Skip to content
Snippets Groups Projects
SMPInstr.cpp 197 KiB
Newer Older
	SavedEBP.reg = R_bp;
	SavedEBP.hasSIB = 0;

	// Build first effect:  ESP := EBP + 4
	SMPRegTransfer *TempRT = new SMPRegTransfer;
	TempRT->SetLeftOperand(StackPointerOp);
	TempRT->SetOperator(SMP_ASSIGN);
	SMPRegTransfer *RightRT = new SMPRegTransfer;
	RightRT->SetOperator(SMP_ADD);
	RightRT->SetLeftOperand(FramePointerOp);
	RightRT->SetRightOperand(Immed4Op);
	TempRT->SetRightTree(RightRT);
	this->RTL.push_back(TempRT);
	TempRT = NULL;
	RightRT = NULL;

	// Build second effect: EBP := [EBP+0]
	TempRT = new SMPRegTransfer;
	TempRT->SetLeftOperand(FramePointerOp);
	TempRT->SetOperator(SMP_ASSIGN);
	TempRT->SetRightOperand(SavedEBP);
	this->RTL.push_back(TempRT);
	TempRT = NULL;

	return true;
} // end of SMPInstr::BuildLeaveRTL()

// Build OptCategory 8 RTLs, which set system info into EDX:EAX.
bool SMPInstr::BuildOptType8RTL(void) {
	op_t DestOp;
	DestOp.type = o_reg;

	op_t VoidOp;
	VoidOp.type = o_void;

	// Create the effect on EDX.
	SMPRegTransfer *TempRT = new SMPRegTransfer;
	DestOp.reg = R_dx;
	TempRT->SetLeftOperand(DestOp);
	TempRT->SetOperator(SMP_ASSIGN);
	SMPRegTransfer *RightRT =  new SMPRegTransfer;
	RightRT->SetLeftOperand(VoidOp);
	RightRT->SetOperator(SMP_SYSTEM_OPERATION);
	RightRT->SetRightOperand(VoidOp);
	TempRT->SetRightTree(RightRT);
	this->RTL.push_back(TempRT);

	// Create the effect on EAX.
	TempRT = NULL;
	RightRT = NULL;
	TempRT = new SMPRegTransfer;
	DestOp.reg = R_ax;
	TempRT->SetLeftOperand(DestOp);
	TempRT->SetOperator(SMP_ASSIGN);
	RightRT = new SMPRegTransfer;
	RightRT->SetLeftOperand(VoidOp);
	RightRT->SetOperator(SMP_SYSTEM_OPERATION);
	RightRT->SetRightOperand(VoidOp);
	TempRT->SetRightTree(RightRT);
	this->RTL.push_back(TempRT);

	return true;
} // end of BuildOptType8RTL()

// Build the RTL for a direct or indirect jump instruction
bool SMPInstr::BuildJumpRTL(SMPoperator CondBranchOp) {
	size_t OpNum;
	bool TargetFound = false;
	SMPRegTransfer *TempRT = NULL;
	op_t EIPOp, ZeroOp, FlagsOp;

	EIPOp.type = o_reg;
	EIPOp.reg = R_ip;

	ZeroOp.type = o_imm;
	ZeroOp.value = 0;

	FlagsOp.type = o_reg;
	FlagsOp.reg = X86_FLAGS_REG;

	op_t CountOp;
	CountOp.type = o_reg;
	CountOp.reg = R_cx;

	if (this->IsTailCall())
		return this->BuildReturnRTL();

4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175 4176 4177 4178 4179 4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320 4321 4322 4323 4324 4325 4326 4327 4328 4329 4330 4331 4332 4333 4334 4335 4336 4337 4338 4339 4340 4341 4342 4343 4344 4345 4346 4347 4348 4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372 4373 4374 4375 4376 4377 4378 4379 4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396 4397 4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418 4419 4420 4421 4422 4423 4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444 4445 4446 4447 4448 4449 4450 4451 4452 4453
	for (OpNum = 0; !TargetFound && (OpNum < UA_MAXOP); ++OpNum) {
		op_t TempOp = this->SMPcmd.Operands[OpNum];
		if (this->features & UseMacros[OpNum]) { // USE
			if (MDKnownOperandType(TempOp)) {
				TargetFound = true;
				TempRT = new SMPRegTransfer;
				TempRT->SetLeftOperand(EIPOp);
				TempRT->SetOperator(SMP_ASSIGN);
				TempRT->SetRightOperand(TempOp);
				if (CondBranchOp != SMP_NULL_OPERATOR) {
					// Set up a guard expression comparing EFLAGS to zero.
					// NOTE: This is imprecise for value-set purposes, but OK for types.
					SMPGuard *BranchCondition = new SMPGuard;
					BranchCondition->SetOperator(CondBranchOp);
					// The conditional jumps on ECX==0 compare to ECX, not EFLAGS.
					if ((NN_jcxz <= this->SMPcmd.itype) && (NN_jrcxz >= this->SMPcmd.itype))
						BranchCondition->SetLeftOperand(CountOp);
					else
						BranchCondition->SetLeftOperand(FlagsOp);
					BranchCondition->SetRightOperand(ZeroOp);
					TempRT->SetGuard(BranchCondition);
				}
				this->RTL.push_back(TempRT);
			}
		}
	} // end for (OpNum = 0; ...)

