags[NN_popad] = false;               // Pop all General Registers (use32)
SMPDefsFlags[NN_popaq] = false;               // Pop all General Registers (use64)
SMPDefsFlags[NN_push] = false;                // Push Operand onto the Stack
SMPDefsFlags[NN_pushaw] = false;              // Push all General Registers
SMPDefsFlags[NN_pusha] = false;               // Push all General Registers
SMPDefsFlags[NN_pushad] = false;              // Push all General Registers (use32)
SMPDefsFlags[NN_pushaq] = false;              // Push all General Registers (use64)
SMPDefsFlags[NN_pushfw] = false;              // Push Flags Register onto the Stack
SMPDefsFlags[NN_pushf] = false;               // Push Flags Register onto the Stack
SMPDefsFlags[NN_pushfd] = false;              // Push Flags Register onto the Stack (use32)
SMPDefsFlags[NN_pushfq] = false;              // Push Flags Register onto the Stack (use64)
SMPDefsFlags[NN_rep] = false;                 // Repeat String Operation
SMPDefsFlags[NN_repe] = false;                // Repeat String Operation while ZF=1
SMPDefsFlags[NN_repne] = false;               // Repeat String Operation while ZF=0
SMPDefsFlags[NN_retn] = false;                // Return Near from Procedure
SMPDefsFlags[NN_retf] = false;                // Return Far from Procedure
SMPDefsFlags[NN_shl] = false;                 // Shift Logical Left
SMPDefsFlags[NN_shr] = false;                 // Shift Logical Right
SMPDefsFlags[NN_seta] = false;                // Set Byte if Above (CF=0 & ZF=0)
SMPDefsFlags[NN_setae] = false;               // Set Byte if Above or Equal (CF=0)
SMPDefsFlags[NN_setb] = false;                // Set Byte if Below (CF=1)
SMPDefsFlags[NN_setbe] = false;               // Set Byte if Below or Equal (CF=1 | ZF=1)
SMPDefsFlags[NN_setc] = false;                // Set Byte if Carry (CF=1)
SMPDefsFlags[NN_sete] = false;                // Set Byte if Equal (ZF=1)
SMPDefsFlags[NN_setg] = false;                // Set Byte if Greater (ZF=0 & SF=OF)
SMPDefsFlags[NN_setge] = false;               // Set Byte if Greater or Equal (SF=OF)
SMPDefsFlags[NN_setl] = false;                // Set Byte if Less (SF!=OF)
SMPDefsFlags[NN_setle] = false;               // Set Byte if Less or Equal (ZF=1 | SF!=OF)
SMPDefsFlags[NN_setna] = false;               // Set Byte if Not Above (CF=1 | ZF=1)
SMPDefsFlags[NN_setnae] = false;              // Set Byte if Not Above or Equal (CF=1)
SMPDefsFlags[NN_setnb] = false;               // Set Byte if Not Below (CF=0)
SMPDefsFlags[NN_setnbe] = false;              // Set Byte if Not Below or Equal (CF=0 & ZF=0)
SMPDefsFlags[NN_setnc] = false;               // Set Byte if Not Carry (CF=0)
SMPDefsFlags[NN_setne] = false;               // Set Byte if Not Equal (ZF=0)
SMPDefsFlags[NN_setng] = false;               // Set Byte if Not Greater (ZF=1 | SF!=OF)
SMPDefsFlags[NN_setnge] = false;              // Set Byte if Not Greater or Equal (ZF=1)
SMPDefsFlags[NN_setnl] = false;               // Set Byte if Not Less (SF=OF)
SMPDefsFlags[NN_setnle] = false;              // Set Byte if Not Less or Equal (ZF=0 & SF=OF)
SMPDefsFlags[NN_setno] = false;               // Set Byte if Not Overflow (OF=0)
SMPDefsFlags[NN_setnp] = false;               // Set Byte if Not Parity (PF=0)
SMPDefsFlags[NN_setns] = false;               // Set Byte if Not Sign (SF=0)
SMPDefsFlags[NN_setnz] = false;               // Set Byte if Not Zero (ZF=0)
SMPDefsFlags[NN_seto] = false;                // Set Byte if Overflow (OF=1)
SMPDefsFlags[NN_setp] = false;                // Set Byte if Parity (PF=1)
SMPDefsFlags[NN_setpe] = false;               // Set Byte if Parity Even (PF=1)
SMPDefsFlags[NN_setpo] = false;               // Set Byte if Parity Odd  (PF=0)
SMPDefsFlags[NN_sets] = false;                // Set Byte if Sign (SF=1)
SMPDefsFlags[NN_setz] = false;                // Set Byte if Zero (ZF=1)
SMPDefsFlags[NN_sgdt] = false;                // Store Global Descriptor Table Register
SMPDefsFlags[NN_sidt] = false;                // Store Interrupt Descriptor Table Register
SMPDefsFlags[NN_sldt] = false;                // Store Local Descriptor Table Register
SMPDefsFlags[NN_str] = false;                 // Store Task Register
SMPDefsFlags[NN_wait] = false;                // Wait until BUSY# Pin is Inactive (HIGH)
SMPDefsFlags[NN_xchg] = false;                // Exchange Register/Memory with Register

//
//      486 instructions
//

SMPDefsFlags[NN_bswap] = false;               // Swap bytes in register
SMPDefsFlags[NN_invd] = false;                // Invalidate Data Cache
SMPDefsFlags[NN_wbinvd] = false;              // Invalidate Data Cache (write changes)
SMPDefsFlags[NN_invlpg] = false;              // Invalidate TLB entry

//
//      Pentium instructions
//

SMPDefsFlags[NN_rdmsr] = false;               // Read Machine Status Register
SMPDefsFlags[NN_wrmsr] = false;               // Write Machine Status Register
SMPDefsFlags[NN_cpuid] = false;               // Get CPU ID
SMPDefsFlags[NN_rdtsc] = false;               // Read Time Stamp Counter

