Skip to content
Snippets Groups Projects
SMPStaticAnalyzer.cpp 96.7 KiB
Newer Older
			// If equal, no problem, we are moving through the
			//  code addresses in lockstep. Grab the next address
			//  from each source.
			if (DisasmIndex < DisasmLocs.size()) {
				CurrDisasmAddr = DisasmLocs[DisasmIndex++];
			}
			else {
				++DisasmIndex;  // cause loop exit; skip cleanup loop
			}
			if (IDAProIndex < IDAProLocs.size())
				CurrAddr = IDAProLocs[IDAProIndex++];
			else {
				// Last IDA addr; might still process Disasm addrs
				//  after loop exit in cleanup loop.
				break;
			}
		}
		else {
			// We must have CurrAddr > CurrDisasmAddr. That means
			//  IDA has jumped over some code addresses in
			//  DisasmLocs. We need to try to convert addresses
			//  to code until we can reach the current addr.
			int InstrLen;
			// For now, we will address only the case in which IDA
			//  has identified addresses as data bytes, and the
			//  external disassembler(e.g. objdump) has identified
			//  the same addresses as code. We only want to deal with
			//  contiguous areas of data-to-code conversion that do NOT
			//  follow a return statement.
			int AreaSize = 0;
			ea_t AreaStart = CurrDisasmAddr;
			ea_t AreaEnd;
#if SMP_DEBUG_FIXUP_IDB
			msg("CurrDisasmAddr: %x  CurrAddr: %x\n", CurrDisasmAddr, CurrAddr);
#endif
			bool SkipArea = FindDataToConvert(IDAProIndex, DisasmIndex, AreaSize);

			bool DebugAddress = (CurrDisasmAddr == 0x806c19a);
			if (SkipArea) {
				// Skip over the extra external disasm addresses.
				while (CurrDisasmAddr < CurrAddr)
					CurrDisasmAddr = DisasmLocs[DisasmIndex++];
			}
			else { 
				// Convert the overlooked code region to unexplored.
				AreaEnd = CurrDisasmAddr + AreaSize;
#if SMP_DEBUG_FIXUP_IDB
				msg("Found data to convert: %x to %x\n", AreaStart, AreaEnd);
#endif
				do_unknown_range(AreaStart, AreaSize, DOUNK_SIMPLE);
				bool AllConverted = true;
				do {
					flags_t InstrFlags = getFlags(CurrDisasmAddr);
					if (!isUnknown(InstrFlags)) {
						msg("Sync problem in FixCodeID: %x\n", CurrDisasmAddr);
					}
					else {
						InstrLen = ua_code(CurrDisasmAddr);
						if (InstrLen > 0) { // Successfully converted to code
							SMPInstr NewInstr(CurrDisasmAddr);
							NewInstr.Analyze();
#if SMP_DEBUG_FIXUP_IDB
							msg("FixCodeID success at %x: len: %d %s\n", CurrDisasmAddr,
									InstrLen, NewInstr.GetDisasm());
#endif
						}
						else {
							if (MDPatchUnconvertedBytes(CurrDisasmAddr)) {
								msg(" Patched bytes at %x\n", CurrDisasmAddr);
							}
							else {
								AllConverted = false;
								msg("FixCodeID failure at %x\n", CurrDisasmAddr);
							}
						}
					} // end if (isCode(InstrFlags) ... else ...
					if (DisasmIndex < DisasmLocs.size()) {
						CurrDisasmAddr = DisasmLocs[DisasmIndex++];
					}
					else {
						// cause loops to exit
						CurrDisasmAddr = CurrAddr;
						++DisasmIndex; // skip cleanup loop
					}
				} while (CurrDisasmAddr < CurrAddr);
				if (AllConverted) {
					if (IsFunctionPrologue(AreaStart, AreaEnd)) {
						// Create a new function entry chunk here.
						//  **!!** TODO
						;
					}
					else {
						// Extend the previous chunk to include the
						//  converted code.
						ea_t PrevIDAAddr = IDAProLocs[IDAProIndex - 2];
						func_t *PrevChunk = get_fchunk(PrevIDAAddr);
#if SMP_DEBUG_FIXUP_IDB
						msg(" addr in chunk to extend: %x\n", PrevIDAAddr);
						msg(" func_t pointer for chunk: %x\n", PrevChunk);
#endif
#if 0  // temporary for debugging
						if (is_func_entry(PrevChunk)) {
							// Extend the func entry to contain the new code.
							if (func_setend(PrevIDAAddr, AreaEnd)) {
								msg("Func extended to include code from %x to %x\n",
									AreaStart, AreaEnd);
								ReanalyzeList.push_back(PrevIDAAddr);
							}
							else {
								msg("Failed to extend func from %x to %x\n",
									AreaStart, AreaEnd);
							}
						}
						else { // tail
							// See if this works for function tails, also.
							// Extend the func entry to contain the new code.
							if (func_setend(PrevIDAAddr, AreaEnd)) {
								msg("Tail extended to include code from %x to %x\n",
									AreaStart, AreaEnd);
								func_t *TailOwner = get_func(PrevChunk->owner);
								ReanalyzeList.push_back(PrevIDAAddr);
							}
							else {
								msg("Failed to extend tail from %x to %x\n",
									AreaStart, AreaEnd);
							}
						} // end if (is_func_entry()) ... else ...
#endif
					} // end if (IsFunctionPrologue()) ... else ...
				} // end if (AllConverted)
				else {
					msg("not AllConverted; cannot include new code in previous chunk.\n");
				}
			} // end if (SkipArea) ... else ...
		} // end if (addr < CurrDisasmAddr) .. else if ... else ...
	} // end while (DisasmIndex <= DisasmLocs.size()

#if 0  // Make this code use FindDataToConvert()  **!!**
	// Cleanup loop:
	// If there are still Disasm addrs to process, try to turn them
	//  into code in the IDB.
	while (DisasmIndex <= DisasmLocs.size()) {
		flags_t InstrFlags = getFlags(CurrDisasmAddr);
		if (isCode(InstrFlags)) {
			msg("Sync problem in FixCodeID: %x\n", CurrDisasmAddr);
		}
		else {
			// Clear bytes to unexplored.
			segment_t *seg = getseg(CurrDisasmAddr);
			if (SEG_CODE == seg->type) {
				do_unknown_range(CurrDisasmAddr, seg->endEA - CurrDisasmAddr, DOUNK_SIMPLE);
			}
			else {
				// Might be safest to just discontinue processing
				//  if we wander into a non-code segment.
				//  DisasmLocs should not have an entire code segment
				//  that IDA Pro missed.
				break;
			}
			int InstrLen = ua_code(CurrDisasmAddr);
			if (InstrLen > 0) { // Successfully converted to code
				SMPInstr NewInstr(CurrDisasmAddr);
				NewInstr.Analyze();
				msg("FixCodeID success at %x: %s\n", CurrDisasmAddr,
						NewInstr.GetDisasm());
			}
			else {
				msg("FixCodeID failure at %x\n", CurrDisasmAddr);
			}
		} // end if (isCode(InstrFlags) ... else ...
		if (DisasmIndex < DisasmLocs.size()) {
			CurrDisasmAddr = DisasmLocs[DisasmIndex++];
		}
		else {
			++DisasmIndex; // cause loop to exit
		}
	} // end while (DisasmIndex <= DisasmLocs.size()
#endif

	return;
} // end of FixCodeIdentification()
// Audit the IDA code database by looking at all instructions in the
//  code segment and printing all those that are not contained in a
//  function. Emit the context-free annotations that we are able to
//  emit ona per-instruction basis.
void FindOrphanedCode(segment_t *CurrSeg, FILE *AnnotFile) {
	char disasm[MAXSTR];
	for (ea_t addr = CurrSeg->startEA; addr < CurrSeg->endEA;
		addr = get_item_end(addr)) {
		flags_t InstrFlags = getFlags(addr);
		if (isHead(InstrFlags) && isCode(InstrFlags)) {
			func_t *CurrFunc = get_func(addr);
			if (NULL == CurrFunc) {
				SMPInstr CurrInst(addr);
				CurrInst.Analyze();
				msg("Orphan code at %x : %s\n", addr, CurrInst.GetDisasm());
				// TODO: If there are code xrefs to the orphan code,
				//  see what kind. If a CALL, and orphan code looks
				//  like a prologue, make a function. If a JUMP of
				//  some kind, then make a function chunk and make
				//  it a tail of all functions that jump to it. **!!**

