Skip to content
Snippets Groups Projects
SMPStaticAnalyzer.cpp 141 KiB
Newer Older
						SMP_msg("ERROR: Unknown second field value in policy line: %s %s %s ; ignored\n", Str1, Str2, Str3);
					}
				}
				else if (0 == strcmp(Str1, "NETWORKLOCATION")) {
					if (0 == strcmp(Str2, "WHITELIST")) {
						SetInsertResult = ZST_NetworkLocWhitelist.insert(ThirdStr);
						if (!(SetInsertResult.second)) {
							SMP_msg("WARNING: Duplicate network whitelist location %s ignored.\n", Str3);
						}
					}
					else if (0 == strcmp(Str2, "BLACKLIST")) {
						SetInsertResult = ZST_NetworkLocBlacklist.insert(ThirdStr);
						if (!(SetInsertResult.second)) {
							SMP_msg("WARNING: Duplicate network blacklist location %s ignored.\n", Str3);
						SMP_msg("ERROR: Unknown second field value in policy line: %s %s %s ; ignored\n", Str1, Str2, Str3);
					SMP_msg("ERROR: Unknown first field value in policy line: %s %s %s ; ignored\n", Str1, Str2, Str3);
		if (0 == SMP_fclose(PolicyFile)) {
			SMP_msg("Policy file %s successfully closed; all policies recorded.\n", PolicyFileName);
			SMP_msg("ERROR: fclose failed on policy file %s. However, policies should be in effect.\n", PolicyFileName);
		}
		// Now, initialize the system call name maps.
		pair<map<string, ZST_SysCallType>::iterator, bool> FuncInsertResult;
		// Do all the high privilege calls first.
		string SysFuncName("putenv");
		pair<string, ZST_SysCallType> FuncNamePolicyPair(SysFuncName, ZST_HIGHPRIVILEGE_CALL);
		FuncInsertResult = ZST_FuncTypeMap.insert(FuncNamePolicyPair);
		assert(FuncInsertResult.second);
		FuncNamePolicyPair.first.clear();
		FuncNamePolicyPair.first.append("setenv");
		FuncInsertResult = ZST_FuncTypeMap.insert(FuncNamePolicyPair);
		assert(FuncInsertResult.second);
		FuncNamePolicyPair.first.clear();
		FuncNamePolicyPair.first.append("setegid");
		FuncInsertResult = ZST_FuncTypeMap.insert(FuncNamePolicyPair);
		assert(FuncInsertResult.second);
		FuncNamePolicyPair.first.clear();
		FuncNamePolicyPair.first.append("seteuid");
		FuncInsertResult = ZST_FuncTypeMap.insert(FuncNamePolicyPair);
		assert(FuncInsertResult.second);
		FuncNamePolicyPair.first.clear();
		FuncNamePolicyPair.first.append("setgid");
		FuncInsertResult = ZST_FuncTypeMap.insert(FuncNamePolicyPair);
		assert(FuncInsertResult.second);
		FuncNamePolicyPair.first.clear();
		FuncNamePolicyPair.first.append("setpgid");
		FuncInsertResult = ZST_FuncTypeMap.insert(FuncNamePolicyPair);
		assert(FuncInsertResult.second);
		FuncNamePolicyPair.first.clear();
		FuncNamePolicyPair.first.append("setregid");
		FuncInsertResult = ZST_FuncTypeMap.insert(FuncNamePolicyPair);
		assert(FuncInsertResult.second);
		FuncNamePolicyPair.first.clear();
		FuncNamePolicyPair.first.append("setreuid");
		FuncInsertResult = ZST_FuncTypeMap.insert(FuncNamePolicyPair);
		assert(FuncInsertResult.second);
		FuncNamePolicyPair.first.clear();
		FuncNamePolicyPair.first.append("setuid");
		FuncInsertResult = ZST_FuncTypeMap.insert(FuncNamePolicyPair);
		assert(FuncInsertResult.second);
		FuncNamePolicyPair.first.clear();
		FuncNamePolicyPair.first.append("execl");
		FuncInsertResult = ZST_FuncTypeMap.insert(FuncNamePolicyPair);
		assert(FuncInsertResult.second);
		FuncNamePolicyPair.first.clear();
		FuncNamePolicyPair.first.append("execv");
		FuncInsertResult = ZST_FuncTypeMap.insert(FuncNamePolicyPair);
		assert(FuncInsertResult.second);
		FuncNamePolicyPair.first.clear();
		FuncNamePolicyPair.first.append("execle");
		FuncInsertResult = ZST_FuncTypeMap.insert(FuncNamePolicyPair);
		assert(FuncInsertResult.second);
		FuncNamePolicyPair.first.clear();
		FuncNamePolicyPair.first.append("execve");
		FuncInsertResult = ZST_FuncTypeMap.insert(FuncNamePolicyPair);
		assert(FuncInsertResult.second);
		FuncNamePolicyPair.first.clear();
		FuncNamePolicyPair.first.append("execlp");
		FuncInsertResult = ZST_FuncTypeMap.insert(FuncNamePolicyPair);
		assert(FuncInsertResult.second);
		FuncNamePolicyPair.first.clear();
		FuncNamePolicyPair.first.append("execvp");
		FuncInsertResult = ZST_FuncTypeMap.insert(FuncNamePolicyPair);
		assert(FuncInsertResult.second);
		FuncNamePolicyPair.first.clear();
		FuncNamePolicyPair.first.append("system");
		FuncInsertResult = ZST_FuncTypeMap.insert(FuncNamePolicyPair);
		assert(FuncInsertResult.second);

		// Now do all the file operation calls.
		FuncNamePolicyPair.second = ZST_FILE_CALL;
		FuncNamePolicyPair.first.clear();
		FuncNamePolicyPair.first.append("chdir");
		FuncInsertResult = ZST_FuncTypeMap.insert(FuncNamePolicyPair);
		assert(FuncInsertResult.second);
		FuncNamePolicyPair.first.clear();
		FuncNamePolicyPair.first.append("chmod");
		FuncInsertResult = ZST_FuncTypeMap.insert(FuncNamePolicyPair);
		assert(FuncInsertResult.second);
		FuncNamePolicyPair.first.clear();
		FuncNamePolicyPair.first.append("chown");
		FuncInsertResult = ZST_FuncTypeMap.insert(FuncNamePolicyPair);
		assert(FuncInsertResult.second);
		FuncNamePolicyPair.first.clear();
		FuncNamePolicyPair.first.append("creat");
		FuncInsertResult = ZST_FuncTypeMap.insert(FuncNamePolicyPair);
		assert(FuncInsertResult.second);
		FuncNamePolicyPair.first.clear();
		FuncNamePolicyPair.first.append("creat64");
		FuncInsertResult = ZST_FuncTypeMap.insert(FuncNamePolicyPair);
		assert(FuncInsertResult.second);
		FuncNamePolicyPair.first.clear();
		FuncNamePolicyPair.first.append("fopen");
		FuncInsertResult = ZST_FuncTypeMap.insert(FuncNamePolicyPair);
		assert(FuncInsertResult.second);
		FuncNamePolicyPair.first.clear();
		FuncNamePolicyPair.first.append("freopen");
		FuncInsertResult = ZST_FuncTypeMap.insert(FuncNamePolicyPair);
		assert(FuncInsertResult.second);
		FuncNamePolicyPair.first.clear();
		FuncNamePolicyPair.first.append("open");
		FuncInsertResult = ZST_FuncTypeMap.insert(FuncNamePolicyPair);
		assert(FuncInsertResult.second);
		FuncNamePolicyPair.first.clear();
		FuncNamePolicyPair.first.append("open64");
		FuncInsertResult = ZST_FuncTypeMap.insert(FuncNamePolicyPair);
		assert(FuncInsertResult.second);
		FuncNamePolicyPair.first.clear();
		FuncNamePolicyPair.first.append("mknod");
		FuncInsertResult = ZST_FuncTypeMap.insert(FuncNamePolicyPair);
		assert(FuncInsertResult.second);
		FuncNamePolicyPair.first.clear();
		FuncNamePolicyPair.first.append("remove");
		FuncInsertResult = ZST_FuncTypeMap.insert(FuncNamePolicyPair);
		assert(FuncInsertResult.second);
		FuncNamePolicyPair.first.clear();
		FuncNamePolicyPair.first.append("rmdir");
		FuncInsertResult = ZST_FuncTypeMap.insert(FuncNamePolicyPair);
		assert(FuncInsertResult.second);
		FuncNamePolicyPair.first.clear();
		FuncNamePolicyPair.first.append("unlink");
		FuncInsertResult = ZST_FuncTypeMap.insert(FuncNamePolicyPair);
		assert(FuncInsertResult.second);

