Newer
Older
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
OptCategory[NN_rdtscp] = 10; // Read Time-Stamp Counter and Processor ID
// Geode LX 3DNow! extensions
OptCategory[NN_pfrcpv] = 1; // Reciprocal Approximation for a Pair of 32-bit Floats
OptCategory[NN_pfrsqrtv] = 1; // Reciprocal Square Root Approximation for a Pair of 32-bit Floats
// SSE2 pseudoinstructions
OptCategory[NN_cmpeqpd] = 1; // Packed Double-FP Compare EQ
OptCategory[NN_cmpltpd] = 1; // Packed Double-FP Compare LT
OptCategory[NN_cmplepd] = 1; // Packed Double-FP Compare LE
OptCategory[NN_cmpunordpd] = 1; // Packed Double-FP Compare UNORD
OptCategory[NN_cmpneqpd] = 1; // Packed Double-FP Compare NOT EQ
OptCategory[NN_cmpnltpd] = 1; // Packed Double-FP Compare NOT LT
OptCategory[NN_cmpnlepd] = 1; // Packed Double-FP Compare NOT LE
OptCategory[NN_cmpordpd] = 1; // Packed Double-FP Compare ORDERED
OptCategory[NN_cmpeqsd] = 1; // Scalar Double-FP Compare EQ
OptCategory[NN_cmpltsd] = 1; // Scalar Double-FP Compare LT
OptCategory[NN_cmplesd] = 1; // Scalar Double-FP Compare LE
OptCategory[NN_cmpunordsd] = 1; // Scalar Double-FP Compare UNORD
OptCategory[NN_cmpneqsd] = 1; // Scalar Double-FP Compare NOT EQ
OptCategory[NN_cmpnltsd] = 1; // Scalar Double-FP Compare NOT LT
OptCategory[NN_cmpnlesd] = 1; // Scalar Double-FP Compare NOT LE
OptCategory[NN_cmpordsd] = 1; // Scalar Double-FP Compare ORDERED
// SSSE4.1 instructions
OptCategory[NN_blendpd] = 1; // Blend Packed Double Precision Floating-Point Values
OptCategory[NN_blendps] = 1; // Blend Packed Single Precision Floating-Point Values
OptCategory[NN_blendvpd] = 1; // Variable Blend Packed Double Precision Floating-Point Values
OptCategory[NN_blendvps] = 1; // Variable Blend Packed Single Precision Floating-Point Values
OptCategory[NN_dppd] = 1; // Dot Product of Packed Double Precision Floating-Point Values
OptCategory[NN_dpps] = 1; // Dot Product of Packed Single Precision Floating-Point Values
OptCategory[NN_extractps] = 2; // Extract Packed Single Precision Floating-Point Value
OptCategory[NN_insertps] = 1; // Insert Packed Single Precision Floating-Point Value
OptCategory[NN_movntdqa] = 0; // Load Double Quadword Non-Temporal Aligned Hint
OptCategory[NN_mpsadbw] = 1; // Compute Multiple Packed Sums of Absolute Difference
OptCategory[NN_packusdw] = 1; // Pack with Unsigned Saturation
OptCategory[NN_pblendvb] = 1; // Variable Blend Packed Bytes
OptCategory[NN_pblendw] = 1; // Blend Packed Words
OptCategory[NN_pcmpeqq] = 1; // Compare Packed Qword Data for Equal
OptCategory[NN_pextrb] = 1; // Extract Byte
OptCategory[NN_pextrd] = 1; // Extract Dword
OptCategory[NN_pextrq] = 1; // Extract Qword
OptCategory[NN_phminposuw] = 1; // Packed Horizontal Word Minimum
OptCategory[NN_pinsrb] = 1; // Insert Byte
OptCategory[NN_pinsrd] = 1; // Insert Dword
OptCategory[NN_pinsrq] = 1; // Insert Qword
OptCategory[NN_pmaxsb] = 1; // Maximum of Packed Signed Byte Integers
OptCategory[NN_pmaxsd] = 1; // Maximum of Packed Signed Dword Integers
OptCategory[NN_pmaxud] = 1; // Maximum of Packed Unsigned Dword Integers
OptCategory[NN_pmaxuw] = 1; // Maximum of Packed Word Integers
OptCategory[NN_pminsb] = 1; // Minimum of Packed Signed Byte Integers
OptCategory[NN_pminsd] = 1; // Minimum of Packed Signed Dword Integers
OptCategory[NN_pminud] = 1; // Minimum of Packed Unsigned Dword Integers
OptCategory[NN_pminuw] = 1; // Minimum of Packed Word Integers
OptCategory[NN_pmovsxbw] = 1; // Packed Move with Sign Extend
OptCategory[NN_pmovsxbd] = 1; // Packed Move with Sign Extend
OptCategory[NN_pmovsxbq] = 1; // Packed Move with Sign Extend
OptCategory[NN_pmovsxwd] = 1; // Packed Move with Sign Extend
OptCategory[NN_pmovsxwq] = 1; // Packed Move with Sign Extend
OptCategory[NN_pmovsxdq] = 1; // Packed Move with Sign Extend
OptCategory[NN_pmovzxbw] = 1; // Packed Move with Zero Extend
OptCategory[NN_pmovzxbd] = 1; // Packed Move with Zero Extend
OptCategory[NN_pmovzxbq] = 1; // Packed Move with Zero Extend
OptCategory[NN_pmovzxwd] = 1; // Packed Move with Zero Extend
OptCategory[NN_pmovzxwq] = 1; // Packed Move with Zero Extend
OptCategory[NN_pmovzxdq] = 1; // Packed Move with Zero Extend
OptCategory[NN_pmuldq] = 1; // Multiply Packed Signed Dword Integers
OptCategory[NN_pmulld] = 1; // Multiply Packed Signed Dword Integers and Store Low Result
OptCategory[NN_ptest] = 1; // Logical Compare
OptCategory[NN_roundpd] = 1; // Round Packed Double Precision Floating-Point Values
OptCategory[NN_roundps] = 1; // Round Packed Single Precision Floating-Point Values
OptCategory[NN_roundsd] = 1; // Round Scalar Double Precision Floating-Point Values
OptCategory[NN_roundss] = 1; // Round Scalar Single Precision Floating-Point Values
// SSSE4.2 instructions
OptCategory[NN_crc32] = 2; // Accumulate CRC32 Value
OptCategory[NN_pcmpestri] = 2; // Packed Compare Explicit Length Strings, Return Index
OptCategory[NN_pcmpestrm] = 2; // Packed Compare Explicit Length Strings, Return Mask
OptCategory[NN_pcmpistri] = 2; // Packed Compare Implicit Length Strings, Return Index
OptCategory[NN_pcmpistrm] = 2; // Packed Compare Implicit Length Strings, Return Mask
OptCategory[NN_pcmpgtq] = 1; // Compare Packed Data for Greater Than
OptCategory[NN_popcnt] = 2; // Return the Count of Number of Bits Set to 1
// AMD SSE4a instructions
OptCategory[NN_extrq] = 1; // Extract Field From Register
OptCategory[NN_insertq] = 1; // Insert Field
OptCategory[NN_movntsd] = 0; // Move Non-Temporal Scalar Double-Precision Floating-Point
OptCategory[NN_movntss] = 0; // Move Non-Temporal Scalar Single-Precision Floating-Point
OptCategory[NN_lzcnt] = 2; // Leading Zero Count
// xsave/xrstor instructions