#if SMP_DEBUG_BUILD_RTL
	if (!TargetFound) {
		msg("ERROR: Could not find jump target at %x for %s\n", this->GetAddr(), this->GetDisasm());
	}
#endif
	return TargetFound;
} // end of SMPInstr::BuildJumpRTL()

// Add to the stack pointer to deallocate stack space, e.g. for a pop instruction.
void SMPInstr::AddToStackPointer(uval_t delta) {
	SMPRegTransfer *TempRT = new SMPRegTransfer;
	SMPRegTransfer *RightRT = new SMPRegTransfer;
	op_t StackOp, DeltaOp;

	StackOp.type = o_reg;
	StackOp.reg = R_sp;
	StackOp.addr = 0;
	StackOp.hasSIB = 0;
	StackOp.dtyp = dt_dword;

	DeltaOp.type = o_imm;
	DeltaOp.value = delta;

	TempRT->SetLeftOperand(StackOp);    // ESP := RightRT
	TempRT->SetOperator(SMP_ASSIGN); 
	RightRT->SetLeftOperand(StackOp); // ESP + delta
	RightRT->SetOperator(SMP_ADD);
	RightRT->SetRightOperand(DeltaOp);
	TempRT->SetRightTree(RightRT);
	this->RTL.push_back(TempRT);
	return;
} // end of SMPInstr::AddToStackPointer()

// Add to the stack pointer to deallocate stack space, e.g. for a pop instruction.
void SMPInstr::SubFromStackPointer(uval_t delta) {
	SMPRegTransfer *TempRT = new SMPRegTransfer;
	SMPRegTransfer *RightRT = new SMPRegTransfer;
	op_t StackOp, DeltaOp;

	StackOp.type = o_reg;
	StackOp.reg = R_sp;
	StackOp.addr = 0;
	StackOp.hasSIB = 0;
	StackOp.dtyp = dt_dword;

	DeltaOp.type = o_imm;
	DeltaOp.value = delta;

	TempRT->SetLeftOperand(StackOp);    // ESP := RightRT
	TempRT->SetOperator(SMP_ASSIGN);
	RightRT->SetLeftOperand(StackOp); // ESP - delta
	RightRT->SetOperator(SMP_SUBTRACT);
	RightRT->SetRightOperand(DeltaOp);
	TempRT->SetRightTree(RightRT);
	this->RTL.push_back(TempRT);
	return;
} // end of SMPInstr::SubFromStackPointer()

#define SMP_FIRST_POP_FLAGS  NN_popfw
#define SMP_LAST_POP_FLAGS  NN_popfq
#define SMP_FIRST_POP_ALL  NN_popaw
#define SMP_LAST_POP_ALL  NN_popaq
// Build the RTL for a pop instruction
bool SMPInstr::BuildPopRTL(void) {
	size_t OpNum, OpSize;
	bool DestFound = false;
	SMPRegTransfer *TempRT = NULL;
	op_t StackOp, FlagsOp;
	StackOp.type = o_displ;
	StackOp.reg = R_sp;
	StackOp.addr = 0;  // [ESP+0]
	StackOp.hasSIB = 0;
	StackOp.dtyp = dt_dword;
	FlagsOp.type = o_reg;
	FlagsOp.reg = X86_FLAGS_REG;
	FlagsOp.dtyp = dt_dword;

	// Handle special cases first.
	if ((SMP_FIRST_POP_FLAGS <= this->SMPcmd.itype) && (SMP_LAST_POP_FLAGS >= this->SMPcmd.itype)) {
		TempRT = new SMPRegTransfer;
		TempRT->SetLeftOperand(FlagsOp);
		TempRT->SetOperator(SMP_ASSIGN);
		TempRT->SetRightOperand(StackOp);
		this->RTL.push_back(TempRT);
		TempRT = NULL;
		// Now create the stack pointer increment effect.
		this->AddToStackPointer(4);
		return true;
	}

	if ((SMP_FIRST_POP_ALL <= this->SMPcmd.itype) && (SMP_LAST_POP_ALL >= this->SMPcmd.itype)) {
		// We pop off 7 registers from the 8 that were pushed on the stack.
		//  The pushed stack pointer is ignored. Instead, the stack pointer value is
		//  adjusted at the end, per the Intel instruction manuals.

		op_t RegOp;
		RegOp.type = o_reg;

		// EDI comes from [ESP+0]
		RegOp.reg = R_di;
		StackOp.addr = 0;  // [ESP+0]
		TempRT = new SMPRegTransfer;
		TempRT->SetLeftOperand(RegOp);
		TempRT->SetOperator(SMP_ASSIGN);
		TempRT->SetRightOperand(StackOp);
		this->RTL.push_back(TempRT);
		TempRT = NULL;

		// ESI comes from [ESP+4]
		RegOp.reg = R_si;
		StackOp.addr = 4;  // [ESP+4]
		TempRT = new SMPRegTransfer;
		TempRT->SetLeftOperand(RegOp);
		TempRT->SetOperator(SMP_ASSIGN);
		TempRT->SetRightOperand(StackOp);
		this->RTL.push_back(TempRT);
		TempRT = NULL;

		// EBP comes from [ESP+8]
		RegOp.reg = R_bp;
		StackOp.addr = 8;  // [ESP+8]
		TempRT = new SMPRegTransfer;
		TempRT->SetLeftOperand(RegOp);
		TempRT->SetOperator(SMP_ASSIGN);
		TempRT->SetRightOperand(StackOp);
		this->RTL.push_back(TempRT);
		TempRT = NULL;

		// Skip over saved ESP at [ESP+12]

		// EBX comes from [ESP+16]
		RegOp.reg = R_bx;
		StackOp.addr = 16;  // [ESP+16]
		TempRT = new SMPRegTransfer;
		TempRT->SetLeftOperand(RegOp);
		TempRT->SetOperator(SMP_ASSIGN);
		TempRT->SetRightOperand(StackOp);
		this->RTL.push_back(TempRT);
		TempRT = NULL;