		// Finally, handle all the network connection calls.
		FuncNamePolicyPair.second = ZST_NETWORK_CALL;
		FuncNamePolicyPair.first.clear();
		FuncNamePolicyPair.first.append("socket");
		FuncInsertResult = ZST_FuncTypeMap.insert(FuncNamePolicyPair);
		assert(FuncInsertResult.second);
		FuncNamePolicyPair.first.clear();
		FuncNamePolicyPair.first.append("socketpair");
		FuncInsertResult = ZST_FuncTypeMap.insert(FuncNamePolicyPair);
		assert(FuncInsertResult.second);
		FuncNamePolicyPair.first.clear();
		FuncNamePolicyPair.first.append("pipe");
		FuncInsertResult = ZST_FuncTypeMap.insert(FuncNamePolicyPair);
		assert(FuncInsertResult.second);
		FuncNamePolicyPair.first.clear();
		FuncNamePolicyPair.first.append("bind");
		FuncInsertResult = ZST_FuncTypeMap.insert(FuncNamePolicyPair);
		assert(FuncInsertResult.second);
		FuncNamePolicyPair.first.clear();
		FuncNamePolicyPair.first.append("listen");
		FuncInsertResult = ZST_FuncTypeMap.insert(FuncNamePolicyPair);
		assert(FuncInsertResult.second);
		FuncNamePolicyPair.first.clear();
		FuncNamePolicyPair.first.append("accept");
		FuncInsertResult = ZST_FuncTypeMap.insert(FuncNamePolicyPair);
		assert(FuncInsertResult.second);
		FuncNamePolicyPair.first.clear();
		FuncNamePolicyPair.first.append("connect");
		FuncInsertResult = ZST_FuncTypeMap.insert(FuncNamePolicyPair);
		assert(FuncInsertResult.second);
	}
	else {
		SMP_msg("WARNING: No policy file %s found. System call policies not in effect.\n", PolicyFileName);

// Initialize the OptCategory[] array to define how we emit
//   optimizing annotations.
void InitOptCategory(void) {
	// Default category is 0, no optimization without knowing context.
	(void) memset(OptCategory, 0, sizeof(OptCategory));
	// Category 1 instructions never need updating of their memory
	//  metadata by the Memory Monitor SDT. Currently, this is because
	//  these instructions only have effects on registers we do not maintain
	//  metadata for, such as the EIP and the FLAGS, e.g. jumps, compares,
	//  or because they are no-ops, including machine-dependent no-op idioms.
	// Category 2 instructions always have a result type of 'n' (number).
	// Category 3 instructions have a result type of 'n' (number)
	//  whenever the second source operand is an operand of type 'n'.
	//  NOTE: MOV is only current example, and this will take some thought if 
	// Category 4 instructions have a result type identical to the 1st source operand type.
	//  NOTE: This is currently set for single-operand instructions such as
	//   INC, DEC. As a result, these are treated pretty much as if
	//   they were category 1 instructions, as there is no metadata update,
	//   unless the operand is a memory operand (i.e. mem or [reg]).
	//   If new instructions are added to this category that are not single
	//   operand and do require some updating, the category should be split.
	// Category 5 instructions have a result type identical to the 1st source operand
	//  type whenever the 2nd source operand is an operand of type 'n'.
	//  If the destination is memory, metadata still needs to be checked; if
	//  not, no metadata check is needed, so it becomes category 1.
	// Category 6 instructions always have a result type of 'p' (pointer).
	// Category 7 instructions are category 2 instructions with two destinations,
	//  such as multiply and divide instructions that affect EDX:EAX. There are
	//  forms of these instructions that only have one destination, so they have
	//  to be distinguished via the operand info.
	// Category 8 instructions implicitly write a numeric value to EDX:EAX, but
	//  EDX and EAX are not listed as operands. RDTSC, RDPMC, RDMSR, and other
	//  instructions that copy machine registers into EDX:EAX are category 8.
	// Category 9 instructions are floating point instructions that either
	//  have a memory destination (treat as category 0) or a FP reg destination
	//  (treat as category 1).
	// Category 10 instructions are the same as category 8, but also write
	//  to register ECX in addition to EDX:EAX.

	// NOTE: The Memory Monitor SDT needs just three categories, corresponding
	//  to categories 0, 1, and all others. For all categories > 1, the
	//  annotation should tell the SDT exactly how to update its metadata.
	//  For example, a division instruction will write type 'n' (NUM) as
	//  the metadata for result registers EDX:EAX. So, the annotation should
	//  list 'n', EDX, EAX, and a terminator of ZZ. CWD (convert word to
	//  doubleword) should have a list of 'n', EAX, ZZ.