OptCategory[NN_xgetbv] = 8; // Get Value of Extended Control Register
OptCategory[NN_xrstor] = 0; // Restore Processor Extended States
OptCategory[NN_xsave] = 1; // Save Processor Extended States
OptCategory[NN_xsetbv] = 1; // Set Value of Extended Control Register
// Intel Safer Mode Extensions (SMX)
OptCategory[NN_getsec] = 1; // Safer Mode Extensions (SMX) Instruction
// AMD-V Virtualization ISA Extension
OptCategory[NN_clgi] = 0; // Clear Global Interrupt Flag
OptCategory[NN_invlpga] = 1; // Invalidate TLB Entry in a Specified ASID
OptCategory[NN_skinit] = 1; // Secure Init and Jump with Attestation
OptCategory[NN_stgi] = 0; // Set Global Interrupt Flag
OptCategory[NN_vmexit] = 1; // Stop Executing Guest, Begin Executing Host
OptCategory[NN_vmload] = 0; // Load State from VMCB
OptCategory[NN_vmmcall] = 1; // Call VMM
OptCategory[NN_vmrun] = 1; // Run Virtual Machine
OptCategory[NN_vmsave] = 0; // Save State to VMCB
// VMX+ instructions
OptCategory[NN_invept] = 1; // Invalidate Translations Derived from EPT
OptCategory[NN_invvpid] = 1; // Invalidate Translations Based on VPID
// Intel Atom instructions
OptCategory[NN_movbe] = 3; // Move Data After Swapping Bytes
// Intel AES instructions
OptCategory[NN_aesenc] = 1; // Perform One Round of an AES Encryption Flow
OptCategory[NN_aesenclast] = 1; // Perform the Last Round of an AES Encryption Flow
OptCategory[NN_aesdec] = 1; // Perform One Round of an AES Decryption Flow
OptCategory[NN_aesdeclast] = 1; // Perform the Last Round of an AES Decryption Flow
OptCategory[NN_aesimc] = 1; // Perform the AES InvMixColumn Transformation
OptCategory[NN_aeskeygenassist] = 1; // AES Round Key Generation Assist
// Carryless multiplication
OptCategory[NN_pclmulqdq] = 1; // Carry-Less Multiplication Quadword
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
// Returns modified by operand size prefixes
OptCategory[NN_retnw] = 0; // Return Near from Procedure (use16)
OptCategory[NN_retnd] = 0; // Return Near from Procedure (use32)
OptCategory[NN_retnq] = 0; // Return Near from Procedure (use64)
OptCategory[NN_retfw] = 0; // Return Far from Procedure (use16)
OptCategory[NN_retfd] = 0; // Return Far from Procedure (use32)
OptCategory[NN_retfq] = 0; // Return Far from Procedure (use64)
// RDRAND support
OptCategory[NN_rdrand] = 2; // Read Random Number
// new GPR instructions
OptCategory[NN_adcx] = 5; // Unsigned Integer Addition of Two Operands with Carry Flag
OptCategory[NN_adox] = 5; // Unsigned Integer Addition of Two Operands with Overflow Flag
OptCategory[NN_andn] = 0; // Logical AND NOT
OptCategory[NN_bextr] = 2; // Bit Field Extract
OptCategory[NN_blsi] = 2; // Extract Lowest Set Isolated Bit
OptCategory[NN_blsmsk] = 2; // Get Mask Up to Lowest Set Bit
OptCategory[NN_blsr] = 2; // Reset Lowest Set Bit
OptCategory[NN_bzhi] = 2; // Zero High Bits Starting with Specified Bit Position
OptCategory[NN_clac] = 1; // Clear AC Flag in EFLAGS Register
OptCategory[NN_mulx] = 2; // Unsigned Multiply Without Affecting Flags
OptCategory[NN_pdep] = 2; // Parallel Bits Deposit
OptCategory[NN_pext] = 2; // Parallel Bits Extract
OptCategory[NN_rorx] = 2; // Rotate Right Logical Without Affecting Flags
OptCategory[NN_sarx] = 2; // Shift Arithmetically Right Without Affecting Flags
OptCategory[NN_shlx] = 2; // Shift Logically Left Without Affecting Flags
OptCategory[NN_shrx] = 2; // Shift Logically Right Without Affecting Flags
OptCategory[NN_stac] = 1; // Set AC Flag in EFLAGS Register
OptCategory[NN_tzcnt] = 2; // Count the Number of Trailing Zero Bits
OptCategory[NN_xsaveopt] = 1; // Save Processor Extended States Optimized
OptCategory[NN_invpcid] = 1; // Invalidate Processor Context ID
OptCategory[NN_rdseed] = 2; // Read Random Seed
OptCategory[NN_rdfsbase] = 6; // Read FS Segment Base
OptCategory[NN_rdgsbase] = 6; // Read GS Segment Base
OptCategory[NN_wrfsbase] = 6; // Write FS Segment Base
OptCategory[NN_wrgsbase] = 6; // Write GS Segment Base
// new AVX instructions
OptCategory[NN_vaddpd] = 1; // Add Packed Double-Precision Floating-Point Values
OptCategory[NN_vaddps] = 1; // Packed Single-FP Add
OptCategory[NN_vaddsd] = 1; // Add Scalar Double-Precision Floating-Point Values
OptCategory[NN_vaddss] = 1; // Scalar Single-FP Add
OptCategory[NN_vaddsubpd] = 1; // Add /Sub packed DP FP numbers
OptCategory[NN_vaddsubps] = 1; // Add /Sub packed SP FP numbers
OptCategory[NN_vaesdec] = 1; // Perform One Round of an AES Decryption Flow
OptCategory[NN_vaesdeclast] = 1; // Perform the Last Round of an AES Decryption Flow
OptCategory[NN_vaesenc] = 1; // Perform One Round of an AES Encryption Flow
OptCategory[NN_vaesenclast] = 1; // Perform the Last Round of an AES Encryption Flow
OptCategory[NN_vaesimc] = 1; // Perform the AES InvMixColumn Transformation
OptCategory[NN_vaeskeygenassist] = 1; // AES Round Key Generation Assist
OptCategory[NN_vandnpd] = 1; // Bitwise Logical AND NOT of Packed Double-Precision Floating-Point Values
OptCategory[NN_vandnps] = 1; // Bitwise Logical And Not for Single-FP
OptCategory[NN_vandpd] = 1; // Bitwise Logical AND of Packed Double-Precision Floating-Point Values
OptCategory[NN_vandps] = 1; // Bitwise Logical And for Single-FP
OptCategory[NN_vblendpd] = 1; // Blend Packed Double Precision Floating-Point Values
OptCategory[NN_vblendps] = 1; // Blend Packed Single Precision Floating-Point Values
OptCategory[NN_vblendvpd] = 1; // Variable Blend Packed Double Precision Floating-Point Values
OptCategory[NN_vblendvps] = 1; // Variable Blend Packed Single Precision Floating-Point Values
OptCategory[NN_vbroadcastf128] = 1; // Broadcast 128 Bits of Floating-Point Data
OptCategory[NN_vbroadcasti128] = 1; // Broadcast 128 Bits of Integer Data
