Newer
Older
// This module contains common types an helper classes needed for the
#include <vector>
#include <algorithm>
#include <cstring>
#include <ida.hpp>
#include <idp.hpp>
#include <allins.hpp>
#include <auto.hpp>
#include <bytes.hpp>
#include <funcs.hpp>
#include <intel.hpp>
#include <loader.hpp>
#include <lines.hpp>
#include <name.hpp>
#include "SMPDataFlowAnalysis.h"
#include "SMPStaticAnalyzer.h"
// Set to 1 for debugging output
#define SMP_DEBUG 1
#define SMP_DEBUG2 0 // verbose
#define SMP_DEBUG3 0 // verbose
#define SMP_DEBUG_CONTROLFLOW 0 // tells what processing stage is entered
#define SMP_DEBUG_XOR 0
#define SMP_DEBUG_CHUNKS 1 // tracking down tail chunks for functions
#define SMP_DEBUG_FRAMEFIXUP 0
#define SMP_DEBUG_DATAFLOW 0
// Compute LVA/SSA or not? Turn it off for NICECAP demo on 31-JAN-2008
#define SMP_COMPUTE_LVA_SSA 0
char *RegNames[R_of + 1] =
{ "EAX", "ECX", "EDX", "EBX", "ESP", "EBP", "ESI", "EDI",
"R8", "R9", "R10", "R11", "R12", "R13", "R14", "R15",
"AL", "CL", "DL", "BL", "AH", "CH", "DH", "BH",
"SPL", "BPL", "SIL", "DIL", "EIP", "ES", "CS", "SS",
"DS", "FS", "GS", "CF", "ZF", "SF", "OF"
};
SMPitype DFACategory[NN_last+1];
// Define which instructions define and use the CPU flags.
bool SMPDefsFlags[NN_last + 1];
bool SMPUsesFlags[NN_last + 1];
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
// Get the size in bytes of the data type of an operand.
size_t GetOpDataSize(op_t DataOp) {
size_t DataSize;
switch (DataOp.dtyp) {
case dt_byte:
DataSize = 1;
break;
case dt_word:
DataSize = 2;
break;
case dt_dword:
case dt_float:
case dt_code:
case dt_unicode:
case dt_string:
DataSize = 4;
break;
case dt_double:
case dt_qword:
DataSize = 8;
break;
case dt_packreal:
DataSize = 12;
break;
case dt_byte16:
DataSize = 16;
break;
case dt_fword:
DataSize = 6;
break;
case dt_3byte:
DataSize = 3;
break;
default:
msg("WARNING: unexpected data type %d in GetOpDataSize().\n", DataOp.dtyp);
DataSize = 4;
break;
}
return DataSize;
} // end of GetOpDataSize()
// We need to make subword registers equal to their containing registers when we
// do comparisons, so that we will realize that register EAX is killed by a prior DEF
// of register AL, for example, and vice versa. To keep sets ordered strictly,
// we also have to make AL and AH be equal to each other as well as equal to EAX.
#define FIRST_x86_SUBWORD_REG R_al
#define LAST_x86_SUBWORD_REG R_bh
bool MDLessReg(const ushort Reg1, const ushort Reg2) {
bool FirstSubword = ((Reg1 >= FIRST_x86_SUBWORD_REG) && (Reg1 <= LAST_x86_SUBWORD_REG));
bool SecondSubword = ((Reg2 >= FIRST_x86_SUBWORD_REG) && (Reg2 <= LAST_x86_SUBWORD_REG));
ushort SReg1 = Reg1;
ushort SReg2 = Reg2;
if (FirstSubword) {
// See enumeration RegNo in intel.hpp.
if (SReg1 < 20) // AL, CL, DL or BL
SReg1 -= 16;
else // AH, CH, DH or BH
SReg1 -= 20;
}
if (SecondSubword) {
if (SReg2 < 20)
SReg2 -= 16;
else
SReg2 -= 20;
return (SReg1 < SReg2);
} // end of MDLessReg()
// In SSA computations, we are storing the GlobalNames index into the op_t fields
// n, offb, and offo. This function extracts an unsigned int from these three 8-bit
// fields.
unsigned int ExtractGlobalIndex(op_t GlobalOp) {
unsigned int index = 0;
index |= (((unsigned int) GlobalOp.offo) & 0x000000ff);
index <<= 8;
index |= (((unsigned int) GlobalOp.offb) & 0x000000ff);
index <<= 8;
index |= (((unsigned int) GlobalOp.n) & 0x000000ff);
void SetGlobalIndex(op_t *TempOp, size_t index) {
TempOp->n = (char) (index & 0x000000ff);
TempOp->offb = (char) ((index & 0x0000ff00) >> 8);
TempOp->offo = (char) ((index & 0x00ff0000) >> 16);
return;
}
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
// DEBUG Print DEF and/or USE for an operand.
void PrintDefUse(ulong feature, int OpNum) {
// CF_ macros number the operands from 1 to 6, while OpNum
// is a 0 to 5 index into the insn_t.Operands[] array.
// OpNum == -1 is a signal that this is a DEF or USE or VarKillSet etc.
// operand and not an instruction operand.
if (-1 == OpNum)
return;
switch (OpNum) {
case 0:
if (feature & CF_CHG1)
msg(" DEF");
if (feature & CF_USE1)
msg(" USE");
break;
case 1:
if (feature & CF_CHG2)
msg(" DEF");
if (feature & CF_USE2)
msg(" USE");
break;
case 2:
if (feature & CF_CHG3)
msg(" DEF");
if (feature & CF_USE3)
msg(" USE");
break;
case 3:
if (feature & CF_CHG4)
msg(" DEF");
if (feature & CF_USE4)
msg(" USE");
break;
case 4:
if (feature & CF_CHG5)
msg(" DEF");
if (feature & CF_USE5)
msg(" USE");
break;
case 5:
if (feature & CF_CHG6)
msg(" DEF");
if (feature & CF_USE6)
msg(" USE");
break;
}
return;
} // end PrintDefUse()
// DEBUG print SIB info for an operand.
void PrintSIB(op_t Opnd) {
int BaseReg = sib_base(Opnd);
short IndexReg = sib_index(Opnd);
int ScaleFactor = sib_scale(Opnd);
#define NAME_LEN 5
char BaseName[NAME_LEN] = {'N', 'o', 'n', 'e', '\0'};
char IndexName[NAME_LEN] = {'N', 'o', 'n', 'e', '\0'};
#if 1
if (!((BaseReg == R_bp) && (Opnd.type == o_mem))) // EBP can be SIB code for NO BASE REG
#endif
qstrncpy(BaseName, RegNames[BaseReg], NAME_LEN - 1);
if (IndexReg != R_sp) { // SIB code for NO INDEX REG
qstrncpy(IndexName, RegNames[IndexReg], NAME_LEN -1);
}
msg(" Base %s Index %s Scale %d", BaseName, IndexName, ScaleFactor);
} // end PrintSIB()
// Debug: print one operand from an instruction or DEF or USE list.
void PrintOneOperand(op_t Opnd, ulong features, int OpNum) {
if (Opnd.type == o_void)
return;
else if (Opnd.type == o_mem) {
msg(" Operand %d : memory : addr: %x", OpNum, Opnd.addr);
PrintDefUse(features, OpNum);
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
PrintSIB(Opnd);
}
}
else if (Opnd.type == o_phrase) {
msg(" Operand %d : memory phrase :", OpNum);
PrintDefUse(features, OpNum);
if (Opnd.hasSIB) { // has SIB info
PrintSIB(Opnd);
}
else { // no SIB info
ushort BaseReg = Opnd.phrase;
msg(" reg %s", RegNames[BaseReg]);
}
if (Opnd.addr != 0) {
msg(" \n WARNING: addr for o_phrase type: %d\n", Opnd.addr);
}
}
else if (Opnd.type == o_displ) {
msg(" Operand %d : memory displ :", OpNum);
ea_t offset = Opnd.addr;
PrintDefUse(features, OpNum);
if (Opnd.hasSIB) {
PrintSIB(Opnd);
msg(" displ %d", offset);
}
else {
ushort BaseReg = Opnd.reg;
msg(" reg %s displ %d", RegNames[BaseReg], offset);
}
}
else if (Opnd.type == o_reg) {
msg(" Operand %d : register %s", OpNum, RegNames[Opnd.reg]);
PrintDefUse(features, OpNum);
}
else if (Opnd.type == o_imm) {
msg(" Operand %d : immed", OpNum);
PrintDefUse(features, OpNum);
}
else if (Opnd.type == o_far) {
msg(" Operand %d : FarPtrImmed", OpNum);
msg(" addr: %x", Opnd.addr);
PrintDefUse(features, OpNum);
}
else if (Opnd.type == o_near) {
msg(" Operand %d : NearPtrImmed", OpNum);
msg(" addr: %x", Opnd.addr);
PrintDefUse(features, OpNum);
}
else {
msg(" Operand %d : unknown", OpNum);
PrintDefUse(features, OpNum);
}
if (!(Opnd.showed()))
msg(" HIDDEN ");
return;
} // end of PrintOneOperand()
// Print an operand that has no features flags or operand position number, such
// as the op_t types found in lists and sets throughout the blocks, phi functions, etc.
void PrintListOperand(op_t Opnd, int SSANum) {
if (Opnd.type == o_void)
return;
else if (Opnd.type == o_mem) {
msg(" Operand : memory : addr: %x", Opnd.addr);
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
PrintSIB(Opnd);
}
}
else if (Opnd.type == o_phrase) {
msg(" Operand : memory phrase :");
if (Opnd.hasSIB) { // has SIB info
PrintSIB(Opnd);
}
else { // no SIB info
ushort BaseReg = Opnd.phrase;
msg(" reg %s", RegNames[BaseReg]);
}
if (Opnd.addr != 0) {
msg(" \n WARNING: addr for o_phrase type: %d\n", Opnd.addr);
}
}
else if (Opnd.type == o_displ) {
msg(" Operand : memory displ :");
ea_t offset = Opnd.addr;
if (Opnd.hasSIB) {
PrintSIB(Opnd);
msg(" displ %d", offset);
}
else {
ushort BaseReg = Opnd.reg;
msg(" reg %s displ %d", RegNames[BaseReg], offset);
}
}
else if (Opnd.type == o_reg) {
msg(" Operand : register: %s", RegNames[Opnd.reg]);
}
else if (Opnd.type == o_imm) {
msg(" Operand : immed %d", Opnd.value);
}
else if (Opnd.type == o_far) {
msg(" Operand : FarPtrImmed addr: %x", Opnd.addr);
}
else if (Opnd.type == o_near) {
msg(" Operand : NearPtrImmed addr: %x", Opnd.addr);
}
else {
msg(" Operand : unknown");
}
msg(" SSANum: %d ", SSANum);
if (!(Opnd.showed()))
msg(" HIDDEN ");
return;
} // end of PrintListOperand()
// MACHINE DEPENDENT: Is operand type a known type that we want to analyze?
bool MDKnownOperandType(op_t TempOp) {
return ((TempOp.type >= o_reg) && (TempOp.type <= o_near));
}
// *****************************************************************
// Class DefOrUse
// *****************************************************************
// Default constructor to make the compilers happy.