OptCategory[NN_null] = 0;            // Unknown Operation
OptCategory[NN_aaa] = 2;                 // ASCII Adjust after Addition
OptCategory[NN_aad] = 2;                 // ASCII Adjust AX before Division
OptCategory[NN_aam] = 2;                 // ASCII Adjust AX after Multiply
OptCategory[NN_aas] = 2;                 // ASCII Adjust AL after Subtraction
OptCategory[NN_adc] = 5;                 // Add with Carry
OptCategory[NN_add] = 5;                 // Add
OptCategory[NN_and] = 0;                 // Logical AND
OptCategory[NN_arpl] = 1;                // Adjust RPL Field of Selector
OptCategory[NN_bound] = 1;               // Check Array Index Against Bounds
OptCategory[NN_bsf] = 2;                 // Bit Scan Forward
OptCategory[NN_bsr] = 2;                 // Bit Scan Reverse
OptCategory[NN_bt] = 0;                  // Bit Test
OptCategory[NN_btc] = 0;                 // Bit Test and Complement
OptCategory[NN_btr] = 0;                 // Bit Test and Reset
OptCategory[NN_bts] = 0;                 // Bit Test and Set
OptCategory[NN_call] = 1;                // Call Procedure
OptCategory[NN_callfi] = 1;              // Indirect Call Far Procedure
OptCategory[NN_callni] = 1;              // Indirect Call Near Procedure
OptCategory[NN_cbw] = 2;                 // AL -> AX (with sign)            ** No ops?
OptCategory[NN_cwde] = 2;                // AX -> EAX (with sign)           **
OptCategory[NN_cdqe] = 2;                // EAX -> RAX (with sign)          **
OptCategory[NN_clc] = 1;                 // Clear Carry Flag
OptCategory[NN_cld] = 1;                 // Clear Direction Flag
OptCategory[NN_cli] = 1;                 // Clear Interrupt Flag
OptCategory[NN_clts] = 1;                // Clear Task-Switched Flag in CR0
OptCategory[NN_cmc] = 1;                 // Complement Carry Flag
OptCategory[NN_cmp] = 1;                 // Compare Two Operands
OptCategory[NN_cmps] = 1;                // Compare Strings
OptCategory[NN_cwd] = 2;                 // AX -> DX:AX (with sign)
OptCategory[NN_cdq] = 2;                 // EAX -> EDX:EAX (with sign)
OptCategory[NN_cqo] = 2;                 // RAX -> RDX:RAX (with sign)
OptCategory[NN_daa] = 2;                 // Decimal Adjust AL after Addition
OptCategory[NN_das] = 2;                 // Decimal Adjust AL after Subtraction
OptCategory[NN_dec] = 4;                 // Decrement by 1
OptCategory[NN_div] = 7;                 // Unsigned Divide
OptCategory[NN_enterw] = 0;              // Make Stack Frame for Procedure Parameters  **
OptCategory[NN_enter] = 0;               // Make Stack Frame for Procedure Parameters  **
OptCategory[NN_enterd] = 0;              // Make Stack Frame for Procedure Parameters  **
OptCategory[NN_enterq] = 0;              // Make Stack Frame for Procedure Parameters  **
OptCategory[NN_hlt] = 0;                 // Halt
OptCategory[NN_idiv] = 7;                // Signed Divide
OptCategory[NN_imul] = 7;                // Signed Multiply
OptCategory[NN_in] = 0;                  // Input from Port                         **
OptCategory[NN_inc] = 4;                 // Increment by 1
OptCategory[NN_ins] = 2;                 // Input Byte(s) from Port to String       **
OptCategory[NN_int] = 0;                 // Call to Interrupt Procedure
OptCategory[NN_into] = 0;                // Call to Interrupt Procedure if Overflow Flag = 1
OptCategory[NN_int3] = 0;                // Trap to Debugger
OptCategory[NN_iretw] = 0;               // Interrupt Return
OptCategory[NN_iret] = 0;                // Interrupt Return
OptCategory[NN_iretd] = 0;               // Interrupt Return (use32)
OptCategory[NN_iretq] = 0;               // Interrupt Return (use64)
OptCategory[NN_ja] = 1;                  // Jump if Above (CF=0 & ZF=0)
OptCategory[NN_jae] = 1;                 // Jump if Above or Equal (CF=0)
OptCategory[NN_jb] = 1;                  // Jump if Below (CF=1)
OptCategory[NN_jbe] = 1;                 // Jump if Below or Equal (CF=1 | ZF=1)
OptCategory[NN_jc] = 1;                  // Jump if Carry (CF=1)
OptCategory[NN_jcxz] = 1;                // Jump if CX is 0
OptCategory[NN_jecxz] = 1;               // Jump if ECX is 0
OptCategory[NN_jrcxz] = 1;               // Jump if RCX is 0
OptCategory[NN_je] = 1;                  // Jump if Equal (ZF=1)
OptCategory[NN_jg] = 1;                  // Jump if Greater (ZF=0 & SF=OF)
OptCategory[NN_jge] = 1;                 // Jump if Greater or Equal (SF=OF)
OptCategory[NN_jl] = 1;                  // Jump if Less (SF!=OF)
OptCategory[NN_jle] = 1;                 // Jump if Less or Equal (ZF=1 | SF!=OF)
OptCategory[NN_jna] = 1;                 // Jump if Not Above (CF=1 | ZF=1)
OptCategory[NN_jnae] = 1;                // Jump if Not Above or Equal (CF=1)
OptCategory[NN_jnb] = 1;                 // Jump if Not Below (CF=0)
OptCategory[NN_jnbe] = 1;                // Jump if Not Below or Equal (CF=0 & ZF=0)
OptCategory[NN_jnc] = 1;                 // Jump if Not Carry (CF=0)
OptCategory[NN_jne] = 1;                 // Jump if Not Equal (ZF=0)
OptCategory[NN_jng] = 1;                 // Jump if Not Greater (ZF=1 | SF!=OF)
OptCategory[NN_jnge] = 1;                // Jump if Not Greater or Equal (ZF=1)
OptCategory[NN_jnl] = 1;                 // Jump if Not Less (SF=OF)
OptCategory[NN_jnle] = 1;                // Jump if Not Less or Equal (ZF=0 & SF=OF)
OptCategory[NN_jno] = 1;                 // Jump if Not Overflow (OF=0)
OptCategory[NN_jnp] = 1;                 // Jump if Not Parity (PF=0)
OptCategory[NN_jns] = 1;                 // Jump if Not Sign (SF=0)
OptCategory[NN_jnz] = 1;                 // Jump if Not Zero (ZF=0)
OptCategory[NN_jo] = 1;                  // Jump if Overflow (OF=1)
OptCategory[NN_jp] = 1;                  // Jump if Parity (PF=1)
OptCategory[NN_jpe] = 1;                 // Jump if Parity Even (PF=1)
OptCategory[NN_jpo] = 1;                 // Jump if Parity Odd  (PF=0)
OptCategory[NN_js] = 1;                  // Jump if Sign (SF=1)
OptCategory[NN_jz] = 1;                  // Jump if Zero (ZF=1)
OptCategory[NN_jmp] = 1;                 // Jump
OptCategory[NN_jmpfi] = 1;               // Indirect Far Jump
OptCategory[NN_jmpni] = 1;               // Indirect Near Jump
OptCategory[NN_jmpshort] = 1;            // Jump Short (not used)
OptCategory[NN_lahf] = 2;                // Load Flags into AH Register
OptCategory[NN_lar] = 2;                 // Load Access Rights Byte
OptCategory[NN_lea] = 0;                 // Load Effective Address           **
OptCategory[NN_leavew] = 0;              // High Level Procedure Exit        **
OptCategory[NN_leave] = 0;               // High Level Procedure Exit        **
OptCategory[NN_leaved] = 0;              // High Level Procedure Exit        **
OptCategory[NN_leaveq] = 0;              // High Level Procedure Exit        **
OptCategory[NN_lgdt] = 0;                // Load Global Descriptor Table Register
OptCategory[NN_lidt] = 0;                // Load Interrupt Descriptor Table Register
OptCategory[NN_lgs] = 6;                 // Load Full Pointer to GS:xx
OptCategory[NN_lss] = 6;                 // Load Full Pointer to SS:xx
OptCategory[NN_lds] = 6;                 // Load Full Pointer to DS:xx
OptCategory[NN_les] = 6;                 // Load Full Pointer to ES:xx
OptCategory[NN_lfs] = 6;                 // Load Full Pointer to FS:xx
OptCategory[NN_lldt] = 0;                // Load Local Descriptor Table Register
OptCategory[NN_lmsw] = 1;                // Load Machine Status Word
OptCategory[NN_lock] = 1;                // Assert LOCK# Signal Prefix
OptCategory[NN_lods] = 0;                // Load String
OptCategory[NN_loopw] = 1;               // Loop while ECX != 0
OptCategory[NN_loop] = 1;                // Loop while CX != 0
OptCategory[NN_loopd] = 1;               // Loop while ECX != 0
OptCategory[NN_loopq] = 1;               // Loop while RCX != 0
OptCategory[NN_loopwe] = 1;              // Loop while CX != 0 and ZF=1
OptCategory[NN_loope] = 1;               // Loop while rCX != 0 and ZF=1
OptCategory[NN_loopde] = 1;              // Loop while ECX != 0 and ZF=1
OptCategory[NN_loopqe] = 1;              // Loop while RCX != 0 and ZF=1
OptCategory[NN_loopwne] = 1;             // Loop while CX != 0 and ZF=0
OptCategory[NN_loopne] = 1;              // Loop while rCX != 0 and ZF=0
OptCategory[NN_loopdne] = 1;             // Loop while ECX != 0 and ZF=0
OptCategory[NN_loopqne] = 1;             // Loop while RCX != 0 and ZF=0
OptCategory[NN_lsl] = 6;                 // Load Segment Limit
OptCategory[NN_ltr] = 1;                 // Load Task Register
OptCategory[NN_mov] = 3;                 // Move Data
OptCategory[NN_movsp] = 3;               // Move to/from Special Registers
OptCategory[NN_movs] = 0;                // Move Byte(s) from String to String
OptCategory[NN_movsx] = 3;               // Move with Sign-Extend
OptCategory[NN_movzx] = 3;               // Move with Zero-Extend
OptCategory[NN_mul] = 7;                 // Unsigned Multiplication of AL or AX
OptCategory[NN_neg] = 2;                 // Two's Complement Negation   !!!!****!!!! Change this when mmStrata handles NEGATEDPTR type.
OptCategory[NN_nop] = 1;                 // No Operation
OptCategory[NN_not] = 2;                 // One's Complement Negation
OptCategory[NN_or] = 0;                  // Logical Inclusive OR
OptCategory[NN_out] = 0;                 // Output to Port
OptCategory[NN_outs] = 0;                // Output Byte(s) to Port
OptCategory[NN_pop] = 0;                 // Pop a word from the Stack
OptCategory[NN_popaw] = 0;               // Pop all General Registers
OptCategory[NN_popa] = 0;                // Pop all General Registers
OptCategory[NN_popad] = 0;               // Pop all General Registers (use32)
OptCategory[NN_popaq] = 0;               // Pop all General Registers (use64)
OptCategory[NN_popfw] = 1;               // Pop Stack into Flags Register         **
OptCategory[NN_popf] = 1;                // Pop Stack into Flags Register         **
OptCategory[NN_popfd] = 1;               // Pop Stack into Eflags Register        **
OptCategory[NN_popfq] = 1;               // Pop Stack into Rflags Register        **
OptCategory[NN_push] = 0;                // Push Operand onto the Stack
OptCategory[NN_pushaw] = 0;              // Push all General Registers
OptCategory[NN_pusha] = 0;               // Push all General Registers
OptCategory[NN_pushad] = 0;              // Push all General Registers (use32)
OptCategory[NN_pushaq] = 0;              // Push all General Registers (use64)
OptCategory[NN_pushfw] = 0;              // Push Flags Register onto the Stack
OptCategory[NN_pushf] = 0;               // Push Flags Register onto the Stack
OptCategory[NN_pushfd] = 0;              // Push Flags Register onto the Stack (use32)
OptCategory[NN_pushfq] = 0;              // Push Flags Register onto the Stack (use64)
OptCategory[NN_rcl] = 2;                 // Rotate Through Carry Left
OptCategory[NN_rcr] = 2;                 // Rotate Through Carry Right
OptCategory[NN_rol] = 2;                 // Rotate Left
OptCategory[NN_ror] = 2;                 // Rotate Right
OptCategory[NN_rep] = 0;                 // Repeat String Operation
OptCategory[NN_repe] = 0;                // Repeat String Operation while ZF=1
OptCategory[NN_repne] = 0;               // Repeat String Operation while ZF=0
OptCategory[NN_retn] = 0;                // Return Near from Procedure
OptCategory[NN_retf] = 0;                // Return Far from Procedure
OptCategory[NN_sahf] = 1;                // Store AH into Flags Register
OptCategory[NN_sal] = 2;                 // Shift Arithmetic Left
OptCategory[NN_sar] = 2;                 // Shift Arithmetic Right
OptCategory[NN_shl] = 2;                 // Shift Logical Left
OptCategory[NN_shr] = 2;                 // Shift Logical Right
OptCategory[NN_sbb] = 5;                 // Integer Subtraction with Borrow
OptCategory[NN_scas] = 1;                // Compare String
OptCategory[NN_seta] = 2;                // Set Byte if Above (CF=0 & ZF=0)
OptCategory[NN_setae] = 2;               // Set Byte if Above or Equal (CF=0)
OptCategory[NN_setb] = 2;                // Set Byte if Below (CF=1)
OptCategory[NN_setbe] = 2;               // Set Byte if Below or Equal (CF=1 | ZF=1)
OptCategory[NN_setc] = 2;                // Set Byte if Carry (CF=1)
OptCategory[NN_sete] = 2;                // Set Byte if Equal (ZF=1)
OptCategory[NN_setg] = 2;                // Set Byte if Greater (ZF=0 & SF=OF)
OptCategory[NN_setge] = 2;               // Set Byte if Greater or Equal (SF=OF)
OptCategory[NN_setl] = 2;                // Set Byte if Less (SF!=OF)
OptCategory[NN_setle] = 2;               // Set Byte if Less or Equal (ZF=1 | SF!=OF)
OptCategory[NN_setna] = 2;               // Set Byte if Not Above (CF=1 | ZF=1)
OptCategory[NN_setnae] = 2;              // Set Byte if Not Above or Equal (CF=1)
OptCategory[NN_setnb] = 2;               // Set Byte if Not Below (CF=0)
OptCategory[NN_setnbe] = 2;              // Set Byte if Not Below or Equal (CF=0 & ZF=0)
OptCategory[NN_setnc] = 2;               // Set Byte if Not Carry (CF=0)
OptCategory[NN_setne] = 2;               // Set Byte if Not Equal (ZF=0)
OptCategory[NN_setng] = 2;               // Set Byte if Not Greater (ZF=1 | SF!=OF)
OptCategory[NN_setnge] = 2;              // Set Byte if Not Greater or Equal (ZF=1)
OptCategory[NN_setnl] = 2;               // Set Byte if Not Less (SF=OF)
OptCategory[NN_setnle] = 2;              // Set Byte if Not Less or Equal (ZF=0 & SF=OF)
OptCategory[NN_setno] = 2;               // Set Byte if Not Overflow (OF=0)
OptCategory[NN_setnp] = 2;               // Set Byte if Not Parity (PF=0)
OptCategory[NN_setns] = 2;               // Set Byte if Not Sign (SF=0)
OptCategory[NN_setnz] = 2;               // Set Byte if Not Zero (ZF=0)
OptCategory[NN_seto] = 2;                // Set Byte if Overflow (OF=1)
OptCategory[NN_setp] = 2;                // Set Byte if Parity (PF=1)
OptCategory[NN_setpe] = 2;               // Set Byte if Parity Even (PF=1)
OptCategory[NN_setpo] = 2;               // Set Byte if Parity Odd  (PF=0)
OptCategory[NN_sets] = 2;                // Set Byte if Sign (SF=1)
OptCategory[NN_setz] = 2;                // Set Byte if Zero (ZF=1)
OptCategory[NN_sgdt] = 0;                // Store Global Descriptor Table Register
OptCategory[NN_sidt] = 0;                // Store Interrupt Descriptor Table Register
OptCategory[NN_shld] = 2;                // Double Precision Shift Left
OptCategory[NN_shrd] = 2;                // Double Precision Shift Right
OptCategory[NN_sldt] = 6;                // Store Local Descriptor Table Register
OptCategory[NN_smsw] = 2;                // Store Machine Status Word
OptCategory[NN_stc] = 1;                 // Set Carry Flag
OptCategory[NN_std] = 1;                 // Set Direction Flag
OptCategory[NN_sti] = 1;                 // Set Interrupt Flag
OptCategory[NN_stos] = 0;                // Store String
OptCategory[NN_str] = 6;                 // Store Task Register
OptCategory[NN_sub] = 5;                 // Integer Subtraction
OptCategory[NN_test] = 1;                // Logical Compare
OptCategory[NN_verr] = 1;                // Verify a Segment for Reading
OptCategory[NN_verw] = 1;                // Verify a Segment for Writing
OptCategory[NN_wait] = 1;                // Wait until BUSY# Pin is Inactive (HIGH)
OptCategory[NN_xchg] = 0;                // Exchange Register/Memory with Register
OptCategory[NN_xlat] = 0;                // Table Lookup Translation
OptCategory[NN_xor] = 2;                 // Logical Exclusive OR