				// If instruction is still not included in a code chunk,
				//  emit annotations for it in isolation.
				CurrInst.EmitAnnotations(true, false, AnnotFile);
			}
		}
		else if (isUnknown(InstrFlags)) {
			msg("Unanalyzed byte at %x\n", addr);
			// Can IDA analyze this to be code?
			int InstrLen = ua_code(addr);
			if (InstrLen > 0) {
				(void) generate_disasm_line(addr, disasm, sizeof(disasm) - 1);
				// Remove interactive color-coding tags.
				tag_remove(disasm, disasm, 0);
				msg("Successfully analyzed!  %s\n", disasm);
				SMPInstr UnknownInstr(addr);
				UnknownInstr.Analyze();
				// TODO: Get new code into a chunk.  **!!**

				// If instruction is still not included in a code chunk,
				//  emit annotations for it in isolation.
				UnknownInstr.EmitAnnotations(true, false, AnnotFile);
			}
		}
	} // end for (ea_t addr = CurrSeg->startEA; ...)
} // end of FindOrphanedCode()

// Audit the IDA database with respect to branches and calls. They should
//  each have valid code targets (not data or unknown bytes) and the code
//  cross references should reflect the linkage.
void AuditCodeTargets(void) {
	// Cover all the code that IDA has grouped into functions by iterating
	//  through all function chunks in the program.
	for (size_t ChunkIndex = 0; ChunkIndex < get_fchunk_qty(); ++ChunkIndex) {
		func_t *ChunkInfo = getn_fchunk((int) ChunkIndex);
		char FuncName[MAXSTR];
		get_func_name(ChunkInfo->startEA, FuncName, sizeof(FuncName) - 1);

		// First, see if any calls to this function (if this chunk is
		//  an entry point) are not coming from within functions.
		if (is_func_entry(ChunkInfo)) {
			xrefblk_t xb;
			ea_t addr = ChunkInfo->startEA;
			for (bool ok = xb.first_to(addr, XREF_ALL);	ok; ok = xb.next_to()) {
				uchar XrefType = xb.type & XREF_MASK;
				if (xb.iscode) {
					if ((XrefType == fl_U) || (XrefType == fl_USobsolete)) {
						msg("Bad xref type: %x %s\n", addr, FuncName);
					}
					else if ((XrefType == fl_JF) || (XrefType == fl_JN)) {
						msg("Jump to func: %x %s from: %x\n",
							addr, FuncName, xb.from);
					}
					else if (XrefType == fl_F) {
						msg("Fall through to func: %x %s from: %x\n",
							addr, FuncName, xb.from);
					}
					else if ((XrefType == fl_CF) || (XrefType == fl_CN)) {
						// Far call or Near call
						func_t *CallingFunc = get_func(xb.from);
						if (NULL == CallingFunc) {
							msg("Call to %x Func %s from %x not in function.\n",
								addr, FuncName, xb.from);
						}
					}
				} // end if (xb.iscode)
				else { // DATA xref
					if (XrefType == dr_O) {
						msg("Data xref to %x Func %s from %x\n",
							addr, FuncName, xb.from);
					}
					else {
						msg("Strange data xref %d to %x Func %s from %x\n",
							XrefType, addr, FuncName, xb.from);
					}
				}
			} // end for (bool ok = xb.first_to(); ...)
		} // end if (is_func_entry(ChunkInfo))

		// Next, see if any call or branch in this chunk references
		//  a target address that is not in a function. If so, and the
		//  callee address code looks like a function prologue, then
		//  create a function for the contiguous code starting at that
		//  address and ask IDA to analyze it and store it in the
		//  IDA database. If it is a branch target, not a call target,
		//  create a new TAIL chunk for the current parent functions.
		for (ea_t addr = ChunkInfo->startEA; addr < ChunkInfo->endEA;
			addr = get_item_end(addr)) {
			flags_t InstrFlags = getFlags(addr);
			if (isCode(InstrFlags) && isHead(InstrFlags)) {
				SMPInstr CurrInst(addr);
				CurrInst.Analyze();
				if ((CALL|JUMP|COND_BRANCH) & CurrInst.GetDataFlowType()) {
					xrefblk_t xb;
					for (bool ok = xb.first_from(addr, XREF_FAR); ok; ok = xb.next_from()) {
						if (xb.iscode) {
							func_t *FuncInfo = get_func(xb.to);
							if (NULL == FuncInfo) {
								// Found call to addr that is not in a func.
								ea_t FirstAddr = xb.to;
								// Find limits of contiguous code starting at FirstAddr.
								ea_t LastAddr = FindNewFuncLimit(xb.to);
								if (CALL == CurrInst.GetDataFlowType())
									msg("Found new func from %x to %x\n",
										FirstAddr, LastAddr);
								else
									msg("Found new chunk from %x to %x\n",
										FirstAddr, LastAddr);
							}
						}
					}
				}
			}
		}
	} // end for (size_t ChunkIndex = 0; ... )

	return;
} // end of AuditCodeTargets()

// Find the span of contiguous code that is not contained within any
//  function, starting at StartAddr, which should already be an example
//  of an instruction address that is outside of a function.
ea_t FindNewFuncLimit(ea_t StartAddr) {
	ea_t LimitAddr = StartAddr;
	segment_t *seg = getseg(StartAddr);
	if (NULL == seg)
		return LimitAddr;
	ea_t SegLimit = seg->endEA;

	for (ea_t addr = get_item_end(StartAddr); addr < SegLimit; addr = get_item_end(addr)) {
		flags_t InstrFlags = getFlags(addr);
		if (isCode(InstrFlags) && isHead(InstrFlags)) {
			LimitAddr = addr;
			func_t *FuncInfo = get_func(addr);
			if (NULL != FuncInfo)
				break; // ran into an existing function
		}
		else // Not a code head; time to stop.
			break;
	}
	return LimitAddr;
} // end of FindNewFuncLimit()

void SpecialDebugOutput(void) {
	char disasm[MAXSTR];
	vector<ea_t> ProblemAddrs;
	ProblemAddrs.push_back(0x8066d08);

	for (size_t index = 0; index < ProblemAddrs.size(); ++index) {
		ea_t addr = ProblemAddrs[index];
		flags_t InstrFlags = getFlags(addr);
		if (isCode(InstrFlags) && isHead(InstrFlags)) {
			ua_ana0(addr);
			generate_disasm_line(addr, disasm, sizeof(disasm) - 1);
			tag_remove(disasm, disasm, 0);
			msg("Problem addr %x : %s\n", addr, disasm);
		}
	}
	return;
} // end of SpecialDebugOutput()