OptCategory[NN_vbroadcastsd] = 1; // Broadcast Double-Precision Floating-Point Element
OptCategory[NN_vbroadcastss] = 1; // Broadcast Single-Precision Floating-Point Element
OptCategory[NN_vcmppd] = 1; // Compare Packed Double-Precision Floating-Point Values
OptCategory[NN_vcmpps] = 1; // Packed Single-FP Compare
OptCategory[NN_vcmpsd] = 1; // Compare Scalar Double-Precision Floating-Point Values
OptCategory[NN_vcmpss] = 1; // Scalar Single-FP Compare
OptCategory[NN_vcomisd] = 1; // Compare Scalar Ordered Double-Precision Floating-Point Values and Set EFLAGS
OptCategory[NN_vcomiss] = 1; // Scalar Ordered Single-FP Compare and Set EFLAGS
OptCategory[NN_vcvtdq2pd] = 1; // Convert Packed Doubleword Integers to Packed Single-Precision Floating-Point Values
OptCategory[NN_vcvtdq2ps] = 1; // Convert Packed Doubleword Integers to Packed Double-Precision Floating-Point Values
OptCategory[NN_vcvtpd2dq] = 1; // Convert Packed Double-Precision Floating-Point Values to Packed Doubleword Integers
OptCategory[NN_vcvtpd2ps] = 1; // Convert Packed Double-Precision Floating-Point Values to Packed Single-Precision Floating-Point Values
OptCategory[NN_vcvtph2ps] = 1; // Convert 16-bit FP Values to Single-Precision FP Values
OptCategory[NN_vcvtps2dq] = 1; // Convert Packed Single-Precision Floating-Point Values to Packed Doubleword Integers
OptCategory[NN_vcvtps2pd] = 1; // Convert Packed Single-Precision Floating-Point Values to Packed Double-Precision Floating-Point Values
OptCategory[NN_vcvtps2ph] = 1; // Convert Single-Precision FP value to 16-bit FP value
OptCategory[NN_vcvtsd2si] = 1; // Convert Scalar Double-Precision Floating-Point Value to Doubleword Integer
OptCategory[NN_vcvtsd2ss] = 1; // Convert Scalar Double-Precision Floating-Point Value to Scalar Single-Precision Floating-Point Value
OptCategory[NN_vcvtsi2sd] = 1; // Convert Doubleword Integer to Scalar Double-Precision Floating-Point Value
OptCategory[NN_vcvtsi2ss] = 1; // Scalar signed INT32 to Single-FP conversion
OptCategory[NN_vcvtss2sd] = 1; // Convert Scalar Single-Precision Floating-Point Value to Scalar Double-Precision Floating-Point Value
OptCategory[NN_vcvtss2si] = 1; // Scalar Single-FP to signed INT32 conversion
OptCategory[NN_vcvttpd2dq] = 1; // Convert With Truncation Packed Double-Precision Floating-Point Values to Packed Doubleword Integers
OptCategory[NN_vcvttps2dq] = 1; // Convert With Truncation Packed Single-Precision Floating-Point Values to Packed Doubleword Integers
OptCategory[NN_vcvttsd2si] = 1; // Convert with Truncation Scalar Double-Precision Floating-Point Value to Doubleword Integer
OptCategory[NN_vcvttss2si] = 1; // Scalar Single-FP to signed INT32 conversion (truncate)
OptCategory[NN_vdivpd] = 1; // Divide Packed Double-Precision Floating-Point Values
OptCategory[NN_vdivps] = 1; // Packed Single-FP Divide
OptCategory[NN_vdivsd] = 1; // Divide Scalar Double-Precision Floating-Point Values
OptCategory[NN_vdivss] = 1; // Scalar Single-FP Divide
OptCategory[NN_vdppd] = 1; // Dot Product of Packed Double Precision Floating-Point Values
OptCategory[NN_vdpps] = 1; // Dot Product of Packed Single Precision Floating-Point Values
OptCategory[NN_vextractf128] = 1; // Extract Packed Floating-Point Values
OptCategory[NN_vextracti128] = 1; // Extract Packed Integer Values
OptCategory[NN_vextractps] = 1; // Extract Packed Floating-Point Values
OptCategory[NN_vfmadd132pd] = 1; // Fused Multiply-Add of Packed Double-Precision Floating-Point Values
OptCategory[NN_vfmadd132ps] = 1; // Fused Multiply-Add of Packed Single-Precision Floating-Point Values
OptCategory[NN_vfmadd132sd] = 1; // Fused Multiply-Add of Scalar Double-Precision Floating-Point Values
OptCategory[NN_vfmadd132ss] = 1; // Fused Multiply-Add of Scalar Single-Precision Floating-Point Values
OptCategory[NN_vfmadd213pd] = 1; // Fused Multiply-Add of Packed Double-Precision Floating-Point Values
OptCategory[NN_vfmadd213ps] = 1; // Fused Multiply-Add of Packed Single-Precision Floating-Point Values
OptCategory[NN_vfmadd213sd] = 1; // Fused Multiply-Add of Scalar Double-Precision Floating-Point Values
OptCategory[NN_vfmadd213ss] = 1; // Fused Multiply-Add of Scalar Single-Precision Floating-Point Values
OptCategory[NN_vfmadd231pd] = 1; // Fused Multiply-Add of Packed Double-Precision Floating-Point Values
OptCategory[NN_vfmadd231ps] = 1; // Fused Multiply-Add of Packed Single-Precision Floating-Point Values
OptCategory[NN_vfmadd231sd] = 1; // Fused Multiply-Add of Scalar Double-Precision Floating-Point Values
OptCategory[NN_vfmadd231ss] = 1; // Fused Multiply-Add of Scalar Single-Precision Floating-Point Values
OptCategory[NN_vfmaddsub132pd] = 1; // Fused Multiply-Alternating Add/Subtract of Packed Double-Precision Floating-Point Values
OptCategory[NN_vfmaddsub132ps] = 1; // Fused Multiply-Alternating Add/Subtract of Packed Single-Precision Floating-Point Values
OptCategory[NN_vfmaddsub213pd] = 1; // Fused Multiply-Alternating Add/Subtract of Packed Double-Precision Floating-Point Values
OptCategory[NN_vfmaddsub213ps] = 1; // Fused Multiply-Alternating Add/Subtract of Packed Single-Precision Floating-Point Values
OptCategory[NN_vfmaddsub231pd] = 1; // Fused Multiply-Alternating Add/Subtract of Packed Double-Precision Floating-Point Values
OptCategory[NN_vfmaddsub231ps] = 1; // Fused Multiply-Alternating Add/Subtract of Packed Single-Precision Floating-Point Values
OptCategory[NN_vfmsub132pd] = 1; // Fused Multiply-Subtract of Packed Double-Precision Floating-Point Values
OptCategory[NN_vfmsub132ps] = 1; // Fused Multiply-Subtract of Packed Single-Precision Floating-Point Values
OptCategory[NN_vfmsub132sd] = 1; // Fused Multiply-Subtract of Scalar Double-Precision Floating-Point Values
