Newer
Older
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
// Build first effect: ESP := EBP + 4
SMPRegTransfer *TempRT = new SMPRegTransfer;
TempRT->SetLeftOperand(StackPointerOp);
TempRT->SetOperator(SMP_ASSIGN);
SMPRegTransfer *RightRT = new SMPRegTransfer;
RightRT->SetOperator(SMP_ADD);
RightRT->SetLeftOperand(FramePointerOp);
RightRT->SetRightOperand(Immed4Op);
TempRT->SetRightTree(RightRT);
this->RTL.push_back(TempRT);
TempRT = NULL;
RightRT = NULL;
// Build second effect: EBP := [EBP+0]
TempRT = new SMPRegTransfer;
TempRT->SetLeftOperand(FramePointerOp);
TempRT->SetOperator(SMP_ASSIGN);
TempRT->SetRightOperand(SavedEBP);
this->RTL.push_back(TempRT);
TempRT = NULL;
return true;
} // end of SMPInstr::BuildLeaveRTL()
// Build OptCategory 8 RTLs, which set system info into EDX:EAX.
bool SMPInstr::BuildOptType8RTL(void) {
op_t DestOp;
DestOp.type = o_reg;
op_t VoidOp;
VoidOp.type = o_void;
// Create the effect on EDX.
SMPRegTransfer *TempRT = new SMPRegTransfer;
DestOp.reg = R_dx;
TempRT->SetLeftOperand(DestOp);
TempRT->SetOperator(SMP_ASSIGN);
SMPRegTransfer *RightRT = new SMPRegTransfer;
RightRT->SetLeftOperand(VoidOp);
RightRT->SetOperator(SMP_SYSTEM_OPERATION);
RightRT->SetRightOperand(VoidOp);
TempRT->SetRightTree(RightRT);
this->RTL.push_back(TempRT);
// Create the effect on EAX.
TempRT = NULL;
RightRT = NULL;
TempRT = new SMPRegTransfer;
DestOp.reg = R_ax;
TempRT->SetLeftOperand(DestOp);
TempRT->SetOperator(SMP_ASSIGN);
RightRT = new SMPRegTransfer;
RightRT->SetLeftOperand(VoidOp);
RightRT->SetOperator(SMP_SYSTEM_OPERATION);
RightRT->SetRightOperand(VoidOp);
TempRT->SetRightTree(RightRT);
this->RTL.push_back(TempRT);
return true;
} // end of BuildOptType8RTL()
// Build the RTL for a direct or indirect jump instruction
bool SMPInstr::BuildJumpRTL(SMPoperator CondBranchOp) {
size_t OpNum;
bool TargetFound = false;
SMPRegTransfer *TempRT = NULL;
op_t EIPOp, ZeroOp, FlagsOp;
EIPOp.type = o_reg;
EIPOp.reg = R_ip;
ZeroOp.type = o_imm;
ZeroOp.value = 0;
FlagsOp.type = o_reg;
FlagsOp.reg = X86_FLAGS_REG;
op_t CountOp;
CountOp.type = o_reg;
CountOp.reg = R_cx;
if (this->IsTailCall())
return this->BuildReturnRTL();
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
4136
4137
4138
4139
4140
4141
4142
4143
4144
4145
4146
4147
4148
4149
4150
4151
4152
4153
4154
4155
4156
4157
4158
4159
4160
4161
4162
4163
4164
4165
4166
4167
4168
4169
4170
4171
4172
4173
4174
4175
4176
4177
4178
4179
4180
4181
4182
4183
4184
4185
4186
4187
4188
4189
4190
4191
4192
4193
4194
4195
4196
4197
4198
4199
4200
4201
4202
4203
4204
4205
4206
4207
4208
4209
4210
4211
4212
4213
4214
4215
4216
4217
4218
4219
4220
4221
4222
4223
4224
4225
4226
4227
4228
4229
4230
4231
4232
4233
4234
4235
4236
4237
4238
4239
4240
4241
4242
4243
4244
4245
4246
4247
4248
4249
4250
4251
4252
4253
4254
4255
4256
4257
4258
4259
4260
4261
4262
4263
4264
4265
4266
4267
4268
4269
4270
4271
4272
4273
4274
4275
4276
4277
4278
4279
4280
4281
4282
4283
4284
4285
4286
4287
4288
4289
4290
4291
4292
4293
4294
4295
4296
4297
4298
4299
4300
4301
4302
4303
4304
4305
4306
4307
4308
4309
4310
4311
4312
4313
4314
4315
4316
4317
4318
4319
4320
4321
4322
4323
4324
4325
4326
4327
4328
4329
4330
4331
4332
4333
4334
4335
4336
4337
4338
4339
4340
4341
4342
4343
4344
4345
4346
4347
4348
4349
4350
4351
4352
4353
4354
4355
4356
4357
4358
4359
4360
4361
4362
4363
4364
4365
4366
4367
4368
4369
4370
4371
4372
4373
4374
4375
4376
4377
4378
4379
4380
4381
4382
4383
4384
4385
4386
4387
4388
4389
4390
4391
4392
4393
4394
4395
4396
4397
4398
4399
4400
4401
4402
4403
4404
4405
4406
4407
4408
4409
4410
4411
4412
4413
4414
4415
4416
4417
4418
4419
4420
4421
4422
4423
4424
4425
4426
4427
4428
4429
4430
4431
4432
4433
4434
4435
4436
4437
4438
4439
4440
4441
4442
4443
4444
4445
4446
4447
4448
4449
4450
4451
4452
4453
for (OpNum = 0; !TargetFound && (OpNum < UA_MAXOP); ++OpNum) {
op_t TempOp = this->SMPcmd.Operands[OpNum];
if (this->features & UseMacros[OpNum]) { // USE
if (MDKnownOperandType(TempOp)) {
TargetFound = true;
TempRT = new SMPRegTransfer;
TempRT->SetLeftOperand(EIPOp);
TempRT->SetOperator(SMP_ASSIGN);
TempRT->SetRightOperand(TempOp);
if (CondBranchOp != SMP_NULL_OPERATOR) {
// Set up a guard expression comparing EFLAGS to zero.
