Newer
Older
// where the ESP-8 refers to the value of ESP upon entry to the function, not its current value.
// This normalization makes each stack location uniquely named (no aliases at different code locations due
// to different values of ESP at different code locations).
CurrBlock->AddVarKill(DefOp);
CurrBlock->UpdateDownExposedDefs(DefOp, InstAddr);
clc5q
committed
}
}
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
}
if (SavedDeltaHasNewValue) {
IncomingDelta = SavedDelta; // from restore instruction
}
else {
CurrentDelta = CurrInst->AnalyzeStackPointerDelta(IncomingDelta, this->GetFramePtrStackDelta());
if (SMP_STACK_POINTER_BITWISE_AND_CODE == CurrentDelta) {
// For now, we ignore instructions that AND a constant into the stack pointer.
CurrentDelta = 0;
SMP_msg("WARNING: Stack pointer bitwise AND ignored at %x\n", CurrInst->GetAddr());
}
else if (SMP_STACK_DELTA_ERROR_CODE == CurrentDelta) {
this->AnalyzedSP = false;
SMP_msg("ERROR: Stack delta unanalyzeable at %x\n", InstAddr);
WorkList.clear();
break;
}
SMPitype FlowType = CurrInst->GetDataFlowType();
// Search for tail calls, defined strictly as having an incoming stack delta of zero and
// being jumps to far chunks.
if ((0 == IncomingDelta) && (CurrInst->IsBranchToFarChunk())) {
CurrInst->SetTailCall();
SMP_msg("Found tail call at %x from %s: %s\n", InstAddr, this->GetFuncName(),
CurrInst->GetDisasm());
}
IncomingDelta += CurrentDelta;
if ((RETURN == FlowType) && (!CurrInst->IsCondTailCall())) {
// We hope to see a consistent outgoing delta from all RETURN points.
// We special-case the conditional jump used as tail call, because it must be followed
// by a real return instruction later. If the jump is taken, it acts as a return, but
// it has not yet popped the stack.
if (ReturnSeen) { // This is not the first RETURN seen.
if (IncomingDelta != this->NetStackDelta) { // Inconsistent
SMP_msg("ERROR: Inconsistent stack deltas at return instruction at %x\n", CurrInst->GetAddr());
ConsistentNetDelta = false;
this->AnalyzedSP = false;
WorkList.clear();
break;
}
}
else { // First RETURN statement seen.
ReturnSeen = true;
this->NetStackDelta = IncomingDelta;
#if SMP_AUDIT_STACK_POINTER_DELTAS
if (0 != IncomingDelta) {
SMP_msg("WARNING: Stack delta not zero after return instruction at %x\n", CurrInst->GetAddr());
}
#endif
clc5q
committed
}
}
} // end if (SavedDeltaHasNewValue) ... else ...
} // end for each instruction in WorkList block
if (!ReprocessingAllocaBlocks) {
ReachesOutChanged = CurrBlock->ComputeReachesOutSet();
// Push the successor blocks onto the work list if anything changed
clc5q
committed
if (this->AnalyzedSP) { // if we do not have an error already
CurrBlock->SetOutgoingStackDelta(IncomingDelta); // record incoming delta for all successors
if (ReachesOutChanged || (!ReprocessingAllocaBlocks)) { // if anything changed (deltas or reaching defs ReachOut set)
list<SMPBasicBlock *>::iterator SuccIter;
for (SuccIter = CurrBlock->GetFirstSucc(); SuccIter != CurrBlock->GetLastSucc(); ++SuccIter) {
pair<SMPBasicBlock *, sval_t> SuccPair (*SuccIter, IncomingDelta);
WorkList.push_back(SuccPair);
}
clc5q
committed
}
} // end if block already processed ... else ...
ReprocessingAllocaBlocks = false; // reset to default before processing next worklist element
} while (!WorkList.empty());
clc5q
committed
this->STARSStackPtrAnalysisPerformed = true;
if (this->AnalyzedSP && (CALLING_CONVENTION_DEFAULT_FUNCTION_STACK_DELTA != this->NetStackDelta)) {
SMP_msg("WARNING: Non-default stack ptr delta %d for function: %s\n", this->NetStackDelta, this->GetFuncName());
}
if (IDAProSucceeded) {
if (!this->AnalyzedSP) {
SMP_msg("ERROR: Stack Ptr Delta Analysis succeeded in IDA, failed in STARS for %x : %s\n", this->FirstEA,
this->GetFuncName());
}
}
else {
if (this->AnalyzedSP) {
SMP_msg("SUCCESS: Stack Ptr Delta Analysis failed in IDA, succeeded in STARS for %x : %s\n", this->FirstEA,
this->GetFuncName());
}
}
return this->AnalyzedSP;
} // end of SMPFunction::AnalyzeStackPointerDeltas()
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
// Insert the arguments into the StackPtrCopySet; or, if a matching entry already exists
// with a StackDelta of greater magnitude than StackDelta, update just the StackDelta.
// Return true if StackDelta was inserted, false if it was used to update an old entry.
bool SMPFunction::AddToStackPtrCopySet(op_t CopyOp, ea_t InstAddr, sval_t StackDelta) {
bool NewInsertion;
pair<ea_t, sval_t> InsertStackDefn(InstAddr, StackDelta);
pair<op_t, pair<ea_t, sval_t> > InsertStackDefnOp(CopyOp, InsertStackDefn);
set<pair<op_t, pair<ea_t, sval_t> >, LessStackDeltaCopy>::iterator FindIter;
pair<set<pair<op_t, pair<ea_t, sval_t> >, LessStackDeltaCopy>::iterator, bool> InsertResult;
FindIter = this->StackPtrCopySet.find(InsertStackDefnOp);
if (FindIter == this->StackPtrCopySet.end()) {
// Not already present; insert new triple.