1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000

// Initialize the OptCategory[] array to define how we emit
//   optimizing annotations.
void InitOptCategory(void) {
	// Default category is 0, no optimization without knowing context.
	(void) memset(OptCategory, 0, sizeof(OptCategory));
	// Category 1 instructions never need updating of their memory
	//  metadata by the Memory Monitor SDT. Currently, this is because
	//  these instructions only have effects on registers we do not maintain
	//  metadata for, such as the EIP and the FLAGS, e.g. jumps, compares.
	// Category 2 instructions always have a result type of 'n' (number).
	// Category 3 instructions have a result type of 'n' (number)
	//  whenever the second source operand is an immediate operand of type 'n'.
	//  NOTE: MOV is only current example, and this will take some thought if 
   //   other examples arise.
	// Category 4 instructions have a result type identical to the 1st source operand type.
	//  NOTE: This is currently set for single-operand instructions such as
	//   INC, DEC. As a result, these are treated pretty much as if
	//   they were category 1 instructions, as there is no metadata update,
	//   unless the operand is a memory operand (i.e. mem or [reg]).
	//   If new instructions are added to this category that are not single
	//   operand and do require some updating, the category should be split.
	// Category 5 instructions have a result type identical to the 1st source operand
	//  type whenever the 2nd source operand is an operand of type 'n'.
	//  If the destination is memory, metadata still needs to be checked; if
	//  not, no metadata check is needed, so it becomes category 1.
	// Category 6 instructions always have a result type of 'p' (pointer).
	// Category 7 instructions are category 2 instructions with two destinations,
	//  such as multiply and divide instructions that affect EDX:EAX. There are
	//  forms of these instructions that only have one destination, so they have
	//  to be distinguished via the operand info.
   // Category 8 instructions implicitly write a numeric value to EDX:EAX, but
   //  EDX and EAX are not listed as operands. RDTSC, RDPMC, RDMSR, and other
   //  instructions that copy machine registers into EDX:EAX are category 8.
   // Category 9 instructions are floating point instructions that either
   //  have a memory destination (treat as category 0) or a FP reg destination
   //  (treat as category 1).

	// NOTE: The Memory Monitor SDT needs just three categories, corresponding
	//  to categories 0, 1, and all others. For all categories > 1, the
	//  annotation should tell the SDT exactly how to update its metadata.
	//  For example, a division instruction will write type 'n' (NUM) as
	//  the metadata for result registers EDX:EAX. So, the annotation should
	//  list 'n', EDX, EAX, and a terminator of '/'. CWD (convert word to
	//  doubleword) should have a list of 'n', EAX, '/'.