		// EDX comes from [ESP+20]
		RegOp.reg = R_dx;
		StackOp.addr = 20;  // [ESP+20]
		TempRT = new SMPRegTransfer;
		TempRT->SetLeftOperand(RegOp);
		TempRT->SetOperator(SMP_ASSIGN);
		TempRT->SetRightOperand(StackOp);
		this->RTL.push_back(TempRT);
		TempRT = NULL;

		// ECX comes from [ESP+24]
		RegOp.reg = R_cx;
		StackOp.addr = 24;  // [ESP+24]
		TempRT = new SMPRegTransfer;
		TempRT->SetLeftOperand(RegOp);
		TempRT->SetOperator(SMP_ASSIGN);
		TempRT->SetRightOperand(StackOp);
		this->RTL.push_back(TempRT);
		TempRT = NULL;

		// EAX comes from [ESP+28]
		RegOp.reg = R_ax;
		StackOp.addr = 28;  // [ESP+28]
		TempRT = new SMPRegTransfer;
		TempRT->SetLeftOperand(RegOp);
		TempRT->SetOperator(SMP_ASSIGN);
		TempRT->SetRightOperand(StackOp);
		this->RTL.push_back(TempRT);
		TempRT = NULL;

		// Now create the stack pointer increment effect.
		this->AddToStackPointer(32);
		return true;
	} // end for "pop all" instructions

	// If we reach this point, we have a simple POP instruction.
	for (OpNum = 0; !DestFound && (OpNum < UA_MAXOP); ++OpNum) {
		op_t TempOp = this->SMPcmd.Operands[OpNum];
		if (this->features & DefMacros[OpNum]) { // DEF
			if (MDKnownOperandType(TempOp)) {
				DestFound = true;
				TempRT = new SMPRegTransfer;
				TempRT->SetLeftOperand(TempOp);
				TempRT->SetOperator(SMP_ASSIGN);
				StackOp.dtyp = TempOp.dtyp;  // size of transfer
				TempRT->SetRightOperand(StackOp);
				this->RTL.push_back(TempRT);
				// Now create the stack pointer increment effect.
				OpSize = GetOpDataSize(TempOp);
				this->AddToStackPointer((uval_t) OpSize);
			}
		}
	} // end for (OpNum = 0; ...)

#if SMP_DEBUG_BUILD_RTL
	if (!DestFound) {
		msg("ERROR: Could not find pop operand at %x for %s\n", this->GetAddr(), this->GetDisasm());
	}
#endif
	return DestFound;
} // end of SMPInstr::BuildPopRTL()

#define SMP_FIRST_PUSH_FLAGS  NN_pushfw
#define SMP_LAST_PUSH_FLAGS  NN_pushfq
#define SMP_FIRST_PUSH_ALL  NN_pushaw
#define SMP_LAST_PUSH_ALL  NN_pushaq
// Build the RTL for a push instruction
bool SMPInstr::BuildPushRTL(void) {
	size_t OpNum, OpSize;
	bool SourceFound = false;
	SMPRegTransfer *TempRT = NULL;
	op_t StackOp, FlagsOp;
	StackOp.type = o_displ;
	StackOp.reg = R_sp;
	StackOp.addr = (ea_t) -4;  // [ESP-4]
	StackOp.hasSIB = 0;
	StackOp.dtyp = dt_dword;
	FlagsOp.type = o_reg;
	FlagsOp.reg = X86_FLAGS_REG;
	FlagsOp.dtyp = dt_dword;

	// Handle special cases first.
	if ((SMP_FIRST_PUSH_FLAGS <= this->SMPcmd.itype) && (SMP_LAST_PUSH_FLAGS >= this->SMPcmd.itype)) {
		TempRT = new SMPRegTransfer;
		TempRT->SetRightOperand(FlagsOp);
		TempRT->SetOperator(SMP_ASSIGN);
		TempRT->SetLeftOperand(StackOp);
		this->RTL.push_back(TempRT);
		// Now create the stack pointer increment effect.
		this->SubFromStackPointer(4);
		return true;
	}

	if ((SMP_FIRST_PUSH_ALL <= this->SMPcmd.itype) && (SMP_LAST_PUSH_ALL >= this->SMPcmd.itype)) {
		op_t RegOp;
		RegOp.type = o_reg;

		// EDI goes to [ESP-32]
		RegOp.reg = R_di;
		StackOp.addr = (ea_t) -32;  // [ESP-32]
		TempRT = new SMPRegTransfer;
		TempRT->SetRightOperand(RegOp);
		TempRT->SetOperator(SMP_ASSIGN);
		TempRT->SetLeftOperand(StackOp);
		this->RTL.push_back(TempRT);
		TempRT = NULL;

		// ESI goes to [ESP-28]
		RegOp.reg = R_si;
		StackOp.addr = (ea_t) -28;  // [ESP-28]
		TempRT = new SMPRegTransfer;
		TempRT->SetRightOperand(RegOp);
		TempRT->SetOperator(SMP_ASSIGN);
		TempRT->SetLeftOperand(StackOp);
		this->RTL.push_back(TempRT);
		TempRT = NULL;

		// EBP goes to [ESP-24]
		RegOp.reg = R_bp;
		StackOp.addr = (ea_t) -24;  // [ESP-24]
		TempRT = new SMPRegTransfer;
		TempRT->SetRightOperand(RegOp);
		TempRT->SetOperator(SMP_ASSIGN);
		TempRT->SetLeftOperand(StackOp);
		this->RTL.push_back(TempRT);
		TempRT = NULL;