NewInsertion = true;
InsertResult = this->StackPtrCopySet.insert(InsertStackDefnOp);
assert(InsertResult.second);
}
else {
// Already there; see if delta needs to be updated.
NewInsertion = false;
pair<op_t, pair<ea_t, sval_t> > OldStackDefnOp(*FindIter);
// Favor a smaller stack frame for the alloca-calling functions, e.g. favor -24 over -32 as a delta.
if (StackDelta > OldStackDefnOp.second.second) {
// Replace the old entry with a new one.
this->StackPtrCopySet.erase(FindIter);
InsertResult = this->StackPtrCopySet.insert(InsertStackDefnOp);
assert(InsertResult.second);
}
}
return NewInsertion;
} // end of SMPFunction::AddToStackPtrCopySet()
clc5q
committed
void SMPFunction::FindAllAllocsAndDeallocs(void) {
bool FoundAllocInstr = false;
bool FoundDeallocInstr = false;
clc5q
committed
DebugFlag |= (0 == strcmp("frame_dummy", this->GetFuncName()));
#endif
// Now, if LocalVarsSize is not zero, we need to find the instruction
// in the function prologue that allocates space on the stack for
// local vars. This code could be made more robust in the future
// by matching LocalVarsSize to the immediate value in the allocation
// instruction. However, IDA Pro is sometimes a little off on this
// number. **!!**
if (0 < this->LocalVarsSize) {
clc5q
committed
if (DebugFlag) SMP_msg("Searching for alloc and dealloc\n");
list<SMPInstr *>::iterator InstIter = this->Instrs.begin();
#if SMP_USE_SSA_FNOP_MARKER
++InstIter; // skip marker instruction
for ( ; InstIter != this->Instrs.end(); ++InstIter) {
SMPInstr *CurrInst = (*InstIter);
ea_t addr = CurrInst->GetAddr();
// Keep the most recent instruction in the DeallocInstr
// in case we reach the return without seeing a dealloc.
if (!FoundDeallocInstr) {
this->LocalVarsDeallocInstr = addr;
}
if (!FoundAllocInstr
&& CurrInst->MDIsFrameAllocInstr()) {
#if SMP_DEBUG_CONTROLFLOW
clc5q
committed
SMP_msg("Returned from MDIsFrameAllocInstr()\n");
this->LocalVarsAllocInstr = addr;
FoundAllocInstr = true;
clc5q
committed
if (DebugFlag) SMP_msg("Found alloc: %s\n", CurrInst->GetDisasm());
// As soon as we have found the local vars allocation,
// we can try to fix incorrect sets of UseFP by IDA.
// NOTE: We might want to extend this in the future to
// handle functions that have no locals. **!!**
bool FixedUseFP = MDFixUseFP();
#if SMP_DEBUG_CONTROLFLOW
clc5q
committed
SMP_msg("Returned from MDFixUseFP()\n");
#if SMP_DEBUG_FRAMEFIXUP
if (FixedUseFP) {
clc5q
committed
SMP_msg("Fixed UseFP in %s\n", this->GetFuncName());
}
#endif
}
else if (FoundAllocInstr) {
// We can now start searching for the DeallocInstr.
if (CurrInst->MDIsFrameDeallocInstr(UseFP, this->LocalVarsSize)) {
// Keep saving the most recent addr that looks
// like the DeallocInstr until we reach the
// end of the function. Last one to look like
// it is used as the DeallocInstr.
#if SMP_DEBUG_CONTROLFLOW
clc5q
committed
SMP_msg("Returned from MDIsFrameDeallocInstr()\n");
this->LocalVarsDeallocInstr = addr;
FoundDeallocInstr = true;
}
clc5q
committed
if (DebugFlag) SMP_msg("Not dealloc: %s\n", CurrInst->GetDisasm());
} // end for (list<SMPInstr *>::iterator InstIter ... )
if (!FoundAllocInstr) {
// Could not find the frame allocating instruction. Bad.
// See if we can find the point at which the stack allocation reaches
// a total of FuncInfo.frsize+frregs, regardless of whether it happened by push
// instructions or some other means.
this->LocalVarsAllocInstr = this->FindAllocPoint(this->FuncInfo.frsize + this->FuncInfo.frregs);
#if SMP_DEBUG_CONTROLFLOW
clc5q
committed
SMP_msg("Returned from FindAllocPoint()\n");
#if SMP_DEBUG_FRAMEFIXUP
if (BADADDR == this->LocalVarsAllocInstr) {
clc5q
committed
SMP_msg("ERROR: Could not find stack frame allocation in %s\n",
clc5q
committed
SMP_msg("LocalVarsSize: %d SavedRegsSize: %d ArgsSize: %d\n",
LocalVarsSize, CalleeSavedRegsSize, IncomingArgsSize);
}
else {
clc5q
committed
SMP_msg("FindAllocPoint found %x for function %s\n",
this->LocalVarsAllocInstr, this->GetFuncName());
}
#endif
}
if (!FoundDeallocInstr) {
// Could not find the frame deallocating instruction. Bad.
// Emit diagnostic and use the last instruction in the
// function.
clc5q
committed
SMP_msg("ERROR: Could not find stack frame deallocation in %s\n",
}
#endif
}
// else LocalVarsSize was zero, meaning that we need to search
// for the end of the function prologue code and emit stack frame
// annotations from that address (i.e. this method returns that
// address). We will approximate this by finding the end of the
// sequence of PUSH instructions at the beginning of the function.
