Skip to content
Snippets Groups Projects
SMPInstr.cpp 197 KiB
Newer Older
			return this->BuildMoveRTL(SMP_LESS_THAN);

		case NN_cmovle:              // Move if Less or Equal (ZF=1 | SF!=OF)
			return this->BuildMoveRTL(SMP_LESS_EQUAL);

		case NN_cmovnb:              // Move if Not Below (CF=0)
		case NN_cmovno:              // Move if Not Overflow (OF=0)
		case NN_cmovnp:              // Move if Not Parity (PF=0)
		case NN_cmovns:              // Move if Not Sign (SF=0)
			return this->BuildMoveRTL(SMP_BINARY_NUMERIC_OPERATION);

		case NN_cmovnz:              // Move if Not Zero (ZF=0)
			return this->BuildMoveRTL(SMP_NOT_EQUAL);

		case NN_cmovo:               // Move if Overflow (OF=1)
		case NN_cmovp:               // Move if Parity (PF=1)
		case NN_cmovs:               // Move if Sign (SF=1)
			return this->BuildMoveRTL(SMP_BINARY_NUMERIC_OPERATION);

		case NN_cmovz:               // Move if Zero (ZF=1)
			return this->BuildMoveRTL(SMP_EQUAL);

		case NN_fcmovb:              // Floating Move if Below
			return this->BuildMoveRTL(SMP_BINARY_NUMERIC_OPERATION);

		case NN_fcmove:              // Floating Move if Equal
			return this->BuildMoveRTL(SMP_EQUAL);

		case NN_fcmovbe:             // Floating Move if Below or Equal
			return this->BuildMoveRTL(SMP_BINARY_NUMERIC_OPERATION);

		case NN_fcmovu:              // Floating Move if Unordered
			return this->BuildMoveRTL(SMP_BINARY_NUMERIC_OPERATION);

		case NN_fcmovnb:             // Floating Move if Not Below
			return this->BuildMoveRTL(SMP_BINARY_NUMERIC_OPERATION);

		case NN_fcmovne:             // Floating Move if Not Equal
			return this->BuildMoveRTL(SMP_NOT_EQUAL);

		case NN_fcmovnbe:            // Floating Move if Not Below or Equal
			return this->BuildMoveRTL(SMP_BINARY_NUMERIC_OPERATION);

		case NN_fcmovnu:             // Floating Move if Not Unordered
			return this->BuildMoveRTL(SMP_BINARY_NUMERIC_OPERATION);


		case NN_fcomi:               // FP Compare: result in EFLAGS
		case NN_fucomi:              // FP Unordered Compare: result in EFLAGS
		case NN_fcomip:              // FP Compare: result in EFLAGS: pop stack
		case NN_fucomip:             // FP Unordered Compare: result in EFLAGS: pop stack
			return false;
			break;

		case NN_rdpmc:               // Read Performance Monitor Counter
			return this->BuildOptType8RTL();

		//
		//      FPP instructions
		//

		case NN_fld:                 // Load Real
		case NN_fst:                 // Store Real
		case NN_fstp:                // Store Real and Pop
			return this->BuildMoveRTL(SMP_NULL_OPERATOR);

		case NN_fxch:                // Exchange Registers
			// FP registers remain NUMERIC anyway, so this is a no-op to our type system.
			NopRT = new SMPRegTransfer;
			NopRT->SetOperator(SMP_NULL_OPERATOR);
			this->RTL.push_back(NopRT);
			NopRT = NULL;
			return true;

		case NN_fild:                // Load Integer
		case NN_fist:                // Store Integer
		case NN_fistp:               // Store Integer and Pop
		case NN_fbld:                // Load BCD
		case NN_fbstp:               // Store BCD and Pop
			return this->BuildMoveRTL(SMP_NULL_OPERATOR);

		case NN_fadd:                // Add Real
		case NN_faddp:               // Add Real and Pop
		case NN_fiadd:               // Add Integer
		case NN_fsub:                // Subtract Real
		case NN_fsubp:               // Subtract Real and Pop
		case NN_fisub:               // Subtract Integer
		case NN_fsubr:               // Subtract Real Reversed
		case NN_fsubrp:              // Subtract Real Reversed and Pop
		case NN_fisubr:              // Subtract Integer Reversed
		case NN_fmul:                // Multiply Real
		case NN_fmulp:               // Multiply Real and Pop
		case NN_fimul:               // Multiply Integer
		case NN_fdiv:                // Divide Real
		case NN_fdivp:               // Divide Real and Pop
		case NN_fidiv:               // Divide Integer
		case NN_fdivr:               // Divide Real Reversed
		case NN_fdivrp:              // Divide Real Reversed and Pop
		case NN_fidivr:              // Divide Integer Reversed
			return this->BuildBinaryRTL(SMP_BINARY_FLOATING_ARITHMETIC);