//
//      Pentium Pro instructions
//

SMPDefsFlags[NN_cmova] = false;               // Move if Above (CF=0 & ZF=0)
SMPDefsFlags[NN_cmovb] = false;               // Move if Below (CF=1)
SMPDefsFlags[NN_cmovbe] = false;              // Move if Below or Equal (CF=1 | ZF=1)
SMPDefsFlags[NN_cmovg] = false;               // Move if Greater (ZF=0 & SF=OF)
SMPDefsFlags[NN_cmovge] = false;              // Move if Greater or Equal (SF=OF)
SMPDefsFlags[NN_cmovl] = false;               // Move if Less (SF!=OF)
SMPDefsFlags[NN_cmovle] = false;              // Move if Less or Equal (ZF=1 | SF!=OF)
SMPDefsFlags[NN_cmovnb] = false;              // Move if Not Below (CF=0)
SMPDefsFlags[NN_cmovno] = false;              // Move if Not Overflow (OF=0)
SMPDefsFlags[NN_cmovnp] = false;              // Move if Not Parity (PF=0)
SMPDefsFlags[NN_cmovns] = false;              // Move if Not Sign (SF=0)
SMPDefsFlags[NN_cmovnz] = false;              // Move if Not Zero (ZF=0)
SMPDefsFlags[NN_cmovo] = false;               // Move if Overflow (OF=1)
SMPDefsFlags[NN_cmovp] = false;               // Move if Parity (PF=1)
SMPDefsFlags[NN_cmovs] = false;               // Move if Sign (SF=1)
SMPDefsFlags[NN_cmovz] = false;               // Move if Zero (ZF=1)
SMPDefsFlags[NN_fcmovb] = false;              // Floating Move if Below          
SMPDefsFlags[NN_fcmove] = false;              // Floating Move if Equal          
SMPDefsFlags[NN_fcmovbe] = false;             // Floating Move if Below or Equal 
SMPDefsFlags[NN_fcmovu] = false;              // Floating Move if Unordered      
SMPDefsFlags[NN_fcmovnb] = false;             // Floating Move if Not Below      
SMPDefsFlags[NN_fcmovne] = false;             // Floating Move if Not Equal      
SMPDefsFlags[NN_fcmovnbe] = false;            // Floating Move if Not Below or Equal
SMPDefsFlags[NN_fcmovnu] = false;             // Floating Move if Not Unordered     
SMPDefsFlags[NN_rdpmc] = false;               // Read Performance Monitor Counter

//
//      FPP instructuions
//

SMPDefsFlags[NN_fld] = false;                 // Load Real              
SMPDefsFlags[NN_fst] = false;                 // Store Real            
SMPDefsFlags[NN_fstp] = false;                // Store Real and Pop   
SMPDefsFlags[NN_fxch] = false;                // Exchange Registers
SMPDefsFlags[NN_fild] = false;                // Load Integer           
SMPDefsFlags[NN_fist] = false;                // Store Integer
SMPDefsFlags[NN_fistp] = false;               // Store Integer and Pop
SMPDefsFlags[NN_fbld] = false;                // Load BCD
SMPDefsFlags[NN_fbstp] = false;               // Store BCD and Pop
SMPDefsFlags[NN_fadd] = false;                // Add Real
SMPDefsFlags[NN_faddp] = false;               // Add Real and Pop
SMPDefsFlags[NN_fiadd] = false;               // Add Integer
SMPDefsFlags[NN_fsub] = false;                // Subtract Real
SMPDefsFlags[NN_fsubp] = false;               // Subtract Real and Pop
SMPDefsFlags[NN_fisub] = false;               // Subtract Integer
SMPDefsFlags[NN_fsubr] = false;               // Subtract Real Reversed
SMPDefsFlags[NN_fsubrp] = false;              // Subtract Real Reversed and Pop
SMPDefsFlags[NN_fisubr] = false;              // Subtract Integer Reversed
SMPDefsFlags[NN_fmul] = false;                // Multiply Real
SMPDefsFlags[NN_fmulp] = false;               // Multiply Real and Pop
SMPDefsFlags[NN_fimul] = false;               // Multiply Integer
SMPDefsFlags[NN_fdiv] = false;                // Divide Real
SMPDefsFlags[NN_fdivp] = false;               // Divide Real and Pop
SMPDefsFlags[NN_fidiv] = false;               // Divide Integer
SMPDefsFlags[NN_fdivr] = false;               // Divide Real Reversed
SMPDefsFlags[NN_fdivrp] = false;              // Divide Real Reversed and Pop
SMPDefsFlags[NN_fidivr] = false;              // Divide Integer Reversed
SMPDefsFlags[NN_fsqrt] = false;               // Square Root
SMPDefsFlags[NN_fscale] = false;              // Scale:  st(0) <- st(0) * 2^st(1)
SMPDefsFlags[NN_fprem] = false;               // Partial Remainder
SMPDefsFlags[NN_frndint] = false;             // Round to Integer
SMPDefsFlags[NN_fxtract] = false;             // Extract exponent and significand
SMPDefsFlags[NN_fabs] = false;                // Absolute value
SMPDefsFlags[NN_fchs] = false;                // Change Sign
SMPDefsFlags[NN_ficom] = false;               // Compare Integer
SMPDefsFlags[NN_ficomp] = false;              // Compare Integer and Pop
SMPDefsFlags[NN_ftst] = false;                // Test
SMPDefsFlags[NN_fxam] = false;                // Examine
SMPDefsFlags[NN_fptan] = false;               // Partial tangent
SMPDefsFlags[NN_fpatan] = false;              // Partial arctangent
SMPDefsFlags[NN_f2xm1] = false;               // 2^x - 1
SMPDefsFlags[NN_fyl2x] = false;               // Y * lg2(X)
SMPDefsFlags[NN_fyl2xp1] = false;             // Y * lg2(X+1)
SMPDefsFlags[NN_fldz] = false;                // Load +0.0
SMPDefsFlags[NN_fld1] = false;                // Load +1.0
SMPDefsFlags[NN_fldpi] = false;               // Load PI=3.14...
SMPDefsFlags[NN_fldl2t] = false;              // Load lg2(10)
SMPDefsFlags[NN_fldl2e] = false;              // Load lg2(e)
SMPDefsFlags[NN_fldlg2] = false;              // Load lg10(2)
SMPDefsFlags[NN_fldln2] = false;              // Load ln(2)
SMPDefsFlags[NN_finit] = false;               // Initialize Processor
SMPDefsFlags[NN_fninit] = false;              // Initialize Processor (no wait)
SMPDefsFlags[NN_fsetpm] = false;              // Set Protected Mode
SMPDefsFlags[NN_fldcw] = false;               // Load Control Word
SMPDefsFlags[NN_fstcw] = false;               // Store Control Word
SMPDefsFlags[NN_fnstcw] = false;              // Store Control Word (no wait)
SMPDefsFlags[NN_fstsw] = false;               // Store Status Word to memory or AX
SMPDefsFlags[NN_fnstsw] = false;              // Store Status Word (no wait) to memory or AX
SMPDefsFlags[NN_fclex] = false;               // Clear Exceptions
SMPDefsFlags[NN_fnclex] = false;              // Clear Exceptions (no wait)
SMPDefsFlags[NN_fstenv] = false;              // Store Environment
SMPDefsFlags[NN_fnstenv] = false;             // Store Environment (no wait)
SMPDefsFlags[NN_fldenv] = false;              // Load Environment
SMPDefsFlags[NN_fsave] = false;               // Save State
SMPDefsFlags[NN_fnsave] = false;              // Save State (no wait)
SMPDefsFlags[NN_frstor] = false;              // Restore State      
SMPDefsFlags[NN_fincstp] = false;             // Increment Stack Pointer
SMPDefsFlags[NN_fdecstp] = false;             // Decrement Stack Pointer
SMPDefsFlags[NN_ffree] = false;               // Free Register
SMPDefsFlags[NN_fnop] = false;                // No Operation
SMPDefsFlags[NN_feni] = false;                // (8087 only)
SMPDefsFlags[NN_fneni] = false;               // (no wait) (8087 only)
SMPDefsFlags[NN_fdisi] = false;               // (8087 only)
SMPDefsFlags[NN_fndisi] = false;              // (no wait) (8087 only)