OptCategory[NN_null] = 0;            // Unknown Operation
OptCategory[NN_aaa] = 2;                 // ASCII Adjust after Addition
OptCategory[NN_aad] = 2;                 // ASCII Adjust AX before Division
OptCategory[NN_aam] = 2;                 // ASCII Adjust AX after Multiply
OptCategory[NN_aas] = 2;                 // ASCII Adjust AL after Subtraction
OptCategory[NN_adc] = 5;                 // Add with Carry
OptCategory[NN_add] = 5;                 // Add
OptCategory[NN_and] = 0;                 // Logical AND
OptCategory[NN_arpl] = 1;                // Adjust RPL Field of Selector
OptCategory[NN_bound] = 1;               // Check Array Index Against Bounds
OptCategory[NN_bsf] = 2;                 // Bit Scan Forward
OptCategory[NN_bsr] = 2;                 // Bit Scan Reverse
OptCategory[NN_bt] = 2;                  // Bit Test
OptCategory[NN_btc] = 2;                 // Bit Test and Complement
OptCategory[NN_btr] = 2;                 // Bit Test and Reset
OptCategory[NN_bts] = 2;                 // Bit Test and Set
OptCategory[NN_call] = 1;                // Call Procedure
OptCategory[NN_callfi] = 1;              // Indirect Call Far Procedure
OptCategory[NN_callni] = 1;              // Indirect Call Near Procedure
OptCategory[NN_cbw] = 2;                 // AL -> AX (with sign)            ** No ops?
OptCategory[NN_cwde] = 2;                // AX -> EAX (with sign)           **
OptCategory[NN_cdqe] = 2;                // EAX -> RAX (with sign)          **
OptCategory[NN_clc] = 1;                 // Clear Carry Flag
OptCategory[NN_cld] = 1;                 // Clear Direction Flag
OptCategory[NN_cli] = 1;                 // Clear Interrupt Flag
OptCategory[NN_clts] = 1;                // Clear Task-Switched Flag in CR0
OptCategory[NN_cmc] = 1;                 // Complement Carry Flag
OptCategory[NN_cmp] = 1;                 // Compare Two Operands
OptCategory[NN_cmps] = 1;                // Compare Strings
OptCategory[NN_cwd] = 2;                 // AX -> DX:AX (with sign)
OptCategory[NN_cdq] = 2;                 // EAX -> EDX:EAX (with sign)
OptCategory[NN_cqo] = 2;                 // RAX -> RDX:RAX (with sign)
OptCategory[NN_daa] = 2;                 // Decimal Adjust AL after Addition
OptCategory[NN_das] = 2;                 // Decimal Adjust AL after Subtraction
OptCategory[NN_dec] = 4;                 // Decrement by 1
OptCategory[NN_div] = 7;                 // Unsigned Divide
OptCategory[NN_enterw] = 0;              // Make Stack Frame for Procedure Parameters  **
OptCategory[NN_enter] = 0;               // Make Stack Frame for Procedure Parameters  **
OptCategory[NN_enterd] = 0;              // Make Stack Frame for Procedure Parameters  **
OptCategory[NN_enterq] = 0;              // Make Stack Frame for Procedure Parameters  **
OptCategory[NN_hlt] = 0;                 // Halt
OptCategory[NN_idiv] = 7;                // Signed Divide
OptCategory[NN_imul] = 7;                // Signed Multiply
OptCategory[NN_in] = 0;                  // Input from Port                         **
OptCategory[NN_inc] = 4;                 // Increment by 1
OptCategory[NN_ins] = 2;                 // Input Byte(s) from Port to String       **
OptCategory[NN_int] = 1;                 // Call to Interrupt Procedure
OptCategory[NN_into] = 1;                // Call to Interrupt Procedure if Overflow Flag = 1
OptCategory[NN_int3] = 1;                // Trap to Debugger
OptCategory[NN_iretw] = 1;               // Interrupt Return
OptCategory[NN_iret] = 1;                // Interrupt Return
OptCategory[NN_iretd] = 1;               // Interrupt Return (use32)
OptCategory[NN_iretq] = 1;               // Interrupt Return (use64)
OptCategory[NN_ja] = 1;                  // Jump if Above (CF=0 & ZF=0)
OptCategory[NN_jae] = 1;                 // Jump if Above or Equal (CF=0)
OptCategory[NN_jb] = 1;                  // Jump if Below (CF=1)
OptCategory[NN_jbe] = 1;                 // Jump if Below or Equal (CF=1 | ZF=1)
OptCategory[NN_jc] = 1;                  // Jump if Carry (CF=1)
OptCategory[NN_jcxz] = 1;                // Jump if CX is 0
OptCategory[NN_jecxz] = 1;               // Jump if ECX is 0
OptCategory[NN_jrcxz] = 1;               // Jump if RCX is 0
OptCategory[NN_je] = 1;                  // Jump if Equal (ZF=1)
OptCategory[NN_jg] = 1;                  // Jump if Greater (ZF=0 & SF=OF)
OptCategory[NN_jge] = 1;                 // Jump if Greater or Equal (SF=OF)
OptCategory[NN_jl] = 1;                  // Jump if Less (SF!=OF)
OptCategory[NN_jle] = 1;                 // Jump if Less or Equal (ZF=1 | SF!=OF)
OptCategory[NN_jna] = 1;                 // Jump if Not Above (CF=1 | ZF=1)
OptCategory[NN_jnae] = 1;                // Jump if Not Above or Equal (CF=1)
OptCategory[NN_jnb] = 1;                 // Jump if Not Below (CF=0)
OptCategory[NN_jnbe] = 1;                // Jump if Not Below or Equal (CF=0 & ZF=0)
OptCategory[NN_jnc] = 1;                 // Jump if Not Carry (CF=0)
OptCategory[NN_jne] = 1;                 // Jump if Not Equal (ZF=0)
OptCategory[NN_jng] = 1;                 // Jump if Not Greater (ZF=1 | SF!=OF)
OptCategory[NN_jnge] = 1;                // Jump if Not Greater or Equal (ZF=1)
OptCategory[NN_jnl] = 1;                 // Jump if Not Less (SF=OF)
OptCategory[NN_jnle] = 1;                // Jump if Not Less or Equal (ZF=0 & SF=OF)
OptCategory[NN_jno] = 1;                 // Jump if Not Overflow (OF=0)
OptCategory[NN_jnp] = 1;                 // Jump if Not Parity (PF=0)
OptCategory[NN_jns] = 1;                 // Jump if Not Sign (SF=0)
OptCategory[NN_jnz] = 1;                 // Jump if Not Zero (ZF=0)
OptCategory[NN_jo] = 1;                  // Jump if Overflow (OF=1)
OptCategory[NN_jp] = 1;                  // Jump if Parity (PF=1)
OptCategory[NN_jpe] = 1;                 // Jump if Parity Even (PF=1)
OptCategory[NN_jpo] = 1;                 // Jump if Parity Odd  (PF=0)
OptCategory[NN_js] = 1;                  // Jump if Sign (SF=1)
OptCategory[NN_jz] = 1;                  // Jump if Zero (ZF=1)
OptCategory[NN_jmp] = 1;                 // Jump
OptCategory[NN_jmpfi] = 1;               // Indirect Far Jump
OptCategory[NN_jmpni] = 1;               // Indirect Near Jump
OptCategory[NN_jmpshort] = 1;            // Jump Short (not used)
OptCategory[NN_lahf] = 2;                // Load Flags into AH Register
OptCategory[NN_lar] = 2;                 // Load Access Rights Byte
OptCategory[NN_lea] = 0;                 // Load Effective Address           **
OptCategory[NN_leavew] = 0;              // High Level Procedure Exit        **
OptCategory[NN_leave] = 0;               // High Level Procedure Exit        **
OptCategory[NN_leaved] = 0;              // High Level Procedure Exit        **
OptCategory[NN_leaveq] = 0;              // High Level Procedure Exit        **
OptCategory[NN_lgdt] = 0;                // Load Global Descriptor Table Register
OptCategory[NN_lidt] = 0;                // Load Interrupt Descriptor Table Register
OptCategory[NN_lgs] = 6;                 // Load Full Pointer to GS:xx
OptCategory[NN_lss] = 6;                 // Load Full Pointer to SS:xx
OptCategory[NN_lds] = 6;                 // Load Full Pointer to DS:xx
OptCategory[NN_les] = 6;                 // Load Full Pointer to ES:xx
OptCategory[NN_lfs] = 6;                 // Load Full Pointer to FS:xx
OptCategory[NN_lldt] = 0;                // Load Local Descriptor Table Register
OptCategory[NN_lmsw] = 1;                // Load Machine Status Word
OptCategory[NN_lock] = 1;                // Assert LOCK# Signal Prefix
OptCategory[NN_lods] = 0;                // Load String
OptCategory[NN_loopw] = 1;               // Loop while ECX != 0
OptCategory[NN_loop] = 1;                // Loop while CX != 0
OptCategory[NN_loopd] = 1;               // Loop while ECX != 0
OptCategory[NN_loopq] = 1;               // Loop while RCX != 0
OptCategory[NN_loopwe] = 1;              // Loop while CX != 0 and ZF=1
OptCategory[NN_loope] = 1;               // Loop while rCX != 0 and ZF=1
OptCategory[NN_loopde] = 1;              // Loop while ECX != 0 and ZF=1
OptCategory[NN_loopqe] = 1;              // Loop while RCX != 0 and ZF=1
OptCategory[NN_loopwne] = 1;             // Loop while CX != 0 and ZF=0
OptCategory[NN_loopne] = 1;              // Loop while rCX != 0 and ZF=0
OptCategory[NN_loopdne] = 1;             // Loop while ECX != 0 and ZF=0
OptCategory[NN_loopqne] = 1;             // Loop while RCX != 0 and ZF=0
OptCategory[NN_lsl] = 6;                 // Load Segment Limit
OptCategory[NN_ltr] = 1;                 // Load Task Register
OptCategory[NN_mov] = 3;                 // Move Data
OptCategory[NN_movsp] = 3;               // Move to/from Special Registers
OptCategory[NN_movs] = 0;                // Move Byte(s) from String to String
OptCategory[NN_movsx] = 3;               // Move with Sign-Extend
OptCategory[NN_movzx] = 3;               // Move with Zero-Extend
OptCategory[NN_mul] = 7;                 // Unsigned Multiplication of AL or AX
OptCategory[NN_neg] = 2;                 // Two's Complement Negation
OptCategory[NN_nop] = 1;                 // No Operation
OptCategory[NN_not] = 2;                 // One's Complement Negation
OptCategory[NN_or] = 0;                  // Logical Inclusive OR
OptCategory[NN_out] = 0;                 // Output to Port
OptCategory[NN_outs] = 0;                // Output Byte(s) to Port
OptCategory[NN_pop] = 0;                 // Pop a word from the Stack
OptCategory[NN_popaw] = 0;               // Pop all General Registers
OptCategory[NN_popa] = 0;                // Pop all General Registers
OptCategory[NN_popad] = 0;               // Pop all General Registers (use32)
OptCategory[NN_popaq] = 0;               // Pop all General Registers (use64)
OptCategory[NN_popfw] = 1;               // Pop Stack into Flags Register         **
OptCategory[NN_popf] = 1;                // Pop Stack into Flags Register         **
OptCategory[NN_popfd] = 1;               // Pop Stack into Eflags Register        **
OptCategory[NN_popfq] = 1;               // Pop Stack into Rflags Register        **
OptCategory[NN_push] = 0;                // Push Operand onto the Stack
OptCategory[NN_pushaw] = 0;              // Push all General Registers
OptCategory[NN_pusha] = 0;               // Push all General Registers
OptCategory[NN_pushad] = 0;              // Push all General Registers (use32)
OptCategory[NN_pushaq] = 0;              // Push all General Registers (use64)
OptCategory[NN_pushfw] = 0;              // Push Flags Register onto the Stack
OptCategory[NN_pushf] = 0;               // Push Flags Register onto the Stack
OptCategory[NN_pushfd] = 0;              // Push Flags Register onto the Stack (use32)
OptCategory[NN_pushfq] = 0;              // Push Flags Register onto the Stack (use64)
OptCategory[NN_rcl] = 2;                 // Rotate Through Carry Left
OptCategory[NN_rcr] = 2;                 // Rotate Through Carry Right
OptCategory[NN_rol] = 2;                 // Rotate Left
OptCategory[NN_ror] = 2;                 // Rotate Right
OptCategory[NN_rep] = 0;                 // Repeat String Operation
OptCategory[NN_repe] = 0;                // Repeat String Operation while ZF=1
OptCategory[NN_repne] = 0;               // Repeat String Operation while ZF=0
OptCategory[NN_retn] = 0;                // Return Near from Procedure
OptCategory[NN_retf] = 0;                // Return Far from Procedure
OptCategory[NN_sahf] = 1;                // Store AH into Flags Register
OptCategory[NN_sal] = 2;                 // Shift Arithmetic Left
OptCategory[NN_sar] = 2;                 // Shift Arithmetic Right
OptCategory[NN_shl] = 2;                 // Shift Logical Left
OptCategory[NN_shr] = 2;                 // Shift Logical Right
OptCategory[NN_sbb] = 5;                 // Integer Subtraction with Borrow
OptCategory[NN_scas] = 1;                // Compare String
OptCategory[NN_seta] = 2;                // Set Byte if Above (CF=0 & ZF=0)
OptCategory[NN_setae] = 2;               // Set Byte if Above or Equal (CF=0)
OptCategory[NN_setb] = 2;                // Set Byte if Below (CF=1)
OptCategory[NN_setbe] = 2;               // Set Byte if Below or Equal (CF=1 | ZF=1)
OptCategory[NN_setc] = 2;                // Set Byte if Carry (CF=1)
OptCategory[NN_sete] = 2;                // Set Byte if Equal (ZF=1)
OptCategory[NN_setg] = 2;                // Set Byte if Greater (ZF=0 & SF=OF)
OptCategory[NN_setge] = 2;               // Set Byte if Greater or Equal (SF=OF)
OptCategory[NN_setl] = 2;                // Set Byte if Less (SF!=OF)
OptCategory[NN_setle] = 2;               // Set Byte if Less or Equal (ZF=1 | SF!=OF)
OptCategory[NN_setna] = 2;               // Set Byte if Not Above (CF=1 | ZF=1)
OptCategory[NN_setnae] = 2;              // Set Byte if Not Above or Equal (CF=1)
OptCategory[NN_setnb] = 2;               // Set Byte if Not Below (CF=0)
OptCategory[NN_setnbe] = 2;              // Set Byte if Not Below or Equal (CF=0 & ZF=0)
OptCategory[NN_setnc] = 2;               // Set Byte if Not Carry (CF=0)
OptCategory[NN_setne] = 2;               // Set Byte if Not Equal (ZF=0)
OptCategory[NN_setng] = 2;               // Set Byte if Not Greater (ZF=1 | SF!=OF)
OptCategory[NN_setnge] = 2;              // Set Byte if Not Greater or Equal (ZF=1)
OptCategory[NN_setnl] = 2;               // Set Byte if Not Less (SF=OF)
OptCategory[NN_setnle] = 2;              // Set Byte if Not Less or Equal (ZF=0 & SF=OF)
OptCategory[NN_setno] = 2;               // Set Byte if Not Overflow (OF=0)
OptCategory[NN_setnp] = 2;               // Set Byte if Not Parity (PF=0)
OptCategory[NN_setns] = 2;               // Set Byte if Not Sign (SF=0)
OptCategory[NN_setnz] = 2;               // Set Byte if Not Zero (ZF=0)
OptCategory[NN_seto] = 2;                // Set Byte if Overflow (OF=1)
OptCategory[NN_setp] = 2;                // Set Byte if Parity (PF=1)
OptCategory[NN_setpe] = 2;               // Set Byte if Parity Even (PF=1)
OptCategory[NN_setpo] = 2;               // Set Byte if Parity Odd  (PF=0)
OptCategory[NN_sets] = 2;                // Set Byte if Sign (SF=1)
OptCategory[NN_setz] = 2;                // Set Byte if Zero (ZF=1)
OptCategory[NN_sgdt] = 0;                // Store Global Descriptor Table Register
OptCategory[NN_sidt] = 0;                // Store Interrupt Descriptor Table Register
OptCategory[NN_shld] = 2;                // Double Precision Shift Left
OptCategory[NN_shrd] = 2;                // Double Precision Shift Right
OptCategory[NN_sldt] = 6;                // Store Local Descriptor Table Register
OptCategory[NN_smsw] = 2;                // Store Machine Status Word
OptCategory[NN_stc] = 1;                 // Set Carry Flag
OptCategory[NN_std] = 1;                 // Set Direction Flag
OptCategory[NN_sti] = 1;                 // Set Interrupt Flag
OptCategory[NN_stos] = 0;                // Store String
OptCategory[NN_str] = 6;                 // Store Task Register
OptCategory[NN_sub] = 5;                 // Integer Subtraction
OptCategory[NN_test] = 1;                // Logical Compare
OptCategory[NN_verr] = 1;                // Verify a Segment for Reading
OptCategory[NN_verw] = 1;                // Verify a Segment for Writing
OptCategory[NN_wait] = 1;                // Wait until BUSY# Pin is Inactive (HIGH)
OptCategory[NN_xchg] = 0;                // Exchange Register/Memory with Register
OptCategory[NN_xlat] = 0;                // Table Lookup Translation
OptCategory[NN_xor] = 2;                 // Logical Exclusive OR