		case NN_fsqrt:               // Square Root
		case NN_fscale:              // Scale:  st(0) <- st(0) * 2^st(1)
		case NN_fprem:               // Partial Remainder
		case NN_frndint:             // Round to Integer
		case NN_fxtract:             // Extract exponent and significand
		case NN_fabs:                // Absolute value
		case NN_fchs:                // Change Sign
			return this->BuildUnaryRTL(SMP_UNARY_FLOATING_ARITHMETIC);

		case NN_fcom:                // Compare Real
		case NN_fcomp:               // Compare Real and Pop
		case NN_fcompp:              // Compare Real and Pop Twice
		case NN_ficom:               // Compare Integer
		case NN_ficomp:              // Compare Integer and Pop
		case NN_ftst:                // Test
		case NN_fxam:                // Examine
			// Floating comparison instructions use FP reg stack locations
			//  as sources and set only the FP flags. All of these are numeric
			//  type and we don't track any of them, so all such instructions
			//  can be considered to be no-ops.
			NopRT = new SMPRegTransfer;
			NopRT->SetOperator(SMP_NULL_OPERATOR);
			this->RTL.push_back(NopRT);
			NopRT = NULL;
			return true;

		case NN_fptan:               // Partial tangent
		case NN_fpatan:              // Partial arctangent
		case NN_f2xm1:               // 2^x - 1
		case NN_fyl2x:               // Y * lg2(X)
		case NN_fyl2xp1:             // Y * lg2(X+1)
			// We can consider it a unary operation when both arguments come
			//  off the floating point register stack, unless we ever start
			//  modeling the different locations in the FP register stack.
			return this->BuildUnaryRTL(SMP_UNARY_FLOATING_ARITHMETIC);

		case NN_fldz:                // Load +0.0
		case NN_fld1:                // Load +1.0
		case NN_fldpi:               // Load PI=3.14...
		case NN_fldl2t:              // Load lg2(10)
		case NN_fldl2e:              // Load lg2(e)
		case NN_fldlg2:              // Load lg10(2)
		case NN_fldln2:              // Load ln(2)
		case NN_finit:               // Initialize Processor
		case NN_fninit:              // Initialize Processor (no wait)
		case NN_fsetpm:              // Set Protected Mode
		case NN_fldcw:               // Load Control Word
		case NN_fstcw:               // Store Control Word
		case NN_fnstcw:              // Store Control Word (no wait)
		case NN_fstsw:               // Store Status Word
		case NN_fnstsw:              // Store Status Word (no wait)
		case NN_fclex:               // Clear Exceptions
		case NN_fnclex:              // Clear Exceptions (no wait)
			// Floating point stack and control word and flags operations
			//  with no memory operands are no-ops to us.
			NopRT = new SMPRegTransfer;
			NopRT->SetOperator(SMP_NULL_OPERATOR);
			this->RTL.push_back(NopRT);
			NopRT = NULL;
			return true;

		case NN_fstenv:              // Store Environment
		case NN_fnstenv:             // Store Environment (no wait)
		case NN_fldenv:              // Load Environment
		case NN_fsave:               // Save State
		case NN_fnsave:              // Save State (no wait)
		case NN_frstor:              // Restore State
		case NN_fincstp:             // Increment Stack Pointer
		case NN_fdecstp:             // Decrement Stack Pointer
		case NN_ffree:               // Free Register
		case NN_fnop:                // No Operation
			NopRT = new SMPRegTransfer;
			NopRT->SetOperator(SMP_NULL_OPERATOR);
			this->RTL.push_back(NopRT);
			NopRT = NULL;
			return true;