DefOrUse::DefOrUse(void) {
this->OpType = UNINIT;
this->SSANumber = -2;
return;
}
// Constructor.
DefOrUse::DefOrUse(op_t Ref, SMPOperandType Type, int SSASub) {
this->Operand = Ref;
this->OpType = Type;
this->SSANumber = SSASub;
return;
}
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
// Copy constructor.
DefOrUse::DefOrUse(const DefOrUse &CopyIn) {
*this = CopyIn;
return;
}
// Assignment operator for copy constructor use.
DefOrUse &DefOrUse::operator=(const DefOrUse &rhs) {
this->Operand = rhs.Operand;
this->OpType = rhs.OpType;
this->SSANumber = rhs.SSANumber;
return *this;
}
// Debug printing.
void DefOrUse::Dump(void) const {
PrintListOperand(this->Operand, this->SSANumber);
if (this->OpType == NUMERIC)
msg("N ");
else if (this->OpType == POINTER)
msg("P ");
else if (this->OpType == UNKNOWN)
msg("U ");
// Don't write anything for UNINIT OpType
return;
} // end of DefOrUse::Dump()
// *****************************************************************
// Class DefOrUseList
// *****************************************************************
// Default constructor.
DefOrUseList::DefOrUseList(void) {
return;
}
// Set a Def or Use into the list, along with its type.
void DefOrUseList::SetRef(op_t Ref, SMPOperandType Type, int SSASub) {
DefOrUse CurrRef(Ref, Type, SSASub);
this->Refs.push_back(CurrRef);
DefOrUse DefOrUseList::GetRef(size_t index) const {
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
// Change the SSA subscript for a reference.
void DefOrUseList::SetSSANum(size_t index, int NewSSASub) {
this->Refs[index].SetSSANum(NewSSASub);
return;
}
// Change the operand type for a reference.
void DefOrUseList::SetType(size_t index, SMPOperandType Type) {
this->Refs[index].SetType(Type);
return;
}
// Debug printing.
void DefOrUseList::Dump(void) const {
for (size_t index = 0; index < this->Refs.size(); ++index) {
Refs[index].Dump();
}
msg("\n");
return;
}
// Erase duplicate entries, in case SMPInstr::MDFixupDefUseLists() adds one.
void DefOrUseList::EraseDuplicates(void) {
set<op_t, LessOp> TempRefs; // Use STL set to find duplicates
set<op_t, LessOp>::iterator TempIter;
vector<DefOrUse>::iterator RefIter;
RefIter = this->Refs.begin();
while (RefIter != this->Refs.end()) {
TempIter = TempRefs.find(RefIter->GetOp());
if (TempIter == TempRefs.end()) { // not already in set
TempRefs.insert(RefIter->GetOp());
++RefIter;
}
else { // found it in set already
RefIter = this->Refs.erase(RefIter);
}
}
return;
} // end of DefOrUseList::EraseDuplicates()
// *****************************************************************
// Class SMPPhiFunction
// *****************************************************************
// Constructor
SMPPhiFunction::SMPPhiFunction(int GlobIndex, const DefOrUse &Def) {
this->DefName = Def;
// Add a phi item to the list
void SMPPhiFunction::PushBack(DefOrUse Ref) {
this->SubscriptedOps.SetRef(Ref.GetOp(), Ref.GetType(), Ref.GetSSANum());
return;
}
// Set the SSA number of the defined variable.
void SMPPhiFunction::SetSSADef(int NewSSASub) {
this->DefName.SetSSANum(NewSSASub);
return;
}
// Set the SSA number of the input variable.
void SMPPhiFunction::SetSSARef(size_t index, int NewSSASub) {
this->SubscriptedOps.SetSSANum(index, NewSSASub);
return;
}
// Debug printing.
void SMPPhiFunction::Dump(void) const {
msg(" DEF: ");
this->DefName.Dump();
msg(" USEs: ");
this->SubscriptedOps.Dump();
return;
}
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
// *****************************************************************
// Class SMPDefUseChain
// *****************************************************************
// Constructors
SMPDefUseChain::SMPDefUseChain(void) {
this->SSAName.type = o_void;
this->RefInstrs.push_back(BADADDR);
return;
}
SMPDefUseChain::SMPDefUseChain(op_t Name, ea_t Def) {
this->SSAName = Name;
this->RefInstrs.push_back(Def);
return;
}
// Set the variable name.
void SMPDefUseChain::SetName(op_t Name) {
this->SSAName = Name;
return;
}
// Set the DEF instruction.
void SMPDefUseChain::SetDef(ea_t Def) {
this->RefInstrs[0] = Def;
return;
}
// Push a USE onto the list
void SMPDefUseChain::PushUse(ea_t Use) {
this->RefInstrs.push_back(Use);
return;
}
// DEBUG dump.
void SMPDefUseChain::Dump(int SSANum) {
msg("DEF-USE chain for: ");
PrintListOperand(this->SSAName, SSANum);
if (this->RefInstrs.size() < 1) {
msg(" no references.\n");
return;
}
msg("\n DEF: %x USEs: ", this->RefInstrs.at(0));
size_t index;
for (index = 1; index < this->RefInstrs.size(); ++index)
msg("%x ", this->RefInstrs.at(index));
msg("\n");
return;
} // end of SMPDefUseChain::Dump()
// *****************************************************************
// Class SMPDUChainArray
// *****************************************************************
SMPDUChainArray::SMPDUChainArray(void) {
this->SSAName.type = o_void;
return;
}
SMPDUChainArray::SMPDUChainArray(op_t Name) {
this->SSAName = Name;
return;
}
void SMPDUChainArray::SetName(op_t Name) {
this->SSAName = Name;
return;
}
// DEBUG dump.
void SMPDUChainArray::Dump(void) {
size_t index;
for (index = 0; index < this->DUChains.size(); ++index) {
this->DUChains.at(index).Dump((int) index);
}
return;
}
// *****************************************************************
// Class SMPCompleteDUChains
// *****************************************************************
// DEBUG dump.
void SMPCompleteDUChains::Dump(void) {
size_t index;
for (index = 0; index < this->ChainsByName.size(); ++index) {
this->ChainsByName.at(index).Dump();
}
return;
} // end of SMPCompleteDUChains::Dump()
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
// Initialize the DFACategory[] array to define instruction classes
// for the purposes of data flow analysis.
void InitDFACategory(void) {
// Default category is 0, not the start or end of a basic block.
(void) memset(DFACategory, 0, sizeof(DFACategory));
DFACategory[NN_call] = CALL; // Call Procedure
DFACategory[NN_callfi] = INDIR_CALL; // Indirect Call Far Procedure
DFACategory[NN_callni] = INDIR_CALL; // Indirect Call Near Procedure
DFACategory[NN_hlt] = HALT; // Halt
DFACategory[NN_int] = CALL; // Call to Interrupt Procedure
DFACategory[NN_into] = CALL; // Call to Interrupt Procedure if Overflow Flag = 1
DFACategory[NN_int3] = CALL; // Trap to Debugger
DFACategory[NN_iretw] = RETURN; // Interrupt Return
DFACategory[NN_iret] = RETURN; // Interrupt Return
DFACategory[NN_iretd] = RETURN; // Interrupt Return (use32)
DFACategory[NN_iretq] = RETURN; // Interrupt Return (use64)
DFACategory[NN_ja] = COND_BRANCH; // Jump if Above (CF=0 & ZF=0)
DFACategory[NN_jae] = COND_BRANCH; // Jump if Above or Equal (CF=0)
DFACategory[NN_jb] = COND_BRANCH; // Jump if Below (CF=1)
DFACategory[NN_jbe] = COND_BRANCH; // Jump if Below or Equal (CF=1 | ZF=1)
DFACategory[NN_jc] = COND_BRANCH; // Jump if Carry (CF=1)
DFACategory[NN_jcxz] = COND_BRANCH; // Jump if CX is 0
DFACategory[NN_jecxz] = COND_BRANCH; // Jump if ECX is 0
DFACategory[NN_jrcxz] = COND_BRANCH; // Jump if RCX is 0
DFACategory[NN_je] = COND_BRANCH; // Jump if Equal (ZF=1)
DFACategory[NN_jg] = COND_BRANCH; // Jump if Greater (ZF=0 & SF=OF)
DFACategory[NN_jge] = COND_BRANCH; // Jump if Greater or Equal (SF=OF)
DFACategory[NN_jl] = COND_BRANCH; // Jump if Less (SF!=OF)
DFACategory[NN_jle] = COND_BRANCH; // Jump if Less or Equal (ZF=1 | SF!=OF)
DFACategory[NN_jna] = COND_BRANCH; // Jump if Not Above (CF=1 | ZF=1)
DFACategory[NN_jnae] = COND_BRANCH; // Jump if Not Above or Equal (CF=1)
DFACategory[NN_jnb] = COND_BRANCH; // Jump if Not Below (CF=0)
DFACategory[NN_jnbe] = COND_BRANCH; // Jump if Not Below or Equal (CF=0 & ZF=0)
DFACategory[NN_jnc] = COND_BRANCH; // Jump if Not Carry (CF=0)
DFACategory[NN_jne] = COND_BRANCH; // Jump if Not Equal (ZF=0)
DFACategory[NN_jng] = COND_BRANCH; // Jump if Not Greater (ZF=1 | SF!=OF)
DFACategory[NN_jnge] = COND_BRANCH; // Jump if Not Greater or Equal (ZF=1)
DFACategory[NN_jnl] = COND_BRANCH; // Jump if Not Less (SF=OF)
DFACategory[NN_jnle] = COND_BRANCH; // Jump if Not Less or Equal (ZF=0 & SF=OF)
DFACategory[NN_jno] = COND_BRANCH; // Jump if Not Overflow (OF=0)
DFACategory[NN_jnp] = COND_BRANCH; // Jump if Not Parity (PF=0)
DFACategory[NN_jns] = COND_BRANCH; // Jump if Not Sign (SF=0)
DFACategory[NN_jnz] = COND_BRANCH; // Jump if Not Zero (ZF=0)
DFACategory[NN_jo] = COND_BRANCH; // Jump if Overflow (OF=1)
DFACategory[NN_jp] = COND_BRANCH; // Jump if Parity (PF=1)
DFACategory[NN_jpe] = COND_BRANCH; // Jump if Parity Even (PF=1)
DFACategory[NN_jpo] = COND_BRANCH; // Jump if Parity Odd (PF=0)
DFACategory[NN_js] = COND_BRANCH; // Jump if Sign (SF=1)
DFACategory[NN_jz] = COND_BRANCH; // Jump if Zero (ZF=1)
DFACategory[NN_jmp] = JUMP; // Jump
DFACategory[NN_jmpfi] = INDIR_JUMP; // Indirect Far Jump
DFACategory[NN_jmpni] = INDIR_JUMP; // Indirect Near Jump
DFACategory[NN_jmpshort] = JUMP; // Jump Short (only in 64-bit mode)
DFACategory[NN_loopw] = COND_BRANCH; // Loop while ECX != 0
DFACategory[NN_loop] = COND_BRANCH; // Loop while CX != 0
DFACategory[NN_loopd] = COND_BRANCH; // Loop while ECX != 0
DFACategory[NN_loopq] = COND_BRANCH; // Loop while RCX != 0
DFACategory[NN_loopwe] = COND_BRANCH; // Loop while CX != 0 and ZF=1
DFACategory[NN_loope] = COND_BRANCH; // Loop while rCX != 0 and ZF=1
DFACategory[NN_loopde] = COND_BRANCH; // Loop while ECX != 0 and ZF=1
DFACategory[NN_loopqe] = COND_BRANCH; // Loop while RCX != 0 and ZF=1
DFACategory[NN_loopwne] = COND_BRANCH; // Loop while CX != 0 and ZF=0
DFACategory[NN_loopne] = COND_BRANCH; // Loop while rCX != 0 and ZF=0
DFACategory[NN_loopdne] = COND_BRANCH; // Loop while ECX != 0 and ZF=0
DFACategory[NN_loopqne] = COND_BRANCH; // Loop while RCX != 0 and ZF=0
DFACategory[NN_retn] = RETURN; // Return Near from Procedure
DFACategory[NN_retf] = RETURN; // Return Far from Procedure
//
// Pentium instructions
//
DFACategory[NN_rsm] = HALT; // Resume from System Management Mode
// Pentium II instructions
DFACategory[NN_sysenter] = CALL; // Fast Transition to System Call Entry Point
DFACategory[NN_sysexit] = CALL; // Fast Transition from System Call Entry Point
// AMD syscall/sysret instructions NOTE: not AMD, found in Intel manual
DFACategory[NN_syscall] = CALL; // Low latency system call
DFACategory[NN_sysret] = CALL; // Return from system call
// VMX instructions
DFACategory[NN_vmcall] = INDIR_CALL; // Call to VM Monitor
return;
} // end InitDFACategory()
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
// Initialize the SMPDefsFlags[] array to define how we emit
// optimizing annotations.