//
//      80387 instructions
//

SMPDefsFlags[NN_fprem1] = false;              // Partial Remainder ( < half )
SMPDefsFlags[NN_fsincos] = false;             // t<-cos(st); st<-sin(st); push t
SMPDefsFlags[NN_fsin] = false;                // Sine
SMPDefsFlags[NN_fcos] = false;                // Cosine
SMPDefsFlags[NN_fucom] = false;               // Compare Unordered Real
SMPDefsFlags[NN_fucomp] = false;              // Compare Unordered Real and Pop
SMPDefsFlags[NN_fucompp] = false;             // Compare Unordered Real and Pop Twice

//
//      Instructions added 28.02.96
//

SMPDefsFlags[NN_svdc] = false;                // Save Register and Descriptor
SMPDefsFlags[NN_rsdc] = false;                // Restore Register and Descriptor
SMPDefsFlags[NN_svldt] = false;               // Save LDTR and Descriptor
SMPDefsFlags[NN_rsldt] = false;               // Restore LDTR and Descriptor
SMPDefsFlags[NN_svts] = false;                // Save TR and Descriptor
SMPDefsFlags[NN_rsts] = false;                // Restore TR and Descriptor
SMPDefsFlags[NN_icebp] = false;               // ICE Break Point

//
//      MMX instructions
//

SMPDefsFlags[NN_emms] = false;                // Empty MMX state
SMPDefsFlags[NN_movd] = false;                // Move 32 bits
SMPDefsFlags[NN_movq] = false;                // Move 64 bits
SMPDefsFlags[NN_packsswb] = false;            // Pack with Signed Saturation (Word->Byte)
SMPDefsFlags[NN_packssdw] = false;            // Pack with Signed Saturation (Dword->Word)
SMPDefsFlags[NN_packuswb] = false;            // Pack with Unsigned Saturation (Word->Byte)
SMPDefsFlags[NN_paddb] = false;               // Packed Add Byte
SMPDefsFlags[NN_paddw] = false;               // Packed Add Word
SMPDefsFlags[NN_paddd] = false;               // Packed Add Dword
SMPDefsFlags[NN_paddsb] = false;              // Packed Add with Saturation (Byte)
SMPDefsFlags[NN_paddsw] = false;              // Packed Add with Saturation (Word)
SMPDefsFlags[NN_paddusb] = false;             // Packed Add Unsigned with Saturation (Byte)
SMPDefsFlags[NN_paddusw] = false;             // Packed Add Unsigned with Saturation (Word)
SMPDefsFlags[NN_pand] = false;                // Bitwise Logical And
SMPDefsFlags[NN_pandn] = false;               // Bitwise Logical And Not
SMPDefsFlags[NN_pcmpeqb] = false;             // Packed Compare for Equal (Byte)
SMPDefsFlags[NN_pcmpeqw] = false;             // Packed Compare for Equal (Word)
SMPDefsFlags[NN_pcmpeqd] = false;             // Packed Compare for Equal (Dword)
SMPDefsFlags[NN_pcmpgtb] = false;             // Packed Compare for Greater Than (Byte)
SMPDefsFlags[NN_pcmpgtw] = false;             // Packed Compare for Greater Than (Word)
SMPDefsFlags[NN_pcmpgtd] = false;             // Packed Compare for Greater Than (Dword)
SMPDefsFlags[NN_pmaddwd] = false;             // Packed Multiply and Add
SMPDefsFlags[NN_pmulhw] = false;              // Packed Multiply High
SMPDefsFlags[NN_pmullw] = false;              // Packed Multiply Low
SMPDefsFlags[NN_por] = false;                 // Bitwise Logical Or
SMPDefsFlags[NN_psllw] = false;               // Packed Shift Left Logical (Word)
SMPDefsFlags[NN_pslld] = false;               // Packed Shift Left Logical (Dword)
SMPDefsFlags[NN_psllq] = false;               // Packed Shift Left Logical (Qword)
SMPDefsFlags[NN_psraw] = false;               // Packed Shift Right Arithmetic (Word)
SMPDefsFlags[NN_psrad] = false;               // Packed Shift Right Arithmetic (Dword)
SMPDefsFlags[NN_psrlw] = false;               // Packed Shift Right Logical (Word)
SMPDefsFlags[NN_psrld] = false;               // Packed Shift Right Logical (Dword)
SMPDefsFlags[NN_psrlq] = false;               // Packed Shift Right Logical (Qword)
SMPDefsFlags[NN_psubb] = false;               // Packed Subtract Byte
SMPDefsFlags[NN_psubw] = false;               // Packed Subtract Word
SMPDefsFlags[NN_psubd] = false;               // Packed Subtract Dword
SMPDefsFlags[NN_psubsb] = false;              // Packed Subtract with Saturation (Byte)
SMPDefsFlags[NN_psubsw] = false;              // Packed Subtract with Saturation (Word)
SMPDefsFlags[NN_psubusb] = false;             // Packed Subtract Unsigned with Saturation (Byte)
SMPDefsFlags[NN_psubusw] = false;             // Packed Subtract Unsigned with Saturation (Word)
SMPDefsFlags[NN_punpckhbw] = false;           // Unpack High Packed Data (Byte->Word)
SMPDefsFlags[NN_punpckhwd] = false;           // Unpack High Packed Data (Word->Dword)
SMPDefsFlags[NN_punpckhdq] = false;           // Unpack High Packed Data (Dword->Qword)
SMPDefsFlags[NN_punpcklbw] = false;           // Unpack Low Packed Data (Byte->Word)
SMPDefsFlags[NN_punpcklwd] = false;           // Unpack Low Packed Data (Word->Dword)
SMPDefsFlags[NN_punpckldq] = false;           // Unpack Low Packed Data (Dword->Qword)
SMPDefsFlags[NN_pxor] = false;                // Bitwise Logical Exclusive Or

//
//      Undocumented Deschutes processor instructions
//

SMPDefsFlags[NN_fxsave] = false;              // Fast save FP context        
SMPDefsFlags[NN_fxrstor] = false;             // Fast restore FP context     

//      Pentium II instructions

SMPDefsFlags[NN_sysexit] = false;             // Fast Transition from System Call Entry Point