5182 5183 5184 5185 5186 5187 5188 5189 5190 5191 5192 5193 5194 5195 5196 5197 5198 5199 5200 5201 5202 5203 5204 5205 5206 5207 5208 5209 5210 5211 5212 5213 5214 5215 5216 5217 5218 5219 5220 5221 5222 5223 5224 5225 5226 5227 5228 5229 5230 5231 5232 5233 5234 5235 5236 5237 5238 5239 5240 5241 5242 5243 5244 5245 5246 5247 5248 5249 5250 5251 5252 5253 5254 5255 5256 5257 5258 5259 5260 5261 5262 5263 5264 5265 5266 5267 5268 5269 5270 5271 5272 5273 5274 5275 5276 5277 5278 5279 5280 5281 5282 5283 5284 5285 5286 5287 5288 5289 5290 5291 5292 5293 5294 5295 5296 5297 5298 5299 5300 5301 5302 5303 5304 5305 5306 5307 5308 5309 5310 5311 5312 5313 5314 5315 5316 5317 5318 5319 5320 5321 5322 5323 5324 5325 5326 5327 5328 5329 5330 5331 5332 5333 5334 5335 5336 5337 5338 5339 5340 5341 5342 5343 5344 5345 5346 5347 5348 5349 5350 5351 5352 5353 5354 5355 5356 5357 5358 5359 5360 5361 5362 5363 5364 5365 5366 5367 5368 5369 5370 5371 5372 5373 5374 5375 5376 5377 5378 5379 5380 5381 5382 5383 5384 5385 5386 5387 5388 5389 5390 5391 5392 5393 5394 5395 5396 5397 5398 5399 5400 5401 5402 5403 5404 5405 5406 5407 5408 5409 5410 5411 5412 5413 5414 5415 5416 5417 5418 5419 5420 5421 5422 5423 5424 5425 5426 5427 5428 5429 5430 5431 5432 5433 5434 5435 5436 5437 5438 5439 5440 5441 5442 5443 5444 5445 5446 5447 5448 5449 5450 5451 5452 5453 5454 5455 5456 5457 5458 5459 5460 5461 5462 5463 5464 5465 5466 5467 5468 5469 5470 5471 5472 5473 5474 5475 5476 5477 5478 5479 5480 5481 5482 5483 5484 5485 5486 5487 5488 5489 5490 5491 5492 5493 5494 5495 5496 5497 5498 5499 5500 5501 5502 5503 5504 5505 5506 5507 5508 5509 5510 5511 5512 5513 5514 5515 5516 5517 5518 5519 5520 5521 5522 5523 5524 5525 5526 5527 5528 5529 5530 5531 5532 5533 5534 5535 5536 5537 5538 5539 5540 5541 5542 5543 5544 5545 5546 5547 5548 5549 5550 5551 5552 5553 5554 5555 5556 5557 5558 5559 5560 5561 5562 5563 5564 5565 5566 5567
		case NN_feni:                // (8087 only)
		case NN_fneni:               // (no wait) (8087 only)
		case NN_fdisi:               // (8087 only)
		case NN_fndisi:              // (no wait) (8087 only)
			return false;
			break;


		//
		//      80387 instructions
		//

		case NN_fprem1:              // Partial Remainder ( < half )
		case NN_fsincos:             // t<-cos(st); st<-sin(st); push t
		case NN_fsin:                // Sine
		case NN_fcos:                // Cosine
		case NN_fucom:               // Compare Unordered Real
		case NN_fucomp:              // Compare Unordered Real and Pop
		case NN_fucompp:             // Compare Unordered Real and Pop Twice
			// Floating point stack and control word and flags operations
			//  with no memory operands are no-ops to us.
			NopRT = new SMPRegTransfer;
			NopRT->SetOperator(SMP_NULL_OPERATOR);
			this->RTL.push_back(NopRT);
			NopRT = NULL;
			return true;


		//
		//      Instructions added 28.02.96
		//

		case NN_setalc:              // Set AL to Carry Flag
		case NN_svdc:                // Save Register and Descriptor
		case NN_rsdc:                // Restore Register and Descriptor
		case NN_svldt:               // Save LDTR and Descriptor
		case NN_rsldt:               // Restore LDTR and Descriptor
		case NN_svts:                // Save TR and Descriptor
		case NN_rsts:                // Restore TR and Descriptor
		case NN_icebp:               // ICE Break Point
		case NN_loadall:             // Load the entire CPU state from ES:EDI