void InitSMPDefsFlags(void) {
// Default value is true. Many instructions set the flags.
(void) memset(SMPDefsFlags, true, sizeof(SMPDefsFlags));
SMPDefsFlags[NN_null] = false; // Unknown Operation
SMPDefsFlags[NN_bound] = false; // Check Array Index Against Bounds
SMPDefsFlags[NN_call] = false; // Call Procedure
SMPDefsFlags[NN_callfi] = false; // Indirect Call Far Procedure
SMPDefsFlags[NN_callni] = false; // Indirect Call Near Procedure
SMPDefsFlags[NN_cbw] = false; // AL -> AX (with sign)
SMPDefsFlags[NN_cwde] = false; // AX -> EAX (with sign)
SMPDefsFlags[NN_cdqe] = false; // EAX -> RAX (with sign)
SMPDefsFlags[NN_clts] = false; // Clear Task-Switched Flag in CR0
SMPDefsFlags[NN_cwd] = false; // AX -> DX:AX (with sign)
SMPDefsFlags[NN_cdq] = false; // EAX -> EDX:EAX (with sign)
SMPDefsFlags[NN_cqo] = false; // RAX -> RDX:RAX (with sign)
SMPDefsFlags[NN_enterw] = false; // Make Stack Frame for Procedure Parameters
SMPDefsFlags[NN_enter] = false; // Make Stack Frame for Procedure Parameters
SMPDefsFlags[NN_enterd] = false; // Make Stack Frame for Procedure Parameters
SMPDefsFlags[NN_enterq] = false; // Make Stack Frame for Procedure Parameters
SMPDefsFlags[NN_hlt] = false; // Halt
SMPDefsFlags[NN_in] = false; // Input from Port
SMPDefsFlags[NN_ins] = false; // Input Byte(s) from Port to String
SMPDefsFlags[NN_iretw] = false; // Interrupt Return
SMPDefsFlags[NN_iret] = false; // Interrupt Return
SMPDefsFlags[NN_iretd] = false; // Interrupt Return (use32)
SMPDefsFlags[NN_iretq] = false; // Interrupt Return (use64)
SMPDefsFlags[NN_ja] = false; // Jump if Above (CF=0 & ZF=0)
SMPDefsFlags[NN_jae] = false; // Jump if Above or Equal (CF=0)
SMPDefsFlags[NN_jb] = false; // Jump if Below (CF=1)
SMPDefsFlags[NN_jbe] = false; // Jump if Below or Equal (CF=1 | ZF=1)
SMPDefsFlags[NN_jc] = false; // Jump if Carry (CF=1)
SMPDefsFlags[NN_jcxz] = false; // Jump if CX is 0
SMPDefsFlags[NN_jecxz] = false; // Jump if ECX is 0
SMPDefsFlags[NN_jrcxz] = false; // Jump if RCX is 0
SMPDefsFlags[NN_je] = false; // Jump if Equal (ZF=1)
SMPDefsFlags[NN_jg] = false; // Jump if Greater (ZF=0 & SF=OF)
SMPDefsFlags[NN_jge] = false; // Jump if Greater or Equal (SF=OF)
SMPDefsFlags[NN_jl] = false; // Jump if Less (SF!=OF)
SMPDefsFlags[NN_jle] = false; // Jump if Less or Equal (ZF=1 | SF!=OF)
SMPDefsFlags[NN_jna] = false; // Jump if Not Above (CF=1 | ZF=1)
SMPDefsFlags[NN_jnae] = false; // Jump if Not Above or Equal (CF=1)
SMPDefsFlags[NN_jnb] = false; // Jump if Not Below (CF=0)
SMPDefsFlags[NN_jnbe] = false; // Jump if Not Below or Equal (CF=0 & ZF=0)
SMPDefsFlags[NN_jnc] = false; // Jump if Not Carry (CF=0)
SMPDefsFlags[NN_jne] = false; // Jump if Not Equal (ZF=0)
SMPDefsFlags[NN_jng] = false; // Jump if Not Greater (ZF=1 | SF!=OF)
SMPDefsFlags[NN_jnge] = false; // Jump if Not Greater or Equal (ZF=1)
SMPDefsFlags[NN_jnl] = false; // Jump if Not Less (SF=OF)
SMPDefsFlags[NN_jnle] = false; // Jump if Not Less or Equal (ZF=0 & SF=OF)
SMPDefsFlags[NN_jno] = false; // Jump if Not Overflow (OF=0)
SMPDefsFlags[NN_jnp] = false; // Jump if Not Parity (PF=0)
SMPDefsFlags[NN_jns] = false; // Jump if Not Sign (SF=0)
SMPDefsFlags[NN_jnz] = false; // Jump if Not Zero (ZF=0)
SMPDefsFlags[NN_jo] = false; // Jump if Overflow (OF=1)
SMPDefsFlags[NN_jp] = false; // Jump if Parity (PF=1)
SMPDefsFlags[NN_jpe] = false; // Jump if Parity Even (PF=1)
SMPDefsFlags[NN_jpo] = false; // Jump if Parity Odd (PF=0)
SMPDefsFlags[NN_js] = false; // Jump if Sign (SF=1)
SMPDefsFlags[NN_jz] = false; // Jump if Zero (ZF=1)
SMPDefsFlags[NN_jmp] = false; // Jump
SMPDefsFlags[NN_jmpfi] = false; // Indirect Far Jump
SMPDefsFlags[NN_jmpni] = false; // Indirect Near Jump
SMPDefsFlags[NN_jmpshort] = false; // Jump Short (not used)
SMPDefsFlags[NN_lahf] = false; // Load Flags into AH Register
SMPDefsFlags[NN_lea] = false; // Load Effective Address
SMPDefsFlags[NN_leavew] = false; // High Level Procedure Exit
SMPDefsFlags[NN_leave] = false; // High Level Procedure Exit
SMPDefsFlags[NN_leaved] = false; // High Level Procedure Exit
SMPDefsFlags[NN_leaveq] = false; // High Level Procedure Exit
SMPDefsFlags[NN_lgdt] = false; // Load Global Descriptor Table Register
SMPDefsFlags[NN_lidt] = false; // Load Interrupt Descriptor Table Register
SMPDefsFlags[NN_lgs] = false; // Load Full Pointer to GS:xx
SMPDefsFlags[NN_lss] = false; // Load Full Pointer to SS:xx
SMPDefsFlags[NN_lds] = false; // Load Full Pointer to DS:xx
SMPDefsFlags[NN_les] = false; // Load Full Pointer to ES:xx
SMPDefsFlags[NN_lfs] = false; // Load Full Pointer to FS:xx
SMPDefsFlags[NN_loopwe] = false; // Loop while CX != 0 and ZF=1
SMPDefsFlags[NN_loope] = false; // Loop while rCX != 0 and ZF=1
SMPDefsFlags[NN_loopde] = false; // Loop while ECX != 0 and ZF=1
SMPDefsFlags[NN_loopqe] = false; // Loop while RCX != 0 and ZF=1
SMPDefsFlags[NN_loopwne] = false; // Loop while CX != 0 and ZF=0
SMPDefsFlags[NN_loopne] = false; // Loop while rCX != 0 and ZF=0
SMPDefsFlags[NN_loopdne] = false; // Loop while ECX != 0 and ZF=0
SMPDefsFlags[NN_loopqne] = false; // Loop while RCX != 0 and ZF=0
SMPDefsFlags[NN_ltr] = false; // Load Task Register
SMPDefsFlags[NN_mov] = false; // Move Data
SMPDefsFlags[NN_movsp] = false; // Move to/from Special Registers
SMPDefsFlags[NN_movs] = false; // Move Byte(s) from String to String
SMPDefsFlags[NN_movsx] = false; // Move with Sign-Extend
SMPDefsFlags[NN_movzx] = false; // Move with Zero-Extend
SMPDefsFlags[NN_nop] = false; // No Operation
SMPDefsFlags[NN_out] = false; // Output to Port
SMPDefsFlags[NN_outs] = false; // Output Byte(s) to Port
SMPDefsFlags[NN_pop] = false; // Pop a word from the Stack
SMPDefsFlags[NN_popaw] = false; // Pop all General Registers
SMPDefsFlags[NN_popa] = false; // Pop all General Registers
SMPDefsFlags[NN_popad] = false; // Pop all General Registers (use32)
SMPDefsFlags[NN_popaq] = false; // Pop all General Registers (use64)
SMPDefsFlags[NN_push] = false; // Push Operand onto the Stack
SMPDefsFlags[NN_pushaw] = false; // Push all General Registers
SMPDefsFlags[NN_pusha] = false; // Push all General Registers
SMPDefsFlags[NN_pushad] = false; // Push all General Registers (use32)
SMPDefsFlags[NN_pushaq] = false; // Push all General Registers (use64)
SMPDefsFlags[NN_pushfw] = false; // Push Flags Register onto the Stack
SMPDefsFlags[NN_pushf] = false; // Push Flags Register onto the Stack
SMPDefsFlags[NN_pushfd] = false; // Push Flags Register onto the Stack (use32)
SMPDefsFlags[NN_pushfq] = false; // Push Flags Register onto the Stack (use64)
SMPDefsFlags[NN_rep] = false; // Repeat String Operation
SMPDefsFlags[NN_repe] = false; // Repeat String Operation while ZF=1
SMPDefsFlags[NN_repne] = false; // Repeat String Operation while ZF=0
SMPDefsFlags[NN_retn] = false; // Return Near from Procedure
SMPDefsFlags[NN_retf] = false; // Return Far from Procedure
SMPDefsFlags[NN_shl] = false; // Shift Logical Left
SMPDefsFlags[NN_shr] = false; // Shift Logical Right