//      3DNow! instructions

SMPDefsFlags[NN_pavgusb] = false;             // Packed 8-bit Unsigned Integer Averaging
SMPDefsFlags[NN_pfadd] = false;               // Packed Floating-Point Addition
SMPDefsFlags[NN_pfsub] = false;               // Packed Floating-Point Subtraction
SMPDefsFlags[NN_pfsubr] = false;              // Packed Floating-Point Reverse Subtraction
SMPDefsFlags[NN_pfacc] = false;               // Packed Floating-Point Accumulate
SMPDefsFlags[NN_pfcmpge] = false;             // Packed Floating-Point Comparison, Greater or Equal
SMPDefsFlags[NN_pfcmpgt] = false;             // Packed Floating-Point Comparison, Greater
SMPDefsFlags[NN_pfcmpeq] = false;             // Packed Floating-Point Comparison, Equal
SMPDefsFlags[NN_pfmin] = false;               // Packed Floating-Point Minimum
SMPDefsFlags[NN_pfmax] = false;               // Packed Floating-Point Maximum
SMPDefsFlags[NN_pi2fd] = false;               // Packed 32-bit Integer to Floating-Point
SMPDefsFlags[NN_pf2id] = false;               // Packed Floating-Point to 32-bit Integer
SMPDefsFlags[NN_pfrcp] = false;               // Packed Floating-Point Reciprocal Approximation
SMPDefsFlags[NN_pfrsqrt] = false;             // Packed Floating-Point Reciprocal Square Root Approximation
SMPDefsFlags[NN_pfmul] = false;               // Packed Floating-Point Multiplication
SMPDefsFlags[NN_pfrcpit1] = false;            // Packed Floating-Point Reciprocal First Iteration Step
SMPDefsFlags[NN_pfrsqit1] = false;            // Packed Floating-Point Reciprocal Square Root First Iteration Step
SMPDefsFlags[NN_pfrcpit2] = false;            // Packed Floating-Point Reciprocal Second Iteration Step
SMPDefsFlags[NN_pmulhrw] = false;             // Packed Floating-Point 16-bit Integer Multiply with rounding
SMPDefsFlags[NN_femms] = false;               // Faster entry/exit of the MMX or floating-point state
SMPDefsFlags[NN_prefetch] = false;            // Prefetch at least a 32-byte line into L1 data cache
SMPDefsFlags[NN_prefetchw] = false;           // Prefetch processor cache line into L1 data cache (mark as modified)


//      Pentium III instructions

SMPDefsFlags[NN_addps] = false;               // Packed Single-FP Add
SMPDefsFlags[NN_addss] = false;               // Scalar Single-FP Add
SMPDefsFlags[NN_andnps] = false;              // Bitwise Logical And Not for Single-FP
SMPDefsFlags[NN_andps] = false;               // Bitwise Logical And for Single-FP
SMPDefsFlags[NN_cmpps] = false;               // Packed Single-FP Compare
SMPDefsFlags[NN_cmpss] = false;               // Scalar Single-FP Compare
SMPDefsFlags[NN_cvtpi2ps] = false;            // Packed signed INT32 to Packed Single-FP conversion
SMPDefsFlags[NN_cvtps2pi] = false;            // Packed Single-FP to Packed INT32 conversion
SMPDefsFlags[NN_cvtsi2ss] = false;            // Scalar signed INT32 to Single-FP conversion
SMPDefsFlags[NN_cvtss2si] = false;            // Scalar Single-FP to signed INT32 conversion
SMPDefsFlags[NN_cvttps2pi] = false;           // Packed Single-FP to Packed INT32 conversion (truncate)
SMPDefsFlags[NN_cvttss2si] = false;           // Scalar Single-FP to signed INT32 conversion (truncate)
SMPDefsFlags[NN_divps] = false;               // Packed Single-FP Divide
SMPDefsFlags[NN_divss] = false;               // Scalar Single-FP Divide
SMPDefsFlags[NN_ldmxcsr] = false;             // Load Streaming SIMD Extensions Technology Control/Status Register
SMPDefsFlags[NN_maxps] = false;               // Packed Single-FP Maximum
SMPDefsFlags[NN_maxss] = false;               // Scalar Single-FP Maximum
SMPDefsFlags[NN_minps] = false;               // Packed Single-FP Minimum
SMPDefsFlags[NN_minss] = false;               // Scalar Single-FP Minimum
SMPDefsFlags[NN_movaps] = false;              // Move Aligned Four Packed Single-FP  
SMPDefsFlags[NN_movhlps] = false;             // Move High to Low Packed Single-FP
SMPDefsFlags[NN_movhps] = false;              // Move High Packed Single-FP
SMPDefsFlags[NN_movlhps] = false;             // Move Low to High Packed Single-FP
SMPDefsFlags[NN_movlps] = false;              // Move Low Packed Single-FP
SMPDefsFlags[NN_movmskps] = false;            // Move Mask to Register
SMPDefsFlags[NN_movss] = false;               // Move Scalar Single-FP
SMPDefsFlags[NN_movups] = false;              // Move Unaligned Four Packed Single-FP
SMPDefsFlags[NN_mulps] = false;               // Packed Single-FP Multiply
SMPDefsFlags[NN_mulss] = false;               // Scalar Single-FP Multiply
SMPDefsFlags[NN_orps] = false;                // Bitwise Logical OR for Single-FP Data
SMPDefsFlags[NN_rcpps] = false;               // Packed Single-FP Reciprocal
SMPDefsFlags[NN_rcpss] = false;               // Scalar Single-FP Reciprocal
SMPDefsFlags[NN_rsqrtps] = false;             // Packed Single-FP Square Root Reciprocal
SMPDefsFlags[NN_rsqrtss] = false;             // Scalar Single-FP Square Root Reciprocal
SMPDefsFlags[NN_shufps] = false;              // Shuffle Single-FP
SMPDefsFlags[NN_sqrtps] = false;              // Packed Single-FP Square Root
SMPDefsFlags[NN_sqrtss] = false;              // Scalar Single-FP Square Root
SMPDefsFlags[NN_stmxcsr] = false;             // Store Streaming SIMD Extensions Technology Control/Status Register 
SMPDefsFlags[NN_subps] = false;               // Packed Single-FP Subtract
SMPDefsFlags[NN_subss] = false;               // Scalar Single-FP Subtract
SMPDefsFlags[NN_unpckhps] = false;            // Unpack High Packed Single-FP Data
SMPDefsFlags[NN_unpcklps] = false;            // Unpack Low Packed Single-FP Data
SMPDefsFlags[NN_xorps] = false;               // Bitwise Logical XOR for Single-FP Data
SMPDefsFlags[NN_pavgb] = false;               // Packed Average (Byte)
SMPDefsFlags[NN_pavgw] = false;               // Packed Average (Word)
SMPDefsFlags[NN_pextrw] = false;              // Extract Word
SMPDefsFlags[NN_pinsrw] = false;              // Insert Word
SMPDefsFlags[NN_pmaxsw] = false;              // Packed Signed Integer Word Maximum
SMPDefsFlags[NN_pmaxub] = false;              // Packed Unsigned Integer Byte Maximum
SMPDefsFlags[NN_pminsw] = false;              // Packed Signed Integer Word Minimum
SMPDefsFlags[NN_pminub] = false;              // Packed Unsigned Integer Byte Minimum
SMPDefsFlags[NN_pmovmskb] = false;            // Move Byte Mask to Integer
SMPDefsFlags[NN_pmulhuw] = false;             // Packed Multiply High Unsigned
SMPDefsFlags[NN_psadbw] = false;              // Packed Sum of Absolute Differences
SMPDefsFlags[NN_pshufw] = false;              // Packed Shuffle Word
SMPDefsFlags[NN_maskmovq] = false;            // Byte Mask write  
SMPDefsFlags[NN_movntps] = false;             // Move Aligned Four Packed Single-FP Non Temporal
SMPDefsFlags[NN_movntq] = false;              // Move 64 Bits Non Temporal   
SMPDefsFlags[NN_prefetcht0] = false;          // Prefetch to all cache levels
SMPDefsFlags[NN_prefetcht1] = false;          // Prefetch to all cache levels
SMPDefsFlags[NN_prefetcht2] = false;          // Prefetch to L2 cache
SMPDefsFlags[NN_prefetchnta] = false;         // Prefetch to L1 cache
SMPDefsFlags[NN_sfence] = false;              // Store Fence