		//
		//      MMX instructions
		//

		case NN_emms:                // Empty MMX state
		case NN_movd:                // Move 32 bits
		case NN_movq:                // Move 64 bits
		case NN_packsswb:            // Pack with Signed Saturation (Word->Byte)
		case NN_packssdw:            // Pack with Signed Saturation (Dword->Word)
		case NN_packuswb:            // Pack with Unsigned Saturation (Word->Byte)
		case NN_paddb:               // Packed Add Byte
		case NN_paddw:               // Packed Add Word
		case NN_paddd:               // Packed Add Dword
		case NN_paddsb:              // Packed Add with Saturation (Byte)
		case NN_paddsw:              // Packed Add with Saturation (Word)
		case NN_paddusb:             // Packed Add Unsigned with Saturation (Byte)
		case NN_paddusw:             // Packed Add Unsigned with Saturation (Word)
		case NN_pand:                // Bitwise Logical And
		case NN_pandn:               // Bitwise Logical And Not
		case NN_pcmpeqb:             // Packed Compare for Equal (Byte)
		case NN_pcmpeqw:             // Packed Compare for Equal (Word)
		case NN_pcmpeqd:             // Packed Compare for Equal (Dword)
		case NN_pcmpgtb:             // Packed Compare for Greater Than (Byte)
		case NN_pcmpgtw:             // Packed Compare for Greater Than (Word)
		case NN_pcmpgtd:             // Packed Compare for Greater Than (Dword)
		case NN_pmaddwd:             // Packed Multiply and Add
		case NN_pmulhw:              // Packed Multiply High
		case NN_pmullw:              // Packed Multiply Low
		case NN_por:                 // Bitwise Logical Or
		case NN_psllw:               // Packed Shift Left Logical (Word)
		case NN_pslld:               // Packed Shift Left Logical (Dword)
		case NN_psllq:               // Packed Shift Left Logical (Qword)
		case NN_psraw:               // Packed Shift Right Arithmetic (Word)
		case NN_psrad:               // Packed Shift Right Arithmetic (Dword)
		case NN_psrlw:               // Packed Shift Right Logical (Word)
		case NN_psrld:               // Packed Shift Right Logical (Dword)
		case NN_psrlq:               // Packed Shift Right Logical (Qword)
		case NN_psubb:               // Packed Subtract Byte
		case NN_psubw:               // Packed Subtract Word
		case NN_psubd:               // Packed Subtract Dword
		case NN_psubsb:              // Packed Subtract with Saturation (Byte)
		case NN_psubsw:              // Packed Subtract with Saturation (Word)
		case NN_psubusb:             // Packed Subtract Unsigned with Saturation (Byte)
		case NN_psubusw:             // Packed Subtract Unsigned with Saturation (Word)
		case NN_punpckhbw:           // Unpack High Packed Data (Byte->Word)
		case NN_punpckhwd:           // Unpack High Packed Data (Word->Dword)
		case NN_punpckhdq:           // Unpack High Packed Data (Dword->Qword)
		case NN_punpcklbw:           // Unpack Low Packed Data (Byte->Word)
		case NN_punpcklwd:           // Unpack Low Packed Data (Word->Dword)
		case NN_punpckldq:           // Unpack Low Packed Data (Dword->Qword)
		case NN_pxor:                // Bitwise Logical Exclusive Or

		//
		//      Undocumented Deschutes processor instructions
		//

		case NN_fxsave:              // Fast save FP context
		case NN_fxrstor:             // Fast restore FP context

		//      Pentium II instructions

		case NN_sysenter:            // Fast Transition to System Call Entry Point
		case NN_sysexit:             // Fast Transition from System Call Entry Point

		//      3DNow! instructions

		case NN_pavgusb:             // Packed 8-bit Unsigned Integer Averaging
		case NN_pfadd:               // Packed Floating-Point Addition
		case NN_pfsub:               // Packed Floating-Point Subtraction
		case NN_pfsubr:              // Packed Floating-Point Reverse Subtraction
		case NN_pfacc:               // Packed Floating-Point Accumulate
		case NN_pfcmpge:             // Packed Floating-Point Comparison: Greater or Equal
		case NN_pfcmpgt:             // Packed Floating-Point Comparison: Greater
		case NN_pfcmpeq:             // Packed Floating-Point Comparison: Equal
		case NN_pfmin:               // Packed Floating-Point Minimum
		case NN_pfmax:               // Packed Floating-Point Maximum
		case NN_pi2fd:               // Packed 32-bit Integer to Floating-Point
		case NN_pf2id:               // Packed Floating-Point to 32-bit Integer
		case NN_pfrcp:               // Packed Floating-Point Reciprocal Approximation
		case NN_pfrsqrt:             // Packed Floating-Point Reciprocal Square Root Approximation
		case NN_pfmul:               // Packed Floating-Point Multiplication
		case NN_pfrcpit1:            // Packed Floating-Point Reciprocal First Iteration Step
		case NN_pfrsqit1:            // Packed Floating-Point Reciprocal Square Root First Iteration Step
		case NN_pfrcpit2:            // Packed Floating-Point Reciprocal Second Iteration Step
		case NN_pmulhrw:             // Packed Floating-Point 16-bit Integer Multiply with rounding
		case NN_femms:               // Faster entry/exit of the MMX or floating-point state
		case NN_prefetch:            // Prefetch at least a 32-byte line into L1 data cache
		case NN_prefetchw:           // Prefetch processor cache line into L1 data cache (mark as modified)