// NOTE: This is imprecise for value-set purposes, but OK for types.
SMPGuard *BranchCondition = new SMPGuard;
BranchCondition->SetOperator(CondBranchOp);
// The conditional jumps on ECX==0 compare to ECX, not EFLAGS.
if ((NN_jcxz <= this->SMPcmd.itype) && (NN_jrcxz >= this->SMPcmd.itype))
BranchCondition->SetLeftOperand(CountOp);
else
BranchCondition->SetLeftOperand(FlagsOp);
BranchCondition->SetRightOperand(ZeroOp);
TempRT->SetGuard(BranchCondition);
}
this->RTL.push_back(TempRT);
}
}
} // end for (OpNum = 0; ...)
#if SMP_DEBUG_BUILD_RTL
if (!TargetFound) {
msg("ERROR: Could not find jump target at %x for %s\n", this->GetAddr(), this->GetDisasm());
}
#endif
return TargetFound;
} // end of SMPInstr::BuildJumpRTL()
// Add to the stack pointer to deallocate stack space, e.g. for a pop instruction.
void SMPInstr::AddToStackPointer(uval_t delta) {
SMPRegTransfer *TempRT = new SMPRegTransfer;
SMPRegTransfer *RightRT = new SMPRegTransfer;
op_t StackOp, DeltaOp;
StackOp.type = o_reg;
StackOp.reg = R_sp;
StackOp.addr = 0;
StackOp.hasSIB = 0;
StackOp.dtyp = dt_dword;
DeltaOp.type = o_imm;
DeltaOp.value = delta;
TempRT->SetLeftOperand(StackOp); // ESP := RightRT
TempRT->SetOperator(SMP_ASSIGN);
RightRT->SetLeftOperand(StackOp); // ESP + delta
RightRT->SetOperator(SMP_ADD);
RightRT->SetRightOperand(DeltaOp);
TempRT->SetRightTree(RightRT);
this->RTL.push_back(TempRT);
return;
} // end of SMPInstr::AddToStackPointer()
// Add to the stack pointer to deallocate stack space, e.g. for a pop instruction.
void SMPInstr::SubFromStackPointer(uval_t delta) {
SMPRegTransfer *TempRT = new SMPRegTransfer;
SMPRegTransfer *RightRT = new SMPRegTransfer;
op_t StackOp, DeltaOp;
StackOp.type = o_reg;
StackOp.reg = R_sp;
StackOp.addr = 0;
StackOp.hasSIB = 0;
StackOp.dtyp = dt_dword;
DeltaOp.type = o_imm;
DeltaOp.value = delta;
TempRT->SetLeftOperand(StackOp); // ESP := RightRT
TempRT->SetOperator(SMP_ASSIGN);
RightRT->SetLeftOperand(StackOp); // ESP - delta
RightRT->SetOperator(SMP_SUBTRACT);
RightRT->SetRightOperand(DeltaOp);
TempRT->SetRightTree(RightRT);
this->RTL.push_back(TempRT);
return;
} // end of SMPInstr::SubFromStackPointer()
#define SMP_FIRST_POP_FLAGS NN_popfw
#define SMP_LAST_POP_FLAGS NN_popfq
#define SMP_FIRST_POP_ALL NN_popaw
#define SMP_LAST_POP_ALL NN_popaq
// Build the RTL for a pop instruction
bool SMPInstr::BuildPopRTL(void) {
size_t OpNum, OpSize;
bool DestFound = false;
SMPRegTransfer *TempRT = NULL;
op_t StackOp, FlagsOp;
StackOp.type = o_displ;
StackOp.reg = R_sp;
StackOp.addr = 0; // [ESP+0]
StackOp.hasSIB = 0;
StackOp.dtyp = dt_dword;
FlagsOp.type = o_reg;
FlagsOp.reg = X86_FLAGS_REG;
FlagsOp.dtyp = dt_dword;
// Handle special cases first.
if ((SMP_FIRST_POP_FLAGS <= this->SMPcmd.itype) && (SMP_LAST_POP_FLAGS >= this->SMPcmd.itype)) {
TempRT = new SMPRegTransfer;
TempRT->SetLeftOperand(FlagsOp);
TempRT->SetOperator(SMP_ASSIGN);
TempRT->SetRightOperand(StackOp);
this->RTL.push_back(TempRT);
TempRT = NULL;
// Now create the stack pointer increment effect.
this->AddToStackPointer(4);
return true;
}
if ((SMP_FIRST_POP_ALL <= this->SMPcmd.itype) && (SMP_LAST_POP_ALL >= this->SMPcmd.itype)) {
// We pop off 7 registers from the 8 that were pushed on the stack.
// The pushed stack pointer is ignored. Instead, the stack pointer value is
// adjusted at the end, per the Intel instruction manuals.