//
//      486 instructions
//

OptCategory[NN_cmpxchg] = 0;             // Compare and Exchange
OptCategory[NN_bswap] = 1;               // Swap bytes in register
OptCategory[NN_xadd] = 0;                // t<-dest; dest<-src+dest; src<-t
OptCategory[NN_invd] = 1;                // Invalidate Data Cache
OptCategory[NN_wbinvd] = 1;              // Invalidate Data Cache (write changes)
OptCategory[NN_invlpg] = 1;              // Invalidate TLB entry

//
//      Pentium instructions
//

OptCategory[NN_rdmsr] = 8;               // Read Machine Status Register
OptCategory[NN_wrmsr] = 1;               // Write Machine Status Register
OptCategory[NN_cpuid] = 8;               // Get CPU ID
OptCategory[NN_cmpxchg8b] = 0;           // Compare and Exchange Eight Bytes
OptCategory[NN_rdtsc] = 8;               // Read Time Stamp Counter
OptCategory[NN_rsm] = 1;                 // Resume from System Management Mode

//
//      Pentium Pro instructions
//

OptCategory[NN_cmova] = 0;               // Move if Above (CF=0 & ZF=0)
OptCategory[NN_cmovb] = 0;               // Move if Below (CF=1)
OptCategory[NN_cmovbe] = 0;              // Move if Below or Equal (CF=1 | ZF=1)
OptCategory[NN_cmovg] = 0;               // Move if Greater (ZF=0 & SF=OF)
OptCategory[NN_cmovge] = 0;              // Move if Greater or Equal (SF=OF)
OptCategory[NN_cmovl] = 0;               // Move if Less (SF!=OF)
OptCategory[NN_cmovle] = 0;              // Move if Less or Equal (ZF=1 | SF!=OF)
OptCategory[NN_cmovnb] = 0;              // Move if Not Below (CF=0)
OptCategory[NN_cmovno] = 0;              // Move if Not Overflow (OF=0)
OptCategory[NN_cmovnp] = 0;              // Move if Not Parity (PF=0)
OptCategory[NN_cmovns] = 0;              // Move if Not Sign (SF=0)
OptCategory[NN_cmovnz] = 0;              // Move if Not Zero (ZF=0)
OptCategory[NN_cmovo] = 0;               // Move if Overflow (OF=1)
OptCategory[NN_cmovp] = 0;               // Move if Parity (PF=1)
OptCategory[NN_cmovs] = 0;               // Move if Sign (SF=1)
OptCategory[NN_cmovz] = 0;               // Move if Zero (ZF=1)
OptCategory[NN_fcmovb] = 1;              // Floating Move if Below          
OptCategory[NN_fcmove] = 1;              // Floating Move if Equal          
OptCategory[NN_fcmovbe] = 1;             // Floating Move if Below or Equal 
OptCategory[NN_fcmovu] = 1;              // Floating Move if Unordered      
OptCategory[NN_fcmovnb] = 1;             // Floating Move if Not Below      
OptCategory[NN_fcmovne] = 1;             // Floating Move if Not Equal      
OptCategory[NN_fcmovnbe] = 1;            // Floating Move if Not Below or Equal
OptCategory[NN_fcmovnu] = 1;             // Floating Move if Not Unordered     
OptCategory[NN_fcomi] = 1;               // FP Compare, result in EFLAGS
OptCategory[NN_fucomi] = 1;              // FP Unordered Compare, result in EFLAGS
OptCategory[NN_fcomip] = 1;              // FP Compare, result in EFLAGS, pop stack
OptCategory[NN_fucomip] = 1;             // FP Unordered Compare, result in EFLAGS, pop stack
OptCategory[NN_rdpmc] = 8;               // Read Performance Monitor Counter