		//      Pentium III instructions

		case NN_addps:               // Packed Single-FP Add
		case NN_addss:               // Scalar Single-FP Add
		case NN_andnps:              // Bitwise Logical And Not for Single-FP
		case NN_andps:               // Bitwise Logical And for Single-FP
		case NN_cmpps:               // Packed Single-FP Compare
		case NN_cmpss:               // Scalar Single-FP Compare
		case NN_comiss:              // Scalar Ordered Single-FP Compare and Set EFLAGS
		case NN_cvtpi2ps:            // Packed signed INT32 to Packed Single-FP conversion
		case NN_cvtps2pi:            // Packed Single-FP to Packed INT32 conversion
		case NN_cvtsi2ss:            // Scalar signed INT32 to Single-FP conversion
		case NN_cvtss2si:            // Scalar Single-FP to signed INT32 conversion
		case NN_cvttps2pi:           // Packed Single-FP to Packed INT32 conversion (truncate)
		case NN_cvttss2si:           // Scalar Single-FP to signed INT32 conversion (truncate)
		case NN_divps:               // Packed Single-FP Divide
		case NN_divss:               // Scalar Single-FP Divide
		case NN_ldmxcsr:             // Load Streaming SIMD Extensions Technology Control/Status Register
		case NN_maxps:               // Packed Single-FP Maximum
		case NN_maxss:               // Scalar Single-FP Maximum
		case NN_minps:               // Packed Single-FP Minimum
		case NN_minss:               // Scalar Single-FP Minimum
		case NN_movaps:              // Move Aligned Four Packed Single-FP
		case NN_movhlps:             // Move High to Low Packed Single-FP
		case NN_movhps:              // Move High Packed Single-FP
		case NN_movlhps:             // Move Low to High Packed Single-FP
		case NN_movlps:              // Move Low Packed Single-FP
		case NN_movmskps:            // Move Mask to Register
		case NN_movss:               // Move Scalar Single-FP
		case NN_movups:              // Move Unaligned Four Packed Single-FP
		case NN_mulps:               // Packed Single-FP Multiply
		case NN_mulss:               // Scalar Single-FP Multiply
		case NN_orps:                // Bitwise Logical OR for Single-FP Data
		case NN_rcpps:               // Packed Single-FP Reciprocal
		case NN_rcpss:               // Scalar Single-FP Reciprocal
		case NN_rsqrtps:             // Packed Single-FP Square Root Reciprocal
		case NN_rsqrtss:             // Scalar Single-FP Square Root Reciprocal
		case NN_shufps:              // Shuffle Single-FP
		case NN_sqrtps:              // Packed Single-FP Square Root
		case NN_sqrtss:              // Scalar Single-FP Square Root
		case NN_stmxcsr:             // Store Streaming SIMD Extensions Technology Control/Status Register
		case NN_subps:               // Packed Single-FP Subtract
		case NN_subss:               // Scalar Single-FP Subtract
		case NN_ucomiss:             // Scalar Unordered Single-FP Compare and Set EFLAGS
		case NN_unpckhps:            // Unpack High Packed Single-FP Data
		case NN_unpcklps:            // Unpack Low Packed Single-FP Data
		case NN_xorps:               // Bitwise Logical XOR for Single-FP Data
		case NN_pavgb:               // Packed Average (Byte)
		case NN_pavgw:               // Packed Average (Word)
		case NN_pextrw:              // Extract Word
		case NN_pinsrw:              // Insert Word
		case NN_pmaxsw:              // Packed Signed Integer Word Maximum
		case NN_pmaxub:              // Packed Unsigned Integer Byte Maximum
		case NN_pminsw:              // Packed Signed Integer Word Minimum
		case NN_pminub:              // Packed Unsigned Integer Byte Minimum
		case NN_pmovmskb:            // Move Byte Mask to Integer
		case NN_pmulhuw:             // Packed Multiply High Unsigned
		case NN_psadbw:              // Packed Sum of Absolute Differences
		case NN_pshufw:              // Packed Shuffle Word
		case NN_maskmovq:            // Byte Mask write
		case NN_movntps:             // Move Aligned Four Packed Single-FP Non Temporal
		case NN_movntq:              // Move 64 Bits Non Temporal
		case NN_prefetcht0:          // Prefetch to all cache levels
		case NN_prefetcht1:          // Prefetch to all cache levels
		case NN_prefetcht2:          // Prefetch to L2 cache
		case NN_prefetchnta:         // Prefetch to L1 cache
		case NN_sfence:              // Store Fence

		// Pentium III Pseudo instructions

		case NN_cmpeqps:             // Packed Single-FP Compare EQ
		case NN_cmpltps:             // Packed Single-FP Compare LT
		case NN_cmpleps:             // Packed Single-FP Compare LE
		case NN_cmpunordps:          // Packed Single-FP Compare UNORD
		case NN_cmpneqps:            // Packed Single-FP Compare NOT EQ
		case NN_cmpnltps:            // Packed Single-FP Compare NOT LT
		case NN_cmpnleps:            // Packed Single-FP Compare NOT LE
		case NN_cmpordps:            // Packed Single-FP Compare ORDERED
		case NN_cmpeqss:             // Scalar Single-FP Compare EQ
		case NN_cmpltss:             // Scalar Single-FP Compare LT
		case NN_cmpless:             // Scalar Single-FP Compare LE
		case NN_cmpunordss:          // Scalar Single-FP Compare UNORD
		case NN_cmpneqss:            // Scalar Single-FP Compare NOT EQ
		case NN_cmpnltss:            // Scalar Single-FP Compare NOT LT
		case NN_cmpnless:            // Scalar Single-FP Compare NOT LE
		case NN_cmpordss:            // Scalar Single-FP Compare ORDERED