//
//      486 instructions
//

OptCategory[NN_cmpxchg] = 0;             // Compare and Exchange
OptCategory[NN_bswap] = 2;               // Swap bytes in register
OptCategory[NN_xadd] = 0;                // t<-dest; dest<-src+dest; src<-t
OptCategory[NN_invd] = 1;                // Invalidate Data Cache
OptCategory[NN_wbinvd] = 1;              // Invalidate Data Cache (write changes)
OptCategory[NN_invlpg] = 1;              // Invalidate TLB entry

//
//      Pentium instructions
//

OptCategory[NN_rdmsr] = 8;               // Read Machine Status Register
OptCategory[NN_wrmsr] = 1;               // Write Machine Status Register
OptCategory[NN_cpuid] = 8;               // Get CPU ID
OptCategory[NN_cmpxchg8b] = 0;           // Compare and Exchange Eight Bytes
OptCategory[NN_rdtsc] = 8;               // Read Time Stamp Counter
OptCategory[NN_rsm] = 1;                 // Resume from System Management Mode

//
//      Pentium Pro instructions
//

OptCategory[NN_cmova] = 0;               // Move if Above (CF=0 & ZF=0)
OptCategory[NN_cmovb] = 0;               // Move if Below (CF=1)
OptCategory[NN_cmovbe] = 0;              // Move if Below or Equal (CF=1 | ZF=1)
OptCategory[NN_cmovg] = 0;               // Move if Greater (ZF=0 & SF=OF)
OptCategory[NN_cmovge] = 0;              // Move if Greater or Equal (SF=OF)
OptCategory[NN_cmovl] = 0;               // Move if Less (SF!=OF)
OptCategory[NN_cmovle] = 0;              // Move if Less or Equal (ZF=1 | SF!=OF)
OptCategory[NN_cmovnb] = 0;              // Move if Not Below (CF=0)
OptCategory[NN_cmovno] = 0;              // Move if Not Overflow (OF=0)
OptCategory[NN_cmovnp] = 0;              // Move if Not Parity (PF=0)
OptCategory[NN_cmovns] = 0;              // Move if Not Sign (SF=0)
OptCategory[NN_cmovnz] = 0;              // Move if Not Zero (ZF=0)
OptCategory[NN_cmovo] = 0;               // Move if Overflow (OF=1)
OptCategory[NN_cmovp] = 0;               // Move if Parity (PF=1)
OptCategory[NN_cmovs] = 0;               // Move if Sign (SF=1)
OptCategory[NN_cmovz] = 0;               // Move if Zero (ZF=1)
OptCategory[NN_fcmovb] = 1;              // Floating Move if Below          
OptCategory[NN_fcmove] = 1;              // Floating Move if Equal          
OptCategory[NN_fcmovbe] = 1;             // Floating Move if Below or Equal 
OptCategory[NN_fcmovu] = 1;              // Floating Move if Unordered      
OptCategory[NN_fcmovnb] = 1;             // Floating Move if Not Below      
OptCategory[NN_fcmovne] = 1;             // Floating Move if Not Equal      
OptCategory[NN_fcmovnbe] = 1;            // Floating Move if Not Below or Equal
OptCategory[NN_fcmovnu] = 1;             // Floating Move if Not Unordered     
OptCategory[NN_fcomi] = 1;               // FP Compare, result in EFLAGS
OptCategory[NN_fucomi] = 1;              // FP Unordered Compare, result in EFLAGS
OptCategory[NN_fcomip] = 1;              // FP Compare, result in EFLAGS, pop stack
OptCategory[NN_fucomip] = 1;             // FP Unordered Compare, result in EFLAGS, pop stack
OptCategory[NN_rdpmc] = 8;               // Read Performance Monitor Counter