		// ESP goes to [ESP-20]
		RegOp.reg = R_sp;
		StackOp.addr = (ea_t) -20;  // [ESP-20]
		TempRT = new SMPRegTransfer;
		TempRT->SetRightOperand(RegOp);
		TempRT->SetOperator(SMP_ASSIGN);
		TempRT->SetLeftOperand(StackOp);
		this->RTL.push_back(TempRT);
		TempRT = NULL;

		// EBX goes to [ESP-16]
		RegOp.reg = R_bx;
		StackOp.addr = (ea_t) -16;  // [ESP-16]
		TempRT = new SMPRegTransfer;
		TempRT->SetRightOperand(RegOp);
		TempRT->SetOperator(SMP_ASSIGN);
		TempRT->SetLeftOperand(StackOp);
		this->RTL.push_back(TempRT);
		TempRT = NULL;

		// EDX goes to [ESP-12]
		RegOp.reg = R_dx;
		StackOp.addr = (ea_t) -12;  // [ESP-12]
		TempRT = new SMPRegTransfer;
		TempRT->SetRightOperand(RegOp);
		TempRT->SetOperator(SMP_ASSIGN);
		TempRT->SetLeftOperand(StackOp);
		this->RTL.push_back(TempRT);
		TempRT = NULL;

		// ECX goes to [ESP-8]
		RegOp.reg = R_cx;
		StackOp.addr = (ea_t) -8;  // [ESP-8]
		TempRT = new SMPRegTransfer;
		TempRT->SetRightOperand(RegOp);
		TempRT->SetOperator(SMP_ASSIGN);
		TempRT->SetLeftOperand(StackOp);
		this->RTL.push_back(TempRT);
		TempRT = NULL;

		// EAX goes to [ESP-4]
		RegOp.reg = R_ax;
		StackOp.addr = (ea_t) -4;  // [ESP-4]
		TempRT = new SMPRegTransfer;
		TempRT->SetRightOperand(RegOp);
		TempRT->SetOperator(SMP_ASSIGN);
		TempRT->SetLeftOperand(StackOp);
		this->RTL.push_back(TempRT);
		TempRT = NULL;

		// Now create the stack pointer increment effect.
		this->SubFromStackPointer(32);
		return true;
	} // end for "pop all" instructions

	// If we reach this point, we have a simple PUSH instruction.
	for (OpNum = 0; !SourceFound && (OpNum < UA_MAXOP); ++OpNum) {
		op_t TempOp = this->SMPcmd.Operands[OpNum];
		if (this->features & UseMacros[OpNum]) { // USE
			if (MDKnownOperandType(TempOp)) {
				SourceFound = true;
				OpSize = GetOpDataSize(TempOp);
				TempRT = new SMPRegTransfer;
				TempRT->SetRightOperand(TempOp);
				TempRT->SetOperator(SMP_ASSIGN);
				StackOp.dtyp = TempOp.dtyp;  // size of transfer
				StackOp.addr = (ea_t) (-((signed int) OpSize));
				TempRT->SetLeftOperand(StackOp);
				this->RTL.push_back(TempRT);
				TempRT = NULL;
				// Now create the stack pointer increment effect.
				this->SubFromStackPointer((uval_t) OpSize);
#if 0
				this->RTL.Dump();
#endif
			}
		}
	} // end for (OpNum = 0; ...)

#if SMP_DEBUG_BUILD_RTL
	if (!SourceFound) {
		msg("ERROR: Could not find push operand at %x for %s\n", this->GetAddr(), this->GetDisasm());
	}
#endif
	return SourceFound;
} // end of SMPInstr::BuildPushRTL()

// Build RTL trees from the SMPcmd info.
bool SMPInstr::BuildRTL(void) {
	op_t FlagsOp;
	FlagsOp.type = o_reg;
	FlagsOp.reg = X86_FLAGS_REG;
	SMPRegTransfer *NopRT = NULL;  // no-op register transfer

	// We don't want to explicitly represent the various no-ops except as NULL operations.
	//  E.g. mov esi,esi should not generate DEF and USE of esi, because esi does not change.
	if (this->MDIsNop()) {
		NopRT = new SMPRegTransfer;
		NopRT->SetOperator(SMP_NULL_OPERATOR);
		this->RTL.push_back(NopRT);
		NopRT = NULL;
		return true;
	}

	switch (this->SMPcmd.itype) {
		case NN_aaa:                 // ASCII Adjust after Addition
		case NN_aad:                 // ASCII Adjust AX before Division
		case NN_aam:                 // ASCII Adjust AX after Multiply
		case NN_aas:                 // ASCII Adjust AL after Subtraction
			return this->BuildUnaryRTL(SMP_UNARY_NUMERIC_OPERATION);

		case NN_adc:                 // Add with Carry
			return this->BuildBinaryPlusFlagsRTL(SMP_ADD_CARRY);

		case NN_add:                 // Add
			return this->BuildBinaryRTL(SMP_ADD);

		case NN_and:                 // Logical AND
			return this->BuildBinaryRTL(SMP_BITWISE_AND);

		case NN_arpl:                // Adjust RPL Field of Selector
		case NN_bound:               // Check Array Index Against Bounds
			return false;
			break;

		case NN_bsf:                 // Bit Scan Forward
		case NN_bsr:                 // Bit Scan Reverse
			return this->BuildUnary2OpndRTL(SMP_UNARY_NUMERIC_OPERATION);