		// AMD K7 instructions

		case NN_pf2iw:               // Packed Floating-Point to Integer with Sign Extend
		case NN_pfnacc:              // Packed Floating-Point Negative Accumulate
		case NN_pfpnacc:             // Packed Floating-Point Mixed Positive-Negative Accumulate
		case NN_pi2fw:               // Packed 16-bit Integer to Floating-Point
		case NN_pswapd:              // Packed Swap Double Word

		// Undocumented FP instructions (thanks to norbert.juffa@adm.com)

		case NN_fstp1:               // Alias of Store Real and Pop
		case NN_fcom2:               // Alias of Compare Real
		case NN_fcomp3:              // Alias of Compare Real and Pop
		case NN_fxch4:               // Alias of Exchange Registers
		case NN_fcomp5:              // Alias of Compare Real and Pop
		case NN_ffreep:              // Free Register and Pop
		case NN_fxch7:               // Alias of Exchange Registers
		case NN_fstp8:               // Alias of Store Real and Pop
		case NN_fstp9:               // Alias of Store Real and Pop

		// Pentium 4 instructions

		case NN_addpd:               // Add Packed Double-Precision Floating-Point Values
		case NN_addsd:               // Add Scalar Double-Precision Floating-Point Values
		case NN_andnpd:              // Bitwise Logical AND NOT of Packed Double-Precision Floating-Point Values
		case NN_andpd:               // Bitwise Logical AND of Packed Double-Precision Floating-Point Values
		case NN_clflush:             // Flush Cache Line
		case NN_cmppd:               // Compare Packed Double-Precision Floating-Point Values
		case NN_cmpsd:               // Compare Scalar Double-Precision Floating-Point Values
		case NN_comisd:              // Compare Scalar Ordered Double-Precision Floating-Point Values and Set EFLAGS
		case NN_cvtdq2pd:            // Convert Packed Doubleword Integers to Packed Single-Precision Floating-Point Values
		case NN_cvtdq2ps:            // Convert Packed Doubleword Integers to Packed Double-Precision Floating-Point Values
		case NN_cvtpd2dq:            // Convert Packed Double-Precision Floating-Point Values to Packed Doubleword Integers
		case NN_cvtpd2pi:            // Convert Packed Double-Precision Floating-Point Values to Packed Doubleword Integers
		case NN_cvtpd2ps:            // Convert Packed Double-Precision Floating-Point Values to Packed Single-Precision Floating-Point Values
		case NN_cvtpi2pd:            // Convert Packed Doubleword Integers to Packed Double-Precision Floating-Point Values
		case NN_cvtps2dq:            // Convert Packed Single-Precision Floating-Point Values to Packed Doubleword Integers
		case NN_cvtps2pd:            // Convert Packed Single-Precision Floating-Point Values to Packed Double-Precision Floating-Point Values
		case NN_cvtsd2si:            // Convert Scalar Double-Precision Floating-Point Value to Doubleword Integer
		case NN_cvtsd2ss:            // Convert Scalar Double-Precision Floating-Point Value to Scalar Single-Precision Floating-Point Value
		case NN_cvtsi2sd:            // Convert Doubleword Integer to Scalar Double-Precision Floating-Point Value
		case NN_cvtss2sd:            // Convert Scalar Single-Precision Floating-Point Value to Scalar Double-Precision Floating-Point Value
		case NN_cvttpd2dq:           // Convert With Truncation Packed Double-Precision Floating-Point Values to Packed Doubleword Integers
		case NN_cvttpd2pi:           // Convert with Truncation Packed Double-Precision Floating-Point Values to Packed Doubleword Integers
		case NN_cvttps2dq:           // Convert With Truncation Packed Single-Precision Floating-Point Values to Packed Doubleword Integers
		case NN_cvttsd2si:           // Convert with Truncation Scalar Double-Precision Floating-Point Value to Doubleword Integer
		case NN_divpd:               // Divide Packed Double-Precision Floating-Point Values
		case NN_divsd:               // Divide Scalar Double-Precision Floating-Point Values
		case NN_lfence:              // Load Fence
		case NN_maskmovdqu:          // Store Selected Bytes of Double Quadword
		case NN_maxpd:               // Return Maximum Packed Double-Precision Floating-Point Values
		case NN_maxsd:               // Return Maximum Scalar Double-Precision Floating-Point Value
		case NN_mfence:              // Memory Fence
		case NN_minpd:               // Return Minimum Packed Double-Precision Floating-Point Values
		case NN_minsd:               // Return Minimum Scalar Double-Precision Floating-Point Value
		case NN_movapd:              // Move Aligned Packed Double-Precision Floating-Point Values
		case NN_movdq2q:             // Move Quadword from XMM to MMX Register
		case NN_movdqa:              // Move Aligned Double Quadword
		case NN_movdqu:              // Move Unaligned Double Quadword
		case NN_movhpd:              // Move High Packed Double-Precision Floating-Point Values
		case NN_movlpd:              // Move Low Packed Double-Precision Floating-Point Values
		case NN_movmskpd:            // Extract Packed Double-Precision Floating-Point Sign Mask
		case NN_movntdq:             // Store Double Quadword Using Non-Temporal Hint
		case NN_movnti:              // Store Doubleword Using Non-Temporal Hint
		case NN_movntpd:             // Store Packed Double-Precision Floating-Point Values Using Non-Temporal Hint
		case NN_movq2dq:             // Move Quadword from MMX to XMM Register
		case NN_movsd:               // Move Scalar Double-Precision Floating-Point Values
		case NN_movupd:              // Move Unaligned Packed Double-Precision Floating-Point Values
		case NN_mulpd:               // Multiply Packed Double-Precision Floating-Point Values
		case NN_mulsd:               // Multiply Scalar Double-Precision Floating-Point Values
		case NN_orpd:                // Bitwise Logical OR of Double-Precision Floating-Point Values
		case NN_paddq:               // Add Packed Quadword Integers
		case NN_pause:               // Spin Loop Hint
		case NN_pmuludq:             // Multiply Packed Unsigned Doubleword Integers
		case NN_pshufd:              // Shuffle Packed Doublewords
		case NN_pshufhw:             // Shuffle Packed High Words
		case NN_pshuflw:             // Shuffle Packed Low Words
		case NN_pslldq:              // Shift Double Quadword Left Logical
		case NN_psrldq:              // Shift Double Quadword Right Logical
		case NN_psubq:               // Subtract Packed Quadword Integers
		case NN_punpckhqdq:          // Unpack High Data
		case NN_punpcklqdq:          // Unpack Low Data
		case NN_shufpd:              // Shuffle Packed Double-Precision Floating-Point Values
		case NN_sqrtpd:              // Compute Square Roots of Packed Double-Precision Floating-Point Values
		case NN_sqrtsd:              // Compute Square Rootof Scalar Double-Precision Floating-Point Value
		case NN_subpd:               // Subtract Packed Double-Precision Floating-Point Values
		case NN_subsd:               // Subtract Scalar Double-Precision Floating-Point Values
		case NN_ucomisd:             // Unordered Compare Scalar Ordered Double-Precision Floating-Point Values and Set EFLAGS
		case NN_unpckhpd:            // Unpack and Interleave High Packed Double-Precision Floating-Point Values
		case NN_unpcklpd:            // Unpack and Interleave Low Packed Double-Precision Floating-Point Values
		case NN_xorpd:               // Bitwise Logical OR of Double-Precision Floating-Point Values