op_t RegOp;
RegOp.type = o_reg;
// EDI comes from [ESP+0]
RegOp.reg = R_di;
StackOp.addr = 0; // [ESP+0]
TempRT = new SMPRegTransfer;
TempRT->SetLeftOperand(RegOp);
TempRT->SetOperator(SMP_ASSIGN);
TempRT->SetRightOperand(StackOp);
this->RTL.push_back(TempRT);
TempRT = NULL;
// ESI comes from [ESP+4]
RegOp.reg = R_si;
StackOp.addr = 4; // [ESP+4]
TempRT = new SMPRegTransfer;
TempRT->SetLeftOperand(RegOp);
TempRT->SetOperator(SMP_ASSIGN);
TempRT->SetRightOperand(StackOp);
this->RTL.push_back(TempRT);
TempRT = NULL;
// EBP comes from [ESP+8]
RegOp.reg = R_bp;
StackOp.addr = 8; // [ESP+8]
TempRT = new SMPRegTransfer;
TempRT->SetLeftOperand(RegOp);
TempRT->SetOperator(SMP_ASSIGN);
TempRT->SetRightOperand(StackOp);
this->RTL.push_back(TempRT);
TempRT = NULL;
// Skip over saved ESP at [ESP+12]
// EBX comes from [ESP+16]
RegOp.reg = R_bx;
StackOp.addr = 16; // [ESP+16]
TempRT = new SMPRegTransfer;
TempRT->SetLeftOperand(RegOp);
TempRT->SetOperator(SMP_ASSIGN);
TempRT->SetRightOperand(StackOp);
this->RTL.push_back(TempRT);
TempRT = NULL;
// EDX comes from [ESP+20]
RegOp.reg = R_dx;
StackOp.addr = 20; // [ESP+20]
TempRT = new SMPRegTransfer;
TempRT->SetLeftOperand(RegOp);
TempRT->SetOperator(SMP_ASSIGN);
TempRT->SetRightOperand(StackOp);
this->RTL.push_back(TempRT);
TempRT = NULL;
// ECX comes from [ESP+24]
RegOp.reg = R_cx;
StackOp.addr = 24; // [ESP+24]
TempRT = new SMPRegTransfer;
TempRT->SetLeftOperand(RegOp);
TempRT->SetOperator(SMP_ASSIGN);
TempRT->SetRightOperand(StackOp);
this->RTL.push_back(TempRT);
TempRT = NULL;
// EAX comes from [ESP+28]
RegOp.reg = R_ax;
StackOp.addr = 28; // [ESP+28]
TempRT = new SMPRegTransfer;
TempRT->SetLeftOperand(RegOp);
TempRT->SetOperator(SMP_ASSIGN);
TempRT->SetRightOperand(StackOp);
this->RTL.push_back(TempRT);
TempRT = NULL;
// Now create the stack pointer increment effect.
this->AddToStackPointer(32);
return true;
} // end for "pop all" instructions
// If we reach this point, we have a simple POP instruction.
for (OpNum = 0; !DestFound && (OpNum < UA_MAXOP); ++OpNum) {
op_t TempOp = this->SMPcmd.Operands[OpNum];
if (this->features & DefMacros[OpNum]) { // DEF
if (MDKnownOperandType(TempOp)) {
DestFound = true;
TempRT = new SMPRegTransfer;
TempRT->SetLeftOperand(TempOp);
TempRT->SetOperator(SMP_ASSIGN);
StackOp.dtyp = TempOp.dtyp; // size of transfer
TempRT->SetRightOperand(StackOp);
this->RTL.push_back(TempRT);
// Now create the stack pointer increment effect.
OpSize = GetOpDataSize(TempOp);
this->AddToStackPointer((uval_t) OpSize);
}
}
} // end for (OpNum = 0; ...)
#if SMP_DEBUG_BUILD_RTL
if (!DestFound) {
msg("ERROR: Could not find pop operand at %x for %s\n", this->GetAddr(), this->GetDisasm());
}
#endif
return DestFound;
} // end of SMPInstr::BuildPopRTL()
#define SMP_FIRST_PUSH_FLAGS NN_pushfw
#define SMP_LAST_PUSH_FLAGS NN_pushfq
#define SMP_FIRST_PUSH_ALL NN_pushaw
#define SMP_LAST_PUSH_ALL NN_pushaq
// Build the RTL for a push instruction
bool SMPInstr::BuildPushRTL(void) {
size_t OpNum, OpSize;
bool SourceFound = false;
SMPRegTransfer *TempRT = NULL;
op_t StackOp, FlagsOp;
StackOp.type = o_displ;
StackOp.reg = R_sp;
StackOp.addr = (ea_t) -4; // [ESP-4]
StackOp.hasSIB = 0;
StackOp.dtyp = dt_dword;
FlagsOp.type = o_reg;
FlagsOp.reg = X86_FLAGS_REG;
FlagsOp.dtyp = dt_dword;
// Handle special cases first.
if ((SMP_FIRST_PUSH_FLAGS <= this->SMPcmd.itype) && (SMP_LAST_PUSH_FLAGS >= this->SMPcmd.itype)) {
TempRT = new SMPRegTransfer;
TempRT->SetRightOperand(FlagsOp);
TempRT->SetOperator(SMP_ASSIGN);
TempRT->SetLeftOperand(StackOp);
this->RTL.push_back(TempRT);
// Now create the stack pointer increment effect.