OptCategory[NN_vfmsub132ss] = 1; // Fused Multiply-Subtract of Scalar Single-Precision Floating-Point Values
OptCategory[NN_vfmsub213pd] = 1; // Fused Multiply-Subtract of Packed Double-Precision Floating-Point Values
OptCategory[NN_vfmsub213ps] = 1; // Fused Multiply-Subtract of Packed Single-Precision Floating-Point Values
OptCategory[NN_vfmsub213sd] = 1; // Fused Multiply-Subtract of Scalar Double-Precision Floating-Point Values
OptCategory[NN_vfmsub213ss] = 1; // Fused Multiply-Subtract of Scalar Single-Precision Floating-Point Values
OptCategory[NN_vfmsub231pd] = 1; // Fused Multiply-Subtract of Packed Double-Precision Floating-Point Values
OptCategory[NN_vfmsub231ps] = 1; // Fused Multiply-Subtract of Packed Single-Precision Floating-Point Values
OptCategory[NN_vfmsub231sd] = 1; // Fused Multiply-Subtract of Scalar Double-Precision Floating-Point Values
OptCategory[NN_vfmsub231ss] = 1; // Fused Multiply-Subtract of Scalar Single-Precision Floating-Point Values
OptCategory[NN_vfmsubadd132pd] = 1; // Fused Multiply-Alternating Subtract/Add of Packed Double-Precision Floating-Point Values
OptCategory[NN_vfmsubadd132ps] = 1; // Fused Multiply-Alternating Subtract/Add of Packed Single-Precision Floating-Point Values
OptCategory[NN_vfmsubadd213pd] = 1; // Fused Multiply-Alternating Subtract/Add of Packed Double-Precision Floating-Point Values
OptCategory[NN_vfmsubadd213ps] = 1; // Fused Multiply-Alternating Subtract/Add of Packed Single-Precision Floating-Point Values
OptCategory[NN_vfmsubadd231pd] = 1; // Fused Multiply-Alternating Subtract/Add of Packed Double-Precision Floating-Point Values
OptCategory[NN_vfmsubadd231ps] = 1; // Fused Multiply-Alternating Subtract/Add of Packed Single-Precision Floating-Point Values
OptCategory[NN_vfnmadd132pd] = 1; // Fused Negative Multiply-Add of Packed Double-Precision Floating-Point Values
OptCategory[NN_vfnmadd132ps] = 1; // Fused Negative Multiply-Add of Packed Single-Precision Floating-Point Values
OptCategory[NN_vfnmadd132sd] = 1; // Fused Negative Multiply-Add of Scalar Double-Precision Floating-Point Values
OptCategory[NN_vfnmadd132ss] = 1; // Fused Negative Multiply-Add of Scalar Single-Precision Floating-Point Values
OptCategory[NN_vfnmadd213pd] = 1; // Fused Negative Multiply-Add of Packed Double-Precision Floating-Point Values
OptCategory[NN_vfnmadd213ps] = 1; // Fused Negative Multiply-Add of Packed Single-Precision Floating-Point Values
OptCategory[NN_vfnmadd213sd] = 1; // Fused Negative Multiply-Add of Scalar Double-Precision Floating-Point Values
OptCategory[NN_vfnmadd213ss] = 1; // Fused Negative Multiply-Add of Scalar Single-Precision Floating-Point Values
OptCategory[NN_vfnmadd231pd] = 1; // Fused Negative Multiply-Add of Packed Double-Precision Floating-Point Values
OptCategory[NN_vfnmadd231ps] = 1; // Fused Negative Multiply-Add of Packed Single-Precision Floating-Point Values
OptCategory[NN_vfnmadd231sd] = 1; // Fused Negative Multiply-Add of Scalar Double-Precision Floating-Point Values
OptCategory[NN_vfnmadd231ss] = 1; // Fused Negative Multiply-Add of Scalar Single-Precision Floating-Point Values
OptCategory[NN_vfnmsub132pd] = 1; // Fused Negative Multiply-Subtract of Packed Double-Precision Floating-Point Values
OptCategory[NN_vfnmsub132ps] = 1; // Fused Negative Multiply-Subtract of Packed Single-Precision Floating-Point Values
OptCategory[NN_vfnmsub132sd] = 1; // Fused Negative Multiply-Subtract of Scalar Double-Precision Floating-Point Values
OptCategory[NN_vfnmsub132ss] = 1; // Fused Negative Multiply-Subtract of Scalar Single-Precision Floating-Point Values
OptCategory[NN_vfnmsub213pd] = 1; // Fused Negative Multiply-Subtract of Packed Double-Precision Floating-Point Values
OptCategory[NN_vfnmsub213ps] = 1; // Fused Negative Multiply-Subtract of Packed Single-Precision Floating-Point Values
OptCategory[NN_vfnmsub213sd] = 1; // Fused Negative Multiply-Subtract of Scalar Double-Precision Floating-Point Values
OptCategory[NN_vfnmsub213ss] = 1; // Fused Negative Multiply-Subtract of Scalar Single-Precision Floating-Point Values
OptCategory[NN_vfnmsub231pd] = 1; // Fused Negative Multiply-Subtract of Packed Double-Precision Floating-Point Values
OptCategory[NN_vfnmsub231ps] = 1; // Fused Negative Multiply-Subtract of Packed Single-Precision Floating-Point Values
OptCategory[NN_vfnmsub231sd] = 1; // Fused Negative Multiply-Subtract of Scalar Double-Precision Floating-Point Values
OptCategory[NN_vfnmsub231ss] = 1; // Fused Negative Multiply-Subtract of Scalar Single-Precision Floating-Point Values
OptCategory[NN_vgatherdps] = 1; // Gather Packed SP FP Values Using Signed Dword Indices
OptCategory[NN_vgatherdpd] = 1; // Gather Packed DP FP Values Using Signed Dword Indices
OptCategory[NN_vgatherqps] = 1; // Gather Packed SP FP Values Using Signed Qword Indices
OptCategory[NN_vgatherqpd] = 1; // Gather Packed DP FP Values Using Signed Qword Indices
OptCategory[NN_vhaddpd] = 1; // Add horizontally packed DP FP numbers
OptCategory[NN_vhaddps] = 1; // Add horizontally packed SP FP numbers
OptCategory[NN_vhsubpd] = 1; // Sub horizontally packed DP FP numbers
OptCategory[NN_vhsubps] = 1; // Sub horizontally packed SP FP numbers
OptCategory[NN_vinsertf128] = 1; // Insert Packed Floating-Point Values
OptCategory[NN_vinserti128] = 1; // Insert Packed Integer Values
OptCategory[NN_vinsertps] = 1; // Insert Packed Single Precision Floating-Point Value
OptCategory[NN_vlddqu] = 1; // Load Unaligned Packed Integer Values
OptCategory[NN_vldmxcsr] = 1; // Load Streaming SIMD Extensions Technology Control/Status Register
OptCategory[NN_vmaskmovdqu] = 9; // Store Selected Bytes of Double Quadword with NT Hint