//
//      FPP instructuions
//

OptCategory[NN_fld] = 1;                 // Load Real             ** Infer src is 'n'
OptCategory[NN_fst] = 9;                 // Store Real            
OptCategory[NN_fstp] = 9;                // Store Real and Pop   
OptCategory[NN_fxch] = 1;                // Exchange Registers
OptCategory[NN_fild] = 1;                // Load Integer          ** Infer src is 'n'
OptCategory[NN_fist] = 0;                // Store Integer
OptCategory[NN_fistp] = 0;               // Store Integer and Pop
OptCategory[NN_fbld] = 1;                // Load BCD
OptCategory[NN_fbstp] = 0;               // Store BCD and Pop
2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923
OptCategory[NN_fadd] = 1;                // Add Real
OptCategory[NN_faddp] = 1;               // Add Real and Pop
OptCategory[NN_fiadd] = 1;               // Add Integer
OptCategory[NN_fsub] = 1;                // Subtract Real
OptCategory[NN_fsubp] = 1;               // Subtract Real and Pop
OptCategory[NN_fisub] = 1;               // Subtract Integer
OptCategory[NN_fsubr] = 1;               // Subtract Real Reversed
OptCategory[NN_fsubrp] = 1;              // Subtract Real Reversed and Pop
OptCategory[NN_fisubr] = 1;              // Subtract Integer Reversed
OptCategory[NN_fmul] = 1;                // Multiply Real
OptCategory[NN_fmulp] = 1;               // Multiply Real and Pop
OptCategory[NN_fimul] = 1;               // Multiply Integer
OptCategory[NN_fdiv] = 1;                // Divide Real
OptCategory[NN_fdivp] = 1;               // Divide Real and Pop
OptCategory[NN_fidiv] = 1;               // Divide Integer
OptCategory[NN_fdivr] = 1;               // Divide Real Reversed
OptCategory[NN_fdivrp] = 1;              // Divide Real Reversed and Pop
OptCategory[NN_fidivr] = 1;              // Divide Integer Reversed
OptCategory[NN_fsqrt] = 1;               // Square Root
OptCategory[NN_fscale] = 1;              // Scale:  st(0) <- st(0) * 2^st(1)
OptCategory[NN_fprem] = 1;               // Partial Remainder
OptCategory[NN_frndint] = 1;             // Round to Integer
OptCategory[NN_fxtract] = 1;             // Extract exponent and significand
OptCategory[NN_fabs] = 1;                // Absolute value
OptCategory[NN_fchs] = 1;                // Change Sign
OptCategory[NN_fcom] = 1;                // Compare Real
OptCategory[NN_fcomp] = 1;               // Compare Real and Pop
OptCategory[NN_fcompp] = 1;              // Compare Real and Pop Twice
OptCategory[NN_ficom] = 1;               // Compare Integer
OptCategory[NN_ficomp] = 1;              // Compare Integer and Pop
OptCategory[NN_ftst] = 1;                // Test
OptCategory[NN_fxam] = 1;                // Examine
OptCategory[NN_fptan] = 1;               // Partial tangent
OptCategory[NN_fpatan] = 1;              // Partial arctangent
OptCategory[NN_f2xm1] = 1;               // 2^x - 1
OptCategory[NN_fyl2x] = 1;               // Y * lg2(X)
OptCategory[NN_fyl2xp1] = 1;             // Y * lg2(X+1)
OptCategory[NN_fldz] = 1;                // Load +0.0
OptCategory[NN_fld1] = 1;                // Load +1.0
OptCategory[NN_fldpi] = 1;               // Load PI=3.14...
OptCategory[NN_fldl2t] = 1;              // Load lg2(10)
OptCategory[NN_fldl2e] = 1;              // Load lg2(e)
OptCategory[NN_fldlg2] = 1;              // Load lg10(2)
OptCategory[NN_fldln2] = 1;              // Load ln(2)
OptCategory[NN_finit] = 1;               // Initialize Processor
OptCategory[NN_fninit] = 1;              // Initialize Processor (no wait)
OptCategory[NN_fsetpm] = 1;              // Set Protected Mode
OptCategory[NN_fldcw] = 1;               // Load Control Word
OptCategory[NN_fstcw] = 0;               // Store Control Word
OptCategory[NN_fnstcw] = 0;              // Store Control Word (no wait)
OptCategory[NN_fstsw] = 2;               // Store Status Word to memory or AX
OptCategory[NN_fnstsw] = 2;              // Store Status Word (no wait) to memory or AX
OptCategory[NN_fclex] = 1;               // Clear Exceptions
OptCategory[NN_fnclex] = 1;              // Clear Exceptions (no wait)
OptCategory[NN_fstenv] = 0;              // Store Environment
OptCategory[NN_fnstenv] = 0;             // Store Environment (no wait)
OptCategory[NN_fldenv] = 1;              // Load Environment
OptCategory[NN_fsave] = 0;               // Save State
OptCategory[NN_fnsave] = 0;              // Save State (no wait)
OptCategory[NN_frstor] = 1;              // Restore State    **  infer src is 'n'
OptCategory[NN_fincstp] = 1;             // Increment Stack Pointer
OptCategory[NN_fdecstp] = 1;             // Decrement Stack Pointer
OptCategory[NN_ffree] = 1;               // Free Register
OptCategory[NN_fnop] = 1;                // No Operation
OptCategory[NN_feni] = 1;                // (8087 only)
OptCategory[NN_fneni] = 1;               // (no wait) (8087 only)
OptCategory[NN_fdisi] = 1;               // (8087 only)
OptCategory[NN_fndisi] = 1;              // (no wait) (8087 only)

//
//      80387 instructions
//

OptCategory[NN_fprem1] = 1;              // Partial Remainder ( < half )
OptCategory[NN_fsincos] = 1;             // t<-cos(st); st<-sin(st); push t
OptCategory[NN_fsin] = 1;                // Sine
OptCategory[NN_fcos] = 1;                // Cosine
OptCategory[NN_fucom] = 1;               // Compare Unordered Real
OptCategory[NN_fucomp] = 1;              // Compare Unordered Real and Pop
OptCategory[NN_fucompp] = 1;             // Compare Unordered Real and Pop Twice

//
//      Instructions added 28.02.96
//

OptCategory[NN_setalc] = 2;              // Set AL to Carry Flag     **
OptCategory[NN_svdc] = 0;                // Save Register and Descriptor
OptCategory[NN_rsdc] = 0;                // Restore Register and Descriptor
OptCategory[NN_svldt] = 0;               // Save LDTR and Descriptor
OptCategory[NN_rsldt] = 0;               // Restore LDTR and Descriptor
OptCategory[NN_svts] = 1;                // Save TR and Descriptor
OptCategory[NN_rsts] = 1;                // Restore TR and Descriptor
OptCategory[NN_icebp] = 1;               // ICE Break Point
OptCategory[NN_loadall] = 0;             // Load the entire CPU state from ES:EDI

//
//      MMX instructions
//

OptCategory[NN_emms] = 1;                // Empty MMX state
OptCategory[NN_movd] = 9;                // Move 32 bits
OptCategory[NN_movq] = 9;                // Move 64 bits
OptCategory[NN_packsswb] = 1;            // Pack with Signed Saturation (Word->Byte)
OptCategory[NN_packssdw] = 1;            // Pack with Signed Saturation (Dword->Word)
OptCategory[NN_packuswb] = 1;            // Pack with Unsigned Saturation (Word->Byte)
OptCategory[NN_paddb] = 1;               // Packed Add Byte
OptCategory[NN_paddw] = 1;               // Packed Add Word
OptCategory[NN_paddd] = 1;               // Packed Add Dword
OptCategory[NN_paddsb] = 1;              // Packed Add with Saturation (Byte)
OptCategory[NN_paddsw] = 1;              // Packed Add with Saturation (Word)
OptCategory[NN_paddusb] = 1;             // Packed Add Unsigned with Saturation (Byte)
OptCategory[NN_paddusw] = 1;             // Packed Add Unsigned with Saturation (Word)
OptCategory[NN_pand] = 1;                // Bitwise Logical And
OptCategory[NN_pandn] = 1;               // Bitwise Logical And Not
OptCategory[NN_pcmpeqb] = 1;             // Packed Compare for Equal (Byte)
OptCategory[NN_pcmpeqw] = 1;             // Packed Compare for Equal (Word)
OptCategory[NN_pcmpeqd] = 1;             // Packed Compare for Equal (Dword)
OptCategory[NN_pcmpgtb] = 1;             // Packed Compare for Greater Than (Byte)
OptCategory[NN_pcmpgtw] = 1;             // Packed Compare for Greater Than (Word)
OptCategory[NN_pcmpgtd] = 1;             // Packed Compare for Greater Than (Dword)
OptCategory[NN_pmaddwd] = 1;             // Packed Multiply and Add
OptCategory[NN_pmulhw] = 1;              // Packed Multiply High
OptCategory[NN_pmullw] = 1;              // Packed Multiply Low
OptCategory[NN_por] = 1;                 // Bitwise Logical Or
OptCategory[NN_psllw] = 1;               // Packed Shift Left Logical (Word)
OptCategory[NN_pslld] = 1;               // Packed Shift Left Logical (Dword)
OptCategory[NN_psllq] = 1;               // Packed Shift Left Logical (Qword)
OptCategory[NN_psraw] = 1;               // Packed Shift Right Arithmetic (Word)
OptCategory[NN_psrad] = 1;               // Packed Shift Right Arithmetic (Dword)
OptCategory[NN_psrlw] = 1;               // Packed Shift Right Logical (Word)
OptCategory[NN_psrld] = 1;               // Packed Shift Right Logical (Dword)
OptCategory[NN_psrlq] = 1;               // Packed Shift Right Logical (Qword)
OptCategory[NN_psubb] = 1;               // Packed Subtract Byte
OptCategory[NN_psubw] = 1;               // Packed Subtract Word
OptCategory[NN_psubd] = 1;               // Packed Subtract Dword
OptCategory[NN_psubsb] = 1;              // Packed Subtract with Saturation (Byte)
OptCategory[NN_psubsw] = 1;              // Packed Subtract with Saturation (Word)
OptCategory[NN_psubusb] = 1;             // Packed Subtract Unsigned with Saturation (Byte)
OptCategory[NN_psubusw] = 1;             // Packed Subtract Unsigned with Saturation (Word)
OptCategory[NN_punpckhbw] = 1;           // Unpack High Packed Data (Byte->Word)
OptCategory[NN_punpckhwd] = 1;           // Unpack High Packed Data (Word->Dword)
OptCategory[NN_punpckhdq] = 1;           // Unpack High Packed Data (Dword->Qword)
OptCategory[NN_punpcklbw] = 1;           // Unpack Low Packed Data (Byte->Word)
OptCategory[NN_punpcklwd] = 1;           // Unpack Low Packed Data (Word->Dword)
OptCategory[NN_punpckldq] = 1;           // Unpack Low Packed Data (Dword->Qword)
OptCategory[NN_pxor] = 1;                // Bitwise Logical Exclusive Or

//
//      Undocumented Deschutes processor instructions
//

OptCategory[NN_fxsave] = 1;              // Fast save FP context            ** to where?
OptCategory[NN_fxrstor] = 1;             // Fast restore FP context         ** from where?