SMPDefsFlags[NN_seta] = false; // Set Byte if Above (CF=0 & ZF=0)
SMPDefsFlags[NN_setae] = false; // Set Byte if Above or Equal (CF=0)
SMPDefsFlags[NN_setb] = false; // Set Byte if Below (CF=1)
SMPDefsFlags[NN_setbe] = false; // Set Byte if Below or Equal (CF=1 | ZF=1)
SMPDefsFlags[NN_setc] = false; // Set Byte if Carry (CF=1)
SMPDefsFlags[NN_sete] = false; // Set Byte if Equal (ZF=1)
SMPDefsFlags[NN_setg] = false; // Set Byte if Greater (ZF=0 & SF=OF)
SMPDefsFlags[NN_setge] = false; // Set Byte if Greater or Equal (SF=OF)
SMPDefsFlags[NN_setl] = false; // Set Byte if Less (SF!=OF)
SMPDefsFlags[NN_setle] = false; // Set Byte if Less or Equal (ZF=1 | SF!=OF)
SMPDefsFlags[NN_setna] = false; // Set Byte if Not Above (CF=1 | ZF=1)
SMPDefsFlags[NN_setnae] = false; // Set Byte if Not Above or Equal (CF=1)
SMPDefsFlags[NN_setnb] = false; // Set Byte if Not Below (CF=0)
SMPDefsFlags[NN_setnbe] = false; // Set Byte if Not Below or Equal (CF=0 & ZF=0)
SMPDefsFlags[NN_setnc] = false; // Set Byte if Not Carry (CF=0)
SMPDefsFlags[NN_setne] = false; // Set Byte if Not Equal (ZF=0)
SMPDefsFlags[NN_setng] = false; // Set Byte if Not Greater (ZF=1 | SF!=OF)
SMPDefsFlags[NN_setnge] = false; // Set Byte if Not Greater or Equal (ZF=1)
SMPDefsFlags[NN_setnl] = false; // Set Byte if Not Less (SF=OF)
SMPDefsFlags[NN_setnle] = false; // Set Byte if Not Less or Equal (ZF=0 & SF=OF)
SMPDefsFlags[NN_setno] = false; // Set Byte if Not Overflow (OF=0)
SMPDefsFlags[NN_setnp] = false; // Set Byte if Not Parity (PF=0)
SMPDefsFlags[NN_setns] = false; // Set Byte if Not Sign (SF=0)
SMPDefsFlags[NN_setnz] = false; // Set Byte if Not Zero (ZF=0)
SMPDefsFlags[NN_seto] = false; // Set Byte if Overflow (OF=1)
SMPDefsFlags[NN_setp] = false; // Set Byte if Parity (PF=1)
SMPDefsFlags[NN_setpe] = false; // Set Byte if Parity Even (PF=1)
SMPDefsFlags[NN_setpo] = false; // Set Byte if Parity Odd (PF=0)
SMPDefsFlags[NN_sets] = false; // Set Byte if Sign (SF=1)
SMPDefsFlags[NN_setz] = false; // Set Byte if Zero (ZF=1)
SMPDefsFlags[NN_sgdt] = false; // Store Global Descriptor Table Register
SMPDefsFlags[NN_sidt] = false; // Store Interrupt Descriptor Table Register
SMPDefsFlags[NN_sldt] = false; // Store Local Descriptor Table Register
SMPDefsFlags[NN_str] = false; // Store Task Register
SMPDefsFlags[NN_wait] = false; // Wait until BUSY# Pin is Inactive (HIGH)
SMPDefsFlags[NN_xchg] = false; // Exchange Register/Memory with Register
//
// 486 instructions
//
SMPDefsFlags[NN_bswap] = false; // Swap bytes in register
SMPDefsFlags[NN_invd] = false; // Invalidate Data Cache
SMPDefsFlags[NN_wbinvd] = false; // Invalidate Data Cache (write changes)
SMPDefsFlags[NN_invlpg] = false; // Invalidate TLB entry
//
// Pentium instructions
//
SMPDefsFlags[NN_rdmsr] = false; // Read Machine Status Register
SMPDefsFlags[NN_wrmsr] = false; // Write Machine Status Register
SMPDefsFlags[NN_cpuid] = false; // Get CPU ID
SMPDefsFlags[NN_rdtsc] = false; // Read Time Stamp Counter
//
// Pentium Pro instructions
//
SMPDefsFlags[NN_cmova] = false; // Move if Above (CF=0 & ZF=0)
SMPDefsFlags[NN_cmovb] = false; // Move if Below (CF=1)
SMPDefsFlags[NN_cmovbe] = false; // Move if Below or Equal (CF=1 | ZF=1)
SMPDefsFlags[NN_cmovg] = false; // Move if Greater (ZF=0 & SF=OF)
SMPDefsFlags[NN_cmovge] = false; // Move if Greater or Equal (SF=OF)
SMPDefsFlags[NN_cmovl] = false; // Move if Less (SF!=OF)
SMPDefsFlags[NN_cmovle] = false; // Move if Less or Equal (ZF=1 | SF!=OF)
SMPDefsFlags[NN_cmovnb] = false; // Move if Not Below (CF=0)
SMPDefsFlags[NN_cmovno] = false; // Move if Not Overflow (OF=0)
SMPDefsFlags[NN_cmovnp] = false; // Move if Not Parity (PF=0)
SMPDefsFlags[NN_cmovns] = false; // Move if Not Sign (SF=0)
SMPDefsFlags[NN_cmovnz] = false; // Move if Not Zero (ZF=0)
SMPDefsFlags[NN_cmovo] = false; // Move if Overflow (OF=1)
SMPDefsFlags[NN_cmovp] = false; // Move if Parity (PF=1)
SMPDefsFlags[NN_cmovs] = false; // Move if Sign (SF=1)
SMPDefsFlags[NN_cmovz] = false; // Move if Zero (ZF=1)
SMPDefsFlags[NN_fcmovb] = false; // Floating Move if Below
SMPDefsFlags[NN_fcmove] = false; // Floating Move if Equal
SMPDefsFlags[NN_fcmovbe] = false; // Floating Move if Below or Equal
SMPDefsFlags[NN_fcmovu] = false; // Floating Move if Unordered
SMPDefsFlags[NN_fcmovnb] = false; // Floating Move if Not Below
SMPDefsFlags[NN_fcmovne] = false; // Floating Move if Not Equal
SMPDefsFlags[NN_fcmovnbe] = false; // Floating Move if Not Below or Equal
SMPDefsFlags[NN_fcmovnu] = false; // Floating Move if Not Unordered
SMPDefsFlags[NN_rdpmc] = false; // Read Performance Monitor Counter
//
// FPP instructuions
//
SMPDefsFlags[NN_fld] = false; // Load Real
SMPDefsFlags[NN_fst] = false; // Store Real
SMPDefsFlags[NN_fstp] = false; // Store Real and Pop
SMPDefsFlags[NN_fxch] = false; // Exchange Registers
SMPDefsFlags[NN_fild] = false; // Load Integer
SMPDefsFlags[NN_fist] = false; // Store Integer
SMPDefsFlags[NN_fistp] = false; // Store Integer and Pop
SMPDefsFlags[NN_fbld] = false; // Load BCD
SMPDefsFlags[NN_fbstp] = false; // Store BCD and Pop
SMPDefsFlags[NN_fadd] = false; // Add Real
SMPDefsFlags[NN_faddp] = false; // Add Real and Pop
SMPDefsFlags[NN_fiadd] = false; // Add Integer
SMPDefsFlags[NN_fsub] = false; // Subtract Real
SMPDefsFlags[NN_fsubp] = false; // Subtract Real and Pop
SMPDefsFlags[NN_fisub] = false; // Subtract Integer
SMPDefsFlags[NN_fsubr] = false; // Subtract Real Reversed
SMPDefsFlags[NN_fsubrp] = false; // Subtract Real Reversed and Pop
SMPDefsFlags[NN_fisubr] = false; // Subtract Integer Reversed
SMPDefsFlags[NN_fmul] = false; // Multiply Real
SMPDefsFlags[NN_fmulp] = false; // Multiply Real and Pop
SMPDefsFlags[NN_fimul] = false; // Multiply Integer
SMPDefsFlags[NN_fdiv] = false; // Divide Real
SMPDefsFlags[NN_fdivp] = false; // Divide Real and Pop
SMPDefsFlags[NN_fidiv] = false; // Divide Integer
SMPDefsFlags[NN_fdivr] = false; // Divide Real Reversed
SMPDefsFlags[NN_fdivrp] = false; // Divide Real Reversed and Pop
SMPDefsFlags[NN_fidivr] = false; // Divide Integer Reversed
SMPDefsFlags[NN_fsqrt] = false; // Square Root
SMPDefsFlags[NN_fscale] = false; // Scale: st(0) <- st(0) * 2^st(1)
SMPDefsFlags[NN_fprem] = false; // Partial Remainder
SMPDefsFlags[NN_frndint] = false; // Round to Integer
SMPDefsFlags[NN_fxtract] = false; // Extract exponent and significand
SMPDefsFlags[NN_fabs] = false; // Absolute value
SMPDefsFlags[NN_fchs] = false; // Change Sign
SMPDefsFlags[NN_ficom] = false; // Compare Integer
SMPDefsFlags[NN_ficomp] = false; // Compare Integer and Pop
SMPDefsFlags[NN_ftst] = false; // Test
SMPDefsFlags[NN_fxam] = false; // Examine
SMPDefsFlags[NN_fptan] = false; // Partial tangent
SMPDefsFlags[NN_fpatan] = false; // Partial arctangent
SMPDefsFlags[NN_f2xm1] = false; // 2^x - 1
SMPDefsFlags[NN_fyl2x] = false; // Y * lg2(X)
SMPDefsFlags[NN_fyl2xp1] = false; // Y * lg2(X+1)
SMPDefsFlags[NN_fldz] = false; // Load +0.0
SMPDefsFlags[NN_fld1] = false; // Load +1.0
SMPDefsFlags[NN_fldpi] = false; // Load PI=3.14...