// Pentium III Pseudo instructions

SMPDefsFlags[NN_cmpeqps] = false;             // Packed Single-FP Compare EQ
SMPDefsFlags[NN_cmpltps] = false;             // Packed Single-FP Compare LT
SMPDefsFlags[NN_cmpleps] = false;             // Packed Single-FP Compare LE
SMPDefsFlags[NN_cmpunordps] = false;          // Packed Single-FP Compare UNORD
SMPDefsFlags[NN_cmpneqps] = false;            // Packed Single-FP Compare NOT EQ
SMPDefsFlags[NN_cmpnltps] = false;            // Packed Single-FP Compare NOT LT
SMPDefsFlags[NN_cmpnleps] = false;            // Packed Single-FP Compare NOT LE
SMPDefsFlags[NN_cmpordps] = false;            // Packed Single-FP Compare ORDERED
SMPDefsFlags[NN_cmpeqss] = false;             // Scalar Single-FP Compare EQ
SMPDefsFlags[NN_cmpltss] = false;             // Scalar Single-FP Compare LT
SMPDefsFlags[NN_cmpless] = false;             // Scalar Single-FP Compare LE
SMPDefsFlags[NN_cmpunordss] = false;          // Scalar Single-FP Compare UNORD
SMPDefsFlags[NN_cmpneqss] = false;            // Scalar Single-FP Compare NOT EQ
SMPDefsFlags[NN_cmpnltss] = false;            // Scalar Single-FP Compare NOT LT
SMPDefsFlags[NN_cmpnless] = false;            // Scalar Single-FP Compare NOT LE
SMPDefsFlags[NN_cmpordss] = false;            // Scalar Single-FP Compare ORDERED

// AMD K7 instructions

// Revisit AMD if we port to it.
SMPDefsFlags[NN_pf2iw] = false;               // Packed Floating-Point to Integer with Sign Extend
SMPDefsFlags[NN_pfnacc] = false;              // Packed Floating-Point Negative Accumulate
SMPDefsFlags[NN_pfpnacc] = false;             // Packed Floating-Point Mixed Positive-Negative Accumulate
SMPDefsFlags[NN_pi2fw] = false;               // Packed 16-bit Integer to Floating-Point
SMPDefsFlags[NN_pswapd] = false;              // Packed Swap Double Word

// Undocumented FP instructions (thanks to norbert.juffa@adm.com)

SMPDefsFlags[NN_fstp1] = false;               // Alias of Store Real and Pop
SMPDefsFlags[NN_fxch4] = false;               // Alias of Exchange Registers
SMPDefsFlags[NN_ffreep] = false;              // Free Register and Pop
SMPDefsFlags[NN_fxch7] = false;               // Alias of Exchange Registers
SMPDefsFlags[NN_fstp8] = false;               // Alias of Store Real and Pop
SMPDefsFlags[NN_fstp9] = false;               // Alias of Store Real and Pop