//      Pentium II instructions

OptCategory[NN_sysenter] = 1;            // Fast Transition to System Call Entry Point
OptCategory[NN_sysexit] = 1;             // Fast Transition from System Call Entry Point

//      3DNow! instructions

OptCategory[NN_pavgusb] = 1;             // Packed 8-bit Unsigned Integer Averaging
OptCategory[NN_pfadd] = 1;               // Packed Floating-Point Addition
OptCategory[NN_pfsub] = 1;               // Packed Floating-Point Subtraction
OptCategory[NN_pfsubr] = 1;              // Packed Floating-Point Reverse Subtraction
OptCategory[NN_pfacc] = 1;               // Packed Floating-Point Accumulate
OptCategory[NN_pfcmpge] = 1;             // Packed Floating-Point Comparison, Greater or Equal
OptCategory[NN_pfcmpgt] = 1;             // Packed Floating-Point Comparison, Greater
OptCategory[NN_pfcmpeq] = 1;             // Packed Floating-Point Comparison, Equal
OptCategory[NN_pfmin] = 1;               // Packed Floating-Point Minimum
OptCategory[NN_pfmax] = 1;               // Packed Floating-Point Maximum
OptCategory[NN_pi2fd] = 1;               // Packed 32-bit Integer to Floating-Point
OptCategory[NN_pf2id] = 1;               // Packed Floating-Point to 32-bit Integer
OptCategory[NN_pfrcp] = 1;               // Packed Floating-Point Reciprocal Approximation
OptCategory[NN_pfrsqrt] = 1;             // Packed Floating-Point Reciprocal Square Root Approximation
OptCategory[NN_pfmul] = 1;               // Packed Floating-Point Multiplication
OptCategory[NN_pfrcpit1] = 1;            // Packed Floating-Point Reciprocal First Iteration Step
OptCategory[NN_pfrsqit1] = 1;            // Packed Floating-Point Reciprocal Square Root First Iteration Step
OptCategory[NN_pfrcpit2] = 1;            // Packed Floating-Point Reciprocal Second Iteration Step
OptCategory[NN_pmulhrw] = 1;             // Packed Floating-Point 16-bit Integer Multiply with rounding
OptCategory[NN_femms] = 1;               // Faster entry/exit of the MMX or floating-point state
OptCategory[NN_prefetch] = 1;            // Prefetch at least a 32-byte line into L1 data cache
OptCategory[NN_prefetchw] = 1;           // Prefetch processor cache line into L1 data cache (mark as modified)


//      Pentium III instructions

OptCategory[NN_addps] = 1;               // Packed Single-FP Add
OptCategory[NN_addss] = 1;               // Scalar Single-FP Add
OptCategory[NN_andnps] = 1;              // Bitwise Logical And Not for Single-FP
OptCategory[NN_andps] = 1;               // Bitwise Logical And for Single-FP
OptCategory[NN_cmpps] = 1;               // Packed Single-FP Compare
OptCategory[NN_cmpss] = 1;               // Scalar Single-FP Compare
OptCategory[NN_comiss] = 1;              // Scalar Ordered Single-FP Compare and Set EFLAGS
OptCategory[NN_cvtpi2ps] = 1;            // Packed signed INT32 to Packed Single-FP conversion
OptCategory[NN_cvtps2pi] = 1;            // Packed Single-FP to Packed INT32 conversion
OptCategory[NN_cvtsi2ss] = 1;            // Scalar signed INT32 to Single-FP conversion
OptCategory[NN_cvtss2si] = 2;            // Scalar Single-FP to signed INT32 conversion
OptCategory[NN_cvttps2pi] = 1;           // Packed Single-FP to Packed INT32 conversion (truncate)
OptCategory[NN_cvttss2si] = 2;           // Scalar Single-FP to signed INT32 conversion (truncate)
OptCategory[NN_divps] = 1;               // Packed Single-FP Divide
OptCategory[NN_divss] = 1;               // Scalar Single-FP Divide
OptCategory[NN_ldmxcsr] = 1;             // Load Streaming SIMD Extensions Technology Control/Status Register
OptCategory[NN_maxps] = 1;               // Packed Single-FP Maximum
OptCategory[NN_maxss] = 1;               // Scalar Single-FP Maximum
OptCategory[NN_minps] = 1;               // Packed Single-FP Minimum
OptCategory[NN_minss] = 1;               // Scalar Single-FP Minimum
OptCategory[NN_movaps] = 9;              // Move Aligned Four Packed Single-FP  ** infer memsrc 'n'?
OptCategory[NN_movhlps] = 1;             // Move High to Low Packed Single-FP
OptCategory[NN_movhps] = 1;              // Move High Packed Single-FP
OptCategory[NN_movlhps] = 1;             // Move Low to High Packed Single-FP
OptCategory[NN_movlps] = 1;              // Move Low Packed Single-FP
OptCategory[NN_movmskps] = 1;            // Move Mask to Register
OptCategory[NN_movss] = 9;               // Move Scalar Single-FP
OptCategory[NN_movups] = 9;              // Move Unaligned Four Packed Single-FP
OptCategory[NN_mulps] = 1;               // Packed Single-FP Multiply
OptCategory[NN_mulss] = 1;               // Scalar Single-FP Multiply
OptCategory[NN_orps] = 1;                // Bitwise Logical OR for Single-FP Data
OptCategory[NN_rcpps] = 1;               // Packed Single-FP Reciprocal
OptCategory[NN_rcpss] = 1;               // Scalar Single-FP Reciprocal
OptCategory[NN_rsqrtps] = 1;             // Packed Single-FP Square Root Reciprocal
OptCategory[NN_rsqrtss] = 1;             // Scalar Single-FP Square Root Reciprocal
OptCategory[NN_shufps] = 1;              // Shuffle Single-FP
OptCategory[NN_sqrtps] = 1;              // Packed Single-FP Square Root
OptCategory[NN_sqrtss] = 1;              // Scalar Single-FP Square Root
OptCategory[NN_stmxcsr] = 0;             // Store Streaming SIMD Extensions Technology Control/Status Register    ** Infer dest is 'n'
OptCategory[NN_subps] = 1;               // Packed Single-FP Subtract
OptCategory[NN_subss] = 1;               // Scalar Single-FP Subtract
OptCategory[NN_ucomiss] = 1;             // Scalar Unordered Single-FP Compare and Set EFLAGS
OptCategory[NN_unpckhps] = 1;            // Unpack High Packed Single-FP Data
OptCategory[NN_unpcklps] = 1;            // Unpack Low Packed Single-FP Data
OptCategory[NN_xorps] = 1;               // Bitwise Logical XOR for Single-FP Data
OptCategory[NN_pavgb] = 1;               // Packed Average (Byte)
OptCategory[NN_pavgw] = 1;               // Packed Average (Word)
OptCategory[NN_pextrw] = 2;              // Extract Word
OptCategory[NN_pinsrw] = 1;              // Insert Word
OptCategory[NN_pmaxsw] = 1;              // Packed Signed Integer Word Maximum
OptCategory[NN_pmaxub] = 1;              // Packed Unsigned Integer Byte Maximum
OptCategory[NN_pminsw] = 1;              // Packed Signed Integer Word Minimum
OptCategory[NN_pminub] = 1;              // Packed Unsigned Integer Byte Minimum
OptCategory[NN_pmovmskb] = 1;            // Move Byte Mask to Integer
OptCategory[NN_pmulhuw] = 1;             // Packed Multiply High Unsigned
OptCategory[NN_psadbw] = 1;              // Packed Sum of Absolute Differences
OptCategory[NN_pshufw] = 1;              // Packed Shuffle Word
OptCategory[NN_maskmovq] = 0;            // Byte Mask write   ** Infer dest is 'n'
OptCategory[NN_movntps] = 0;             // Move Aligned Four Packed Single-FP Non Temporal  * infer dest is 'n'
OptCategory[NN_movntq] = 0;              // Move 64 Bits Non Temporal    ** Infer dest is 'n'
OptCategory[NN_prefetcht0] = 1;          // Prefetch to all cache levels
OptCategory[NN_prefetcht1] = 1;          // Prefetch to all cache levels
OptCategory[NN_prefetcht2] = 1;          // Prefetch to L2 cache
OptCategory[NN_prefetchnta] = 1;         // Prefetch to L1 cache
OptCategory[NN_sfence] = 1;              // Store Fence