		case NN_bt:                  // Bit Test
			return this->BuildFlagsDestBinaryRTL(SMP_BINARY_NUMERIC_OPERATION);

		case NN_btc:                 // Bit Test and Complement
		case NN_btr:                 // Bit Test and Reset
		case NN_bts:                 // Bit Test and Set
			// Has effects on both the carry flag and the first operand
			this->RTL.ExtraKills.push_back(FlagsOp);
			return this->BuildBinaryRTL(SMP_BINARY_NUMERIC_OPERATION);

		case NN_call:                // Call Procedure
		case NN_callfi:              // Indirect Call Far Procedure
		case NN_callni:              // Indirect Call Near Procedure
			return this->BuildCallRTL();

		case NN_cbw:                 // AL -> AX (with sign)
		case NN_cwde:                // AX -> EAX (with sign)
		case NN_cdqe:                // EAX -> RAX (with sign)
			return this->BuildUnaryRTL(SMP_SIGN_EXTEND);

		case NN_clc:                 // Clear Carry Flag
		case NN_cld:                 // Clear Direction Flag
			return this->BuildUnaryRTL(SMP_UNARY_NUMERIC_OPERATION);

		case NN_cli:                 // Clear Interrupt Flag
		case NN_clts:                // Clear Task-Switched Flag in CR0
			// We don't track the interrupt flag or the special registers,
			//  so we can just consider these to be no-ops.
			NopRT = new SMPRegTransfer;
			NopRT->SetOperator(SMP_NULL_OPERATOR);
			this->RTL.push_back(NopRT);
			NopRT = NULL;
			return true;

		case NN_cmc:                 // Complement Carry Flag
			return this->BuildUnaryRTL(SMP_UNARY_NUMERIC_OPERATION);

		case NN_cmp:                 // Compare Two Operands
			return this->BuildFlagsDestBinaryRTL(SMP_S_COMPARE);

		case NN_cmps:                // Compare Strings
			return this->BuildFlagsDestBinaryRTL(SMP_U_COMPARE);

		case NN_cwd:                 // AX -> DX:AX (with sign)
		case NN_cdq:                 // EAX -> EDX:EAX (with sign)
		case NN_cqo:                 // RAX -> RDX:RAX (with sign)
			return this->BuildUnary2OpndRTL(SMP_SIGN_EXTEND);

		case NN_daa:                 // Decimal Adjust AL after Addition
		case NN_das:                 // Decimal Adjust AL after Subtraction
			return this->BuildUnaryRTL(SMP_UNARY_NUMERIC_OPERATION);

		case NN_dec:                 // Decrement by 1
			return this->BuildUnaryRTL(SMP_DECREMENT);

		case NN_div:                 // Unsigned Divide
			return this->BuildMultiplyDivideRTL(SMP_U_DIVIDE);

		case NN_enterw:              // Make Stack Frame for Procedure Parameters
		case NN_enter:               // Make Stack Frame for Procedure Parameters
		case NN_enterd:              // Make Stack Frame for Procedure Parameters
		case NN_enterq:              // Make Stack Frame for Procedure Parameters
			return this->BuildEnterRTL();

		case NN_hlt:                 // Halt
			// Treat as a no-op
			NopRT = new SMPRegTransfer;
			NopRT->SetOperator(SMP_NULL_OPERATOR);
			this->RTL.push_back(NopRT);
			NopRT = NULL;
			return true;

		case NN_idiv:                // Signed Divide
			return this->BuildMultiplyDivideRTL(SMP_S_DIVIDE);

		case NN_imul:                // Signed Multiply
			return this->BuildMultiplyDivideRTL(SMP_S_MULTIPLY);

		case NN_in:                  // Input from Port
			return this->BuildUnary2OpndRTL(SMP_INPUT);

		case NN_inc:                 // Increment by 1
			return this->BuildUnaryRTL(SMP_INCREMENT);

		case NN_ins:                 // Input Byte(s) from Port to String
			return false;
			break;

		case NN_int:                 // Call to Interrupt Procedure
		case NN_into:                // Call to Interrupt Procedure if Overflow Flag = 1
		case NN_int3:                // Trap to Debugger
			return this->BuildCallRTL();

		case NN_iretw:               // Interrupt Return
		case NN_iret:                // Interrupt Return
		case NN_iretd:               // Interrupt Return (use32)
		case NN_iretq:               // Interrupt Return (use64)
			return this->BuildReturnRTL();

		case NN_ja:                  // Jump if Above (CF=0 & ZF=0)
		case NN_jae:                 // Jump if Above or Equal (CF=0)
		case NN_jb:                  // Jump if Below (CF=1)
		case NN_jbe:                 // Jump if Below or Equal (CF=1 | ZF=1)
		case NN_jc:                  // Jump if Carry (CF=1)
			return this->BuildJumpRTL(SMP_BINARY_NUMERIC_OPERATION);

		case NN_jcxz:                // Jump if CX is 0
		case NN_jecxz:               // Jump if ECX is 0
		case NN_jrcxz:               // Jump if RCX is 0
			return this->BuildJumpRTL(SMP_EQUAL); // special case in BuildJumpRTL()

		case NN_je:                  // Jump if Equal (ZF=1)
			return this->BuildJumpRTL(SMP_EQUAL);

		case NN_jg:                  // Jump if Greater (ZF=0 & SF=OF)
			return this->BuildJumpRTL(SMP_GREATER_THAN);

		case NN_jge:                 // Jump if Greater or Equal (SF=OF)
			return this->BuildJumpRTL(SMP_GREATER_EQUAL);

		case NN_jl:                  // Jump if Less (SF!=OF)
			return this->BuildJumpRTL(SMP_LESS_THAN);