// Pentium 4 instructions

SMPDefsFlags[NN_addpd] = false;               // Add Packed Double-Precision Floating-Point Values
SMPDefsFlags[NN_addsd] = false;               // Add Scalar Double-Precision Floating-Point Values
SMPDefsFlags[NN_andnpd] = false;              // Bitwise Logical AND NOT of Packed Double-Precision Floating-Point Values
SMPDefsFlags[NN_andpd] = false;               // Bitwise Logical AND of Packed Double-Precision Floating-Point Values
SMPDefsFlags[NN_clflush] = false;             // Flush Cache Line
SMPDefsFlags[NN_cmppd] = false;               // Compare Packed Double-Precision Floating-Point Values
SMPDefsFlags[NN_cmpsd] = false;               // Compare Scalar Double-Precision Floating-Point Values
SMPDefsFlags[NN_cvtdq2pd] = false;            // Convert Packed Doubleword Integers to Packed Single-Precision Floating-Point Values
SMPDefsFlags[NN_cvtdq2ps] = false;            // Convert Packed Doubleword Integers to Packed Double-Precision Floating-Point Values
SMPDefsFlags[NN_cvtpd2dq] = false;            // Convert Packed Double-Precision Floating-Point Values to Packed Doubleword Integers
SMPDefsFlags[NN_cvtpd2pi] = false;            // Convert Packed Double-Precision Floating-Point Values to Packed Doubleword Integers
SMPDefsFlags[NN_cvtpd2ps] = false;            // Convert Packed Double-Precision Floating-Point Values to Packed Single-Precision Floating-Point Values
SMPDefsFlags[NN_cvtpi2pd] = false;            // Convert Packed Doubleword Integers to Packed Double-Precision Floating-Point Values
SMPDefsFlags[NN_cvtps2dq] = false;            // Convert Packed Single-Precision Floating-Point Values to Packed Doubleword Integers
SMPDefsFlags[NN_cvtps2pd] = false;            // Convert Packed Single-Precision Floating-Point Values to Packed Double-Precision Floating-Point Values
SMPDefsFlags[NN_cvtsd2si] = false;            // Convert Scalar Double-Precision Floating-Point Value to Doubleword Integer
SMPDefsFlags[NN_cvtsd2ss] = false;            // Convert Scalar Double-Precision Floating-Point Value to Scalar Single-Precision Floating-Point Value
SMPDefsFlags[NN_cvtsi2sd] = false;            // Convert Doubleword Integer to Scalar Double-Precision Floating-Point Value
SMPDefsFlags[NN_cvtss2sd] = false;            // Convert Scalar Single-Precision Floating-Point Value to Scalar Double-Precision Floating-Point Value
SMPDefsFlags[NN_cvttpd2dq] = false;           // Convert With Truncation Packed Double-Precision Floating-Point Values to Packed Doubleword Integers
SMPDefsFlags[NN_cvttpd2pi] = false;           // Convert with Truncation Packed Double-Precision Floating-Point Values to Packed Doubleword Integers
SMPDefsFlags[NN_cvttps2dq] = false;           // Convert With Truncation Packed Single-Precision Floating-Point Values to Packed Doubleword Integers
SMPDefsFlags[NN_cvttsd2si] = false;           // Convert with Truncation Scalar Double-Precision Floating-Point Value to Doubleword Integer
SMPDefsFlags[NN_divpd] = false;               // Divide Packed Double-Precision Floating-Point Values
SMPDefsFlags[NN_divsd] = false;               // Divide Scalar Double-Precision Floating-Point Values
SMPDefsFlags[NN_lfence] = false;              // Load Fence
SMPDefsFlags[NN_maskmovdqu] = false;          // Store Selected Bytes of Double Quadword 
SMPDefsFlags[NN_maxpd] = false;               // Return Maximum Packed Double-Precision Floating-Point Values
SMPDefsFlags[NN_maxsd] = false;               // Return Maximum Scalar Double-Precision Floating-Point Value
SMPDefsFlags[NN_mfence] = false;              // Memory Fence
SMPDefsFlags[NN_minpd] = false;               // Return Minimum Packed Double-Precision Floating-Point Values
SMPDefsFlags[NN_minsd] = false;               // Return Minimum Scalar Double-Precision Floating-Point Value
SMPDefsFlags[NN_movapd] = false;              // Move Aligned Packed Double-Precision Floating-Point Values 
SMPDefsFlags[NN_movdq2q] = false;             // Move Quadword from XMM to MMX Register
SMPDefsFlags[NN_movdqa] = false;              // Move Aligned Double Quadword  
SMPDefsFlags[NN_movdqu] = false;              // Move Unaligned Double Quadword  
SMPDefsFlags[NN_movhpd] = false;              // Move High Packed Double-Precision Floating-Point Values 
SMPDefsFlags[NN_movlpd] = false;              // Move Low Packed Double-Precision Floating-Point Values 
SMPDefsFlags[NN_movmskpd] = false;            // Extract Packed Double-Precision Floating-Point Sign Mask
SMPDefsFlags[NN_movntdq] = false;             // Store Double Quadword Using Non-Temporal Hint
SMPDefsFlags[NN_movnti] = false;              // Store Doubleword Using Non-Temporal Hint
SMPDefsFlags[NN_movntpd] = false;             // Store Packed Double-Precision Floating-Point Values Using Non-Temporal Hint
SMPDefsFlags[NN_movq2dq] = false;             // Move Quadword from MMX to XMM Register
SMPDefsFlags[NN_movsd] = false;               // Move Scalar Double-Precision Floating-Point Values
SMPDefsFlags[NN_movupd] = false;              // Move Unaligned Packed Double-Precision Floating-Point Values
SMPDefsFlags[NN_mulpd] = false;               // Multiply Packed Double-Precision Floating-Point Values
SMPDefsFlags[NN_mulsd] = false;               // Multiply Scalar Double-Precision Floating-Point Values
SMPDefsFlags[NN_orpd] = false;                // Bitwise Logical OR of Double-Precision Floating-Point Values
SMPDefsFlags[NN_paddq] = false;               // Add Packed Quadword Integers
SMPDefsFlags[NN_pause] = false;               // Spin Loop Hint
SMPDefsFlags[NN_pmuludq] = false;             // Multiply Packed Unsigned Doubleword Integers
SMPDefsFlags[NN_pshufd] = false;              // Shuffle Packed Doublewords
SMPDefsFlags[NN_pshufhw] = false;             // Shuffle Packed High Words
SMPDefsFlags[NN_pshuflw] = false;             // Shuffle Packed Low Words
SMPDefsFlags[NN_pslldq] = false;              // Shift Double Quadword Left Logical
SMPDefsFlags[NN_psrldq] = false;              // Shift Double Quadword Right Logical
SMPDefsFlags[NN_psubq] = false;               // Subtract Packed Quadword Integers
SMPDefsFlags[NN_punpckhqdq] = false;          // Unpack High Data
SMPDefsFlags[NN_punpcklqdq] = false;          // Unpack Low Data
SMPDefsFlags[NN_shufpd] = false;              // Shuffle Packed Double-Precision Floating-Point Values
SMPDefsFlags[NN_sqrtpd] = false;              // Compute Square Roots of Packed Double-Precision Floating-Point Values
SMPDefsFlags[NN_sqrtsd] = false;              // Compute Square Rootof Scalar Double-Precision Floating-Point Value
SMPDefsFlags[NN_subpd] = false;               // Subtract Packed Double-Precision Floating-Point Values
SMPDefsFlags[NN_subsd] = false;               // Subtract Scalar Double-Precision Floating-Point Values
SMPDefsFlags[NN_unpckhpd] = false;            // Unpack and Interleave High Packed Double-Precision Floating-Point Values
SMPDefsFlags[NN_unpcklpd] = false;            // Unpack and Interleave Low Packed Double-Precision Floating-Point Values
SMPDefsFlags[NN_xorpd] = false;               // Bitwise Logical OR of Double-Precision Floating-Point Values


// AMD syscall/sysret instructions  NOTE: not AMD, found in Intel manual


// AMD64 instructions    NOTE: not AMD, found in Intel manual

SMPDefsFlags[NN_swapgs] = false;              // Exchange GS base with KernelGSBase MSR

// New Pentium instructions (SSE3)

SMPDefsFlags[NN_movddup] = false;             // Move One Double-FP and Duplicate
SMPDefsFlags[NN_movshdup] = false;            // Move Packed Single-FP High and Duplicate
SMPDefsFlags[NN_movsldup] = false;            // Move Packed Single-FP Low and Duplicate

// Missing AMD64 instructions  NOTE: also found in Intel manual

SMPDefsFlags[NN_movsxd] = false;              // Move with Sign-Extend Doubleword

// SSE3 instructions

SMPDefsFlags[NN_addsubpd] = false;            // Add /Sub packed DP FP numbers
SMPDefsFlags[NN_addsubps] = false;            // Add /Sub packed SP FP numbers
SMPDefsFlags[NN_haddpd] = false;              // Add horizontally packed DP FP numbers
SMPDefsFlags[NN_haddps] = false;              // Add horizontally packed SP FP numbers
SMPDefsFlags[NN_hsubpd] = false;              // Sub horizontally packed DP FP numbers
SMPDefsFlags[NN_hsubps] = false;              // Sub horizontally packed SP FP numbers
SMPDefsFlags[NN_monitor] = false;             // Set up a linear address range to be monitored by hardware
SMPDefsFlags[NN_mwait] = false;               // Wait until write-back store performed within the range specified by the MONITOR instruction
SMPDefsFlags[NN_fisttp] = false;              // Store ST in intXX (chop) and pop
SMPDefsFlags[NN_lddqu] = false;               // Load unaligned integer 128-bit