SMPDefsFlags[NN_fldl2t] = false; // Load lg2(10)
SMPDefsFlags[NN_fldl2e] = false; // Load lg2(e)
SMPDefsFlags[NN_fldlg2] = false; // Load lg10(2)
SMPDefsFlags[NN_fldln2] = false; // Load ln(2)
SMPDefsFlags[NN_finit] = false; // Initialize Processor
SMPDefsFlags[NN_fninit] = false; // Initialize Processor (no wait)
SMPDefsFlags[NN_fsetpm] = false; // Set Protected Mode
SMPDefsFlags[NN_fldcw] = false; // Load Control Word
SMPDefsFlags[NN_fstcw] = false; // Store Control Word
SMPDefsFlags[NN_fnstcw] = false; // Store Control Word (no wait)
SMPDefsFlags[NN_fstsw] = false; // Store Status Word to memory or AX
SMPDefsFlags[NN_fnstsw] = false; // Store Status Word (no wait) to memory or AX
SMPDefsFlags[NN_fclex] = false; // Clear Exceptions
SMPDefsFlags[NN_fnclex] = false; // Clear Exceptions (no wait)
SMPDefsFlags[NN_fstenv] = false; // Store Environment
SMPDefsFlags[NN_fnstenv] = false; // Store Environment (no wait)
SMPDefsFlags[NN_fldenv] = false; // Load Environment
SMPDefsFlags[NN_fsave] = false; // Save State
SMPDefsFlags[NN_fnsave] = false; // Save State (no wait)
SMPDefsFlags[NN_frstor] = false; // Restore State
SMPDefsFlags[NN_fincstp] = false; // Increment Stack Pointer
SMPDefsFlags[NN_fdecstp] = false; // Decrement Stack Pointer
SMPDefsFlags[NN_ffree] = false; // Free Register
SMPDefsFlags[NN_fnop] = false; // No Operation
SMPDefsFlags[NN_feni] = false; // (8087 only)
SMPDefsFlags[NN_fneni] = false; // (no wait) (8087 only)
SMPDefsFlags[NN_fdisi] = false; // (8087 only)
SMPDefsFlags[NN_fndisi] = false; // (no wait) (8087 only)
//
// 80387 instructions
//
SMPDefsFlags[NN_fprem1] = false; // Partial Remainder ( < half )
SMPDefsFlags[NN_fsincos] = false; // t<-cos(st); st<-sin(st); push t
SMPDefsFlags[NN_fsin] = false; // Sine
SMPDefsFlags[NN_fcos] = false; // Cosine
SMPDefsFlags[NN_fucom] = false; // Compare Unordered Real
SMPDefsFlags[NN_fucomp] = false; // Compare Unordered Real and Pop
SMPDefsFlags[NN_fucompp] = false; // Compare Unordered Real and Pop Twice
//
// Instructions added 28.02.96
//
SMPDefsFlags[NN_svdc] = false; // Save Register and Descriptor
SMPDefsFlags[NN_rsdc] = false; // Restore Register and Descriptor
SMPDefsFlags[NN_svldt] = false; // Save LDTR and Descriptor
SMPDefsFlags[NN_rsldt] = false; // Restore LDTR and Descriptor
SMPDefsFlags[NN_svts] = false; // Save TR and Descriptor
SMPDefsFlags[NN_rsts] = false; // Restore TR and Descriptor
SMPDefsFlags[NN_icebp] = false; // ICE Break Point
//
// MMX instructions
//
SMPDefsFlags[NN_emms] = false; // Empty MMX state
SMPDefsFlags[NN_movd] = false; // Move 32 bits
SMPDefsFlags[NN_movq] = false; // Move 64 bits
SMPDefsFlags[NN_packsswb] = false; // Pack with Signed Saturation (Word->Byte)
SMPDefsFlags[NN_packssdw] = false; // Pack with Signed Saturation (Dword->Word)
SMPDefsFlags[NN_packuswb] = false; // Pack with Unsigned Saturation (Word->Byte)
SMPDefsFlags[NN_paddb] = false; // Packed Add Byte
SMPDefsFlags[NN_paddw] = false; // Packed Add Word
SMPDefsFlags[NN_paddd] = false; // Packed Add Dword
SMPDefsFlags[NN_paddsb] = false; // Packed Add with Saturation (Byte)
SMPDefsFlags[NN_paddsw] = false; // Packed Add with Saturation (Word)
SMPDefsFlags[NN_paddusb] = false; // Packed Add Unsigned with Saturation (Byte)
SMPDefsFlags[NN_paddusw] = false; // Packed Add Unsigned with Saturation (Word)
SMPDefsFlags[NN_pand] = false; // Bitwise Logical And
SMPDefsFlags[NN_pandn] = false; // Bitwise Logical And Not
SMPDefsFlags[NN_pcmpeqb] = false; // Packed Compare for Equal (Byte)
SMPDefsFlags[NN_pcmpeqw] = false; // Packed Compare for Equal (Word)
SMPDefsFlags[NN_pcmpeqd] = false; // Packed Compare for Equal (Dword)
SMPDefsFlags[NN_pcmpgtb] = false; // Packed Compare for Greater Than (Byte)
SMPDefsFlags[NN_pcmpgtw] = false; // Packed Compare for Greater Than (Word)
SMPDefsFlags[NN_pcmpgtd] = false; // Packed Compare for Greater Than (Dword)
SMPDefsFlags[NN_pmaddwd] = false; // Packed Multiply and Add
SMPDefsFlags[NN_pmulhw] = false; // Packed Multiply High
SMPDefsFlags[NN_pmullw] = false; // Packed Multiply Low
SMPDefsFlags[NN_por] = false; // Bitwise Logical Or
SMPDefsFlags[NN_psllw] = false; // Packed Shift Left Logical (Word)
SMPDefsFlags[NN_pslld] = false; // Packed Shift Left Logical (Dword)
SMPDefsFlags[NN_psllq] = false; // Packed Shift Left Logical (Qword)
SMPDefsFlags[NN_psraw] = false; // Packed Shift Right Arithmetic (Word)
SMPDefsFlags[NN_psrad] = false; // Packed Shift Right Arithmetic (Dword)
SMPDefsFlags[NN_psrlw] = false; // Packed Shift Right Logical (Word)
SMPDefsFlags[NN_psrld] = false; // Packed Shift Right Logical (Dword)
SMPDefsFlags[NN_psrlq] = false; // Packed Shift Right Logical (Qword)
SMPDefsFlags[NN_psubb] = false; // Packed Subtract Byte
SMPDefsFlags[NN_psubw] = false; // Packed Subtract Word
SMPDefsFlags[NN_psubd] = false; // Packed Subtract Dword
SMPDefsFlags[NN_psubsb] = false; // Packed Subtract with Saturation (Byte)
SMPDefsFlags[NN_psubsw] = false; // Packed Subtract with Saturation (Word)
SMPDefsFlags[NN_psubusb] = false; // Packed Subtract Unsigned with Saturation (Byte)
SMPDefsFlags[NN_psubusw] = false; // Packed Subtract Unsigned with Saturation (Word)
SMPDefsFlags[NN_punpckhbw] = false; // Unpack High Packed Data (Byte->Word)
SMPDefsFlags[NN_punpckhwd] = false; // Unpack High Packed Data (Word->Dword)
SMPDefsFlags[NN_punpckhdq] = false; // Unpack High Packed Data (Dword->Qword)
SMPDefsFlags[NN_punpcklbw] = false; // Unpack Low Packed Data (Byte->Word)
SMPDefsFlags[NN_punpcklwd] = false; // Unpack Low Packed Data (Word->Dword)
SMPDefsFlags[NN_punpckldq] = false; // Unpack Low Packed Data (Dword->Qword)
SMPDefsFlags[NN_pxor] = false; // Bitwise Logical Exclusive Or
//
// Undocumented Deschutes processor instructions
//
SMPDefsFlags[NN_fxsave] = false; // Fast save FP context
SMPDefsFlags[NN_fxrstor] = false; // Fast restore FP context
// Pentium II instructions
SMPDefsFlags[NN_sysexit] = false; // Fast Transition from System Call Entry Point
// 3DNow! instructions
SMPDefsFlags[NN_pavgusb] = false; // Packed 8-bit Unsigned Integer Averaging
SMPDefsFlags[NN_pfadd] = false; // Packed Floating-Point Addition
SMPDefsFlags[NN_pfsub] = false; // Packed Floating-Point Subtraction
SMPDefsFlags[NN_pfsubr] = false; // Packed Floating-Point Reverse Subtraction
SMPDefsFlags[NN_pfacc] = false; // Packed Floating-Point Accumulate
SMPDefsFlags[NN_pfcmpge] = false; // Packed Floating-Point Comparison, Greater or Equal
SMPDefsFlags[NN_pfcmpgt] = false; // Packed Floating-Point Comparison, Greater
SMPDefsFlags[NN_pfcmpeq] = false; // Packed Floating-Point Comparison, Equal
SMPDefsFlags[NN_pfmin] = false; // Packed Floating-Point Minimum