		case NN_jle:                 // Jump if Less or Equal (ZF=1 | SF!=OF)
			return this->BuildJumpRTL(SMP_LESS_EQUAL);

		case NN_jna:                 // Jump if Not Above (CF=1 | ZF=1)
		case NN_jnae:                // Jump if Not Above or Equal (CF=1)
		case NN_jnb:                 // Jump if Not Below (CF=0)
		case NN_jnbe:                // Jump if Not Below or Equal (CF=0 & ZF=0) a.k.a. ja
		case NN_jnc:                 // Jump if Not Carry (CF=0)
			return this->BuildJumpRTL(SMP_BINARY_NUMERIC_OPERATION);

		case NN_jne:                 // Jump if Not Equal (ZF=0)
			return this->BuildJumpRTL(SMP_NOT_EQUAL);

		case NN_jng:                 // Jump if Not Greater (ZF=1 | SF!=OF) a.k.a. jle
			return this->BuildJumpRTL(SMP_LESS_EQUAL);

		case NN_jnge:                // Jump if Not Greater or Equal (SF != OF) **
			return this->BuildJumpRTL(SMP_LESS_THAN);

		case NN_jnl:                 // Jump if Not Less (SF=OF) a.k.a. jge
			return this->BuildJumpRTL(SMP_GREATER_EQUAL);

		case NN_jnle:                // Jump if Not Less or Equal (ZF=0 & SF=OF) a.k.a. jg
			return this->BuildJumpRTL(SMP_GREATER_THAN);

		case NN_jno:                 // Jump if Not Overflow (OF=0)
		case NN_jnp:                 // Jump if Not Parity (PF=0)
		case NN_jns:                 // Jump if Not Sign (SF=0)
			return this->BuildJumpRTL(SMP_BINARY_NUMERIC_OPERATION);

		case NN_jnz:                 // Jump if Not Zero (ZF=0)  a.k.a. jne
			return this->BuildJumpRTL(SMP_NOT_EQUAL);

		case NN_jo:                  // Jump if Overflow (OF=1)
		case NN_jp:                  // Jump if Parity (PF=1)
		case NN_jpe:                 // Jump if Parity Even (PF=1)
		case NN_jpo:                 // Jump if Parity Odd  (PF=0)
		case NN_js:                  // Jump if Sign (SF=1)
			return this->BuildJumpRTL(SMP_BINARY_NUMERIC_OPERATION);

		case NN_jz:                  // Jump if Zero (ZF=1)
			return this->BuildJumpRTL(SMP_EQUAL);

		case NN_jmp:                 // Jump
		case NN_jmpfi:               // Indirect Far Jump
		case NN_jmpni:               // Indirect Near Jump
		case NN_jmpshort:            // Jump Short (not used)
			return this->BuildJumpRTL(SMP_NULL_OPERATOR);

		case NN_lahf:                // Load Flags into AH Register
			return this->BuildMoveRTL(SMP_NULL_OPERATOR);

		case NN_lar:                 // Load Access Right Byte
			return false;
			break;

		case NN_lea:                 // Load Effective Address

		case NN_leavew:              // High Level Procedure Exit
		case NN_leave:               // High Level Procedure Exit
		case NN_leaved:              // High Level Procedure Exit
		case NN_leaveq:              // High Level Procedure Exit
			return this->BuildLeaveRTL();

		case NN_lgdt:                // Load Global Descriptor Table Register
		case NN_lidt:                // Load Interrupt Descriptor Table Register
		case NN_lgs:                 // Load Full Pointer to GS:xx
		case NN_lss:                 // Load Full Pointer to SS:xx
		case NN_lds:                 // Load Full Pointer to DS:xx
		case NN_les:                 // Load Full Pointer to ES:xx
		case NN_lfs:                 // Load Full Pointer to FS:xx
		case NN_lldt:                // Load Local Descriptor Table Register
		case NN_lmsw:                // Load Machine Status Word
		case NN_lock:                // Assert LOCK# Signal Prefix
		case NN_lods:                // Load String
			return false;
			break;

		case NN_loopw:               // Loop while ECX != 0
		case NN_loop:                // Loop while CX != 0
		case NN_loopd:               // Loop while ECX != 0
		case NN_loopq:               // Loop while RCX != 0
		case NN_loopwe:              // Loop while CX != 0 and ZF=1
		case NN_loope:               // Loop while rCX != 0 and ZF=1
		case NN_loopde:              // Loop while ECX != 0 and ZF=1
		case NN_loopqe:              // Loop while RCX != 0 and ZF=1
		case NN_loopwne:             // Loop while CX != 0 and ZF=0
		case NN_loopne:              // Loop while rCX != 0 and ZF=0
		case NN_loopdne:             // Loop while ECX != 0 and ZF=0
		case NN_loopqne:             // Loop while RCX != 0 and ZF=0
			return false;
			break;

		case NN_lsl:                 // Load Segment Limit
		case NN_ltr:                 // Load Task Register
			return false;
			break;

		case NN_mov:                 // Move Data
		case NN_movsp:               // Move to/from Special Registers
		case NN_movs:                // Move Byte(s) from String to String
			return this->BuildMoveRTL(SMP_NULL_OPERATOR);

		case NN_movsx:               // Move with Sign-Extend
			return this->BuildUnary2OpndRTL(SMP_SIGN_EXTEND);

		case NN_movzx:               // Move with Zero-Extend
			return this->BuildUnary2OpndRTL(SMP_ZERO_EXTEND);