// SSSE3 instructions

SMPDefsFlags[NN_psignb] = false;              // Packed SIGN Byte
SMPDefsFlags[NN_psignw] = false;              // Packed SIGN Word
SMPDefsFlags[NN_psignd] = false;              // Packed SIGN Doubleword
SMPDefsFlags[NN_pshufb] = false;              // Packed Shuffle Bytes
SMPDefsFlags[NN_pmulhrsw] = false;            // Packed Multiply High with Round and Scale
SMPDefsFlags[NN_pmaddubsw] = false;           // Multiply and Add Packed Signed and Unsigned Bytes
SMPDefsFlags[NN_phsubsw] = false;             // Packed Horizontal Subtract and Saturate
SMPDefsFlags[NN_phaddsw] = false;             // Packed Horizontal Add and Saturate
SMPDefsFlags[NN_phaddw] = false;              // Packed Horizontal Add Word
SMPDefsFlags[NN_phaddd] = false;              // Packed Horizontal Add Doubleword
SMPDefsFlags[NN_phsubw] = false;              // Packed Horizontal Subtract Word
SMPDefsFlags[NN_phsubd] = false;              // Packed Horizontal Subtract Doubleword
SMPDefsFlags[NN_palignr] = false;             // Packed Align Right
SMPDefsFlags[NN_pabsb] = false;               // Packed Absolute Value Byte
SMPDefsFlags[NN_pabsw] = false;               // Packed Absolute Value Word
SMPDefsFlags[NN_pabsd] = false;               // Packed Absolute Value Doubleword

// VMX instructions

SMPDefsFlags[NN_last] = false;

  return;

} // end InitSMPDefsFlags()

// Initialize the SMPUsesFlags[] array to define how we emit
//   optimizing annotations.
void InitSMPUsesFlags(void) {
	// Default value is false. Few instructions use the flags.
	(void) memset(SMPUsesFlags, false, sizeof(SMPUsesFlags));

SMPUsesFlags[NN_null] = true;            // Unknown Operation
#if 1
SMPUsesFlags[NN_aaa] = true;                 // ASCII adjust after addition
SMPUsesFlags[NN_aas] = true;				 // ASCII adjust after subtraction
#endif
SMPUsesFlags[NN_adc] = true;                 // Add with Carry
SMPUsesFlags[NN_cmps] = true;                // Compare Strings (uses DF direction flag)
SMPUsesFlags[NN_into] = true;                // Call to Interrupt Procedure if Overflow Flag = 1
SMPUsesFlags[NN_ja] = true;                  // Jump if Above (CF=0 & ZF=0)
SMPUsesFlags[NN_jae] = true;                 // Jump if Above or Equal (CF=0)
SMPUsesFlags[NN_jb] = true;                  // Jump if Below (CF=1)
SMPUsesFlags[NN_jbe] = true;                 // Jump if Below or Equal (CF=1 | ZF=1)
SMPUsesFlags[NN_jc] = true;                  // Jump if Carry (CF=1)
SMPUsesFlags[NN_jcxz] = true;                // Jump if CX is 0
SMPUsesFlags[NN_jecxz] = true;               // Jump if ECX is 0
SMPUsesFlags[NN_jrcxz] = true;               // Jump if RCX is 0
SMPUsesFlags[NN_je] = true;                  // Jump if Equal (ZF=1)
SMPUsesFlags[NN_jg] = true;                  // Jump if Greater (ZF=0 & SF=OF)
SMPUsesFlags[NN_jge] = true;                 // Jump if Greater or Equal (SF=OF)
SMPUsesFlags[NN_jl] = true;                  // Jump if Less (SF!=OF)
SMPUsesFlags[NN_jle] = true;                 // Jump if Less or Equal (ZF=1 | SF!=OF)
SMPUsesFlags[NN_jna] = true;                 // Jump if Not Above (CF=1 | ZF=1)
SMPUsesFlags[NN_jnae] = true;                // Jump if Not Above or Equal (CF=1)
SMPUsesFlags[NN_jnb] = true;                 // Jump if Not Below (CF=0)
SMPUsesFlags[NN_jnbe] = true;                // Jump if Not Below or Equal (CF=0 & ZF=0)
SMPUsesFlags[NN_jnc] = true;                 // Jump if Not Carry (CF=0)
SMPUsesFlags[NN_jne] = true;                 // Jump if Not Equal (ZF=0)
SMPUsesFlags[NN_jng] = true;                 // Jump if Not Greater (ZF=1 | SF!=OF)
SMPUsesFlags[NN_jnge] = true;                // Jump if Not Greater or Equal (ZF=1)
SMPUsesFlags[NN_jnl] = true;                 // Jump if Not Less (SF=OF)
SMPUsesFlags[NN_jnle] = true;                // Jump if Not Less or Equal (ZF=0 & SF=OF)
SMPUsesFlags[NN_jno] = true;                 // Jump if Not Overflow (OF=0)
SMPUsesFlags[NN_jnp] = true;                 // Jump if Not Parity (PF=0)
SMPUsesFlags[NN_jns] = true;                 // Jump if Not Sign (SF=0)
SMPUsesFlags[NN_jnz] = true;                 // Jump if Not Zero (ZF=0)
SMPUsesFlags[NN_jo] = true;                  // Jump if Overflow (OF=1)
SMPUsesFlags[NN_jp] = true;                  // Jump if Parity (PF=1)
SMPUsesFlags[NN_jpe] = true;                 // Jump if Parity Even (PF=1)
SMPUsesFlags[NN_jpo] = true;                 // Jump if Parity Odd  (PF=0)
SMPUsesFlags[NN_js] = true;                  // Jump if Sign (SF=1)
SMPUsesFlags[NN_jz] = true;                  // Jump if Zero (ZF=1)
SMPUsesFlags[NN_lahf] = true;                // Load Flags into AH Register
SMPUsesFlags[NN_loopwe] = true;              // Loop while CX != 0 and ZF=1
SMPUsesFlags[NN_loope] = true;               // Loop while rCX != 0 and ZF=1
SMPUsesFlags[NN_loopde] = true;              // Loop while ECX != 0 and ZF=1
SMPUsesFlags[NN_loopqe] = true;              // Loop while RCX != 0 and ZF=1
SMPUsesFlags[NN_loopwne] = true;             // Loop while CX != 0 and ZF=0
SMPUsesFlags[NN_loopne] = true;              // Loop while rCX != 0 and ZF=0
SMPUsesFlags[NN_loopdne] = true;             // Loop while ECX != 0 and ZF=0
SMPUsesFlags[NN_loopqne] = true;             // Loop while RCX != 0 and ZF=0
SMPUsesFlags[NN_pushfw] = true;              // Push Flags Register onto the Stack
SMPUsesFlags[NN_pushf] = true;               // Push Flags Register onto the Stack
SMPUsesFlags[NN_pushfd] = true;              // Push Flags Register onto the Stack (use32)
SMPUsesFlags[NN_pushfq] = true;              // Push Flags Register onto the Stack (use64)
SMPUsesFlags[NN_repe] = true;                // Repeat String Operation while ZF=1
SMPUsesFlags[NN_repne] = true;               // Repeat String Operation while ZF=0
SMPUsesFlags[NN_sahf] = true;                // Store AH into Flags Register
SMPUsesFlags[NN_shl] = true;                 // Shift Logical Left
SMPUsesFlags[NN_shr] = true;                 // Shift Logical Right
SMPUsesFlags[NN_sbb] = true;                 // Integer Subtraction with Borrow
SMPUsesFlags[NN_scas] = true;                // Compare String (uses DF direction flag)
SMPUsesFlags[NN_seta] = true;                // Set Byte if Above (CF=0 & ZF=0)
SMPUsesFlags[NN_setae] = true;               // Set Byte if Above or Equal (CF=0)
SMPUsesFlags[NN_setb] = true;                // Set Byte if Below (CF=1)
SMPUsesFlags[NN_setbe] = true;               // Set Byte if Below or Equal (CF=1 | ZF=1)
SMPUsesFlags[NN_setc] = true;                // Set Byte if Carry (CF=1)
SMPUsesFlags[NN_sete] = true;                // Set Byte if Equal (ZF=1)
SMPUsesFlags[NN_setg] = true;                // Set Byte if Greater (ZF=0 & SF=OF)
SMPUsesFlags[NN_setge] = true;               // Set Byte if Greater or Equal (SF=OF)
SMPUsesFlags[NN_setl] = true;                // Set Byte if Less (SF!=OF)
SMPUsesFlags[NN_setle] = true;               // Set Byte if Less or Equal (ZF=1 | SF!=OF)
SMPUsesFlags[NN_setna] = true;               // Set Byte if Not Above (CF=1 | ZF=1)
SMPUsesFlags[NN_setnae] = true;              // Set Byte if Not Above or Equal (CF=1)
SMPUsesFlags[NN_setnb] = true;               // Set Byte if Not Below (CF=0)
SMPUsesFlags[NN_setnbe] = true;              // Set Byte if Not Below or Equal (CF=0 & ZF=0)
SMPUsesFlags[NN_setnc] = true;               // Set Byte if Not Carry (CF=0)
SMPUsesFlags[NN_setne] = true;               // Set Byte if Not Equal (ZF=0)
SMPUsesFlags[NN_setng] = true;               // Set Byte if Not Greater (ZF=1 | SF!=OF)
SMPUsesFlags[NN_setnge] = true;              // Set Byte if Not Greater or Equal (ZF=1)
SMPUsesFlags[NN_setnl] = true;               // Set Byte if Not Less (SF=OF)
SMPUsesFlags[NN_setnle] = true;              // Set Byte if Not Less or Equal (ZF=0 & SF=OF)
SMPUsesFlags[NN_setno] = true;               // Set Byte if Not Overflow (OF=0)
SMPUsesFlags[NN_setnp] = true;               // Set Byte if Not Parity (PF=0)
SMPUsesFlags[NN_setns] = true;               // Set Byte if Not Sign (SF=0)
SMPUsesFlags[NN_setnz] = true;               // Set Byte if Not Zero (ZF=0)
SMPUsesFlags[NN_seto] = true;                // Set Byte if Overflow (OF=1)
SMPUsesFlags[NN_setp] = true;                // Set Byte if Parity (PF=1)
SMPUsesFlags[NN_setpe] = true;               // Set Byte if Parity Even (PF=1)
SMPUsesFlags[NN_setpo] = true;               // Set Byte if Parity Odd  (PF=0)
SMPUsesFlags[NN_sets] = true;                // Set Byte if Sign (SF=1)
SMPUsesFlags[NN_setz] = true;                // Set Byte if Zero (ZF=1)
SMPUsesFlags[NN_stos] = true;                // Store String