SMPDefsFlags[NN_pfmax] = false; // Packed Floating-Point Maximum
SMPDefsFlags[NN_pi2fd] = false; // Packed 32-bit Integer to Floating-Point
SMPDefsFlags[NN_pf2id] = false; // Packed Floating-Point to 32-bit Integer
SMPDefsFlags[NN_pfrcp] = false; // Packed Floating-Point Reciprocal Approximation
SMPDefsFlags[NN_pfrsqrt] = false; // Packed Floating-Point Reciprocal Square Root Approximation
SMPDefsFlags[NN_pfmul] = false; // Packed Floating-Point Multiplication
SMPDefsFlags[NN_pfrcpit1] = false; // Packed Floating-Point Reciprocal First Iteration Step
SMPDefsFlags[NN_pfrsqit1] = false; // Packed Floating-Point Reciprocal Square Root First Iteration Step
SMPDefsFlags[NN_pfrcpit2] = false; // Packed Floating-Point Reciprocal Second Iteration Step
SMPDefsFlags[NN_pmulhrw] = false; // Packed Floating-Point 16-bit Integer Multiply with rounding
SMPDefsFlags[NN_femms] = false; // Faster entry/exit of the MMX or floating-point state
SMPDefsFlags[NN_prefetch] = false; // Prefetch at least a 32-byte line into L1 data cache
SMPDefsFlags[NN_prefetchw] = false; // Prefetch processor cache line into L1 data cache (mark as modified)
// Pentium III instructions
SMPDefsFlags[NN_addps] = false; // Packed Single-FP Add
SMPDefsFlags[NN_addss] = false; // Scalar Single-FP Add
SMPDefsFlags[NN_andnps] = false; // Bitwise Logical And Not for Single-FP
SMPDefsFlags[NN_andps] = false; // Bitwise Logical And for Single-FP
SMPDefsFlags[NN_cmpps] = false; // Packed Single-FP Compare
SMPDefsFlags[NN_cmpss] = false; // Scalar Single-FP Compare
SMPDefsFlags[NN_cvtpi2ps] = false; // Packed signed INT32 to Packed Single-FP conversion
SMPDefsFlags[NN_cvtps2pi] = false; // Packed Single-FP to Packed INT32 conversion
SMPDefsFlags[NN_cvtsi2ss] = false; // Scalar signed INT32 to Single-FP conversion
SMPDefsFlags[NN_cvtss2si] = false; // Scalar Single-FP to signed INT32 conversion
SMPDefsFlags[NN_cvttps2pi] = false; // Packed Single-FP to Packed INT32 conversion (truncate)
SMPDefsFlags[NN_cvttss2si] = false; // Scalar Single-FP to signed INT32 conversion (truncate)
SMPDefsFlags[NN_divps] = false; // Packed Single-FP Divide
SMPDefsFlags[NN_divss] = false; // Scalar Single-FP Divide
SMPDefsFlags[NN_ldmxcsr] = false; // Load Streaming SIMD Extensions Technology Control/Status Register
SMPDefsFlags[NN_maxps] = false; // Packed Single-FP Maximum
SMPDefsFlags[NN_maxss] = false; // Scalar Single-FP Maximum
SMPDefsFlags[NN_minps] = false; // Packed Single-FP Minimum
SMPDefsFlags[NN_minss] = false; // Scalar Single-FP Minimum
SMPDefsFlags[NN_movaps] = false; // Move Aligned Four Packed Single-FP
SMPDefsFlags[NN_movhlps] = false; // Move High to Low Packed Single-FP
SMPDefsFlags[NN_movhps] = false; // Move High Packed Single-FP
SMPDefsFlags[NN_movlhps] = false; // Move Low to High Packed Single-FP
SMPDefsFlags[NN_movlps] = false; // Move Low Packed Single-FP
SMPDefsFlags[NN_movmskps] = false; // Move Mask to Register
SMPDefsFlags[NN_movss] = false; // Move Scalar Single-FP
SMPDefsFlags[NN_movups] = false; // Move Unaligned Four Packed Single-FP
SMPDefsFlags[NN_mulps] = false; // Packed Single-FP Multiply
SMPDefsFlags[NN_mulss] = false; // Scalar Single-FP Multiply
SMPDefsFlags[NN_orps] = false; // Bitwise Logical OR for Single-FP Data
SMPDefsFlags[NN_rcpps] = false; // Packed Single-FP Reciprocal
SMPDefsFlags[NN_rcpss] = false; // Scalar Single-FP Reciprocal
SMPDefsFlags[NN_rsqrtps] = false; // Packed Single-FP Square Root Reciprocal
SMPDefsFlags[NN_rsqrtss] = false; // Scalar Single-FP Square Root Reciprocal
SMPDefsFlags[NN_shufps] = false; // Shuffle Single-FP
SMPDefsFlags[NN_sqrtps] = false; // Packed Single-FP Square Root
SMPDefsFlags[NN_sqrtss] = false; // Scalar Single-FP Square Root
SMPDefsFlags[NN_stmxcsr] = false; // Store Streaming SIMD Extensions Technology Control/Status Register
SMPDefsFlags[NN_subps] = false; // Packed Single-FP Subtract
SMPDefsFlags[NN_subss] = false; // Scalar Single-FP Subtract
SMPDefsFlags[NN_unpckhps] = false; // Unpack High Packed Single-FP Data
SMPDefsFlags[NN_unpcklps] = false; // Unpack Low Packed Single-FP Data
SMPDefsFlags[NN_xorps] = false; // Bitwise Logical XOR for Single-FP Data
SMPDefsFlags[NN_pavgb] = false; // Packed Average (Byte)
SMPDefsFlags[NN_pavgw] = false; // Packed Average (Word)
SMPDefsFlags[NN_pextrw] = false; // Extract Word
SMPDefsFlags[NN_pinsrw] = false; // Insert Word
SMPDefsFlags[NN_pmaxsw] = false; // Packed Signed Integer Word Maximum
SMPDefsFlags[NN_pmaxub] = false; // Packed Unsigned Integer Byte Maximum
SMPDefsFlags[NN_pminsw] = false; // Packed Signed Integer Word Minimum
SMPDefsFlags[NN_pminub] = false; // Packed Unsigned Integer Byte Minimum
SMPDefsFlags[NN_pmovmskb] = false; // Move Byte Mask to Integer
SMPDefsFlags[NN_pmulhuw] = false; // Packed Multiply High Unsigned
SMPDefsFlags[NN_psadbw] = false; // Packed Sum of Absolute Differences
SMPDefsFlags[NN_pshufw] = false; // Packed Shuffle Word
SMPDefsFlags[NN_maskmovq] = false; // Byte Mask write
SMPDefsFlags[NN_movntps] = false; // Move Aligned Four Packed Single-FP Non Temporal
SMPDefsFlags[NN_movntq] = false; // Move 64 Bits Non Temporal
SMPDefsFlags[NN_prefetcht0] = false; // Prefetch to all cache levels
SMPDefsFlags[NN_prefetcht1] = false; // Prefetch to all cache levels
SMPDefsFlags[NN_prefetcht2] = false; // Prefetch to L2 cache
SMPDefsFlags[NN_prefetchnta] = false; // Prefetch to L1 cache
SMPDefsFlags[NN_sfence] = false; // Store Fence
// Pentium III Pseudo instructions
SMPDefsFlags[NN_cmpeqps] = false; // Packed Single-FP Compare EQ
SMPDefsFlags[NN_cmpltps] = false; // Packed Single-FP Compare LT
SMPDefsFlags[NN_cmpleps] = false; // Packed Single-FP Compare LE
SMPDefsFlags[NN_cmpunordps] = false; // Packed Single-FP Compare UNORD
SMPDefsFlags[NN_cmpneqps] = false; // Packed Single-FP Compare NOT EQ
SMPDefsFlags[NN_cmpnltps] = false; // Packed Single-FP Compare NOT LT
SMPDefsFlags[NN_cmpnleps] = false; // Packed Single-FP Compare NOT LE
SMPDefsFlags[NN_cmpordps] = false; // Packed Single-FP Compare ORDERED
SMPDefsFlags[NN_cmpeqss] = false; // Scalar Single-FP Compare EQ
SMPDefsFlags[NN_cmpltss] = false; // Scalar Single-FP Compare LT
SMPDefsFlags[NN_cmpless] = false; // Scalar Single-FP Compare LE
SMPDefsFlags[NN_cmpunordss] = false; // Scalar Single-FP Compare UNORD
SMPDefsFlags[NN_cmpneqss] = false; // Scalar Single-FP Compare NOT EQ
SMPDefsFlags[NN_cmpnltss] = false; // Scalar Single-FP Compare NOT LT
SMPDefsFlags[NN_cmpnless] = false; // Scalar Single-FP Compare NOT LE
SMPDefsFlags[NN_cmpordss] = false; // Scalar Single-FP Compare ORDERED
// AMD K7 instructions
// Revisit AMD if we port to it.