		case NN_mul:                 // Unsigned Multiplication of AL or AX
			return this->BuildMultiplyDivideRTL(SMP_U_MULTIPLY);

		case NN_neg:                 // Two's Complement Negation
			return this->BuildUnaryRTL(SMP_NEGATE);

		case NN_nop:                 // No Operation
			NopRT = new SMPRegTransfer;
			NopRT->SetOperator(SMP_NULL_OPERATOR);
			this->RTL.push_back(NopRT);
			NopRT = NULL;
			return true;

		case NN_not:                 // One's Complement Negation
			return this->BuildUnaryRTL(SMP_BITWISE_NOT);

		case NN_or:                  // Logical Inclusive OR
			return this->BuildBinaryRTL(SMP_BITWISE_OR);

		case NN_out:                 // Output to Port
			return this->BuildBinaryRTL(SMP_OUTPUT);

		case NN_outs:                // Output Byte(s) to Port
			return false;
			break;

		case NN_pop:                 // Pop a word from the Stack
		case NN_popaw:               // Pop all General Registers
		case NN_popa:                // Pop all General Registers
		case NN_popad:               // Pop all General Registers (use32)
		case NN_popaq:               // Pop all General Registers (use64)
		case NN_popfw:               // Pop Stack into Flags Register
		case NN_popf:                // Pop Stack into Flags Register
		case NN_popfd:               // Pop Stack into Eflags Register
		case NN_popfq:               // Pop Stack into Rflags Register
			return this->BuildPopRTL();

		case NN_push:                // Push Operand onto the Stack
		case NN_pushaw:              // Push all General Registers
		case NN_pusha:               // Push all General Registers
		case NN_pushad:              // Push all General Registers (use32)
		case NN_pushaq:              // Push all General Registers (use64)
		case NN_pushfw:              // Push Flags Register onto the Stack
		case NN_pushf:               // Push Flags Register onto the Stack
		case NN_pushfd:              // Push Flags Register onto the Stack (use32)
		case NN_pushfq:              // Push Flags Register onto the Stack (use64)
			return this->BuildPushRTL();

		case NN_rcl:                 // Rotate Through Carry Left
			return this->BuildBinaryPlusFlagsRTL(SMP_ROTATE_LEFT_CARRY);

		case NN_rcr:                 // Rotate Through Carry Right
			return this->BuildBinaryPlusFlagsRTL(SMP_ROTATE_RIGHT_CARRY);

		case NN_rol:                 // Rotate Left
			return this->BuildBinaryRTL(SMP_ROTATE_LEFT);

		case NN_ror:                 // Rotate Right
			return this->BuildBinaryRTL(SMP_ROTATE_RIGHT);

		case NN_rep:                 // Repeat String Operation
		case NN_repe:                // Repeat String Operation while ZF=1
		case NN_repne:               // Repeat String Operation while ZF=0
			return false;
			break;

		case NN_retn:                // Return Near from Procedure
		case NN_retf:                // Return Far from Procedure
			return this->BuildReturnRTL();

		case NN_sahf:                // Store AH into Flags Register
			return this->BuildMoveRTL(SMP_NULL_OPERATOR);

		case NN_sal:                 // Shift Arithmetic Left
			return this->BuildBinaryRTL(SMP_S_LEFT_SHIFT);

		case NN_sar:                 // Shift Arithmetic Right
			return this->BuildBinaryRTL(SMP_S_RIGHT_SHIFT);

		case NN_shl:                 // Shift Logical Left
			return this->BuildBinaryRTL(SMP_U_LEFT_SHIFT);

		case NN_shr:                 // Shift Logical Right
			return this->BuildBinaryRTL(SMP_U_RIGHT_SHIFT);

		case NN_sbb:                 // Integer Subtraction with Borrow
			return this->BuildBinaryPlusFlagsRTL(SMP_SUBTRACT_BORROW);

		case NN_scas:                // Compare String
			return this->BuildBinaryPlusFlagsRTL(SMP_U_COMPARE);

		case NN_seta:                // Set Byte if Above (CF=0 & ZF=0)
		case NN_setae:               // Set Byte if Above or Equal (CF=0)
		case NN_setb:                // Set Byte if Below (CF=1)
		case NN_setbe:               // Set Byte if Below or Equal (CF=1 | ZF=1)
		case NN_setc:                // Set Byte if Carry (CF=1)
		case NN_sete:                // Set Byte if Equal (ZF=1)
		case NN_setg:                // Set Byte if Greater (ZF=0 & SF=OF)
		case NN_setge:               // Set Byte if Greater or Equal (SF=OF)
		case NN_setl:                // Set Byte if Less (SF!=OF)
		case NN_setle:               // Set Byte if Less or Equal (ZF=1 | SF!=OF)
		case NN_setna:               // Set Byte if Not Above (CF=1 | ZF=1)
		case NN_setnae:              // Set Byte if Not Above or Equal (CF=1)
		case NN_setnb:               // Set Byte if Not Below (CF=0)
		case NN_setnbe:              // Set Byte if Not Below or Equal (CF=0 & ZF=0)
		case NN_setnc:               // Set Byte if Not Carry (CF=0)
		case NN_setne:               // Set Byte if Not Equal (ZF=0)
		case NN_setng:               // Set Byte if Not Greater (ZF=1 | SF!=OF)
		case NN_setnge:              // Set Byte if Not Greater or Equal (ZF=1)
		case NN_setnl:               // Set Byte if Not Less (SF=OF)
		case NN_setnle:              // Set Byte if Not Less or Equal (ZF=0 & SF=OF)
		case NN_setno:               // Set Byte if Not Overflow (OF=0)
		case NN_setnp:               // Set Byte if Not Parity (PF=0)
		case NN_setns:               // Set Byte if Not Sign (SF=0)
		case NN_setnz:               // Set Byte if Not Zero (ZF=0)
		case NN_seto:                // Set Byte if Overflow (OF=1)
		case NN_setp:                // Set Byte if Parity (PF=1)
		case NN_setpe:               // Set Byte if Parity Even (PF=1)
		case NN_setpo:               // Set Byte if Parity Odd  (PF=0)
		case NN_sets:                // Set Byte if Sign (SF=1)
		case NN_setz:                // Set Byte if Zero (ZF=1)
			// Destination always get set to NUMERIC 0 or 1, depending on
			//  the condition and the relevant flags bits. Best way to model
			//  this in an RTL is to perform an unspecified unary NUMERIC
			//  operation on the flags register and assign the result to the
			//  destination operand, making it always NUMERIC.
			return this->BuildUnary2OpndRTL(SMP_UNARY_NUMERIC_OPERATION);