		// AMD syscall/sysret instructions

		case NN_syscall:             // Low latency system call
		case NN_sysret:              // Return from system call

		// AMD64 instructions

		case NN_swapgs:              // Exchange GS base with KernelGSBase MSR

		// New Pentium instructions (SSE3)

		case NN_movddup:             // Move One Double-FP and Duplicate
		case NN_movshdup:            // Move Packed Single-FP High and Duplicate
		case NN_movsldup:            // Move Packed Single-FP Low and Duplicate

		// Missing AMD64 instructions

		case NN_movsxd:              // Move with Sign-Extend Doubleword
		case NN_cmpxchg16b:          // Compare and Exchange 16 Bytes

		// SSE3 instructions

		case NN_addsubpd:            // Add /Sub packed DP FP numbers
		case NN_addsubps:            // Add /Sub packed SP FP numbers
		case NN_haddpd:              // Add horizontally packed DP FP numbers
		case NN_haddps:              // Add horizontally packed SP FP numbers
		case NN_hsubpd:              // Sub horizontally packed DP FP numbers
		case NN_hsubps:              // Sub horizontally packed SP FP numbers
		case NN_monitor:             // Set up a linear address range to be monitored by hardware
		case NN_mwait:               // Wait until write-back store performed within the range specified by the MONITOR instruction
		case NN_fisttp:              // Store ST in intXX (chop) and pop
		case NN_lddqu:               // Load unaligned integer 128-bit