// The last PUSH instruction should be the last callee-save-reg
// instruction. We can make this more robust in the future by
// making sure that we do not count a PUSH of anything other than
// a register. **!!**
// NOTE: 2nd prologue instr is usually mov ebp,esp
// THE ASSUMPTION THAT WE HAVE ONLY PUSH INSTRUCTIONS BEFORE
// THE ALLOCATING INSTR IS ONLY TRUE WHEN LOCALVARSSIZE == 0;
else {
ea_t SaveAddr = this->FuncInfo.startEA;
list<SMPInstr *>::iterator InstIter = this->Instrs.begin();
#if SMP_USE_SSA_FNOP_MARKER
++InstIter; // skip marker instruction
for ( ; InstIter != this->Instrs.end(); ++InstIter) {
SMPInstr *CurrInst = (*InstIter);
insn_t CurrCmd = CurrInst->GetCmd();
ea_t addr = CurrInst->GetAddr();
if (CurrCmd.itype == NN_push)
SaveAddr = addr;
else
break;
}
this->LocalVarsAllocInstr = SaveAddr;
this->LocalVarsDeallocInstr = 0;
} // end if (LocalVarsSize > 0) ... else ...
clc5q
committed
return;
} // end of SMPFunction::FindAllAllocsAndDeallocs()
// Figure out the different regions of the stack frame, and find the
// instructions that allocate and deallocate the local variables space
// on the stack frame.
// The stack frame info will be used to emit stack
// annotations when Analyze() reaches the stack allocation
// instruction that sets aside space for local vars.
// Set the address of the instruction at which these
// annotations should be emitted. This should normally
// be an instruction such as: sub esp,48
// However, for a function with no local variables at all,
// we will need to determine which instruction should be
// considered to be the final instruction of the function
// prologue and return its address.
// Likewise, we find the stack deallocating instruction in
// the function epilogue.
void SMPFunction::SetStackFrameInfo(void) {
for (list<SMPInstr *>::iterator InstIter = this->Instrs.begin(); InstIter != this->Instrs.end(); ++InstIter) {
// We can finally search for stack loads now that UseFP has been fixed by
// MDFixUseFP(). Otherwise, we would do this in SMPInstr::Analyze(),
// but the UseFP flag is not ready that early.
(*InstIter)->MDFindLoadFromStack(this->UseFP);
// Fix up machine dependent quirks in the def and use lists.
// This used to be called from within SMPInstr.Analyze(), but info such as UseFP
// is not available that early.
(*InstIter)->MDFixupDefUseLists();
#if SMP_COMPUTE_STACK_GRANULARITY
// Now, find the boundaries between local variables.
this->BuildLocalVarTable();
#endif
// Get callee-saved regs info for remediation use.
clc5q
committed
if (BADADDR != this->GetFirstFrameAllocInstAddr()) {
this->MDFindSavedRegs();
}
return;
} // end of SMPFunction::SetStackFrameInfo()
// IDA Pro defines the sizes of regions in the stack frame in a way
// that suits its purposes but not ours. The frsize field of the func_info_t
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
// structure measures the distance between the stack pointer and the
// frame pointer (ESP and EBP in the x86). This region includes some
// of the callee-saved registers. So, the frregs field only includes
// the callee-saved registers that are above the frame pointer.
// x86 standard prologue on gcc/linux:
// push ebp ; save old frame pointer
// mov ebp,esp ; new frame pointer = current stack pointer
// push esi ; callee save reg
// push edi ; callee save reg
// sub esp,34h ; allocate 52 bytes for local variables
//
// Notice that EBP acquires its final frame pointer value AFTER the
// old EBP has been pushed. This means that, of the three callee saved
// registers, one is above where EBP points and two are below.
// IDA Pro is concerned with generating readable addressing expressions
// for items on the stack. None of the callee-saved regs will ever
// be addressed in the function; they will be dormant until they are popped
// off the stack in the function epilogue. In order to create readable
// disassembled code, IDA defines named constant offsets for locals. These
// offsets are negative values (x86 stack grows downward from EBP toward
// ESP). When ESP_relative addressing occurs, IDA converts a statement:
// mov eax,[esp+12]
// into the statement:
// mov eax,[esp+3Ch+var_30]
// Here, 3Ch == 60 decimal is the distance between ESP and EBP, and
// var_30 is defined to have the value -30h == -48 decimal. So, the
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
// "frame size" in IDA Pro is 60 bytes, and a certain local can be
// addressed in ESP-relative manner as shown, or as [ebp+var_30] for
// EBP-relative addressing. The interactive IDA user can then edit
// the name var_30 to something mnemonic, such as "virus_size", and IDA
// will replace all occurrences with the new name, so that code references
// automatically become [ebp+virus_size]. As the user proceeds
// interactively, he eventually produces very understandable code.
// This all makes sense for producing readable assembly text. However,
// our analyses have a compiler perspective as well as a memory access
// defense perspective. SMP distinguishes between callee saved regs,
// which should not be overwritten in the function body, and local
// variables, which can be written. We view the stack frame in logical
// pieces: here are the saved regs, here are the locals, here is the
// return address, etc. We don't care which direction from EBP the
// callee-saved registers lie; we don't want to lump them in with the
// local variables. We also don't like the fact that IDA Pro will take
// the function prologue code shown above and declare frregs=4 and
// frsize=60, because frsize no longer matches the stack allocation
// statement sub esp,34h == sub esp,52. We prefer frsize=52 and frregs=12.
// So, the task of this function is to fix these stack sizes in our
// private data members for the function, while leaving the IDA database
// alone because IDA needs to maintain its own definitions of these
// variables.
// Fixing means we will update the data members LocalVarsSize and
// CalleeSavedRegsSize.
// NOTE: This function is both machine dependent and platform dependent.
// The prologue and epilogue code generated by gcc-linux is as discussed
// above, while on Visual Studio and other Windows x86 compilers, the
// saving of registers other than EBP happens AFTER local stack allocation.