this->SubFromStackPointer(4);
return true;
}
if ((SMP_FIRST_PUSH_ALL <= this->SMPcmd.itype) && (SMP_LAST_PUSH_ALL >= this->SMPcmd.itype)) {
op_t RegOp;
RegOp.type = o_reg;
// EDI goes to [ESP-32]
RegOp.reg = R_di;
StackOp.addr = (ea_t) -32; // [ESP-32]
TempRT = new SMPRegTransfer;
TempRT->SetRightOperand(RegOp);
TempRT->SetOperator(SMP_ASSIGN);
TempRT->SetLeftOperand(StackOp);
this->RTL.push_back(TempRT);
TempRT = NULL;
// ESI goes to [ESP-28]
RegOp.reg = R_si;
StackOp.addr = (ea_t) -28; // [ESP-28]
TempRT = new SMPRegTransfer;
TempRT->SetRightOperand(RegOp);
TempRT->SetOperator(SMP_ASSIGN);
TempRT->SetLeftOperand(StackOp);
this->RTL.push_back(TempRT);
TempRT = NULL;
// EBP goes to [ESP-24]
RegOp.reg = R_bp;
StackOp.addr = (ea_t) -24; // [ESP-24]
TempRT = new SMPRegTransfer;
TempRT->SetRightOperand(RegOp);
TempRT->SetOperator(SMP_ASSIGN);
TempRT->SetLeftOperand(StackOp);
this->RTL.push_back(TempRT);
TempRT = NULL;
// ESP goes to [ESP-20]
RegOp.reg = R_sp;
StackOp.addr = (ea_t) -20; // [ESP-20]
TempRT = new SMPRegTransfer;
TempRT->SetRightOperand(RegOp);
TempRT->SetOperator(SMP_ASSIGN);
TempRT->SetLeftOperand(StackOp);
this->RTL.push_back(TempRT);
TempRT = NULL;
// EBX goes to [ESP-16]
RegOp.reg = R_bx;
StackOp.addr = (ea_t) -16; // [ESP-16]
TempRT = new SMPRegTransfer;
TempRT->SetRightOperand(RegOp);
TempRT->SetOperator(SMP_ASSIGN);
TempRT->SetLeftOperand(StackOp);
this->RTL.push_back(TempRT);
TempRT = NULL;
// EDX goes to [ESP-12]
RegOp.reg = R_dx;
StackOp.addr = (ea_t) -12; // [ESP-12]
TempRT = new SMPRegTransfer;
TempRT->SetRightOperand(RegOp);
TempRT->SetOperator(SMP_ASSIGN);
TempRT->SetLeftOperand(StackOp);
this->RTL.push_back(TempRT);
TempRT = NULL;
// ECX goes to [ESP-8]
RegOp.reg = R_cx;
StackOp.addr = (ea_t) -8; // [ESP-8]
TempRT = new SMPRegTransfer;
TempRT->SetRightOperand(RegOp);
TempRT->SetOperator(SMP_ASSIGN);
TempRT->SetLeftOperand(StackOp);
this->RTL.push_back(TempRT);
TempRT = NULL;
// EAX goes to [ESP-4]
RegOp.reg = R_ax;
StackOp.addr = (ea_t) -4; // [ESP-4]
TempRT = new SMPRegTransfer;
TempRT->SetRightOperand(RegOp);
TempRT->SetOperator(SMP_ASSIGN);
TempRT->SetLeftOperand(StackOp);
this->RTL.push_back(TempRT);
TempRT = NULL;
// Now create the stack pointer increment effect.
this->SubFromStackPointer(32);
return true;
} // end for "pop all" instructions
// If we reach this point, we have a simple PUSH instruction.
for (OpNum = 0; !SourceFound && (OpNum < UA_MAXOP); ++OpNum) {
op_t TempOp = this->SMPcmd.Operands[OpNum];
if (this->features & UseMacros[OpNum]) { // USE
if (MDKnownOperandType(TempOp)) {
SourceFound = true;
OpSize = GetOpDataSize(TempOp);
TempRT = new SMPRegTransfer;
TempRT->SetRightOperand(TempOp);
TempRT->SetOperator(SMP_ASSIGN);
StackOp.dtyp = TempOp.dtyp; // size of transfer
StackOp.addr = (ea_t) (-((signed int) OpSize));
TempRT->SetLeftOperand(StackOp);
this->RTL.push_back(TempRT);
TempRT = NULL;
// Now create the stack pointer increment effect.
this->SubFromStackPointer((uval_t) OpSize);
#if 0
this->RTL.Dump();
#endif
}
}
} // end for (OpNum = 0; ...)
#if SMP_DEBUG_BUILD_RTL
if (!SourceFound) {
msg("ERROR: Could not find push operand at %x for %s\n", this->GetAddr(), this->GetDisasm());
}
#endif
return SourceFound;
} // end of SMPInstr::BuildPushRTL()
// Build RTL trees from the SMPcmd info.
bool SMPInstr::BuildRTL(void) {
op_t FlagsOp;
FlagsOp.type = o_reg;
FlagsOp.reg = X86_FLAGS_REG;
SMPRegTransfer *NopRT = NULL; // no-op register transfer
// We don't want to explicitly represent the various no-ops except as NULL operations.
// E.g. mov esi,esi should not generate DEF and USE of esi, because esi does not change.
if (this->MDIsNop()) {
NopRT = new SMPRegTransfer;
NopRT->SetOperator(SMP_NULL_OPERATOR);
this->RTL.push_back(NopRT);
NopRT = NULL;
return true;
}
4485
4486
4487
4488
4489
4490
4491
4492
4493
4494
4495
4496
4497
4498
4499
4500
4501
4502
4503
4504
4505
4506
4507
4508
4509
4510
4511
4512
4513
4514
4515
4516
4517
4518
4519
4520
4521
4522
4523
4524
4525
4526
4527
4528
4529
4530
4531
4532
4533
4534
4535
4536
4537
4538
4539
4540
4541
4542
4543
4544
4545
4546
4547
4548
4549
4550
4551
4552
4553
4554
4555
4556
switch (this->SMPcmd.itype) {
case NN_aaa: // ASCII Adjust after Addition
case NN_aad: // ASCII Adjust AX before Division
case NN_aam: // ASCII Adjust AX after Multiply
case NN_aas: // ASCII Adjust AL after Subtraction
return this->BuildUnaryRTL(SMP_UNARY_NUMERIC_OPERATION);
case NN_adc: // Add with Carry
return this->BuildBinaryPlusFlagsRTL(SMP_ADD_CARRY);
case NN_add: // Add
return this->BuildBinaryRTL(SMP_ADD);
case NN_and: // Logical AND
return this->BuildBinaryRTL(SMP_BITWISE_AND);
case NN_arpl: // Adjust RPL Field of Selector
case NN_bound: // Check Array Index Against Bounds
return false;
break;
case NN_bsf: // Bit Scan Forward
case NN_bsr: // Bit Scan Reverse
return this->BuildUnary2OpndRTL(SMP_UNARY_NUMERIC_OPERATION);
case NN_bt: // Bit Test
return this->BuildFlagsDestBinaryRTL(SMP_BINARY_NUMERIC_OPERATION);
case NN_btc: // Bit Test and Complement
case NN_btr: // Bit Test and Reset
case NN_bts: // Bit Test and Set
// Has effects on both the carry flag and the first operand
this->RTL.ExtraKills.push_back(FlagsOp);
return this->BuildBinaryRTL(SMP_BINARY_NUMERIC_OPERATION);
case NN_call: // Call Procedure
case NN_callfi: // Indirect Call Far Procedure
case NN_callni: // Indirect Call Near Procedure
return this->BuildCallRTL();
case NN_cbw: // AL -> AX (with sign)
case NN_cwde: // AX -> EAX (with sign)
case NN_cdqe: // EAX -> RAX (with sign)
return this->BuildUnaryRTL(SMP_SIGN_EXTEND);
case NN_clc: // Clear Carry Flag
case NN_cld: // Clear Direction Flag
return this->BuildUnaryRTL(SMP_UNARY_NUMERIC_OPERATION);
case NN_cli: // Clear Interrupt Flag
case NN_clts: // Clear Task-Switched Flag in CR0
// We don't track the interrupt flag or the special registers,
// so we can just consider these to be no-ops.