OptCategory[NN_vmaskmovpd] = 9; // Conditionally Load Packed Double-Precision Floating-Point Values
OptCategory[NN_vmaskmovps] = 9; // Conditionally Load Packed Single-Precision Floating-Point Values
OptCategory[NN_vmaxpd] = 1; // Return Maximum Packed Double-Precision Floating-Point Values
OptCategory[NN_vmaxps] = 1; // Packed Single-FP Maximum
OptCategory[NN_vmaxsd] = 1; // Return Maximum Scalar Double-Precision Floating-Point Value
OptCategory[NN_vmaxss] = 1; // Scalar Single-FP Maximum
OptCategory[NN_vminpd] = 1; // Return Minimum Packed Double-Precision Floating-Point Values
OptCategory[NN_vminps] = 1; // Packed Single-FP Minimum
OptCategory[NN_vminsd] = 1; // Return Minimum Scalar Double-Precision Floating-Point Value
OptCategory[NN_vminss] = 1; // Scalar Single-FP Minimum
OptCategory[NN_vmovapd] = 9; // Move Aligned Packed Double-Precision Floating-Point Values
OptCategory[NN_vmovaps] = 9; // Move Aligned Four Packed Single-FP
OptCategory[NN_vmovd] = 9; // Move 32 bits
OptCategory[NN_vmovddup] = 1; // Move One Double-FP and Duplicate
OptCategory[NN_vmovdqa] = 1; // Move Aligned Double Quadword
OptCategory[NN_vmovdqu] = 1; // Move Unaligned Double Quadword
OptCategory[NN_vmovhlps] = 1; // Move High to Low Packed Single-FP
OptCategory[NN_vmovhpd] = 1; // Move High Packed Double-Precision Floating-Point Values
OptCategory[NN_vmovhps] = 1; // Move High Packed Single-FP
OptCategory[NN_vmovlhps] = 1; // Move Low to High Packed Single-FP
OptCategory[NN_vmovlpd] = 1; // Move Low Packed Double-Precision Floating-Point Values
OptCategory[NN_vmovlps] = 1; // Move Low Packed Single-FP
OptCategory[NN_vmovmskpd] = 1; // Extract Packed Double-Precision Floating-Point Sign Mask
OptCategory[NN_vmovmskps] = 1; // Move Mask to Register
OptCategory[NN_vmovntdq] = 1; // Store Double Quadword Using Non-Temporal Hint
OptCategory[NN_vmovntdqa] = 1; // Load Double Quadword Non-Temporal Aligned Hint
OptCategory[NN_vmovntpd] = 1; // Store Packed Double-Precision Floating-Point Values Using Non-Temporal Hint
OptCategory[NN_vmovntps] = 1; // Move Aligned Four Packed Single-FP Non Temporal
OptCategory[NN_vmovntsd] = 1; // Move Non-Temporal Scalar Double-Precision Floating-Point
OptCategory[NN_vmovntss] = 1; // Move Non-Temporal Scalar Single-Precision Floating-Point
OptCategory[NN_vmovq] = 1; // Move 64 bits
OptCategory[NN_vmovsd] = 1; // Move Scalar Double-Precision Floating-Point Values
OptCategory[NN_vmovshdup] = 1; // Move Packed Single-FP High and Duplicate
OptCategory[NN_vmovsldup] = 1; // Move Packed Single-FP Low and Duplicate
OptCategory[NN_vmovss] = 1; // Move Scalar Single-FP
OptCategory[NN_vmovupd] = 1; // Move Unaligned Packed Double-Precision Floating-Point Values
OptCategory[NN_vmovups] = 1; // Move Unaligned Four Packed Single-FP
OptCategory[NN_vmpsadbw] = 1; // Compute Multiple Packed Sums of Absolute Difference
OptCategory[NN_vmulpd] = 1; // Multiply Packed Double-Precision Floating-Point Values
OptCategory[NN_vmulps] = 1; // Packed Single-FP Multiply
OptCategory[NN_vmulsd] = 1; // Multiply Scalar Double-Precision Floating-Point Values
OptCategory[NN_vmulss] = 1; // Scalar Single-FP Multiply
OptCategory[NN_vorpd] = 1; // Bitwise Logical OR of Double-Precision Floating-Point Values
OptCategory[NN_vorps] = 1; // Bitwise Logical OR for Single-FP Data
OptCategory[NN_vpabsb] = 1; // Packed Absolute Value Byte
OptCategory[NN_vpabsd] = 1; // Packed Absolute Value Doubleword
OptCategory[NN_vpabsw] = 1; // Packed Absolute Value Word
OptCategory[NN_vpackssdw] = 1; // Pack with Signed Saturation (Dword->Word)
OptCategory[NN_vpacksswb] = 1; // Pack with Signed Saturation (Word->Byte)
OptCategory[NN_vpackusdw] = 1; // Pack with Unsigned Saturation
OptCategory[NN_vpackuswb] = 1; // Pack with Unsigned Saturation (Word->Byte)
OptCategory[NN_vpaddb] = 1; // Packed Add Byte
OptCategory[NN_vpaddd] = 1; // Packed Add Dword
OptCategory[NN_vpaddq] = 1; // Add Packed Quadword Integers
OptCategory[NN_vpaddsb] = 1; // Packed Add with Saturation (Byte)
OptCategory[NN_vpaddsw] = 1; // Packed Add with Saturation (Word)
OptCategory[NN_vpaddusb] = 1; // Packed Add Unsigned with Saturation (Byte)
OptCategory[NN_vpaddusw] = 1; // Packed Add Unsigned with Saturation (Word)
OptCategory[NN_vpaddw] = 1; // Packed Add Word
OptCategory[NN_vpalignr] = 1; // Packed Align Right
OptCategory[NN_vpand] = 1; // Bitwise Logical And
OptCategory[NN_vpandn] = 1; // Bitwise Logical And Not
OptCategory[NN_vpavgb] = 1; // Packed Average (Byte)
OptCategory[NN_vpavgw] = 1; // Packed Average (Word)
OptCategory[NN_vpblendd] = 1; // Blend Packed Dwords
OptCategory[NN_vpblendvb] = 1; // Variable Blend Packed Bytes
OptCategory[NN_vpblendw] = 1; // Blend Packed Words
OptCategory[NN_vpbroadcastb] = 1; // Broadcast a Byte Integer
OptCategory[NN_vpbroadcastd] = 1; // Broadcast a Dword Integer
OptCategory[NN_vpbroadcastq] = 1; // Broadcast a Qword Integer
OptCategory[NN_vpbroadcastw] = 1; // Broadcast a Word Integer
OptCategory[NN_vpclmulqdq] = 1; // Carry-Less Multiplication Quadword
OptCategory[NN_vpcmpeqb] = 1; // Packed Compare for Equal (Byte)
OptCategory[NN_vpcmpeqd] = 1; // Packed Compare for Equal (Dword)
OptCategory[NN_vpcmpeqq] = 1; // Compare Packed Qword Data for Equal
OptCategory[NN_vpcmpeqw] = 1; // Packed Compare for Equal (Word)
OptCategory[NN_vpcmpestri] = 1; // Packed Compare Explicit Length Strings, Return Index
OptCategory[NN_vpcmpestrm] = 1; // Packed Compare Explicit Length Strings, Return Mask
OptCategory[NN_vpcmpgtb] = 1; // Packed Compare for Greater Than (Byte)
OptCategory[NN_vpcmpgtd] = 1; // Packed Compare for Greater Than (Dword)
OptCategory[NN_vpcmpgtq] = 1; // Compare Packed Data for Greater Than
OptCategory[NN_vpcmpgtw] = 1; // Packed Compare for Greater Than (Word)