// A Windows version of the function would expect to see the pushing
// of ESI and EDI AFTER the sub esp,34h statement.
bool SMPFunction::MDFixFrameInfo(void) {
int SavedRegsSize = 0;
int OtherPushesSize = 0; // besides callee-saved regs
int NewLocalsSize = 0;
int OldFrameTotal = this->CalleeSavedRegsSize + this->LocalVarsSize;
bool Changed = false;
bool DebugFlag = (0 == strcmp("__libc_csu_init", this->GetFuncName()));
// Iterate through the first basic block in the function. If we find
// a frame allocating Instr in it, then we have local vars. If not,
// we don't, and LocalVarsSize should have been zero. Count the callee
// register saves leading up to the local allocation. Set data members
// according to what we found if the values of the data members would
// change.
SMPBasicBlock *CurrBlock = this->Blocks.front();
list<SMPInstr *>::iterator CurrIter = CurrBlock->GetFirstInstr();
#if SMP_USE_SSA_FNOP_MARKER
++CurrIter; // skip marker instruction
for ( ; CurrIter != CurrBlock->GetLastInstr(); ++CurrIter) {
SMPInstr *CurrInstr = (*CurrIter);
if (CurrInstr->MDIsPushInstr()) {
// We will make the gcc-linux assumption that a PUSH in
// the first basic block, prior to the stack allocating
// instruction, is a callee register save. To make this
// more robust, we ensure that the register is from
// the callee saved group of registers, and that it has
// not been defined thus far in the function (else it might
// be a push of an outgoing argument to a call that happens
// in the first block when there are no locals). **!!!!**
if (CurrInstr->MDUsesCalleeSavedReg()
&& !CurrInstr->HasSourceMemoryOperand()) {
SavedRegsSize += 4; // **!!** should check the size
clc5q
committed
if (DebugFlag) SMP_msg("libc_csu_init SavedRegsSize: %d %s\n", SavedRegsSize,
}
else {
// Pushes of outgoing args can be scheduled so that
// they are mixed with the pushes of callee saved regs.
OtherPushesSize += 4;
clc5q
committed
if (DebugFlag) SMP_msg("libc_csu_init OtherPushesSize: %d %s\n", OtherPushesSize,
}
}
else if (CurrInstr->MDIsFrameAllocInstr()) {
clc5q
committed
if (DebugFlag) SMP_msg("libc_csu_init allocinstr: %s\n", CurrInstr->GetDisasm());
SavedRegsSize += OtherPushesSize;
// Get the size being allocated.
set<DefOrUse, LessDefUse>::iterator CurrUse;
for (CurrUse = CurrInstr->GetFirstUse(); CurrUse != CurrInstr->GetLastUse(); ++CurrUse) {
// Find the immediate operand.
if (o_imm == CurrUse->GetOp().type) {
// Get its value into LocalVarsSize.
long AllocValue = (signed long) CurrUse->GetOp().value;
// One compiler might have sub esp,24 and another
// might have add esp,-24. Take the absolute value.
if (0 > AllocValue)
AllocValue = -AllocValue;
if (AllocValue != (long) this->LocalVarsSize) {
Changed = true;
#if SMP_DEBUG_FRAMEFIXUP
if (AllocValue + SavedRegsSize != OldFrameTotal)
clc5q
committed
SMP_msg("Total frame size changed: %s\n", this->GetFuncName());
#endif
this->LocalVarsSize = (asize_t) AllocValue;
this->CalleeSavedRegsSize = (ushort) SavedRegsSize;
NewLocalsSize = this->LocalVarsSize;
}
else { // Old value was correct; no change.
NewLocalsSize = this->LocalVarsSize;
if (SavedRegsSize != this->CalleeSavedRegsSize) {
this->CalleeSavedRegsSize = (ushort) SavedRegsSize;
Changed = true;
#if SMP_DEBUG_FRAMEFIXUP
clc5q
committed
SMP_msg("Only callee regs size changed: %s\n", this->GetFuncName());
#endif
}
}
} // end if (o_imm == ...)
} // end for all uses
break; // After frame allocation instr, we are done
} // end if (push) .. elsif frame allocating instr
} // end for all instructions in the first basic block
// If we did not find an allocating instruction, see if it would keep
// the total size the same to set LocalVarsSize to 0 and to set
// CalleeSavedRegsSize to SavedRegsSize. If so, do it. If not, we
// might be better off to leave the numbers alone.
if (!Changed && (NewLocalsSize == 0)) {
clc5q
committed
if (DebugFlag) SMP_msg("libc_csu_init OldFrameTotal: %d \n", OldFrameTotal);
if (OldFrameTotal == SavedRegsSize) {
this->LocalVarsSize = 0;
Changed = true;
}
#if SMP_DEBUG_FRAMEFIXUP
else {
clc5q
committed
SMP_msg("Could not update frame sizes: %s\n", this->GetFuncName());
}
#endif
}
#if SMP_DEBUG_FRAMEFIXUP
if ((0 < OtherPushesSize) && (0 < NewLocalsSize))
clc5q
committed
SMP_msg("Extra pushes found of size %d in %s\n", OtherPushesSize,
clc5q
committed
#if SMP_DEBUG_FRAMEFIXUP
if (Changed) {
SMP_msg("Fixed stack frame size info: %s\n", this->GetFuncName());
SMPBasicBlock *CurrBlock = this->Blocks.front();
SMP_msg("First basic block:\n");
for (list<SMPInstr *>::iterator CurrInstr = CurrBlock->GetFirstInstr();
CurrInstr != CurrBlock->GetLastInstr();
++CurrInstr) {
SMP_msg("%s\n", (*CurrInstr)->GetDisasm());
}
}
#endif
return Changed;
} // end of SMPFunction::MDFixFrameInfo()
// Some functions have difficult to find stack allocations. For example, in some
// version of glibc, strpbrk() zeroes out register ECX and then pushes it more than
// 100 times in order to allocate zero-ed out local vars space for a character translation
// table. We will use the stack pointer analysis of IDA to find out if there is a point
// in the first basic block at which the stack pointer reaches the allocation total
// that IDA is expecting for the local vars region.