NopRT = new SMPRegTransfer;
NopRT->SetOperator(SMP_NULL_OPERATOR);
this->RTL.push_back(NopRT);
NopRT = NULL;
return true;
case NN_cmc: // Complement Carry Flag
return this->BuildUnaryRTL(SMP_UNARY_NUMERIC_OPERATION);
case NN_cmp: // Compare Two Operands
return this->BuildFlagsDestBinaryRTL(SMP_S_COMPARE);
case NN_cmps: // Compare Strings
return this->BuildFlagsDestBinaryRTL(SMP_U_COMPARE);
case NN_cwd: // AX -> DX:AX (with sign)
case NN_cdq: // EAX -> EDX:EAX (with sign)
case NN_cqo: // RAX -> RDX:RAX (with sign)
return this->BuildUnary2OpndRTL(SMP_SIGN_EXTEND);
case NN_daa: // Decimal Adjust AL after Addition
case NN_das: // Decimal Adjust AL after Subtraction
return this->BuildUnaryRTL(SMP_UNARY_NUMERIC_OPERATION);
case NN_dec: // Decrement by 1
return this->BuildUnaryRTL(SMP_DECREMENT);
4565
4566
4567
4568
4569
4570
4571
4572
4573
4574
4575
4576
4577
4578
4579
4580
4581
4582
4583
4584
4585
4586
4587
4588
4589
4590
4591
4592
case NN_div: // Unsigned Divide
return this->BuildMultiplyDivideRTL(SMP_U_DIVIDE);
case NN_enterw: // Make Stack Frame for Procedure Parameters
case NN_enter: // Make Stack Frame for Procedure Parameters
case NN_enterd: // Make Stack Frame for Procedure Parameters
case NN_enterq: // Make Stack Frame for Procedure Parameters
return this->BuildEnterRTL();
case NN_hlt: // Halt
// Treat as a no-op
NopRT = new SMPRegTransfer;
NopRT->SetOperator(SMP_NULL_OPERATOR);
this->RTL.push_back(NopRT);
NopRT = NULL;
return true;
case NN_idiv: // Signed Divide
return this->BuildMultiplyDivideRTL(SMP_S_DIVIDE);
case NN_imul: // Signed Multiply
return this->BuildMultiplyDivideRTL(SMP_S_MULTIPLY);
case NN_in: // Input from Port
return this->BuildUnary2OpndRTL(SMP_INPUT);
case NN_inc: // Increment by 1
return this->BuildUnaryRTL(SMP_INCREMENT);
4594
4595
4596
4597
4598
4599
4600
4601
4602
4603
4604
4605
4606
4607
4608
4609
4610
4611
4612
4613
4614
4615
4616
4617
4618
4619
4620
4621
4622
4623
4624
4625
4626
4627
4628
4629
4630
4631
4632
4633
4634
4635
4636
4637
4638
4639
4640
4641
4642
4643
4644
4645
4646
4647
4648
4649
4650
4651
4652
4653
4654
4655
4656
4657
4658
4659
4660
4661
4662
4663
4664
4665
4666
4667
4668
4669
4670
4671
4672
4673
4674
4675
4676
4677
4678
4679
4680
4681
4682
4683
4684
4685
4686
4687
4688
4689
4690
case NN_ins: // Input Byte(s) from Port to String
return false;
break;
case NN_int: // Call to Interrupt Procedure
case NN_into: // Call to Interrupt Procedure if Overflow Flag = 1
case NN_int3: // Trap to Debugger
return this->BuildCallRTL();
case NN_iretw: // Interrupt Return
case NN_iret: // Interrupt Return
case NN_iretd: // Interrupt Return (use32)
case NN_iretq: // Interrupt Return (use64)
return this->BuildReturnRTL();
case NN_ja: // Jump if Above (CF=0 & ZF=0)
case NN_jae: // Jump if Above or Equal (CF=0)
case NN_jb: // Jump if Below (CF=1)
case NN_jbe: // Jump if Below or Equal (CF=1 | ZF=1)
case NN_jc: // Jump if Carry (CF=1)
return this->BuildJumpRTL(SMP_BINARY_NUMERIC_OPERATION);
case NN_jcxz: // Jump if CX is 0
case NN_jecxz: // Jump if ECX is 0
case NN_jrcxz: // Jump if RCX is 0
return this->BuildJumpRTL(SMP_EQUAL); // special case in BuildJumpRTL()
case NN_je: // Jump if Equal (ZF=1)
return this->BuildJumpRTL(SMP_EQUAL);
case NN_jg: // Jump if Greater (ZF=0 & SF=OF)
return this->BuildJumpRTL(SMP_GREATER_THAN);
case NN_jge: // Jump if Greater or Equal (SF=OF)
return this->BuildJumpRTL(SMP_GREATER_EQUAL);
case NN_jl: // Jump if Less (SF!=OF)
return this->BuildJumpRTL(SMP_LESS_THAN);
case NN_jle: // Jump if Less or Equal (ZF=1 | SF!=OF)
return this->BuildJumpRTL(SMP_LESS_EQUAL);
case NN_jna: // Jump if Not Above (CF=1 | ZF=1)
case NN_jnae: // Jump if Not Above or Equal (CF=1)
case NN_jnb: // Jump if Not Below (CF=0)
case NN_jnbe: // Jump if Not Below or Equal (CF=0 & ZF=0) a.k.a. ja
case NN_jnc: // Jump if Not Carry (CF=0)
return this->BuildJumpRTL(SMP_BINARY_NUMERIC_OPERATION);
case NN_jne: // Jump if Not Equal (ZF=0)
return this->BuildJumpRTL(SMP_NOT_EQUAL);
case NN_jng: // Jump if Not Greater (ZF=1 | SF!=OF) a.k.a. jle
return this->BuildJumpRTL(SMP_LESS_EQUAL);
case NN_jnge: // Jump if Not Greater or Equal (SF != OF) **
return this->BuildJumpRTL(SMP_LESS_THAN);
case NN_jnl: // Jump if Not Less (SF=OF) a.k.a. jge
return this->BuildJumpRTL(SMP_GREATER_EQUAL);
case NN_jnle: // Jump if Not Less or Equal (ZF=0 & SF=OF) a.k.a. jg