		case NN_sgdt:                // Store Global Descriptor Table Register
		case NN_sidt:                // Store Interrupt Descriptor Table Register
			return false;
			break;

		case NN_shld:                // Double Precision Shift Left
			return this->BuildDoubleShiftRTL(SMP_U_LEFT_SHIFT);

		case NN_shrd:                // Double Precision Shift Right
			return this->BuildDoubleShiftRTL(SMP_U_RIGHT_SHIFT);

		case NN_sldt:                // Store Local Descriptor Table Register
		case NN_smsw:                // Store Machine Status Word
			return false;
			break;

		case NN_stc:                 // Set Carry Flag
		case NN_std:                 // Set Direction Flag
			return this->BuildUnaryRTL(SMP_UNARY_NUMERIC_OPERATION);

		case NN_sti:                 // Set Interrupt Flag
			NopRT = new SMPRegTransfer;
			NopRT->SetOperator(SMP_NULL_OPERATOR);
			this->RTL.push_back(NopRT);
			NopRT = NULL;
			return true;

		case NN_stos:                // Store String
			return this->BuildMoveRTL(SMP_NULL_OPERATOR);

		case NN_str:                 // Store Task Register
			return false;
			break;

		case NN_sub:                 // Integer Subtraction
			return this->BuildBinaryRTL(SMP_SUBTRACT);

		case NN_test:                // Logical Compare
			return this->BuildFlagsDestBinaryRTL(SMP_U_COMPARE);

		case NN_verr:                // Verify a Segment for Reading
		case NN_verw:                // Verify a Segment for Writing
		case NN_wait:                // Wait until BUSY# Pin is Inactive (HIGH)
			NopRT = new SMPRegTransfer;
			NopRT->SetOperator(SMP_NULL_OPERATOR);
			this->RTL.push_back(NopRT);
			NopRT = NULL;
			if (NN_wait != this->SMPcmd.itype)
				this->RTL.ExtraKills.push_back(FlagsOp);
			return true;

		case NN_xchg:                // Exchange Register/Memory with Register
			return this->BuildExchangeRTL();

		case NN_xlat:                // Table Lookup Translation
			return false;
			break;

		case NN_xor:                 // Logical Exclusive OR
			return this->BuildBinaryRTL(SMP_BITWISE_XOR);


		//
		//      486 instructions
		//

		case NN_cmpxchg:             // Compare and Exchange
			return this->BuildCompareExchangeRTL();

		case NN_bswap:               // Swap bits in EAX
			return this->BuildUnaryRTL(SMP_UNARY_NUMERIC_OPERATION);

		case NN_xadd:                // t<-dest; dest<-src+dest; src<-t
			return this->BuildExchangeAddRTL();

		case NN_invd:                // Invalidate Data Cache
		case NN_wbinvd:              // Invalidate Data Cache (write changes)
		case NN_invlpg:              // Invalidate TLB entry
			NopRT = new SMPRegTransfer;
			NopRT->SetOperator(SMP_NULL_OPERATOR);
			this->RTL.push_back(NopRT);
			NopRT = NULL;
			return true;

		//
		//      Pentium instructions
		//

		case NN_rdmsr:               // Read Machine Status Register
			return this->BuildOptType8RTL();

		case NN_wrmsr:               // Write Machine Status Register
			return false;
			break;

		case NN_cpuid:               // Get CPU ID
			return this->BuildOptType8RTL();

		case NN_cmpxchg8b:           // Compare and Exchange Eight Bytes
			return false;
			break;

		case NN_rdtsc:               // Read Time Stamp Counter
			return this->BuildOptType8RTL();

		case NN_rsm:                 // Resume from System Management Mode
			NopRT = new SMPRegTransfer;
			NopRT->SetOperator(SMP_NULL_OPERATOR);
			this->RTL.push_back(NopRT);
			NopRT = NULL;
			return true;


		//
		//      Pentium Pro instructions
		//

		case NN_cmova:               // Move if Above (CF=0 & ZF=0)
		case NN_cmovb:               // Move if Below (CF=1)
		case NN_cmovbe:              // Move if Below or Equal (CF=1 | ZF=1)
			return this->BuildMoveRTL(SMP_BINARY_NUMERIC_OPERATION);

		case NN_cmovg:               // Move if Greater (ZF=0 & SF=OF)
			return this->BuildMoveRTL(SMP_GREATER_THAN);

		case NN_cmovge:              // Move if Greater or Equal (SF=OF)
			return this->BuildMoveRTL(SMP_GREATER_EQUAL);

		case NN_cmovl:               // Move if Less (SF!=OF)