// If so, we return the address of the instruction at which ESP reaches its value, else
// we return BADADDR.
ea_t SMPFunction::FindAllocPoint(asize_t OriginalLocSize) {
sval_t TargetSize = - ((sval_t) OriginalLocSize); // negate; stack grows down
#if SMP_DEBUG_FRAMEFIXUP
clc5q
committed
bool DebugFlag = (0 == strcmp("_dl_runtime_resolve", this->GetFuncName()));
clc5q
committed
SMP_msg("%s OriginalLocSize: %d\n", this->GetFuncName(), OriginalLocSize);
// Limit our analysis to the first basic block in the function.
list<SMPInstr *>::iterator InstIter = this->Instrs.begin();
#if SMP_USE_SSA_FNOP_MARKER
++InstIter; // skip marker instruction
for ( ; InstIter != this->Instrs.end(); ++InstIter) {
SMPInstr *CurrInst = (*InstIter);
ea_t addr = CurrInst->GetAddr();
// get_spd() returns a cumulative delta of ESP
clc5q
committed
sval_t sp_delta = get_spd(this->GetFuncInfo(), addr);
#if SMP_DEBUG_FRAMEFIXUP
if (DebugFlag)
clc5q
committed
SMP_msg("%s delta: %d at %x\n", this->GetFuncName(), sp_delta, addr);
if (sp_delta == TargetSize) { // <= instead of == here? **!!**
// Previous instruction hit the frame size.
if (InstIter == this->Instrs.begin()) {
return BADADDR; // cannot back up from first instruction
}
else {
ea_t PrevAddr = (*(--InstIter))->GetAddr();
#if SMP_USE_SSA_FNOP_MARKER
if ((*(this->Instrs.begin()))->GetAddr() == PrevAddr)
return BADADDR; // don't return marker instruction
else
return PrevAddr;
#else
return PrevAddr;
#endif
if (CurrInst->IsLastInBlock()) {
// It could be that the current instruction will cause the stack pointer
// delta to reach the TargetSize. sp_delta is not updated until after the
// current instruction, so we need to look ahead one instruction if the
// current block falls through. On the other hand, if the current block
// ends with a jump or return, we cannot hit TargetSize.
if (CurrInst->IsBasicBlockTerminator())
return BADADDR;
list<SMPInstr *>::iterator NextInstIter = InstIter;
++NextInstIter;
if (NextInstIter == this->Instrs.end())
return BADADDR;
sp_delta = get_spd(this->GetFuncInfo(), (*NextInstIter)->GetAddr());
if (sp_delta == TargetSize) {
// CurrInst will cause stack pointer delta to hit TargetSize.
return addr;
}
else {
return BADADDR;
}
} // end if LastInBlock
} // end for all instructions
} // end if (this->AnalyzedSP)
#if SMP_DEBUG_FRAMEFIXUP
else {
clc5q
committed
SMP_msg("AnalyzedSP is false for %s\n", this->GetFuncName());
}
#endif
return BADADDR;
} // end of SMPFunction::FindAllocPoint()
// IDA Pro is sometimes confused by a function that uses the frame pointer
// register for other purposes. For the x86, a function that uses EBP
// as a frame pointer would begin with: push ebp; mov ebp,esp to save
// the old value of EBP and give it a new value as a frame pointer. The
// allocation of local variable space would have to come AFTER the move
// instruction. A function that begins: push ebp; push esi; sub esp,24
// is obviously not using EBP as a frame pointer. IDA is apparently
// confused by the push ebp instruction being the first instruction
// in the function. We will reset UseFP to false in this case.
// The inverse problem happens with a function that begins with instructions
// other than push ebp; mov ebp,esp; ... etc. but eventually has those
// instructions in the first basic block. For example, a C compiler generates
// for the first block of main():
// lea ecx,[esp+arg0]
// and esp, 0xfffffff0
// push dword ptr [ecx-4]
// push ebp
// mov ebp,esp
// push ecx
// sub esp,<framesize>
//
// This function is obviously using EBP as a frame pointer, but IDA Pro marks
// the function as not using a frame pointer. We will reset UseFP to true in
// this case.
// NOTE: This logic should work for both Linux and Windows x86 prologues.
bool SMPFunction::MDFixUseFP(void) {
list<SMPInstr *>::iterator InstIter = this->Instrs.begin();
ea_t addr = (*InstIter)->GetAddr();
#if SMP_USE_SSA_FNOP_MARKER
++InstIter; // skip marker instruction
SMPInstr *CurrInst = (*InstIter);
if (!(this->UseFP)) {
// See if we can detect the instruction "push ebp" followed by the instruction
// "mov ebp,esp" in the first basic block. The instructions do not have to be
// consecutive. If we find them, we will reset UseFP to true.
bool FirstBlockProcessed = false;
bool EBPSaved = false;
bool ESPintoEBP = false;
do {
FirstBlockProcessed = CurrInst->IsLastInBlock();
if (!EBPSaved) { // still looking for "push ebp"
if (CurrInst->MDIsPushInstr() && CurrInst->GetCmd().Operands[0].is_reg(R_bp)) {
EBPSaved = true;
}
}
else if (!ESPintoEBP) { // found "push ebp", looking for "mov ebp,esp"
insn_t CurrCmd = CurrInst->GetCmd();
if ((CurrCmd.itype == NN_mov)
&& (CurrInst->GetFirstDef()->GetOp().is_reg(R_bp))
&& (CurrInst->GetFirstUse()->GetOp().is_reg(R_sp))) {
ESPintoEBP = true;
FirstBlockProcessed = true; // exit loop
}
}
++InstIter;
CurrInst = (*InstIter);
addr = CurrInst->GetAddr();
// We must get EBP set to its frame pointer value before we reach the
// local frame allocation instruction (i.e. the subtraction of locals space
// from the stack pointer).