//
//      FPP instructuions
//

OptCategory[NN_fld] = 1;                 // Load Real             ** Infer src is 'n'
OptCategory[NN_fst] = 9;                 // Store Real            
OptCategory[NN_fstp] = 9;                // Store Real and Pop   
OptCategory[NN_fxch] = 1;                // Exchange Registers
OptCategory[NN_fild] = 1;                // Load Integer          ** Infer src is 'n'
OptCategory[NN_fist] = 0;                // Store Integer
OptCategory[NN_fistp] = 0;               // Store Integer and Pop
OptCategory[NN_fbld] = 1;                // Load BCD
OptCategory[NN_fbstp] = 1;               // Store BCD and Pop
OptCategory[NN_fadd] = 1;                // Add Real
OptCategory[NN_faddp] = 1;               // Add Real and Pop
OptCategory[NN_fiadd] = 1;               // Add Integer
OptCategory[NN_fsub] = 1;                // Subtract Real
OptCategory[NN_fsubp] = 1;               // Subtract Real and Pop
OptCategory[NN_fisub] = 1;               // Subtract Integer
OptCategory[NN_fsubr] = 1;               // Subtract Real Reversed
OptCategory[NN_fsubrp] = 1;              // Subtract Real Reversed and Pop
OptCategory[NN_fisubr] = 1;              // Subtract Integer Reversed
OptCategory[NN_fmul] = 1;                // Multiply Real
OptCategory[NN_fmulp] = 1;               // Multiply Real and Pop
OptCategory[NN_fimul] = 1;               // Multiply Integer
OptCategory[NN_fdiv] = 1;                // Divide Real
OptCategory[NN_fdivp] = 1;               // Divide Real and Pop
OptCategory[NN_fidiv] = 1;               // Divide Integer
OptCategory[NN_fdivr] = 1;               // Divide Real Reversed
OptCategory[NN_fdivrp] = 1;              // Divide Real Reversed and Pop
OptCategory[NN_fidivr] = 1;              // Divide Integer Reversed
OptCategory[NN_fsqrt] = 1;               // Square Root
OptCategory[NN_fscale] = 1;              // Scale:  st(0) <- st(0) * 2^st(1)
OptCategory[NN_fprem] = 1;               // Partial Remainder
OptCategory[NN_frndint] = 1;             // Round to Integer
OptCategory[NN_fxtract] = 1;             // Extract exponent and significand
OptCategory[NN_fabs] = 1;                // Absolute value
OptCategory[NN_fchs] = 1;                // Change Sign
OptCategory[NN_fcom] = 1;                // Compare Real
OptCategory[NN_fcomp] = 1;               // Compare Real and Pop
OptCategory[NN_fcompp] = 1;              // Compare Real and Pop Twice
OptCategory[NN_ficom] = 1;               // Compare Integer
OptCategory[NN_ficomp] = 1;              // Compare Integer and Pop
OptCategory[NN_ftst] = 1;                // Test
OptCategory[NN_fxam] = 1;                // Examine
OptCategory[NN_fptan] = 1;               // Partial tangent
OptCategory[NN_fpatan] = 1;              // Partial arctangent
OptCategory[NN_f2xm1] = 1;               // 2^x - 1
OptCategory[NN_fyl2x] = 1;               // Y * lg2(X)
OptCategory[NN_fyl2xp1] = 1;             // Y * lg2(X+1)
OptCategory[NN_fldz] = 1;                // Load +0.0
OptCategory[NN_fld1] = 1;                // Load +1.0
OptCategory[NN_fldpi] = 1;               // Load PI=3.14...
OptCategory[NN_fldl2t] = 1;              // Load lg2(10)
OptCategory[NN_fldl2e] = 1;              // Load lg2(e)
OptCategory[NN_fldlg2] = 1;              // Load lg10(2)
OptCategory[NN_fldln2] = 1;              // Load ln(2)
OptCategory[NN_finit] = 1;               // Initialize Processor
OptCategory[NN_fninit] = 1;              // Initialize Processor (no wait)
OptCategory[NN_fsetpm] = 1;              // Set Protected Mode
OptCategory[NN_fldcw] = 1;               // Load Control Word
OptCategory[NN_fstcw] = 0;               // Store Control Word
OptCategory[NN_fnstcw] = 0;              // Store Control Word (no wait)
OptCategory[NN_fstsw] = 2;               // Store Status Word to memory or AX
OptCategory[NN_fnstsw] = 2;              // Store Status Word (no wait) to memory or AX
OptCategory[NN_fclex] = 1;               // Clear Exceptions
OptCategory[NN_fnclex] = 1;              // Clear Exceptions (no wait)
OptCategory[NN_fstenv] = 0;              // Store Environment
OptCategory[NN_fnstenv] = 0;             // Store Environment (no wait)
OptCategory[NN_fldenv] = 1;              // Load Environment
OptCategory[NN_fsave] = 0;               // Save State
OptCategory[NN_fnsave] = 0;              // Save State (no wait)
OptCategory[NN_frstor] = 1;              // Restore State    **  infer src is 'n'
OptCategory[NN_fincstp] = 1;             // Increment Stack Pointer
OptCategory[NN_fdecstp] = 1;             // Decrement Stack Pointer
OptCategory[NN_ffree] = 1;               // Free Register
OptCategory[NN_fnop] = 1;                // No Operation
OptCategory[NN_feni] = 1;                // (8087 only)
OptCategory[NN_fneni] = 1;               // (no wait) (8087 only)
OptCategory[NN_fdisi] = 1;               // (8087 only)
OptCategory[NN_fndisi] = 1;              // (no wait) (8087 only)

//
//      80387 instructions
//

OptCategory[NN_fprem1] = 1;              // Partial Remainder ( < half )
OptCategory[NN_fsincos] = 1;             // t<-cos(st); st<-sin(st); push t
OptCategory[NN_fsin] = 1;                // Sine
OptCategory[NN_fcos] = 1;                // Cosine
OptCategory[NN_fucom] = 1;               // Compare Unordered Real
OptCategory[NN_fucomp] = 1;              // Compare Unordered Real and Pop
OptCategory[NN_fucompp] = 1;             // Compare Unordered Real and Pop Twice

//
//      Instructions added 28.02.96
//

OptCategory[NN_setalc] = 2;              // Set AL to Carry Flag     **
OptCategory[NN_svdc] = 0;                // Save Register and Descriptor
OptCategory[NN_rsdc] = 0;                // Restore Register and Descriptor
OptCategory[NN_svldt] = 0;               // Save LDTR and Descriptor
OptCategory[NN_rsldt] = 0;               // Restore LDTR and Descriptor
OptCategory[NN_svts] = 1;                // Save TR and Descriptor
OptCategory[NN_rsts] = 1;                // Restore TR and Descriptor
OptCategory[NN_icebp] = 1;               // ICE Break Point
OptCategory[NN_loadall] = 0;             // Load the entire CPU state from ES:EDI