OptCategory[NN_vpcmpistri] = 1; // Packed Compare Implicit Length Strings, Return Index
OptCategory[NN_vpcmpistrm] = 1; // Packed Compare Implicit Length Strings, Return Mask
OptCategory[NN_vperm2f128] = 1; // Permute Floating-Point Values
OptCategory[NN_vperm2i128] = 1; // Permute Integer Values
OptCategory[NN_vpermd] = 1; // Full Doublewords Element Permutation
OptCategory[NN_vpermilpd] = 1; // Permute Double-Precision Floating-Point Values
OptCategory[NN_vpermilps] = 1; // Permute Single-Precision Floating-Point Values
OptCategory[NN_vpermpd] = 1; // Permute Double-Precision Floating-Point Elements
OptCategory[NN_vpermps] = 1; // Permute Single-Precision Floating-Point Elements
OptCategory[NN_vpermq] = 1; // Qwords Element Permutation
OptCategory[NN_vpextrb] = 1; // Extract Byte
OptCategory[NN_vpextrd] = 1; // Extract Dword
OptCategory[NN_vpextrq] = 1; // Extract Qword
OptCategory[NN_vpextrw] = 1; // Extract Word
OptCategory[NN_vpgatherdd] = 1; // Gather Packed Dword Values Using Signed Dword Indices
OptCategory[NN_vpgatherdq] = 1; // Gather Packed Qword Values Using Signed Dword Indices
OptCategory[NN_vpgatherqd] = 1; // Gather Packed Dword Values Using Signed Qword Indices
OptCategory[NN_vpgatherqq] = 1; // Gather Packed Qword Values Using Signed Qword Indices
OptCategory[NN_vphaddd] = 1; // Packed Horizontal Add Doubleword
OptCategory[NN_vphaddsw] = 1; // Packed Horizontal Add and Saturate
OptCategory[NN_vphaddw] = 1; // Packed Horizontal Add Word
OptCategory[NN_vphminposuw] = 1; // Packed Horizontal Word Minimum
OptCategory[NN_vphsubd] = 1; // Packed Horizontal Subtract Doubleword
OptCategory[NN_vphsubsw] = 1; // Packed Horizontal Subtract and Saturate
OptCategory[NN_vphsubw] = 1; // Packed Horizontal Subtract Word
OptCategory[NN_vpinsrb] = 1; // Insert Byte
OptCategory[NN_vpinsrd] = 1; // Insert Dword
OptCategory[NN_vpinsrq] = 1; // Insert Qword
OptCategory[NN_vpinsrw] = 1; // Insert Word
OptCategory[NN_vpmaddubsw] = 1; // Multiply and Add Packed Signed and Unsigned Bytes
OptCategory[NN_vpmaddwd] = 1; // Packed Multiply and Add
OptCategory[NN_vpmaskmovd] = 1; // Conditionally Store Dword Values Using Mask
OptCategory[NN_vpmaskmovq] = 1; // Conditionally Store Qword Values Using Mask
OptCategory[NN_vpmaxsb] = 1; // Maximum of Packed Signed Byte Integers
OptCategory[NN_vpmaxsd] = 1; // Maximum of Packed Signed Dword Integers
OptCategory[NN_vpmaxsw] = 1; // Packed Signed Integer Word Maximum
OptCategory[NN_vpmaxub] = 1; // Packed Unsigned Integer Byte Maximum
OptCategory[NN_vpmaxud] = 1; // Maximum of Packed Unsigned Dword Integers
OptCategory[NN_vpmaxuw] = 1; // Maximum of Packed Word Integers
OptCategory[NN_vpminsb] = 1; // Minimum of Packed Signed Byte Integers
OptCategory[NN_vpminsd] = 1; // Minimum of Packed Signed Dword Integers
OptCategory[NN_vpminsw] = 1; // Packed Signed Integer Word Minimum
OptCategory[NN_vpminub] = 1; // Packed Unsigned Integer Byte Minimum
OptCategory[NN_vpminud] = 1; // Minimum of Packed Unsigned Dword Integers
OptCategory[NN_vpminuw] = 1; // Minimum of Packed Word Integers
OptCategory[NN_vpmovmskb] = 1; // Move Byte Mask to Integer
OptCategory[NN_vpmovsxbd] = 1; // Packed Move with Sign Extend
OptCategory[NN_vpmovsxbq] = 1; // Packed Move with Sign Extend
OptCategory[NN_vpmovsxbw] = 1; // Packed Move with Sign Extend
OptCategory[NN_vpmovsxdq] = 1; // Packed Move with Sign Extend
OptCategory[NN_vpmovsxwd] = 1; // Packed Move with Sign Extend
OptCategory[NN_vpmovsxwq] = 1; // Packed Move with Sign Extend
OptCategory[NN_vpmovzxbd] = 1; // Packed Move with Zero Extend
OptCategory[NN_vpmovzxbq] = 1; // Packed Move with Zero Extend
OptCategory[NN_vpmovzxbw] = 1; // Packed Move with Zero Extend
OptCategory[NN_vpmovzxdq] = 1; // Packed Move with Zero Extend
OptCategory[NN_vpmovzxwd] = 1; // Packed Move with Zero Extend
OptCategory[NN_vpmovzxwq] = 1; // Packed Move with Zero Extend
OptCategory[NN_vpmuldq] = 1; // Multiply Packed Signed Dword Integers
OptCategory[NN_vpmulhrsw] = 1; // Packed Multiply High with Round and Scale
OptCategory[NN_vpmulhuw] = 1; // Packed Multiply High Unsigned
OptCategory[NN_vpmulhw] = 1; // Packed Multiply High
OptCategory[NN_vpmulld] = 1; // Multiply Packed Signed Dword Integers and Store Low Result
OptCategory[NN_vpmullw] = 1; // Packed Multiply Low
OptCategory[NN_vpmuludq] = 1; // Multiply Packed Unsigned Doubleword Integers
OptCategory[NN_vpor] = 1; // Bitwise Logical Or
OptCategory[NN_vpsadbw] = 1; // Packed Sum of Absolute Differences
OptCategory[NN_vpshufb] = 1; // Packed Shuffle Bytes
OptCategory[NN_vpshufd] = 1; // Shuffle Packed Doublewords
OptCategory[NN_vpshufhw] = 1; // Shuffle Packed High Words
OptCategory[NN_vpshuflw] = 1; // Shuffle Packed Low Words
OptCategory[NN_vpsignb] = 1; // Packed SIGN Byte
OptCategory[NN_vpsignd] = 1; // Packed SIGN Doubleword
OptCategory[NN_vpsignw] = 1; // Packed SIGN Word
OptCategory[NN_vpslld] = 1; // Packed Shift Left Logical (Dword)
OptCategory[NN_vpslldq] = 1; // Shift Double Quadword Left Logical
OptCategory[NN_vpsllq] = 1; // Packed Shift Left Logical (Qword)
OptCategory[NN_vpsllvd] = 1; // Variable Bit Shift Left Logical (Dword)
OptCategory[NN_vpsllvq] = 1; // Variable Bit Shift Left Logical (Qword)
OptCategory[NN_vpsllw] = 1; // Packed Shift Left Logical (Word)
OptCategory[NN_vpsrad] = 1; // Packed Shift Right Arithmetic (Dword)
OptCategory[NN_vpsravd] = 1; // Variable Bit Shift Right Arithmetic
OptCategory[NN_vpsraw] = 1; // Packed Shift Right Arithmetic (Word)
OptCategory[NN_vpsrld] = 1; // Packed Shift Right Logical (Dword)
OptCategory[NN_vpsrldq] = 1; // Shift Double Quadword Right Logical (Qword)
OptCategory[NN_vpsrlq] = 1; // Packed Shift Right Logical (Qword)