FirstBlockProcessed |= (addr >= this->LocalVarsAllocInstr);
} while (!FirstBlockProcessed);
// If we found ESPintoEBP, we also found EBPSaved first, and we need to change
// this->UseFP to true and return true. Otherwise, return false.
this->UseFP = ESPintoEBP;
clc5q
committed
if (ESPintoEBP)
clc5q
committed
SMP_msg("INFO: MDFixUseFP reset UseFP to true for %s\n", this->GetFuncName());
return ESPintoEBP;
} // end if (!(this->UseFP))
// At this point, this->UseFP must have been true on entry to this method and we will
// check whether it should be reset to false.
while (addr < this->LocalVarsAllocInstr) {
set<DefOrUse, LessDefUse>::iterator CurrDef = CurrInst->GetFirstDef();
while (CurrDef != CurrInst->GetLastDef()) {
if (CurrDef->GetOp().is_reg(R_bp))
return false; // EBP got set before locals were allocated
++InstIter;
CurrInst = (*InstIter);
addr = CurrInst->GetAddr();
}
// If we found no defs of the frame pointer before the local vars
// allocation, then the frame pointer register is not being used
// as a frame pointer, just as a general callee-saved register.
this->UseFP = false;
clc5q
committed
SMP_msg("INFO: MDFixUseFP reset UseFP to false for %s\n", this->GetFuncName());
return true;
} // end of SMPFunction::MDFixUseFP()
// Find the callee-saved reg offsets (negative offset from return address)
// for all registers pushed onto the stack before the stack frame allocation
// instruction.
void SMPFunction::MDFindSavedRegs(void) {
list<SMPInstr *>::iterator InstIter;
int RegIndex;
clc5q
committed
func_t *CurrFunc = SMP_get_func(this->GetStartAddr());
assert(NULL != CurrFunc);
for (InstIter = this->Instrs.begin(); InstIter != this->Instrs.end(); ++InstIter) {
SMPInstr *CurrInst = (*InstIter);
if (CurrInst->GetAddr() > this->LocalVarsAllocInstr)
break;
if (!(CurrInst->MDIsPushInstr()))
continue;
sval_t CurrOffset = get_spd(CurrFunc, CurrInst->GetAddr());
if (CurrInst->GetCmd().itype == NN_push) {
op_t PushedReg = CurrInst->GetPushedOpnd();
if (o_reg == PushedReg.type) {
RegIndex = (int) PushedReg.reg;
if (RegIndex > R_di) {
clc5q
committed
SMP_msg("WARNING: Skipping save of register %d\n", RegIndex);
continue;
}
if (this->SavedRegLoc.at((size_t) RegIndex) == 0) {
this->SavedRegLoc[(size_t) RegIndex] = CurrOffset - 4;
}
else {
clc5q
committed
SMP_msg("WARNING: Multiple saves of register %d\n", RegIndex);
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
}
} // end if register push operand
} // end if PUSH instruction
else if (NN_pusha == CurrInst->GetCmd().itype) {
// **!!** Handle pushes of all regs.
this->SavedRegLoc[(size_t) R_ax] = CurrOffset - 4;
this->SavedRegLoc[(size_t) R_cx] = CurrOffset - 8;
this->SavedRegLoc[(size_t) R_dx] = CurrOffset - 12;
this->SavedRegLoc[(size_t) R_bx] = CurrOffset - 16;
this->SavedRegLoc[(size_t) R_sp] = CurrOffset - 20;
this->SavedRegLoc[(size_t) R_bp] = CurrOffset - 24;
this->SavedRegLoc[(size_t) R_si] = CurrOffset - 28;
this->SavedRegLoc[(size_t) R_di] = CurrOffset - 32;
break; // all regs accounted for
}
else if (CurrInst->MDIsEnterInstr()) {
this->SavedRegLoc[(size_t) R_bp] = CurrOffset - 4;
}
} // end for all instructions
return;
} // end of SMPFunction::MDFindSavedRegs()
// Compute the ReturnRegTypes[] as the meet over all register types
// at all return instructions.
void SMPFunction::MDFindReturnTypes(void) {
list<SMPBasicBlock *>::iterator BlockIter;
SMPBasicBlock *CurrBlock;
list<SMPInstr *>::iterator InstIter;
vector<SMPOperandType> RegTypes;
SMPInstr *CurrInst;
for (BlockIter = this->Blocks.begin(); BlockIter != this->Blocks.end(); ++BlockIter) {
CurrBlock = (*BlockIter);
if (CurrBlock->HasReturn()) {
// Get the types of all registers at the RETURN point.
// Calculate the meet function over them.
InstIter = CurrBlock->GetLastInstr();
--InstIter;
assert(RETURN == CurrInst->GetDataFlowType());
set<DefOrUse, LessDefUse>::iterator CurrUse;
for (CurrUse = CurrInst->GetFirstUse();
CurrUse != CurrInst->GetLastUse();
++CurrUse) {
op_t UseOp = CurrUse->GetOp();
if ((o_reg != UseOp.type) || (R_di < UseOp.reg))
continue;
this->ReturnRegTypes[UseOp.reg]
= SMPTypeMeet(this->ReturnRegTypes.at(UseOp.reg),
CurrUse->GetType());
} // for all USEs in the RETURN instruction
} // end if current block has a RETURN
} // end for all blocks
return;
} // end of SMPFunction::MDFindReturnTypes()
// Determine local variable boundaries in the stack frame.
void SMPFunction::BuildLocalVarTable(void) {
// Currently we just use the info that IDA Pro has inferred from the direct
// addressing of stack locations.
this->SemiNaiveLocalVarID();
return;
} // end of SMPFunction::BuildLocalVarTable()
clc5q
committed
// Limit damage from garbage stack offset values produced by IDA Pro.