SMPDefsFlags[NN_pf2iw] = false; // Packed Floating-Point to Integer with Sign Extend
SMPDefsFlags[NN_pfnacc] = false; // Packed Floating-Point Negative Accumulate
SMPDefsFlags[NN_pfpnacc] = false; // Packed Floating-Point Mixed Positive-Negative Accumulate
SMPDefsFlags[NN_pi2fw] = false; // Packed 16-bit Integer to Floating-Point
SMPDefsFlags[NN_pswapd] = false; // Packed Swap Double Word
// Undocumented FP instructions (thanks to norbert.juffa@adm.com)
SMPDefsFlags[NN_fstp1] = false; // Alias of Store Real and Pop
SMPDefsFlags[NN_fxch4] = false; // Alias of Exchange Registers
SMPDefsFlags[NN_ffreep] = false; // Free Register and Pop
SMPDefsFlags[NN_fxch7] = false; // Alias of Exchange Registers
SMPDefsFlags[NN_fstp8] = false; // Alias of Store Real and Pop
SMPDefsFlags[NN_fstp9] = false; // Alias of Store Real and Pop
// Pentium 4 instructions
SMPDefsFlags[NN_addpd] = false; // Add Packed Double-Precision Floating-Point Values
SMPDefsFlags[NN_addsd] = false; // Add Scalar Double-Precision Floating-Point Values
SMPDefsFlags[NN_andnpd] = false; // Bitwise Logical AND NOT of Packed Double-Precision Floating-Point Values
SMPDefsFlags[NN_andpd] = false; // Bitwise Logical AND of Packed Double-Precision Floating-Point Values
SMPDefsFlags[NN_clflush] = false; // Flush Cache Line
SMPDefsFlags[NN_cmppd] = false; // Compare Packed Double-Precision Floating-Point Values
SMPDefsFlags[NN_cmpsd] = false; // Compare Scalar Double-Precision Floating-Point Values
SMPDefsFlags[NN_cvtdq2pd] = false; // Convert Packed Doubleword Integers to Packed Single-Precision Floating-Point Values
SMPDefsFlags[NN_cvtdq2ps] = false; // Convert Packed Doubleword Integers to Packed Double-Precision Floating-Point Values
SMPDefsFlags[NN_cvtpd2dq] = false; // Convert Packed Double-Precision Floating-Point Values to Packed Doubleword Integers
SMPDefsFlags[NN_cvtpd2pi] = false; // Convert Packed Double-Precision Floating-Point Values to Packed Doubleword Integers
SMPDefsFlags[NN_cvtpd2ps] = false; // Convert Packed Double-Precision Floating-Point Values to Packed Single-Precision Floating-Point Values
SMPDefsFlags[NN_cvtpi2pd] = false; // Convert Packed Doubleword Integers to Packed Double-Precision Floating-Point Values
SMPDefsFlags[NN_cvtps2dq] = false; // Convert Packed Single-Precision Floating-Point Values to Packed Doubleword Integers
SMPDefsFlags[NN_cvtps2pd] = false; // Convert Packed Single-Precision Floating-Point Values to Packed Double-Precision Floating-Point Values
SMPDefsFlags[NN_cvtsd2si] = false; // Convert Scalar Double-Precision Floating-Point Value to Doubleword Integer
SMPDefsFlags[NN_cvtsd2ss] = false; // Convert Scalar Double-Precision Floating-Point Value to Scalar Single-Precision Floating-Point Value
SMPDefsFlags[NN_cvtsi2sd] = false; // Convert Doubleword Integer to Scalar Double-Precision Floating-Point Value
SMPDefsFlags[NN_cvtss2sd] = false; // Convert Scalar Single-Precision Floating-Point Value to Scalar Double-Precision Floating-Point Value
SMPDefsFlags[NN_cvttpd2dq] = false; // Convert With Truncation Packed Double-Precision Floating-Point Values to Packed Doubleword Integers
SMPDefsFlags[NN_cvttpd2pi] = false; // Convert with Truncation Packed Double-Precision Floating-Point Values to Packed Doubleword Integers
SMPDefsFlags[NN_cvttps2dq] = false; // Convert With Truncation Packed Single-Precision Floating-Point Values to Packed Doubleword Integers
SMPDefsFlags[NN_cvttsd2si] = false; // Convert with Truncation Scalar Double-Precision Floating-Point Value to Doubleword Integer
SMPDefsFlags[NN_divpd] = false; // Divide Packed Double-Precision Floating-Point Values
SMPDefsFlags[NN_divsd] = false; // Divide Scalar Double-Precision Floating-Point Values
SMPDefsFlags[NN_lfence] = false; // Load Fence
SMPDefsFlags[NN_maskmovdqu] = false; // Store Selected Bytes of Double Quadword
SMPDefsFlags[NN_maxpd] = false; // Return Maximum Packed Double-Precision Floating-Point Values
SMPDefsFlags[NN_maxsd] = false; // Return Maximum Scalar Double-Precision Floating-Point Value
SMPDefsFlags[NN_mfence] = false; // Memory Fence
SMPDefsFlags[NN_minpd] = false; // Return Minimum Packed Double-Precision Floating-Point Values
SMPDefsFlags[NN_minsd] = false; // Return Minimum Scalar Double-Precision Floating-Point Value
SMPDefsFlags[NN_movapd] = false; // Move Aligned Packed Double-Precision Floating-Point Values
SMPDefsFlags[NN_movdq2q] = false; // Move Quadword from XMM to MMX Register
SMPDefsFlags[NN_movdqa] = false; // Move Aligned Double Quadword
SMPDefsFlags[NN_movdqu] = false; // Move Unaligned Double Quadword
SMPDefsFlags[NN_movhpd] = false; // Move High Packed Double-Precision Floating-Point Values
SMPDefsFlags[NN_movlpd] = false; // Move Low Packed Double-Precision Floating-Point Values
SMPDefsFlags[NN_movmskpd] = false; // Extract Packed Double-Precision Floating-Point Sign Mask
SMPDefsFlags[NN_movntdq] = false; // Store Double Quadword Using Non-Temporal Hint
SMPDefsFlags[NN_movnti] = false; // Store Doubleword Using Non-Temporal Hint
SMPDefsFlags[NN_movntpd] = false; // Store Packed Double-Precision Floating-Point Values Using Non-Temporal Hint
SMPDefsFlags[NN_movq2dq] = false; // Move Quadword from MMX to XMM Register
SMPDefsFlags[NN_movsd] = false; // Move Scalar Double-Precision Floating-Point Values
SMPDefsFlags[NN_movupd] = false; // Move Unaligned Packed Double-Precision Floating-Point Values
SMPDefsFlags[NN_mulpd] = false; // Multiply Packed Double-Precision Floating-Point Values
SMPDefsFlags[NN_mulsd] = false; // Multiply Scalar Double-Precision Floating-Point Values
SMPDefsFlags[NN_orpd] = false; // Bitwise Logical OR of Double-Precision Floating-Point Values
SMPDefsFlags[NN_paddq] = false; // Add Packed Quadword Integers
SMPDefsFlags[NN_pause] = false; // Spin Loop Hint
SMPDefsFlags[NN_pmuludq] = false; // Multiply Packed Unsigned Doubleword Integers
SMPDefsFlags[NN_pshufd] = false; // Shuffle Packed Doublewords
SMPDefsFlags[NN_pshufhw] = false; // Shuffle Packed High Words
SMPDefsFlags[NN_pshuflw] = false; // Shuffle Packed Low Words
SMPDefsFlags[NN_pslldq] = false; // Shift Double Quadword Left Logical
SMPDefsFlags[NN_psrldq] = false; // Shift Double Quadword Right Logical
SMPDefsFlags[NN_psubq] = false; // Subtract Packed Quadword Integers
SMPDefsFlags[NN_punpckhqdq] = false; // Unpack High Data
SMPDefsFlags[NN_punpcklqdq] = false; // Unpack Low Data
SMPDefsFlags[NN_shufpd] = false; // Shuffle Packed Double-Precision Floating-Point Values
SMPDefsFlags[NN_sqrtpd] = false; // Compute Square Roots of Packed Double-Precision Floating-Point Values
SMPDefsFlags[NN_sqrtsd] = false; // Compute Square Rootof Scalar Double-Precision Floating-Point Value
SMPDefsFlags[NN_subpd] = false; // Subtract Packed Double-Precision Floating-Point Values
SMPDefsFlags[NN_subsd] = false; // Subtract Scalar Double-Precision Floating-Point Values
SMPDefsFlags[NN_unpckhpd] = false; // Unpack and Interleave High Packed Double-Precision Floating-Point Values
SMPDefsFlags[NN_unpcklpd] = false; // Unpack and Interleave Low Packed Double-Precision Floating-Point Values
SMPDefsFlags[NN_xorpd] = false; // Bitwise Logical OR of Double-Precision Floating-Point Values
// AMD syscall/sysret instructions NOTE: not AMD, found in Intel manual
// AMD64 instructions NOTE: not AMD, found in Intel manual
SMPDefsFlags[NN_swapgs] = false; // Exchange GS base with KernelGSBase MSR
// New Pentium instructions (SSE3)
SMPDefsFlags[NN_movddup] = false; // Move One Double-FP and Duplicate
SMPDefsFlags[NN_movshdup] = false; // Move Packed Single-FP High and Duplicate
SMPDefsFlags[NN_movsldup] = false; // Move Packed Single-FP Low and Duplicate
// Missing AMD64 instructions NOTE: also found in Intel manual
SMPDefsFlags[NN_movsxd] = false; // Move with Sign-Extend Doubleword
// SSE3 instructions
SMPDefsFlags[NN_addsubpd] = false; // Add /Sub packed DP FP numbers
SMPDefsFlags[NN_addsubps] = false; // Add /Sub packed SP FP numbers
SMPDefsFlags[NN_haddpd] = false; // Add horizontally packed DP FP numbers
SMPDefsFlags[NN_haddps] = false; // Add horizontally packed SP FP numbers
SMPDefsFlags[NN_hsubpd] = false; // Sub horizontally packed DP FP numbers
SMPDefsFlags[NN_hsubps] = false; // Sub horizontally packed SP FP numbers
SMPDefsFlags[NN_monitor] = false; // Set up a linear address range to be monitored by hardware
SMPDefsFlags[NN_mwait] = false; // Wait until write-back store performed within the range specified by the MONITOR instruction
SMPDefsFlags[NN_fisttp] = false; // Store ST in intXX (chop) and pop
SMPDefsFlags[NN_lddqu] = false; // Load unaligned integer 128-bit
// SSSE3 instructions
SMPDefsFlags[NN_psignb] = false; // Packed SIGN Byte
SMPDefsFlags[NN_psignw] = false; // Packed SIGN Word
SMPDefsFlags[NN_psignd] = false; // Packed SIGN Doubleword
SMPDefsFlags[NN_pshufb] = false; // Packed Shuffle Bytes
SMPDefsFlags[NN_pmulhrsw] = false; // Packed Multiply High with Round and Scale
SMPDefsFlags[NN_pmaddubsw] = false; // Multiply and Add Packed Signed and Unsigned Bytes
SMPDefsFlags[NN_phsubsw] = false; // Packed Horizontal Subtract and Saturate
SMPDefsFlags[NN_phaddsw] = false; // Packed Horizontal Add and Saturate
SMPDefsFlags[NN_phaddw] = false; // Packed Horizontal Add Word
SMPDefsFlags[NN_phaddd] = false; // Packed Horizontal Add Doubleword
SMPDefsFlags[NN_phsubw] = false; // Packed Horizontal Subtract Word
SMPDefsFlags[NN_phsubd] = false; // Packed Horizontal Subtract Doubleword
SMPDefsFlags[NN_palignr] = false; // Packed Align Right
SMPDefsFlags[NN_pabsb] = false; // Packed Absolute Value Byte
SMPDefsFlags[NN_pabsw] = false; // Packed Absolute Value Word
SMPDefsFlags[NN_pabsd] = false; // Packed Absolute Value Doubleword
// VMX instructions
SMPDefsFlags[NN_last] = false;
return;
} // end InitSMPDefsFlags()
// Initialize the SMPUsesFlags[] array to define how we emit
// optimizing annotations.
void InitSMPUsesFlags(void) {
// Default value is false. Few instructions use the flags.