//
//      486 instructions
//

//
//      Pentium instructions
//

SMPUsesFlags[NN_cpuid] = true;               // Get CPU ID
SMPUsesFlags[NN_cmpxchg8b] = true;           // Compare and Exchange Eight Bytes

//
//      Pentium Pro instructions
//

SMPUsesFlags[NN_cmova] = true;               // Move if Above (CF=0 & ZF=0)
SMPUsesFlags[NN_cmovb] = true;               // Move if Below (CF=1)
SMPUsesFlags[NN_cmovbe] = true;              // Move if Below or Equal (CF=1 | ZF=1)
SMPUsesFlags[NN_cmovg] = true;               // Move if Greater (ZF=0 & SF=OF)
SMPUsesFlags[NN_cmovge] = true;              // Move if Greater or Equal (SF=OF)
SMPUsesFlags[NN_cmovl] = true;               // Move if Less (SF!=OF)
SMPUsesFlags[NN_cmovle] = true;              // Move if Less or Equal (ZF=1 | SF!=OF)
SMPUsesFlags[NN_cmovnb] = true;              // Move if Not Below (CF=0)
SMPUsesFlags[NN_cmovno] = true;              // Move if Not Overflow (OF=0)
SMPUsesFlags[NN_cmovnp] = true;              // Move if Not Parity (PF=0)
SMPUsesFlags[NN_cmovns] = true;              // Move if Not Sign (SF=0)
SMPUsesFlags[NN_cmovnz] = true;              // Move if Not Zero (ZF=0)
SMPUsesFlags[NN_cmovo] = true;               // Move if Overflow (OF=1)
SMPUsesFlags[NN_cmovp] = true;               // Move if Parity (PF=1)
SMPUsesFlags[NN_cmovs] = true;               // Move if Sign (SF=1)
SMPUsesFlags[NN_cmovz] = true;               // Move if Zero (ZF=1)
SMPUsesFlags[NN_fcmovb] = true;              // Floating Move if Below          
SMPUsesFlags[NN_fcmove] = true;              // Floating Move if Equal          
SMPUsesFlags[NN_fcmovbe] = true;             // Floating Move if Below or Equal 
SMPUsesFlags[NN_fcmovu] = true;              // Floating Move if Unordered      
SMPUsesFlags[NN_fcmovnb] = true;             // Floating Move if Not Below      
SMPUsesFlags[NN_fcmovne] = true;             // Floating Move if Not Equal      
SMPUsesFlags[NN_fcmovnbe] = true;            // Floating Move if Not Below or Equal
SMPUsesFlags[NN_fcmovnu] = true;             // Floating Move if Not Unordered     

//
//


//
//      80387 instructions
//


//
//      Instructions added 28.02.96
//

SMPUsesFlags[NN_setalc] = true;              // Set AL to Carry Flag      

//
//      MMX instructions
//


//
//      Undocumented Deschutes processor instructions
//


//      Pentium II instructions


//      3DNow! instructions


//      Pentium III instructions


// Pentium III Pseudo instructions


// AMD K7 instructions

// Revisit AMD if we port to it.

// Undocumented FP instructions (thanks to norbert.juffa@adm.com)

// Pentium 4 instructions



// AMD syscall/sysret instructions  NOTE: not AMD, found in Intel manual

// AMD64 instructions    NOTE: not AMD, found in Intel manual


// New Pentium instructions (SSE3)


// Missing AMD64 instructions  NOTE: also found in Intel manual


// SSE3 instructions


// SSSE3 instructions


// VMX instructions


SMPUsesFlags[NN_last] = false;

  return;

} // end InitSMPUsesFlags()