return this->BuildJumpRTL(SMP_GREATER_THAN);
case NN_jno: // Jump if Not Overflow (OF=0)
case NN_jnp: // Jump if Not Parity (PF=0)
case NN_jns: // Jump if Not Sign (SF=0)
return this->BuildJumpRTL(SMP_BINARY_NUMERIC_OPERATION);
case NN_jnz: // Jump if Not Zero (ZF=0) a.k.a. jne
return this->BuildJumpRTL(SMP_NOT_EQUAL);
case NN_jo: // Jump if Overflow (OF=1)
case NN_jp: // Jump if Parity (PF=1)
case NN_jpe: // Jump if Parity Even (PF=1)
case NN_jpo: // Jump if Parity Odd (PF=0)
case NN_js: // Jump if Sign (SF=1)
return this->BuildJumpRTL(SMP_BINARY_NUMERIC_OPERATION);
case NN_jz: // Jump if Zero (ZF=1)
return this->BuildJumpRTL(SMP_EQUAL);
case NN_jmp: // Jump
case NN_jmpfi: // Indirect Far Jump
case NN_jmpni: // Indirect Near Jump
case NN_jmpshort: // Jump Short (not used)
return this->BuildJumpRTL(SMP_NULL_OPERATOR);
case NN_lahf: // Load Flags into AH Register
return this->BuildMoveRTL(SMP_NULL_OPERATOR);
case NN_lar: // Load Access Right Byte
return false;
break;
case NN_lea: // Load Effective Address
return this->BuildLeaRTL();
4692
4693
4694
4695
4696
4697
4698
4699
4700
4701
4702
4703
4704
4705
4706
4707
4708
4709
4710
4711
4712
4713
4714
4715
4716
4717
4718
4719
4720
4721
4722
4723
4724
4725
4726
4727
4728
4729
4730
4731
4732
4733
4734
4735
4736
4737
4738
4739
4740
4741
4742
4743
4744
4745
4746
4747
4748
4749
4750
4751
4752
4753
4754
4755
4756
4757
4758
4759
4760
4761
4762
4763
4764
4765
4766
4767
4768
4769
4770
4771
4772
4773
4774
4775
4776
4777
4778
4779
4780
4781
4782
4783
4784
4785
4786
4787
4788
4789
4790
4791
4792
4793
4794
4795
4796
4797
4798
4799
4800
4801
4802
4803
4804
4805
4806
4807
4808
4809
4810
4811
4812
4813
4814
4815
4816
4817
4818
4819
4820
4821
4822
4823
4824
4825
4826
4827
4828
4829
4830
4831
4832
4833
4834
4835
4836
4837
4838
4839
4840
4841
4842
4843
4844
4845
4846
4847
4848
4849
4850
4851
4852
4853
4854
4855
4856
4857
4858
4859
4860
4861
4862
4863
4864
4865
4866
4867
4868
4869
4870
4871
4872
4873
4874
4875
4876
4877
4878
4879
4880
4881
4882
4883
4884
4885
4886
4887
4888
4889
4890
4891
4892
4893
4894
4895
4896
4897
4898
4899
4900
4901
4902
4903
4904
4905
4906
4907
4908
4909
4910
4911
4912
4913
4914
4915
4916
4917
4918
4919
4920
4921
4922
4923
4924
4925
4926
4927
4928
4929
4930
4931
4932
4933
4934
4935
4936
4937
4938
4939
4940
4941
case NN_leavew: // High Level Procedure Exit
case NN_leave: // High Level Procedure Exit
case NN_leaved: // High Level Procedure Exit
case NN_leaveq: // High Level Procedure Exit
return this->BuildLeaveRTL();
case NN_lgdt: // Load Global Descriptor Table Register
case NN_lidt: // Load Interrupt Descriptor Table Register
case NN_lgs: // Load Full Pointer to GS:xx
case NN_lss: // Load Full Pointer to SS:xx
case NN_lds: // Load Full Pointer to DS:xx
case NN_les: // Load Full Pointer to ES:xx
case NN_lfs: // Load Full Pointer to FS:xx
case NN_lldt: // Load Local Descriptor Table Register
case NN_lmsw: // Load Machine Status Word
case NN_lock: // Assert LOCK# Signal Prefix
case NN_lods: // Load String
return false;
break;
case NN_loopw: // Loop while ECX != 0
case NN_loop: // Loop while CX != 0
case NN_loopd: // Loop while ECX != 0
case NN_loopq: // Loop while RCX != 0
case NN_loopwe: // Loop while CX != 0 and ZF=1
case NN_loope: // Loop while rCX != 0 and ZF=1
case NN_loopde: // Loop while ECX != 0 and ZF=1
case NN_loopqe: // Loop while RCX != 0 and ZF=1
case NN_loopwne: // Loop while CX != 0 and ZF=0
case NN_loopne: // Loop while rCX != 0 and ZF=0
case NN_loopdne: // Loop while ECX != 0 and ZF=0
case NN_loopqne: // Loop while RCX != 0 and ZF=0
return false;
break;
case NN_lsl: // Load Segment Limit
case NN_ltr: // Load Task Register
return false;
break;
case NN_mov: // Move Data
case NN_movsp: // Move to/from Special Registers
case NN_movs: // Move Byte(s) from String to String
return this->BuildMoveRTL(SMP_NULL_OPERATOR);
case NN_movsx: // Move with Sign-Extend
return this->BuildUnary2OpndRTL(SMP_SIGN_EXTEND);
case NN_movzx: // Move with Zero-Extend
return this->BuildUnary2OpndRTL(SMP_ZERO_EXTEND);
case NN_mul: // Unsigned Multiplication of AL or AX
return this->BuildMultiplyDivideRTL(SMP_U_MULTIPLY);
case NN_neg: // Two's Complement Negation
return this->BuildUnaryRTL(SMP_NEGATE);
case NN_nop: // No Operation
NopRT = new SMPRegTransfer;
NopRT->SetOperator(SMP_NULL_OPERATOR);
this->RTL.push_back(NopRT);
NopRT = NULL;