(void) memset(SMPUsesFlags, false, sizeof(SMPUsesFlags));
SMPUsesFlags[NN_null] = true; // Unknown Operation
clc5q
committed
#if 1
SMPUsesFlags[NN_aaa] = true; // ASCII adjust after addition
SMPUsesFlags[NN_aas] = true; // ASCII adjust after subtraction
#endif
SMPUsesFlags[NN_adc] = true; // Add with Carry
SMPUsesFlags[NN_cmps] = true; // Compare Strings (uses DF direction flag)
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
SMPUsesFlags[NN_into] = true; // Call to Interrupt Procedure if Overflow Flag = 1
SMPUsesFlags[NN_ja] = true; // Jump if Above (CF=0 & ZF=0)
SMPUsesFlags[NN_jae] = true; // Jump if Above or Equal (CF=0)
SMPUsesFlags[NN_jb] = true; // Jump if Below (CF=1)
SMPUsesFlags[NN_jbe] = true; // Jump if Below or Equal (CF=1 | ZF=1)
SMPUsesFlags[NN_jc] = true; // Jump if Carry (CF=1)
SMPUsesFlags[NN_jcxz] = true; // Jump if CX is 0
SMPUsesFlags[NN_jecxz] = true; // Jump if ECX is 0
SMPUsesFlags[NN_jrcxz] = true; // Jump if RCX is 0
SMPUsesFlags[NN_je] = true; // Jump if Equal (ZF=1)
SMPUsesFlags[NN_jg] = true; // Jump if Greater (ZF=0 & SF=OF)
SMPUsesFlags[NN_jge] = true; // Jump if Greater or Equal (SF=OF)
SMPUsesFlags[NN_jl] = true; // Jump if Less (SF!=OF)
SMPUsesFlags[NN_jle] = true; // Jump if Less or Equal (ZF=1 | SF!=OF)
SMPUsesFlags[NN_jna] = true; // Jump if Not Above (CF=1 | ZF=1)
SMPUsesFlags[NN_jnae] = true; // Jump if Not Above or Equal (CF=1)
SMPUsesFlags[NN_jnb] = true; // Jump if Not Below (CF=0)
SMPUsesFlags[NN_jnbe] = true; // Jump if Not Below or Equal (CF=0 & ZF=0)
SMPUsesFlags[NN_jnc] = true; // Jump if Not Carry (CF=0)
SMPUsesFlags[NN_jne] = true; // Jump if Not Equal (ZF=0)
SMPUsesFlags[NN_jng] = true; // Jump if Not Greater (ZF=1 | SF!=OF)
SMPUsesFlags[NN_jnge] = true; // Jump if Not Greater or Equal (ZF=1)
SMPUsesFlags[NN_jnl] = true; // Jump if Not Less (SF=OF)
SMPUsesFlags[NN_jnle] = true; // Jump if Not Less or Equal (ZF=0 & SF=OF)
SMPUsesFlags[NN_jno] = true; // Jump if Not Overflow (OF=0)
SMPUsesFlags[NN_jnp] = true; // Jump if Not Parity (PF=0)
SMPUsesFlags[NN_jns] = true; // Jump if Not Sign (SF=0)
SMPUsesFlags[NN_jnz] = true; // Jump if Not Zero (ZF=0)
SMPUsesFlags[NN_jo] = true; // Jump if Overflow (OF=1)
SMPUsesFlags[NN_jp] = true; // Jump if Parity (PF=1)
SMPUsesFlags[NN_jpe] = true; // Jump if Parity Even (PF=1)
SMPUsesFlags[NN_jpo] = true; // Jump if Parity Odd (PF=0)
SMPUsesFlags[NN_js] = true; // Jump if Sign (SF=1)
SMPUsesFlags[NN_jz] = true; // Jump if Zero (ZF=1)
SMPUsesFlags[NN_lahf] = true; // Load Flags into AH Register
SMPUsesFlags[NN_loopwe] = true; // Loop while CX != 0 and ZF=1
SMPUsesFlags[NN_loope] = true; // Loop while rCX != 0 and ZF=1
SMPUsesFlags[NN_loopde] = true; // Loop while ECX != 0 and ZF=1
SMPUsesFlags[NN_loopqe] = true; // Loop while RCX != 0 and ZF=1
SMPUsesFlags[NN_loopwne] = true; // Loop while CX != 0 and ZF=0
SMPUsesFlags[NN_loopne] = true; // Loop while rCX != 0 and ZF=0
SMPUsesFlags[NN_loopdne] = true; // Loop while ECX != 0 and ZF=0
SMPUsesFlags[NN_loopqne] = true; // Loop while RCX != 0 and ZF=0
SMPUsesFlags[NN_pushfw] = true; // Push Flags Register onto the Stack
SMPUsesFlags[NN_pushf] = true; // Push Flags Register onto the Stack
SMPUsesFlags[NN_pushfd] = true; // Push Flags Register onto the Stack (use32)
SMPUsesFlags[NN_pushfq] = true; // Push Flags Register onto the Stack (use64)
SMPUsesFlags[NN_repe] = true; // Repeat String Operation while ZF=1
SMPUsesFlags[NN_repne] = true; // Repeat String Operation while ZF=0
clc5q
committed
#if 0
SMPUsesFlags[NN_sahf] = true; // Store AH into Flags Register
SMPUsesFlags[NN_shl] = true; // Shift Logical Left
SMPUsesFlags[NN_shr] = true; // Shift Logical Right
clc5q
committed
#endif
SMPUsesFlags[NN_sbb] = true; // Integer Subtraction with Borrow
SMPUsesFlags[NN_scas] = true; // Compare String (uses DF direction flag)
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
SMPUsesFlags[NN_seta] = true; // Set Byte if Above (CF=0 & ZF=0)
SMPUsesFlags[NN_setae] = true; // Set Byte if Above or Equal (CF=0)
SMPUsesFlags[NN_setb] = true; // Set Byte if Below (CF=1)
SMPUsesFlags[NN_setbe] = true; // Set Byte if Below or Equal (CF=1 | ZF=1)
SMPUsesFlags[NN_setc] = true; // Set Byte if Carry (CF=1)
SMPUsesFlags[NN_sete] = true; // Set Byte if Equal (ZF=1)
SMPUsesFlags[NN_setg] = true; // Set Byte if Greater (ZF=0 & SF=OF)
SMPUsesFlags[NN_setge] = true; // Set Byte if Greater or Equal (SF=OF)
SMPUsesFlags[NN_setl] = true; // Set Byte if Less (SF!=OF)
SMPUsesFlags[NN_setle] = true; // Set Byte if Less or Equal (ZF=1 | SF!=OF)
SMPUsesFlags[NN_setna] = true; // Set Byte if Not Above (CF=1 | ZF=1)
SMPUsesFlags[NN_setnae] = true; // Set Byte if Not Above or Equal (CF=1)
SMPUsesFlags[NN_setnb] = true; // Set Byte if Not Below (CF=0)
SMPUsesFlags[NN_setnbe] = true; // Set Byte if Not Below or Equal (CF=0 & ZF=0)
SMPUsesFlags[NN_setnc] = true; // Set Byte if Not Carry (CF=0)
SMPUsesFlags[NN_setne] = true; // Set Byte if Not Equal (ZF=0)
SMPUsesFlags[NN_setng] = true; // Set Byte if Not Greater (ZF=1 | SF!=OF)
SMPUsesFlags[NN_setnge] = true; // Set Byte if Not Greater or Equal (ZF=1)
SMPUsesFlags[NN_setnl] = true; // Set Byte if Not Less (SF=OF)
SMPUsesFlags[NN_setnle] = true; // Set Byte if Not Less or Equal (ZF=0 & SF=OF)
SMPUsesFlags[NN_setno] = true; // Set Byte if Not Overflow (OF=0)
SMPUsesFlags[NN_setnp] = true; // Set Byte if Not Parity (PF=0)
SMPUsesFlags[NN_setns] = true; // Set Byte if Not Sign (SF=0)
SMPUsesFlags[NN_setnz] = true; // Set Byte if Not Zero (ZF=0)
SMPUsesFlags[NN_seto] = true; // Set Byte if Overflow (OF=1)
SMPUsesFlags[NN_setp] = true; // Set Byte if Parity (PF=1)
SMPUsesFlags[NN_setpe] = true; // Set Byte if Parity Even (PF=1)
SMPUsesFlags[NN_setpo] = true; // Set Byte if Parity Odd (PF=0)
SMPUsesFlags[NN_sets] = true; // Set Byte if Sign (SF=1)
SMPUsesFlags[NN_setz] = true; // Set Byte if Zero (ZF=1)
SMPUsesFlags[NN_stos] = true; // Store String
//
// 486 instructions
//
//
// Pentium instructions
//
SMPUsesFlags[NN_cpuid] = true; // Get CPU ID
clc5q
committed
#if 0
SMPUsesFlags[NN_cmpxchg8b] = true; // Compare and Exchange Eight Bytes
clc5q
committed
#endif
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
//
// Pentium Pro instructions
//
SMPUsesFlags[NN_cmova] = true; // Move if Above (CF=0 & ZF=0)
SMPUsesFlags[NN_cmovb] = true; // Move if Below (CF=1)
SMPUsesFlags[NN_cmovbe] = true; // Move if Below or Equal (CF=1 | ZF=1)
SMPUsesFlags[NN_cmovg] = true; // Move if Greater (ZF=0 & SF=OF)
SMPUsesFlags[NN_cmovge] = true; // Move if Greater or Equal (SF=OF)
SMPUsesFlags[NN_cmovl] = true; // Move if Less (SF!=OF)
SMPUsesFlags[NN_cmovle] = true; // Move if Less or Equal (ZF=1 | SF!=OF)
SMPUsesFlags[NN_cmovnb] = true; // Move if Not Below (CF=0)
SMPUsesFlags[NN_cmovno] = true; // Move if Not Overflow (OF=0)
SMPUsesFlags[NN_cmovnp] = true; // Move if Not Parity (PF=0)
SMPUsesFlags[NN_cmovns] = true; // Move if Not Sign (SF=0)
SMPUsesFlags[NN_cmovnz] = true; // Move if Not Zero (ZF=0)
SMPUsesFlags[NN_cmovo] = true; // Move if Overflow (OF=1)
SMPUsesFlags[NN_cmovp] = true; // Move if Parity (PF=1)
SMPUsesFlags[NN_cmovs] = true; // Move if Sign (SF=1)
SMPUsesFlags[NN_cmovz] = true; // Move if Zero (ZF=1)
SMPUsesFlags[NN_fcmovb] = true; // Floating Move if Below
SMPUsesFlags[NN_fcmove] = true; // Floating Move if Equal
SMPUsesFlags[NN_fcmovbe] = true; // Floating Move if Below or Equal
SMPUsesFlags[NN_fcmovu] = true; // Floating Move if Unordered
SMPUsesFlags[NN_fcmovnb] = true; // Floating Move if Not Below
SMPUsesFlags[NN_fcmovne] = true; // Floating Move if Not Equal
SMPUsesFlags[NN_fcmovnbe] = true; // Floating Move if Not Below or Equal
SMPUsesFlags[NN_fcmovnu] = true; // Floating Move if Not Unordered
//
clc5q
committed
// FPP instructions
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
//
//
// 80387 instructions
//
//
// Instructions added 28.02.96
//
SMPUsesFlags[NN_setalc] = true; // Set AL to Carry Flag
//
// MMX instructions
//
//
// Undocumented Deschutes processor instructions
//
// Pentium II instructions
// 3DNow! instructions
// Pentium III instructions
// Pentium III Pseudo instructions
// AMD K7 instructions
// Revisit AMD if we port to it.
// Undocumented FP instructions (thanks to norbert.juffa@adm.com)
// Pentium 4 instructions
// AMD syscall/sysret instructions NOTE: not AMD, found in Intel manual
// AMD64 instructions NOTE: not AMD, found in Intel manual
// New Pentium instructions (SSE3)
// Missing AMD64 instructions NOTE: also found in Intel manual
// SSE3 instructions
// SSSE3 instructions
// VMX instructions
SMPUsesFlags[NN_last] = false;
return;
} // end InitSMPUsesFlags()