OptCategory[NN_vpsrlvd] = 1; // Variable Bit Shift Right Logical (Dword)
OptCategory[NN_vpsrlvq] = 1; // Variable Bit Shift Right Logical (Qword)
OptCategory[NN_vpsrlw] = 1; // Packed Shift Right Logical (Word)
OptCategory[NN_vpsubb] = 1; // Packed Subtract Byte
OptCategory[NN_vpsubd] = 1; // Packed Subtract Dword
OptCategory[NN_vpsubq] = 1; // Subtract Packed Quadword Integers
OptCategory[NN_vpsubsb] = 1; // Packed Subtract with Saturation (Byte)
OptCategory[NN_vpsubsw] = 1; // Packed Subtract with Saturation (Word)
OptCategory[NN_vpsubusb] = 1; // Packed Subtract Unsigned with Saturation (Byte)
OptCategory[NN_vpsubusw] = 1; // Packed Subtract Unsigned with Saturation (Word)
OptCategory[NN_vpsubw] = 1; // Packed Subtract Word
OptCategory[NN_vptest] = 1; // Logical Compare
OptCategory[NN_vpunpckhbw] = 1; // Unpack High Packed Data (Byte->Word)
OptCategory[NN_vpunpckhdq] = 1; // Unpack High Packed Data (Dword->Qword)
OptCategory[NN_vpunpckhqdq] = 1; // Unpack High Packed Data (Qword->Xmmword)
OptCategory[NN_vpunpckhwd] = 1; // Unpack High Packed Data (Word->Dword)
OptCategory[NN_vpunpcklbw] = 1; // Unpack Low Packed Data (Byte->Word)
OptCategory[NN_vpunpckldq] = 1; // Unpack Low Packed Data (Dword->Qword)
OptCategory[NN_vpunpcklqdq] = 1; // Unpack Low Packed Data (Qword->Xmmword)
OptCategory[NN_vpunpcklwd] = 1; // Unpack Low Packed Data (Word->Dword)
OptCategory[NN_vpxor] = 1; // Bitwise Logical Exclusive Or
OptCategory[NN_vrcpps] = 1; // Packed Single-FP Reciprocal
OptCategory[NN_vrcpss] = 1; // Scalar Single-FP Reciprocal
OptCategory[NN_vroundpd] = 1; // Round Packed Double Precision Floating-Point Values
OptCategory[NN_vroundps] = 1; // Round Packed Single Precision Floating-Point Values
OptCategory[NN_vroundsd] = 1; // Round Scalar Double Precision Floating-Point Values
OptCategory[NN_vroundss] = 1; // Round Scalar Single Precision Floating-Point Values
OptCategory[NN_vrsqrtps] = 1; // Packed Single-FP Square Root Reciprocal
OptCategory[NN_vrsqrtss] = 1; // Scalar Single-FP Square Root Reciprocal
OptCategory[NN_vshufpd] = 1; // Shuffle Packed Double-Precision Floating-Point Values
OptCategory[NN_vshufps] = 1; // Shuffle Single-FP
OptCategory[NN_vsqrtpd] = 1; // Compute Square Roots of Packed Double-Precision Floating-Point Values
OptCategory[NN_vsqrtps] = 1; // Packed Single-FP Square Root
OptCategory[NN_vsqrtsd] = 1; // Compute Square Rootof Scalar Double-Precision Floating-Point Value
OptCategory[NN_vsqrtss] = 1; // Scalar Single-FP Square Root
OptCategory[NN_vstmxcsr] = 1; // Store Streaming SIMD Extensions Technology Control/Status Register
OptCategory[NN_vsubpd] = 1; // Subtract Packed Double-Precision Floating-Point Values
OptCategory[NN_vsubps] = 1; // Packed Single-FP Subtract
OptCategory[NN_vsubsd] = 1; // Subtract Scalar Double-Precision Floating-Point Values
OptCategory[NN_vsubss] = 1; // Scalar Single-FP Subtract
OptCategory[NN_vtestpd] = 1; // Packed Double-Precision Floating-Point Bit Test
OptCategory[NN_vtestps] = 1; // Packed Single-Precision Floating-Point Bit Test
OptCategory[NN_vucomisd] = 1; // Unordered Compare Scalar Ordered Double-Precision Floating-Point Values and Set EFLAGS
OptCategory[NN_vucomiss] = 1; // Scalar Unordered Single-FP Compare and Set EFLAGS
OptCategory[NN_vunpckhpd] = 1; // Unpack and Interleave High Packed Double-Precision Floating-Point Values
OptCategory[NN_vunpckhps] = 1; // Unpack High Packed Single-FP Data
OptCategory[NN_vunpcklpd] = 1; // Unpack and Interleave Low Packed Double-Precision Floating-Point Values
OptCategory[NN_vunpcklps] = 1; // Unpack Low Packed Single-FP Data
OptCategory[NN_vxorpd] = 1; // Bitwise Logical OR of Double-Precision Floating-Point Values
OptCategory[NN_vxorps] = 1; // Bitwise Logical XOR for Single-FP Data
OptCategory[NN_vzeroall] = 1; // Zero All YMM Registers
OptCategory[NN_vzeroupper] = 1; // Zero Upper Bits of YMM Registers
// Transactional Synchronization Extensions
OptCategory[NN_xabort] = 1; // Transaction Abort
OptCategory[NN_xbegin] = 1; // Transaction Begin
OptCategory[NN_xend] = 1; // Transaction End
OptCategory[NN_xtest] = 1; // Test If In Transactional Execution
// Virtual PC synthetic instructions
OptCategory[NN_vmgetinfo] = 1; // Virtual PC - Get VM Information
OptCategory[NN_vmsetinfo] = 1; // Virtual PC - Set VM Information
OptCategory[NN_vmdxdsbl] = 1; // Virtual PC - Disable Direct Execution
OptCategory[NN_vmdxenbl] = 1; // Virtual PC - Enable Direct Execution
OptCategory[NN_vmcpuid] = 1; // Virtual PC - Virtualized CPU Information
OptCategory[NN_vmhlt] = 1; // Virtual PC - Halt
OptCategory[NN_vmsplaf] = 1; // Virtual PC - Spin Lock Acquisition Failed
OptCategory[NN_vmpushfd] = 1; // Virtual PC - Push virtualized flags register
OptCategory[NN_vmpopfd] = 1; // Virtual PC - Pop virtualized flags register
OptCategory[NN_vmcli] = 1; // Virtual PC - Clear Interrupt Flag
OptCategory[NN_vmsti] = 1; // Virtual PC - Set Interrupt Flag
OptCategory[NN_vmiretd] = 1; // Virtual PC - Return From Interrupt
OptCategory[NN_vmsgdt] = 1; // Virtual PC - Store Global Descriptor Table
OptCategory[NN_vmsidt] = 1; // Virtual PC - Store Interrupt Descriptor Table
OptCategory[NN_vmsldt] = 1; // Virtual PC - Store Local Descriptor Table
OptCategory[NN_vmstr] = 1; // Virtual PC - Store Task Register
OptCategory[NN_vmsdte] = 1; // Virtual PC - Store to Descriptor Table Entry
OptCategory[NN_vpcext] = 1; // Virtual PC - ISA extension
OptCategory[NN_last] = 1;
return;
} // end InitOptCategory()
// Initialize the StackAlteration[] array to define how opcodes
// adjust the stack pointer.
void InitStackAlteration(void) {
// Default category is 0; most instructions do not alter the stack pointer.