return true;
case NN_not: // One's Complement Negation
return this->BuildUnaryRTL(SMP_BITWISE_NOT);
case NN_or: // Logical Inclusive OR
return this->BuildBinaryRTL(SMP_BITWISE_OR);
case NN_out: // Output to Port
return this->BuildBinaryRTL(SMP_OUTPUT);
case NN_outs: // Output Byte(s) to Port
return false;
break;
case NN_pop: // Pop a word from the Stack
case NN_popaw: // Pop all General Registers
case NN_popa: // Pop all General Registers
case NN_popad: // Pop all General Registers (use32)
case NN_popaq: // Pop all General Registers (use64)
case NN_popfw: // Pop Stack into Flags Register
case NN_popf: // Pop Stack into Flags Register
case NN_popfd: // Pop Stack into Eflags Register
case NN_popfq: // Pop Stack into Rflags Register
return this->BuildPopRTL();
case NN_push: // Push Operand onto the Stack
case NN_pushaw: // Push all General Registers
case NN_pusha: // Push all General Registers
case NN_pushad: // Push all General Registers (use32)
case NN_pushaq: // Push all General Registers (use64)
case NN_pushfw: // Push Flags Register onto the Stack
case NN_pushf: // Push Flags Register onto the Stack
case NN_pushfd: // Push Flags Register onto the Stack (use32)
case NN_pushfq: // Push Flags Register onto the Stack (use64)
return this->BuildPushRTL();
case NN_rcl: // Rotate Through Carry Left
return this->BuildBinaryPlusFlagsRTL(SMP_ROTATE_LEFT_CARRY);
case NN_rcr: // Rotate Through Carry Right
return this->BuildBinaryPlusFlagsRTL(SMP_ROTATE_RIGHT_CARRY);
case NN_rol: // Rotate Left
return this->BuildBinaryRTL(SMP_ROTATE_LEFT);
case NN_ror: // Rotate Right
return this->BuildBinaryRTL(SMP_ROTATE_RIGHT);
case NN_rep: // Repeat String Operation
case NN_repe: // Repeat String Operation while ZF=1
case NN_repne: // Repeat String Operation while ZF=0
return false;
break;
case NN_retn: // Return Near from Procedure
case NN_retf: // Return Far from Procedure
return this->BuildReturnRTL();
case NN_sahf: // Store AH into Flags Register
return this->BuildMoveRTL(SMP_NULL_OPERATOR);
case NN_sal: // Shift Arithmetic Left
return this->BuildBinaryRTL(SMP_S_LEFT_SHIFT);
case NN_sar: // Shift Arithmetic Right
return this->BuildBinaryRTL(SMP_S_RIGHT_SHIFT);
case NN_shl: // Shift Logical Left
return this->BuildBinaryRTL(SMP_U_LEFT_SHIFT);
case NN_shr: // Shift Logical Right
return this->BuildBinaryRTL(SMP_U_RIGHT_SHIFT);
case NN_sbb: // Integer Subtraction with Borrow
return this->BuildBinaryPlusFlagsRTL(SMP_SUBTRACT_BORROW);
case NN_scas: // Compare String
return this->BuildBinaryPlusFlagsRTL(SMP_U_COMPARE);
case NN_seta: // Set Byte if Above (CF=0 & ZF=0)
case NN_setae: // Set Byte if Above or Equal (CF=0)
case NN_setb: // Set Byte if Below (CF=1)
case NN_setbe: // Set Byte if Below or Equal (CF=1 | ZF=1)
case NN_setc: // Set Byte if Carry (CF=1)
case NN_sete: // Set Byte if Equal (ZF=1)
case NN_setg: // Set Byte if Greater (ZF=0 & SF=OF)
case NN_setge: // Set Byte if Greater or Equal (SF=OF)
case NN_setl: // Set Byte if Less (SF!=OF)
case NN_setle: // Set Byte if Less or Equal (ZF=1 | SF!=OF)
case NN_setna: // Set Byte if Not Above (CF=1 | ZF=1)
case NN_setnae: // Set Byte if Not Above or Equal (CF=1)
case NN_setnb: // Set Byte if Not Below (CF=0)
case NN_setnbe: // Set Byte if Not Below or Equal (CF=0 & ZF=0)
case NN_setnc: // Set Byte if Not Carry (CF=0)
case NN_setne: // Set Byte if Not Equal (ZF=0)
case NN_setng: // Set Byte if Not Greater (ZF=1 | SF!=OF)
case NN_setnge: // Set Byte if Not Greater or Equal (ZF=1)
case NN_setnl: // Set Byte if Not Less (SF=OF)
case NN_setnle: // Set Byte if Not Less or Equal (ZF=0 & SF=OF)
case NN_setno: // Set Byte if Not Overflow (OF=0)
case NN_setnp: // Set Byte if Not Parity (PF=0)
case NN_setns: // Set Byte if Not Sign (SF=0)
case NN_setnz: // Set Byte if Not Zero (ZF=0)
case NN_seto: // Set Byte if Overflow (OF=1)
case NN_setp: // Set Byte if Parity (PF=1)
case NN_setpe: // Set Byte if Parity Even (PF=1)
case NN_setpo: // Set Byte if Parity Odd (PF=0)
case NN_sets: // Set Byte if Sign (SF=1)
case NN_setz: // Set Byte if Zero (ZF=1)
// Destination always get set to NUMERIC 0 or 1, depending on
// the condition and the relevant flags bits. Best way to model
// this in an RTL is to perform an unspecified unary NUMERIC
// operation on the flags register and assign the result to the
// destination operand, making it always NUMERIC.