// Pentium III Pseudo instructions

OptCategory[NN_cmpeqps] = 1;             // Packed Single-FP Compare EQ
OptCategory[NN_cmpltps] = 1;             // Packed Single-FP Compare LT
OptCategory[NN_cmpleps] = 1;             // Packed Single-FP Compare LE
OptCategory[NN_cmpunordps] = 1;          // Packed Single-FP Compare UNORD
OptCategory[NN_cmpneqps] = 1;            // Packed Single-FP Compare NOT EQ
OptCategory[NN_cmpnltps] = 1;            // Packed Single-FP Compare NOT LT
OptCategory[NN_cmpnleps] = 1;            // Packed Single-FP Compare NOT LE
OptCategory[NN_cmpordps] = 1;            // Packed Single-FP Compare ORDERED
OptCategory[NN_cmpeqss] = 1;             // Scalar Single-FP Compare EQ
OptCategory[NN_cmpltss] = 1;             // Scalar Single-FP Compare LT
OptCategory[NN_cmpless] = 1;             // Scalar Single-FP Compare LE
OptCategory[NN_cmpunordss] = 1;          // Scalar Single-FP Compare UNORD
OptCategory[NN_cmpneqss] = 1;            // Scalar Single-FP Compare NOT EQ
OptCategory[NN_cmpnltss] = 1;            // Scalar Single-FP Compare NOT LT
OptCategory[NN_cmpnless] = 1;            // Scalar Single-FP Compare NOT LE
OptCategory[NN_cmpordss] = 1;            // Scalar Single-FP Compare ORDERED

// AMD K7 instructions

// Revisit AMD if we port to it.
OptCategory[NN_pf2iw] = 0;               // Packed Floating-Point to Integer with Sign Extend
OptCategory[NN_pfnacc] = 0;              // Packed Floating-Point Negative Accumulate
OptCategory[NN_pfpnacc] = 0;             // Packed Floating-Point Mixed Positive-Negative Accumulate
OptCategory[NN_pi2fw] = 0;               // Packed 16-bit Integer to Floating-Point
OptCategory[NN_pswapd] = 0;              // Packed Swap Double Word

// Undocumented FP instructions (thanks to norbert.juffa@adm.com)

OptCategory[NN_fstp1] = 9;               // Alias of Store Real and Pop
OptCategory[NN_fcom2] = 1;               // Alias of Compare Real
OptCategory[NN_fcomp3] = 1;              // Alias of Compare Real and Pop
OptCategory[NN_fxch4] = 1;               // Alias of Exchange Registers
OptCategory[NN_fcomp5] = 1;              // Alias of Compare Real and Pop
OptCategory[NN_ffreep] = 1;              // Free Register and Pop
OptCategory[NN_fxch7] = 1;               // Alias of Exchange Registers
OptCategory[NN_fstp8] = 9;               // Alias of Store Real and Pop
OptCategory[NN_fstp9] = 9;               // Alias of Store Real and Pop

// Pentium 4 instructions

OptCategory[NN_addpd] = 1;               // Add Packed Double-Precision Floating-Point Values
OptCategory[NN_addsd] = 1;               // Add Scalar Double-Precision Floating-Point Values
OptCategory[NN_andnpd] = 1;              // Bitwise Logical AND NOT of Packed Double-Precision Floating-Point Values
OptCategory[NN_andpd] = 1;               // Bitwise Logical AND of Packed Double-Precision Floating-Point Values
OptCategory[NN_clflush] = 1;             // Flush Cache Line
OptCategory[NN_cmppd] = 1;               // Compare Packed Double-Precision Floating-Point Values
OptCategory[NN_cmpsd] = 1;               // Compare Scalar Double-Precision Floating-Point Values
OptCategory[NN_comisd] = 1;              // Compare Scalar Ordered Double-Precision Floating-Point Values and Set EFLAGS
OptCategory[NN_cvtdq2pd] = 1;            // Convert Packed Doubleword Integers to Packed Single-Precision Floating-Point Values
OptCategory[NN_cvtdq2ps] = 1;            // Convert Packed Doubleword Integers to Packed Double-Precision Floating-Point Values
OptCategory[NN_cvtpd2dq] = 1;            // Convert Packed Double-Precision Floating-Point Values to Packed Doubleword Integers
OptCategory[NN_cvtpd2pi] = 1;            // Convert Packed Double-Precision Floating-Point Values to Packed Doubleword Integers
OptCategory[NN_cvtpd2ps] = 1;            // Convert Packed Double-Precision Floating-Point Values to Packed Single-Precision Floating-Point Values
OptCategory[NN_cvtpi2pd] = 1;            // Convert Packed Doubleword Integers to Packed Double-Precision Floating-Point Values
OptCategory[NN_cvtps2dq] = 1;            // Convert Packed Single-Precision Floating-Point Values to Packed Doubleword Integers
OptCategory[NN_cvtps2pd] = 1;            // Convert Packed Single-Precision Floating-Point Values to Packed Double-Precision Floating-Point Values
OptCategory[NN_cvtsd2si] = 2;            // Convert Scalar Double-Precision Floating-Point Value to Doubleword Integer
OptCategory[NN_cvtsd2ss] = 1;            // Convert Scalar Double-Precision Floating-Point Value to Scalar Single-Precision Floating-Point Value
OptCategory[NN_cvtsi2sd] = 1;            // Convert Doubleword Integer to Scalar Double-Precision Floating-Point Value
OptCategory[NN_cvtss2sd] = 1;            // Convert Scalar Single-Precision Floating-Point Value to Scalar Double-Precision Floating-Point Value
OptCategory[NN_cvttpd2dq] = 1;           // Convert With Truncation Packed Double-Precision Floating-Point Values to Packed Doubleword Integers
OptCategory[NN_cvttpd2pi] = 1;           // Convert with Truncation Packed Double-Precision Floating-Point Values to Packed Doubleword Integers
OptCategory[NN_cvttps2dq] = 1;           // Convert With Truncation Packed Single-Precision Floating-Point Values to Packed Doubleword Integers
OptCategory[NN_cvttsd2si] = 2;           // Convert with Truncation Scalar Double-Precision Floating-Point Value to Doubleword Integer
OptCategory[NN_divpd] = 1;               // Divide Packed Double-Precision Floating-Point Values
OptCategory[NN_divsd] = 1;               // Divide Scalar Double-Precision Floating-Point Values
OptCategory[NN_lfence] = 1;              // Load Fence
OptCategory[NN_maskmovdqu] = 0;          // Store Selected Bytes of Double Quadword  ** Infer dest is 'n'
OptCategory[NN_maxpd] = 1;               // Return Maximum Packed Double-Precision Floating-Point Values
OptCategory[NN_maxsd] = 1;               // Return Maximum Scalar Double-Precision Floating-Point Value
OptCategory[NN_mfence] = 1;              // Memory Fence
OptCategory[NN_minpd] = 1;               // Return Minimum Packed Double-Precision Floating-Point Values
OptCategory[NN_minsd] = 1;               // Return Minimum Scalar Double-Precision Floating-Point Value
OptCategory[NN_movapd] = 9;              // Move Aligned Packed Double-Precision Floating-Point Values  ** Infer dest is 'n'
OptCategory[NN_movdq2q] = 1;             // Move Quadword from XMM to MMX Register
OptCategory[NN_movdqa] = 9;              // Move Aligned Double Quadword  ** Infer dest is 'n'
OptCategory[NN_movdqu] = 9;              // Move Unaligned Double Quadword  ** Infer dest is 'n'
OptCategory[NN_movhpd] = 9;              // Move High Packed Double-Precision Floating-Point Values  ** Infer dest is 'n'
OptCategory[NN_movlpd] = 9;              // Move Low Packed Double-Precision Floating-Point Values  ** Infer dest is 'n'
OptCategory[NN_movmskpd] = 2;            // Extract Packed Double-Precision Floating-Point Sign Mask
OptCategory[NN_movntdq] = 0;             // Store Double Quadword Using Non-Temporal Hint
OptCategory[NN_movnti] = 0;              // Store Doubleword Using Non-Temporal Hint
OptCategory[NN_movntpd] = 0;             // Store Packed Double-Precision Floating-Point Values Using Non-Temporal Hint
OptCategory[NN_movq2dq] = 1;             // Move Quadword from MMX to XMM Register
OptCategory[NN_movsd] = 9;               // Move Scalar Double-Precision Floating-Point Values
OptCategory[NN_movupd] = 9;              // Move Unaligned Packed Double-Precision Floating-Point Values
OptCategory[NN_mulpd] = 1;               // Multiply Packed Double-Precision Floating-Point Values
OptCategory[NN_mulsd] = 1;               // Multiply Scalar Double-Precision Floating-Point Values
OptCategory[NN_orpd] = 1;                // Bitwise Logical OR of Double-Precision Floating-Point Values
OptCategory[NN_paddq] = 1;               // Add Packed Quadword Integers
OptCategory[NN_pause] = 1;               // Spin Loop Hint
OptCategory[NN_pmuludq] = 1;             // Multiply Packed Unsigned Doubleword Integers
OptCategory[NN_pshufd] = 1;              // Shuffle Packed Doublewords
OptCategory[NN_pshufhw] = 1;             // Shuffle Packed High Words
OptCategory[NN_pshuflw] = 1;             // Shuffle Packed Low Words
OptCategory[NN_pslldq] = 1;              // Shift Double Quadword Left Logical
OptCategory[NN_psrldq] = 1;              // Shift Double Quadword Right Logical
OptCategory[NN_psubq] = 1;               // Subtract Packed Quadword Integers
OptCategory[NN_punpckhqdq] = 1;          // Unpack High Data
OptCategory[NN_punpcklqdq] = 1;          // Unpack Low Data
OptCategory[NN_shufpd] = 1;              // Shuffle Packed Double-Precision Floating-Point Values
OptCategory[NN_sqrtpd] = 1;              // Compute Square Roots of Packed Double-Precision Floating-Point Values
OptCategory[NN_sqrtsd] = 1;              // Compute Square Rootof Scalar Double-Precision Floating-Point Value
OptCategory[NN_subpd] = 1;               // Subtract Packed Double-Precision Floating-Point Values
OptCategory[NN_subsd] = 1;               // Subtract Scalar Double-Precision Floating-Point Values
OptCategory[NN_ucomisd] = 1;             // Unordered Compare Scalar Ordered Double-Precision Floating-Point Values and Set EFLAGS
OptCategory[NN_unpckhpd] = 1;            // Unpack and Interleave High Packed Double-Precision Floating-Point Values
OptCategory[NN_unpcklpd] = 1;            // Unpack and Interleave Low Packed Double-Precision Floating-Point Values
OptCategory[NN_xorpd] = 1;               // Bitwise Logical OR of Double-Precision Floating-Point Values