//
//      MMX instructions
//

OptCategory[NN_emms] = 1;                // Empty MMX state
OptCategory[NN_movd] = 9;                // Move 32 bits
OptCategory[NN_movq] = 9;                // Move 64 bits
OptCategory[NN_packsswb] = 1;            // Pack with Signed Saturation (Word->Byte)
OptCategory[NN_packssdw] = 1;            // Pack with Signed Saturation (Dword->Word)
OptCategory[NN_packuswb] = 1;            // Pack with Unsigned Saturation (Word->Byte)
OptCategory[NN_paddb] = 1;               // Packed Add Byte
OptCategory[NN_paddw] = 1;               // Packed Add Word
OptCategory[NN_paddd] = 1;               // Packed Add Dword
OptCategory[NN_paddsb] = 1;              // Packed Add with Saturation (Byte)
OptCategory[NN_paddsw] = 1;              // Packed Add with Saturation (Word)
OptCategory[NN_paddusb] = 1;             // Packed Add Unsigned with Saturation (Byte)
OptCategory[NN_paddusw] = 1;             // Packed Add Unsigned with Saturation (Word)
OptCategory[NN_pand] = 1;                // Bitwise Logical And
OptCategory[NN_pandn] = 1;               // Bitwise Logical And Not
OptCategory[NN_pcmpeqb] = 1;             // Packed Compare for Equal (Byte)
OptCategory[NN_pcmpeqw] = 1;             // Packed Compare for Equal (Word)
OptCategory[NN_pcmpeqd] = 1;             // Packed Compare for Equal (Dword)
OptCategory[NN_pcmpgtb] = 1;             // Packed Compare for Greater Than (Byte)
OptCategory[NN_pcmpgtw] = 1;             // Packed Compare for Greater Than (Word)
OptCategory[NN_pcmpgtd] = 1;             // Packed Compare for Greater Than (Dword)
OptCategory[NN_pmaddwd] = 1;             // Packed Multiply and Add
OptCategory[NN_pmulhw] = 1;              // Packed Multiply High
OptCategory[NN_pmullw] = 1;              // Packed Multiply Low
OptCategory[NN_por] = 1;                 // Bitwise Logical Or
OptCategory[NN_psllw] = 1;               // Packed Shift Left Logical (Word)
OptCategory[NN_pslld] = 1;               // Packed Shift Left Logical (Dword)
OptCategory[NN_psllq] = 1;               // Packed Shift Left Logical (Qword)
OptCategory[NN_psraw] = 1;               // Packed Shift Right Arithmetic (Word)
OptCategory[NN_psrad] = 1;               // Packed Shift Right Arithmetic (Dword)
OptCategory[NN_psrlw] = 1;               // Packed Shift Right Logical (Word)
OptCategory[NN_psrld] = 1;               // Packed Shift Right Logical (Dword)
OptCategory[NN_psrlq] = 1;               // Packed Shift Right Logical (Qword)
OptCategory[NN_psubb] = 1;               // Packed Subtract Byte
OptCategory[NN_psubw] = 1;               // Packed Subtract Word
OptCategory[NN_psubd] = 1;               // Packed Subtract Dword
OptCategory[NN_psubsb] = 1;              // Packed Subtract with Saturation (Byte)
OptCategory[NN_psubsw] = 1;              // Packed Subtract with Saturation (Word)
OptCategory[NN_psubusb] = 1;             // Packed Subtract Unsigned with Saturation (Byte)
OptCategory[NN_psubusw] = 1;             // Packed Subtract Unsigned with Saturation (Word)
OptCategory[NN_punpckhbw] = 1;           // Unpack High Packed Data (Byte->Word)
OptCategory[NN_punpckhwd] = 1;           // Unpack High Packed Data (Word->Dword)
OptCategory[NN_punpckhdq] = 1;           // Unpack High Packed Data (Dword->Qword)
OptCategory[NN_punpcklbw] = 1;           // Unpack Low Packed Data (Byte->Word)
OptCategory[NN_punpcklwd] = 1;           // Unpack Low Packed Data (Word->Dword)
OptCategory[NN_punpckldq] = 1;           // Unpack Low Packed Data (Dword->Qword)
OptCategory[NN_pxor] = 1;                // Bitwise Logical Exclusive Or

//
//      Undocumented Deschutes processor instructions
//

OptCategory[NN_fxsave] = 1;              // Fast save FP context            ** to where?
OptCategory[NN_fxrstor] = 1;             // Fast restore FP context         ** from where?

//      Pentium II instructions

OptCategory[NN_sysenter] = 1;            // Fast Transition to System Call Entry Point
OptCategory[NN_sysexit] = 1;             // Fast Transition from System Call Entry Point

//      3DNow! instructions

OptCategory[NN_pavgusb] = 1;             // Packed 8-bit Unsigned Integer Averaging
OptCategory[NN_pfadd] = 1;               // Packed Floating-Point Addition
OptCategory[NN_pfsub] = 1;               // Packed Floating-Point Subtraction
OptCategory[NN_pfsubr] = 1;              // Packed Floating-Point Reverse Subtraction
OptCategory[NN_pfacc] = 1;               // Packed Floating-Point Accumulate
OptCategory[NN_pfcmpge] = 1;             // Packed Floating-Point Comparison, Greater or Equal
OptCategory[NN_pfcmpgt] = 1;             // Packed Floating-Point Comparison, Greater
OptCategory[NN_pfcmpeq] = 1;             // Packed Floating-Point Comparison, Equal
OptCategory[NN_pfmin] = 1;               // Packed Floating-Point Minimum
OptCategory[NN_pfmax] = 1;               // Packed Floating-Point Maximum
OptCategory[NN_pi2fd] = 1;               // Packed 32-bit Integer to Floating-Point
OptCategory[NN_pf2id] = 1;               // Packed Floating-Point to 32-bit Integer
OptCategory[NN_pfrcp] = 1;               // Packed Floating-Point Reciprocal Approximation
OptCategory[NN_pfrsqrt] = 1;             // Packed Floating-Point Reciprocal Square Root Approximation
OptCategory[NN_pfmul] = 1;               // Packed Floating-Point Multiplication
OptCategory[NN_pfrcpit1] = 1;            // Packed Floating-Point Reciprocal First Iteration Step
OptCategory[NN_pfrsqit1] = 1;            // Packed Floating-Point Reciprocal Square Root First Iteration Step
OptCategory[NN_pfrcpit2] = 1;            // Packed Floating-Point Reciprocal Second Iteration Step
OptCategory[NN_pmulhrw] = 1;             // Packed Floating-Point 16-bit Integer Multiply with rounding
OptCategory[NN_femms] = 1;               // Faster entry/exit of the MMX or floating-point state
OptCategory[NN_prefetch] = 1;            // Prefetch at least a 32-byte line into L1 data cache
OptCategory[NN_prefetchw] = 1;           // Prefetch processor cache line into L1 data cache (mark as modified)