#define IDAPRO_KLUDGE_STACK_FRAME_SIZE_LIMIT 5000000
// Use the local variable offset list from IDA's stack frame structure to compute
// the table of local variable boundaries.
void SMPFunction::SemiNaiveLocalVarID(void) {
// NOTE: We use IDA Pro's offsets from this->FuncInfo (e.g. frsize) and NOT
// our own corrected values in our private data members. The offsets we
// read from the stack frame structure returned by get_frame() are consistent
// with other IDA Pro values, not with our corrected values.
list<SMPInstr *>::iterator InstIter;
bool DebugFlag = false;
this->LocalVarOffsetLimit = -20000;
#if SMP_DEBUG_STACK_GRANULARITY
DebugFlag |= (0 == strcmp("qSort3", this->GetFuncName()));
#endif
clc5q
committed
func_t *FuncPtr = SMP_get_func(this->FuncInfo.startEA);
if (NULL == FuncPtr) {
clc5q
committed
SMP_msg("ERROR in SMPFunction::SemiNaiveLocalVarID; no func ptr\n");
}
assert(NULL != FuncPtr);
struc_t *StackFrame = get_frame(FuncPtr);
if (NULL == StackFrame) {
clc5q
committed
SMP_msg("WARNING: No stack frame info from get_frame for %s\n", this->GetFuncName());
return;
}
member_t *Member = StackFrame->members;
for (size_t i = 0; i < StackFrame->memqty; ++i, ++Member) {
long offset;
if (NULL == Member) {
clc5q
committed
SMP_msg("NULL stack frame member pointer in %s\n", this->GetFuncName());
break;
}
get_member_name(Member->id, MemberName, MAXSMPVARSTR - 1);
if (MemberName == NULL) {
#if SMP_DEBUG_STACK_GRANULARITY
clc5q
committed
SMP_msg("NULL stack frame member in %s\n", this->GetFuncName());
continue;
}
if (Member->unimem()) {
// Not a separate variable; name for member of a union.
// The union itself should have a separate entry, so we skip this.
clc5q
committed
SMP_msg("STACK INFO: Skipping union member %s frame member %zu in stack frame for %s\n",
continue;
}
offset = (long) Member->get_soff(); // Would be 0 for union member, so we skipped them above.
if (DebugFlag) {
clc5q
committed
SMP_msg("%s local var %s at offset %ld\n", this->GetFuncName(), MemberName, offset);
clc5q
committed
if (offset > IDAPRO_KLUDGE_STACK_FRAME_SIZE_LIMIT) {
SMP_msg("ERROR: Rejected enormous stack offset %ld for var %s in func %s\n", offset, MemberName, this->GetFuncName());
continue;
}
struct LocalVar TempLocal;
TempLocal.offset = offset;
TempLocal.size = Member->eoff - Member->soff; // audit later
clc5q
committed
SMP_strncpy(TempLocal.VarName, MemberName, sizeof(TempLocal.VarName) - 1);
this->LocalVarTable.push_back(TempLocal);
if ((offset + (long) TempLocal.size) >= this->LocalVarOffsetLimit) {
this->LocalVarOffsetLimit = (long) (TempLocal.offset + TempLocal.size);
}
} // end for all stack frame members
// If AnalyzedSP is false, that is all we can do.
if (!this->AnalyzedSP) {
// No allocations; sometimes happens in library functions.
this->OutgoingArgsSize = 0;
this->MinStackDelta = 0;
this->AllocPointDelta = 0;
return;
}
// Calculate min and max stack point deltas.
this->MinStackDelta = 20000; // Final value should be negative or zero
this->MaxStackDelta = -1000; // Final value should be zero.
InstIter = this->Instrs.begin();
if ((*InstIter)->IsFloatNop())
++InstIter; // skip marker instruction
for ( ; InstIter != this->Instrs.end(); ++InstIter) {
SMPInstr *CurrInst = (*InstIter);
ea_t addr = CurrInst->GetAddr();
sval_t sp_delta = get_spd(this->GetFuncInfo(), addr);
if (sp_delta < this->MinStackDelta)
this->MinStackDelta = sp_delta;
if (sp_delta > this->MaxStackDelta)
this->MaxStackDelta = sp_delta;
if (addr == this->LocalVarsAllocInstr) {
// Total stack pointer delta is sp_delta for the next instruction,
// because IDA updates the sp delta AFTER each instruction.
list<SMPInstr *>::iterator NextInstIter = InstIter;
++NextInstIter;
sp_delta = get_spd(this->GetFuncInfo(), (*NextInstIter)->GetAddr());
this->AllocPointDelta = sp_delta;
}
}
// IDA Pro sometimes fails to add stack frame members for all incoming args, etc.
// Find and correct these omissions by examining stack accesses in instructions
// and extend the LocalVarTable to cover whatever is out of range.
if (!this->AuditLocalVarTable()) {
// Catastrophic error must have occurred, probably due to errors in IDA's
// stack pointer analysis, despite AnalyzedSP being true.
if (!(this->LocalVarTable.empty())) {
this->GoodLocalVarTable = true;
// Sort the LocalVarTable so that we do not depend on IDA Pro
// presenting the stack frame members in order.