// AMD syscall/sysret instructions  NOTE: not AMD, found in Intel manual

OptCategory[NN_syscall] = 1;             // Low latency system call
OptCategory[NN_sysret] = 1;              // Return from system call

// AMD64 instructions    NOTE: not AMD, found in Intel manual

OptCategory[NN_swapgs] = 1;              // Exchange GS base with KernelGSBase MSR

// New Pentium instructions (SSE3)

OptCategory[NN_movddup] = 9;             // Move One Double-FP and Duplicate
OptCategory[NN_movshdup] = 9;            // Move Packed Single-FP High and Duplicate
OptCategory[NN_movsldup] = 9;            // Move Packed Single-FP Low and Duplicate

// Missing AMD64 instructions  NOTE: also found in Intel manual

OptCategory[NN_movsxd] = 2;              // Move with Sign-Extend Doubleword
OptCategory[NN_cmpxchg16b] = 0;          // Compare and Exchange 16 Bytes

// SSE3 instructions

OptCategory[NN_addsubpd] = 1;            // Add /Sub packed DP FP numbers
OptCategory[NN_addsubps] = 1;            // Add /Sub packed SP FP numbers
OptCategory[NN_haddpd] = 1;              // Add horizontally packed DP FP numbers
OptCategory[NN_haddps] = 1;              // Add horizontally packed SP FP numbers
OptCategory[NN_hsubpd] = 1;              // Sub horizontally packed DP FP numbers
OptCategory[NN_hsubps] = 1;              // Sub horizontally packed SP FP numbers
OptCategory[NN_monitor] = 1;             // Set up a linear address range to be monitored by hardware
OptCategory[NN_mwait] = 1;               // Wait until write-back store performed within the range specified by the MONITOR instruction
OptCategory[NN_fisttp] = 0;              // Store ST in intXX (chop) and pop
OptCategory[NN_lddqu] = 1;               // Load unaligned integer 128-bit

// SSSE3 instructions

OptCategory[NN_psignb] = 1;              // Packed SIGN Byte
OptCategory[NN_psignw] = 1;              // Packed SIGN Word
OptCategory[NN_psignd] = 1;              // Packed SIGN Doubleword
OptCategory[NN_pshufb] = 1;              // Packed Shuffle Bytes
OptCategory[NN_pmulhrsw] = 1;            // Packed Multiply High with Round and Scale
OptCategory[NN_pmaddubsw] = 1;           // Multiply and Add Packed Signed and Unsigned Bytes
OptCategory[NN_phsubsw] = 1;             // Packed Horizontal Subtract and Saturate
OptCategory[NN_phaddsw] = 1;             // Packed Horizontal Add and Saturate
OptCategory[NN_phaddw] = 1;              // Packed Horizontal Add Word
OptCategory[NN_phaddd] = 1;              // Packed Horizontal Add Doubleword
OptCategory[NN_phsubw] = 1;              // Packed Horizontal Subtract Word
OptCategory[NN_phsubd] = 1;              // Packed Horizontal Subtract Doubleword
OptCategory[NN_palignr] = 1;             // Packed Align Right
OptCategory[NN_pabsb] = 1;               // Packed Absolute Value Byte
OptCategory[NN_pabsw] = 1;               // Packed Absolute Value Word
OptCategory[NN_pabsd] = 1;               // Packed Absolute Value Doubleword

// VMX instructions

OptCategory[NN_vmcall] = 1;              // Call to VM Monitor
OptCategory[NN_vmclear] = 0;             // Clear Virtual Machine Control Structure
OptCategory[NN_vmlaunch] = 1;            // Launch Virtual Machine
OptCategory[NN_vmresume] = 1;            // Resume Virtual Machine
OptCategory[NN_vmptrld] = 6;             // Load Pointer to Virtual Machine Control Structure
OptCategory[NN_vmptrst] = 0;             // Store Pointer to Virtual Machine Control Structure
OptCategory[NN_vmread] = 0;              // Read Field from Virtual Machine Control Structure
OptCategory[NN_vmwrite] = 0;             // Write Field from Virtual Machine Control Structure
OptCategory[NN_vmxoff] = 1;              // Leave VMX Operation
OptCategory[NN_vmxon] = 1;               // Enter VMX Operation

#if 599 < IDA_SDK_VERSION

OptCategory[NN_ud2] = 1;                 // Undefined Instruction

// Added with x86-64

OptCategory[NN_rdtscp] = 10;             // Read Time-Stamp Counter and Processor ID

// Geode LX 3DNow! extensions

OptCategory[NN_pfrcpv] = 1;              // Reciprocal Approximation for a Pair of 32-bit Floats
OptCategory[NN_pfrsqrtv] = 1;            // Reciprocal Square Root Approximation for a Pair of 32-bit Floats

// SSE2 pseudoinstructions

OptCategory[NN_cmpeqpd] = 1;             // Packed Double-FP Compare EQ
OptCategory[NN_cmpltpd] = 1;             // Packed Double-FP Compare LT
OptCategory[NN_cmplepd] = 1;             // Packed Double-FP Compare LE
OptCategory[NN_cmpunordpd] = 1;          // Packed Double-FP Compare UNORD
OptCategory[NN_cmpneqpd] = 1;            // Packed Double-FP Compare NOT EQ
OptCategory[NN_cmpnltpd] = 1;            // Packed Double-FP Compare NOT LT
OptCategory[NN_cmpnlepd] = 1;            // Packed Double-FP Compare NOT LE
OptCategory[NN_cmpordpd] = 1;            // Packed Double-FP Compare ORDERED
OptCategory[NN_cmpeqsd] = 1;             // Scalar Double-FP Compare EQ
OptCategory[NN_cmpltsd] = 1;             // Scalar Double-FP Compare LT
OptCategory[NN_cmplesd] = 1;             // Scalar Double-FP Compare LE
OptCategory[NN_cmpunordsd] = 1;          // Scalar Double-FP Compare UNORD
OptCategory[NN_cmpneqsd] = 1;            // Scalar Double-FP Compare NOT EQ
OptCategory[NN_cmpnltsd] = 1;            // Scalar Double-FP Compare NOT LT
OptCategory[NN_cmpnlesd] = 1;            // Scalar Double-FP Compare NOT LE
OptCategory[NN_cmpordsd] = 1;            // Scalar Double-FP Compare ORDERED

// SSSE4.1 instructions

OptCategory[NN_blendpd] = 1;              // Blend Packed Double Precision Floating-Point Values
OptCategory[NN_blendps] = 1;              // Blend Packed Single Precision Floating-Point Values
OptCategory[NN_blendvpd] = 1;             // Variable Blend Packed Double Precision Floating-Point Values
OptCategory[NN_blendvps] = 1;             // Variable Blend Packed Single Precision Floating-Point Values
OptCategory[NN_dppd] = 1;                 // Dot Product of Packed Double Precision Floating-Point Values
OptCategory[NN_dpps] = 1;                 // Dot Product of Packed Single Precision Floating-Point Values
OptCategory[NN_extractps] = 2;            // Extract Packed Single Precision Floating-Point Value
OptCategory[NN_insertps] = 1;             // Insert Packed Single Precision Floating-Point Value