return this->BuildUnary2OpndRTL(SMP_UNARY_NUMERIC_OPERATION);
case NN_sgdt: // Store Global Descriptor Table Register
case NN_sidt: // Store Interrupt Descriptor Table Register
return false;
break;
case NN_shld: // Double Precision Shift Left
return this->BuildDoubleShiftRTL(SMP_U_LEFT_SHIFT);
case NN_shrd: // Double Precision Shift Right
return this->BuildDoubleShiftRTL(SMP_U_RIGHT_SHIFT);
case NN_sldt: // Store Local Descriptor Table Register
case NN_smsw: // Store Machine Status Word
return false;
break;
case NN_stc: // Set Carry Flag
case NN_std: // Set Direction Flag
return this->BuildUnaryRTL(SMP_UNARY_NUMERIC_OPERATION);
case NN_sti: // Set Interrupt Flag
NopRT = new SMPRegTransfer;
NopRT->SetOperator(SMP_NULL_OPERATOR);
this->RTL.push_back(NopRT);
NopRT = NULL;
return true;
case NN_stos: // Store String
return this->BuildMoveRTL(SMP_NULL_OPERATOR);
case NN_str: // Store Task Register
return false;
break;
case NN_sub: // Integer Subtraction
return this->BuildBinaryRTL(SMP_SUBTRACT);
case NN_test: // Logical Compare
return this->BuildFlagsDestBinaryRTL(SMP_U_COMPARE);
case NN_verr: // Verify a Segment for Reading
case NN_verw: // Verify a Segment for Writing
case NN_wait: // Wait until BUSY# Pin is Inactive (HIGH)
NopRT = new SMPRegTransfer;
NopRT->SetOperator(SMP_NULL_OPERATOR);
this->RTL.push_back(NopRT);
NopRT = NULL;
if (NN_wait != this->SMPcmd.itype)
this->RTL.ExtraKills.push_back(FlagsOp);
return true;
case NN_xchg: // Exchange Register/Memory with Register
return this->BuildExchangeRTL();
case NN_xlat: // Table Lookup Translation
return false;
break;
case NN_xor: // Logical Exclusive OR
return this->BuildBinaryRTL(SMP_BITWISE_XOR);
//
// 486 instructions
//
case NN_cmpxchg: // Compare and Exchange
return this->BuildCompareExchangeRTL();
case NN_bswap: // Swap bits in EAX
return this->BuildUnaryRTL(SMP_UNARY_NUMERIC_OPERATION);
4943
4944
4945
4946
4947
4948
4949
4950
4951
4952
4953
4954
4955
4956
4957
4958
4959
4960
4961
4962
4963
4964
4965
4966
4967
4968
4969
4970
4971
4972
4973
4974
4975
4976
4977
4978
4979
4980
4981
4982
4983
4984
4985
4986
4987
4988
4989
4990
4991
4992
4993
4994
4995
4996
4997
4998
4999
5000
case NN_xadd: // t<-dest; dest<-src+dest; src<-t
return this->BuildExchangeAddRTL();
case NN_invd: // Invalidate Data Cache
case NN_wbinvd: // Invalidate Data Cache (write changes)
case NN_invlpg: // Invalidate TLB entry
NopRT = new SMPRegTransfer;
NopRT->SetOperator(SMP_NULL_OPERATOR);
this->RTL.push_back(NopRT);
NopRT = NULL;
return true;
//
// Pentium instructions
//
case NN_rdmsr: // Read Machine Status Register
return this->BuildOptType8RTL();
case NN_wrmsr: // Write Machine Status Register
return false;
break;
case NN_cpuid: // Get CPU ID
return this->BuildOptType8RTL();
case NN_cmpxchg8b: // Compare and Exchange Eight Bytes
return false;
break;
case NN_rdtsc: // Read Time Stamp Counter
return this->BuildOptType8RTL();
case NN_rsm: // Resume from System Management Mode
NopRT = new SMPRegTransfer;
NopRT->SetOperator(SMP_NULL_OPERATOR);
this->RTL.push_back(NopRT);
NopRT = NULL;
return true;
//
// Pentium Pro instructions
//
case NN_cmova: // Move if Above (CF=0 & ZF=0)
case NN_cmovb: // Move if Below (CF=1)
case NN_cmovbe: // Move if Below or Equal (CF=1 | ZF=1)
return this->BuildMoveRTL(SMP_BINARY_NUMERIC_OPERATION);
case NN_cmovg: // Move if Greater (ZF=0 & SF=OF)
return this->BuildMoveRTL(SMP_GREATER_THAN);
case NN_cmovge: // Move if Greater or Equal (SF=OF)
return this->BuildMoveRTL(SMP_GREATER_EQUAL);
case NN_cmovl: // Move if Less (SF!=OF)