std::sort(this->LocalVarTable.begin(), this->LocalVarTable.end(), LocalVarCompare);
}
#if SMP_DEBUG_STACK_GRANULARITY
clc5q
committed
SMP_msg("Computing %d local var sizes\n", this->LocalVarTable.size());
// Now we want to audit the size field for each local
if (this->GoodLocalVarTable) {
size_t VarLimit = this->LocalVarTable.size() - 1;
assert(this->LocalVarTable.size() > 0);
for (size_t VarIndex = 0; VarIndex < VarLimit; ++VarIndex) {
struct LocalVar TempLocEntry = this->LocalVarTable[VarIndex];
bool AboveLocalsRegion = (TempLocEntry.offset >= this->LocalVarsSize);
size_t TempSize = this->LocalVarTable[VarIndex + 1].offset
- TempLocEntry.offset;
int DiffSize = ((int) TempSize) - ((int) TempLocEntry.size);
// We don't have IDA Pro stack frame members for callee saved registers. This
// omission can make it seem that there is a gap between the uppermost local
// variable and the return address or saved frame pointer. Avoid expanding the
// last local variable into the callee saved registers region.
if (DiffSize > 0) { // We are expanding the size.
if (!AboveLocalsRegion && ((TempLocEntry.offset + TempLocEntry.size + DiffSize) > this->LocalVarsSize)) {
// Current local does not start above the locals region, but its new size will
// carry it into the locals region.
if ((TempLocEntry.offset + TempLocEntry.size) > this->LocalVarsSize) {
// Weird. It already overlapped the callee saved regs region.
clc5q
committed
SMP_msg("WARNING: Local var at offset %ld size %zu in %s extends above local vars region.\n",
TempLocEntry.offset, TempLocEntry.size, this->GetFuncName());
}
// Limit DiffSize to avoid overlapping callee saved regs.
DiffSize = this->LocalVarsSize - (TempLocEntry.offset + TempLocEntry.size);
if (DiffSize < 0)
DiffSize = 0; // started out positive, cap it at zero.
}
}
if (DiffSize < 0)
DiffSize = 0; // should not happen with sorted LocalVarTable unless duplicate entries.
if (DiffSize != 0) {
#if SMP_DEBUG_STACK_GRANULARITY
clc5q
committed
SMP_msg("STACK INFO: Adjusted size for stack frame member at %ld in %s\n",
#endif
this->LocalVarTable[VarIndex].size += DiffSize;
}
#if 0 // Using Member->eoff seems to be working for all members, including the last one.
#if SMP_DEBUG_STACK_GRANULARITY
clc5q
committed
SMP_msg("Computing last local var size for frsize %d\n", this->FuncInfo.frsize);
// Size of last local is total frsize minus savedregs in frame minus offset of last local
size_t SavedRegsSpace = 0; // portion of frsize that is saved regs, not locals.
if (this->CalleeSavedRegsSize > this->FuncInfo.frregs) {
// IDA Pro counts the save of EBP in frregs, but then EBP gets its new
// value and callee saved regs other than the old EBP push get counted
// in frsize rather than frregs. CalleeSavedRegsSize includes all saved
// regs on the stack, both above and below the current EBP offset.
// NOTE: For windows, this has to be done differently, as callee saved regs
// happen at the bottom of the local frame, not the top.
#if 0
SavedRegsSpace = this->CalleeSavedRegsSize - this->FuncInfo.frregs;
#else
SavedRegsSpace = this->FuncInfo.frsize - this->LocalVarsSize;
#endif
this->LocalVarTable.back().size = this->FuncInfo.frsize
- SavedRegsSpace - this->LocalVarTable.back().offset;
this->LocalVarOffsetLimit = this->LocalVarTable.back().offset
+ (adiff_t) this->LocalVarTable.back().size;
#if 0 // AboveLocalsSize is not a reliable number.
// IDA Pro can have difficulty with some irregular functions such as are found
// in the C startup code. The frsize value might be bogus. Just punt on the
// local variable ID if that is the case.
if ((this->LocalVarOffsetLimit - AboveLocalsSize) > (adiff_t) this->FuncInfo.frsize) {
this->LocalVarTable.clear();
this->GoodLocalVarTable = false;
clc5q
committed
SMP_msg("WARNING: Bad frsize %d for %s OffsetLimit: %d AboveLocalsSize: %d LocalVarsSize: %d ; abandoning SemiNaiveLocalVarID.\n",
this->FuncInfo.frsize, this->GetFuncName(), this->LocalVarOffsetLimit, AboveLocalsSize, this->LocalVarsSize);
return;
}
assert((this->LocalVarOffsetLimit - AboveLocalsSize) <= (adiff_t) this->FuncInfo.frsize);
// Find out how many of the locals are really outgoing args.
if (this->AnalyzedSP && !this->CallsAlloca && (BADADDR != this->LocalVarsAllocInstr)) {
this->FindOutgoingArgsSize();
}
else {
clc5q
committed
SMP_msg("FindOutgoingArgsSize not called for %s ", this->GetFuncName());
SMP_msg("AnalyzedSP: %d CallsAlloca: %d LocalVarsAllocInstr: %x \n",
this->AnalyzedSP, this->CallsAlloca, this->LocalVarsAllocInstr);
}
return;
} // end of SMPFunction::SemiNaiveLocalVarID()
// Check and correct the LocalVarTable derived from IDA Pro stack frame members.
// Examine each instruction and see if any stack accesses are beyond the LocalVarTable
// and create new entries in the LocalVarTable if so.
bool SMPFunction::AuditLocalVarTable(void) {
list<SMPInstr *>::iterator InstIter;
// We cannot depend on IDA Pro making Member
// entries for everything that is accessed on the stack.
// When an incoming arg is accessed but no Member is
// created, then LocalVarOffsetLimit will be too small
// and we will get ERROR messages. Just loop through the
// instructions, find offsets higher than the LocalVarTable
// currently holds, and add new entries to LocalVarTable to
// handle them.
// Iterate through all instructions and record stack frame accesses in the StackFrameMap.
InstIter = this->Instrs.begin();
if ((*InstIter)->IsFloatNop())
++InstIter; // skip marker instruction
for ( ; InstIter != this->Instrs.end(); ++InstIter) {