(void) memset(StackAlteration, 0, sizeof(StackAlteration));
// Many arithmetic instructions could alter the stack pointer. We will have to
// examine each instruction that performs addition, subtraction, logical AND, etc.,
// to determine if the stack pointer was the DEF operand. We cannot use a purely
// table driven approach to compute stack pointer alteration. The table is used for
// the deterministic cases, e.g. push, pop, call, return. Because of variability on
// a few of these instructions, a value of 1 in the table below is a trigger to investigate RTLs
// that might or might not alter the stack pointer, e.g. add, subtract, etc., or that might
// have operand-dependent effects on the stack pointer.
StackAlteration[NN_add] = 1; // Addition; check operands for stack pointer
StackAlteration[NN_adc] = 1; // Addition; check operands for stack pointer ; RARE for stack pointer
StackAlteration[NN_and] = 1; // Logical AND; check operands for stack pointer
StackAlteration[NN_call] = -((sval_t) STARS_ISA_Bytewidth); // Call Procedure; -4, but return cancels it to zero
StackAlteration[NN_callfi] = -2 * ((sval_t) STARS_ISA_Bytewidth); // Indirect Call Far Procedure; -8, but far return cancels it to zero
StackAlteration[NN_callni] = -((sval_t) STARS_ISA_Bytewidth); // Indirect Call Near Procedure; -4, but return cancels it to zero
StackAlteration[NN_enterw] = 1; // Make Stack Frame for Procedure Parameters **
StackAlteration[NN_enter] = 1; // Make Stack Frame for Procedure Parameters **
StackAlteration[NN_enterd] = 1; // Make Stack Frame for Procedure Parameters **
StackAlteration[NN_enterq] = 1; // Make Stack Frame for Procedure Parameters **
StackAlteration[NN_int] = 0; // Call to Interrupt Procedure
StackAlteration[NN_into] = 0; // Call to Interrupt Procedure if Overflow Flag = 1
StackAlteration[NN_int3] = 0; // Trap to Debugger
clc5q
committed
StackAlteration[NN_iretw] = 6; // Interrupt Return
StackAlteration[NN_iret] = 12; // Interrupt Return
StackAlteration[NN_iretd] = 12; // Interrupt Return (use32)
StackAlteration[NN_iretq] = 40; // Interrupt Return (use64)
clc5q
committed
StackAlteration[NN_lea] = 1; // Load Effective Address (can be used for basic arithmetic assignments)
StackAlteration[NN_leavew] = 1; // High Level Procedure Exit **
StackAlteration[NN_leave] = 1; // High Level Procedure Exit **
StackAlteration[NN_leaved] = 1; // High Level Procedure Exit **
StackAlteration[NN_leaveq] = 1; // High Level Procedure Exit **
StackAlteration[NN_mov] = 1; // Move Data ; could be esp := ebp (deallocate stack frame) or esp := ebx (unknown)
StackAlteration[NN_pop] = 1; // Pop a word from the Stack ; could be 16-bit or 32-bit operand, etc.
StackAlteration[NN_popaw] = 14; // Pop all General Registers
StackAlteration[NN_popa] = 28; // Pop all General Registers
StackAlteration[NN_popad] = 28; // Pop all General Registers (use32)
StackAlteration[NN_popaq] = 56; // Pop all General Registers (use64)
StackAlteration[NN_popfw] = 2; // Pop Stack into Flags Register **
StackAlteration[NN_popf] = 4; // Pop Stack into Flags Register **
StackAlteration[NN_popfd] = 4; // Pop Stack into Eflags Register **
StackAlteration[NN_popfq] = 8; // Pop Stack into Rflags Register **
StackAlteration[NN_push] = 1; // Push Operand onto the Stack ; could be 16-bit or 32-bit operand, etc.
StackAlteration[NN_pushaw] = -14; // Push all General Registers
StackAlteration[NN_pusha] = -28; // Push all General Registers
StackAlteration[NN_pushad] = -28; // Push all General Registers (use32)
StackAlteration[NN_pushaq] = -56; // Push all General Registers (use64)
StackAlteration[NN_pushfw] = -2; // Push Flags Register onto the Stack
StackAlteration[NN_pushf] = -4; // Push Flags Register onto the Stack
StackAlteration[NN_pushfd] = -4; // Push Flags Register onto the Stack (use32)
StackAlteration[NN_pushfq] = -8; // Push Flags Register onto the Stack (use64)
clc5q
committed
StackAlteration[NN_retn] = 1; // Return Near from Procedure (usually 4 bytes)
StackAlteration[NN_retf] = 1; // Return Far from Procedure (usually 8 bytes)
StackAlteration[NN_sub] = 1; // Subtraction; check operands for stack pointer
StackAlteration[NN_sbb] = 1; // Subtraction; check operands for stack pointer ; RARE for stack pointer
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
//
// 486 instructions
//
//
// Pentium instructions
//
//
// Pentium Pro instructions
//
//
// FPP instructions
//
//
// 80387 instructions
//
//
// Instructions added 28.02.96
//
StackAlteration[NN_loadall] = 0; // Load the entire CPU state from ES:EDI ?? Cannot find in Intel manuals
//
// MMX instructions
//
//
// Undocumented Deschutes processor instructions
//
// Pentium II instructions
StackAlteration[NN_sysenter] = 0; // Fast Transition to System Call Entry Point
StackAlteration[NN_sysexit] = 0; // Fast Transition from System Call Entry Point
// 3DNow! instructions
// Pentium III instructions
// Pentium III Pseudo instructions
// AMD K7 instructions
// Revisit AMD if we port to it.
// Undocumented FP instructions (thanks to norbert.juffa@adm.com)
// Pentium 4 instructions
// AMD syscall/sysret instructions NOTE: not AMD, found in Intel manual
StackAlteration[NN_syscall] = 0; // Low latency system call
StackAlteration[NN_sysret] = 0; // Return from system call
// AMD64 instructions NOTE: not AMD, found in Intel manual
// New Pentium instructions (SSE3)
// Missing AMD64 instructions NOTE: also found in Intel manual
// SSE3 instructions
// SSSE3 instructions
// VMX instructions
#if 599 < IDA_SDK_VERSION
// Added with x86-64
// Geode LX 3DNow! extensions
// SSE2 pseudoinstructions
// SSSE4.1 instructions
// SSSE4.2 instructions
// AMD SSE4a instructions
// xsave/xrstor instructions
// Intel Safer Mode Extensions (SMX)
// AMD-V Virtualization ISA Extension
// VMX+ instructions
// Intel Atom instructions
// Intel AES instructions
// Carryless multiplication
// Returns modified by operand size prefixes
StackAlteration[NN_retnw] = 1; // Return Near from Procedure (use16)
StackAlteration[NN_retnd] = 1; // Return Near from Procedure (use32)
StackAlteration[NN_retnq] = 1; // Return Near from Procedure (use64)
StackAlteration[NN_retfw] = 1; // Return Far from Procedure (use16)
StackAlteration[NN_retfd] = 1; // Return Far from Procedure (use32)
StackAlteration[NN_retfq] = 1; // Return Far from Procedure (use64)
// RDRAND support
// new GPR instructions
// new AVX instructions
// Transactional Synchronization Extensions
// Virtual PC synthetic instructions
#endif // 599 < IDA_SDK_VERSION
StackAlteration[NN_last] = 0;
return;