//      Pentium III instructions

OptCategory[NN_addps] = 1;               // Packed Single-FP Add
OptCategory[NN_addss] = 1;               // Scalar Single-FP Add
OptCategory[NN_andnps] = 1;              // Bitwise Logical And Not for Single-FP
OptCategory[NN_andps] = 1;               // Bitwise Logical And for Single-FP
OptCategory[NN_cmpps] = 1;               // Packed Single-FP Compare
OptCategory[NN_cmpss] = 1;               // Scalar Single-FP Compare
OptCategory[NN_comiss] = 1;              // Scalar Ordered Single-FP Compare and Set EFLAGS
OptCategory[NN_cvtpi2ps] = 1;            // Packed signed INT32 to Packed Single-FP conversion
OptCategory[NN_cvtps2pi] = 1;            // Packed Single-FP to Packed INT32 conversion
OptCategory[NN_cvtsi2ss] = 1;            // Scalar signed INT32 to Single-FP conversion
OptCategory[NN_cvtss2si] = 2;            // Scalar Single-FP to signed INT32 conversion
OptCategory[NN_cvttps2pi] = 1;           // Packed Single-FP to Packed INT32 conversion (truncate)
OptCategory[NN_cvttss2si] = 2;           // Scalar Single-FP to signed INT32 conversion (truncate)
OptCategory[NN_divps] = 1;               // Packed Single-FP Divide
OptCategory[NN_divss] = 1;               // Scalar Single-FP Divide
OptCategory[NN_ldmxcsr] = 1;             // Load Streaming SIMD Extensions Technology Control/Status Register
OptCategory[NN_maxps] = 1;               // Packed Single-FP Maximum
OptCategory[NN_maxss] = 1;               // Scalar Single-FP Maximum
OptCategory[NN_minps] = 1;               // Packed Single-FP Minimum
OptCategory[NN_minss] = 1;               // Scalar Single-FP Minimum
OptCategory[NN_movaps] = 9;              // Move Aligned Four Packed Single-FP  ** infer memsrc 'n'?
OptCategory[NN_movhlps] = 1;             // Move High to Low Packed Single-FP
OptCategory[NN_movhps] = 1;              // Move High Packed Single-FP
OptCategory[NN_movlhps] = 1;             // Move Low to High Packed Single-FP
OptCategory[NN_movlps] = 1;              // Move Low Packed Single-FP
OptCategory[NN_movmskps] = 1;            // Move Mask to Register
OptCategory[NN_movss] = 9;               // Move Scalar Single-FP
OptCategory[NN_movups] = 9;              // Move Unaligned Four Packed Single-FP
OptCategory[NN_mulps] = 1;               // Packed Single-FP Multiply
OptCategory[NN_mulss] = 1;               // Scalar Single-FP Multiply
OptCategory[NN_orps] = 1;                // Bitwise Logical OR for Single-FP Data
OptCategory[NN_rcpps] = 1;               // Packed Single-FP Reciprocal
OptCategory[NN_rcpss] = 1;               // Scalar Single-FP Reciprocal
OptCategory[NN_rsqrtps] = 1;             // Packed Single-FP Square Root Reciprocal
OptCategory[NN_rsqrtss] = 1;             // Scalar Single-FP Square Root Reciprocal
OptCategory[NN_shufps] = 1;              // Shuffle Single-FP
OptCategory[NN_sqrtps] = 1;              // Packed Single-FP Square Root
OptCategory[NN_sqrtss] = 1;              // Scalar Single-FP Square Root
OptCategory[NN_stmxcsr] = 0;             // Store Streaming SIMD Extensions Technology Control/Status Register    ** Infer dest is 'n'
OptCategory[NN_subps] = 1;               // Packed Single-FP Subtract
OptCategory[NN_subss] = 1;               // Scalar Single-FP Subtract
OptCategory[NN_ucomiss] = 1;             // Scalar Unordered Single-FP Compare and Set EFLAGS
OptCategory[NN_unpckhps] = 1;            // Unpack High Packed Single-FP Data
OptCategory[NN_unpcklps] = 1;            // Unpack Low Packed Single-FP Data
OptCategory[NN_xorps] = 1;               // Bitwise Logical XOR for Single-FP Data
OptCategory[NN_pavgb] = 1;               // Packed Average (Byte)
OptCategory[NN_pavgw] = 1;               // Packed Average (Word)
OptCategory[NN_pextrw] = 2;              // Extract Word
OptCategory[NN_pinsrw] = 1;              // Insert Word
OptCategory[NN_pmaxsw] = 1;              // Packed Signed Integer Word Maximum
OptCategory[NN_pmaxub] = 1;              // Packed Unsigned Integer Byte Maximum
OptCategory[NN_pminsw] = 1;              // Packed Signed Integer Word Minimum
OptCategory[NN_pminub] = 1;              // Packed Unsigned Integer Byte Minimum
OptCategory[NN_pmovmskb] = 1;            // Move Byte Mask to Integer
OptCategory[NN_pmulhuw] = 1;             // Packed Multiply High Unsigned
OptCategory[NN_psadbw] = 1;              // Packed Sum of Absolute Differences
OptCategory[NN_pshufw] = 1;              // Packed Shuffle Word
OptCategory[NN_maskmovq] = 0;            // Byte Mask write   ** Infer dest is 'n'
OptCategory[NN_movntps] = 0;             // Move Aligned Four Packed Single-FP Non Temporal  * infer dest is 'n'
OptCategory[NN_movntq] = 0;              // Move 64 Bits Non Temporal    ** Infer dest is 'n'
OptCategory[NN_prefetcht0] = 1;          // Prefetch to all cache levels
OptCategory[NN_prefetcht1] = 1;          // Prefetch to all cache levels
OptCategory[NN_prefetcht2] = 1;          // Prefetch to L2 cache
OptCategory[NN_prefetchnta] = 1;         // Prefetch to L1 cache
OptCategory[NN_sfence] = 1;              // Store Fence

// Pentium III Pseudo instructions

OptCategory[NN_cmpeqps] = 1;             // Packed Single-FP Compare EQ
OptCategory[NN_cmpltps] = 1;             // Packed Single-FP Compare LT
OptCategory[NN_cmpleps] = 1;             // Packed Single-FP Compare LE
OptCategory[NN_cmpunordps] = 1;          // Packed Single-FP Compare UNORD
OptCategory[NN_cmpneqps] = 1;            // Packed Single-FP Compare NOT EQ
OptCategory[NN_cmpnltps] = 1;            // Packed Single-FP Compare NOT LT
OptCategory[NN_cmpnleps] = 1;            // Packed Single-FP Compare NOT LE
OptCategory[NN_cmpordps] = 1;            // Packed Single-FP Compare ORDERED
OptCategory[NN_cmpeqss] = 1;             // Scalar Single-FP Compare EQ
OptCategory[NN_cmpltss] = 1;             // Scalar Single-FP Compare LT
OptCategory[NN_cmpless] = 1;             // Scalar Single-FP Compare LE
OptCategory[NN_cmpunordss] = 1;          // Scalar Single-FP Compare UNORD
OptCategory[NN_cmpneqss] = 1;            // Scalar Single-FP Compare NOT EQ
OptCategory[NN_cmpnltss] = 1;            // Scalar Single-FP Compare NOT LT
OptCategory[NN_cmpnless] = 1;            // Scalar Single-FP Compare NOT LE
OptCategory[NN_cmpordss] = 1;            // Scalar Single-FP Compare ORDERED

// AMD K7 instructions

// Revisit AMD if we port to it.
OptCategory[NN_pf2iw] = 0;               // Packed Floating-Point to Integer with Sign Extend
OptCategory[NN_pfnacc] = 0;              // Packed Floating-Point Negative Accumulate
OptCategory[NN_pfpnacc] = 0;             // Packed Floating-Point Mixed Positive-Negative Accumulate
OptCategory[NN_pi2fw] = 0;               // Packed 16-bit Integer to Floating-Point
OptCategory[NN_pswapd] = 0;              // Packed Swap Double Word

// Undocumented FP instructions (thanks to norbert.juffa@adm.com)

OptCategory[NN_fstp1] = 9;               // Alias of Store Real and Pop
OptCategory[NN_fcom2] = 1;               // Alias of Compare Real
OptCategory[NN_fcomp3] = 1;              // Alias of Compare Real and Pop
OptCategory[NN_fxch4] = 1;               // Alias of Exchange Registers
OptCategory[NN_fcomp5] = 1;              // Alias of Compare Real and Pop
OptCategory[NN_ffreep] = 1;              // Free Register and Pop
OptCategory[NN_fxch7] = 1;               // Alias of Exchange Registers
OptCategory[NN_fstp8] = 9;               // Alias of Store Real and Pop
OptCategory[NN_fstp9] = 9;               // Alias of Store Real and Pop

// Pentium 4 instructions

OptCategory[NN_addpd] = 1;               // Add Packed Double-Precision Floating-Point Values
OptCategory[NN_addsd] = 1;               // Add Scalar Double-Precision Floating-Point Values