		// SSSE3 instructions

		case NN_psignb:              // Packed SIGN Byte
		case NN_psignw:              // Packed SIGN Word
		case NN_psignd:              // Packed SIGN Doubleword
		case NN_pshufb:              // Packed Shuffle Bytes
		case NN_pmulhrsw:            // Packed Multiply High with Round and Scale
		case NN_pmaddubsw:           // Multiply and Add Packed Signed and Unsigned Bytes
		case NN_phsubsw:             // Packed Horizontal Subtract and Saturate
		case NN_phaddsw:             // Packed Horizontal Add and Saturate
		case NN_phaddw:              // Packed Horizontal Add Word
		case NN_phaddd:              // Packed Horizontal Add Doubleword
		case NN_phsubw:              // Packed Horizontal Subtract Word
		case NN_phsubd:              // Packed Horizontal Subtract Doubleword
		case NN_palignr:             // Packed Align Right
		case NN_pabsb:               // Packed Absolute Value Byte
		case NN_pabsw:               // Packed Absolute Value Word
		case NN_pabsd:               // Packed Absolute Value Doubleword

		// VMX instructions

		case NN_vmcall:              // Call to VM Monitor
		case NN_vmclear:             // Clear Virtual Machine Control Structure
		case NN_vmlaunch:            // Launch Virtual Machine
		case NN_vmresume:            // Resume Virtual Machine
		case NN_vmptrld:             // Load Pointer to Virtual Machine Control Structure
		case NN_vmptrst:             // Store Pointer to Virtual Machine Control Structure
		case NN_vmread:              // Read Field from Virtual Machine Control Structure
		case NN_vmwrite:             // Write Field from Virtual Machine Control Structure
		case NN_vmxoff:              // Leave VMX Operation
		case NN_vmxon:               // Enter VMX Operation
			return false;
			break;

		default:
			msg("ERROR: Unknown instruction opcode at %x : %s\n", this->GetAddr(),
				this->GetDisasm());
			break;
	} // end switch on opcode
	return true;
} // end SMPInstr::BuildRTL()

// Iterate through all reg transfers and call SyncRTLDefUse for each.
void SMPInstr::SyncAllRTs(void) {
	for (size_t index = 0; index < this->RTL.GetCount(); ++index) {
		this->SyncRTLDefUse(this->RTL.GetRT(index));
	}
	return;
} // end of SMPInstr:SyncAllRTs()

// Ensure that each operand of the RTL is found in the appropriate DEF or USE list.
void SMPInstr::SyncRTLDefUse(SMPRegTransfer *CurrRT) {
	// The Guard expression and ExtraKills are almost never represented in the DEF and USE
	//  lists. When they are, they are added in MDFixupDefUseLists(), so we ignore them here.

	// The only DEFs should come from left operands of SMP_ASSIGN operators, i.e. the effects
	//  of register transfers.
	op_t LeftOp, RightOp;
	set<DefOrUse, LessDefUse>::iterator CurrDef, CurrUse;
	bool DebugFlag = false;
#if SMP_VERBOSE_DEBUG_BUILD_RTL
	DebugFlag |= (0 == strcmp("__libc_csu_fini", this->BasicBlock->GetFunc()->GetFuncName()));
#endif

	if (DebugFlag) {
		msg("SyncRTLDefUse entered. Dump of USE list:\n");
		this->Uses.Dump();
	}

	LeftOp = CurrRT->GetLeftOperand();
	if (SMP_ASSIGN == CurrRT->GetOperator()) {
		assert(o_void != LeftOp.type);
		assert(o_imm != LeftOp.type);
		CurrDef = this->Defs.FindRef(LeftOp);
		if (CurrDef == this->GetLastDef() && !LeftOp.is_reg(R_ip)) {
#if SMP_VERBOSE_DEBUG_BUILD_RTL
			msg("WARNING: DEF not found for SMP_ASSIGN in %s ; added op:", this->GetDisasm());
			PrintOperand(LeftOp);
			msg("\n");
			this->Defs.SetRef(LeftOp, CurrRT->GetOperatorType());
		}
	}
	else { // not SMP_ASSIGN; left operand should be a USE
		if (o_void != LeftOp.type) {
			CurrUse = this->Uses.FindRef(LeftOp);
			if (CurrUse == this->GetLastUse()) {
#if SMP_VERBOSE_DEBUG_BUILD_RTL_DEF_USE
				msg("WARNING: USE not found for ");
				PrintOperand(LeftOp);
				msg(" in %s ; added\n", this->GetDisasm());
				this->Uses.SetRef(LeftOp);
			}
		}
	}
	if (!CurrRT->HasRightSubTree()) {
		RightOp = CurrRT->GetRightOperand();  // right operand should be a USE
		if (o_void != RightOp.type) {
			CurrUse = this->Uses.FindRef(RightOp);
			if (CurrUse == this->GetLastUse()) {
#if SMP_VERBOSE_DEBUG_BUILD_RTL_DEF_USE
				msg("WARNING: USE not found for ");
				PrintOperand(RightOp);
				msg(" in %s ; added\n", this->GetDisasm());
				this->Uses.SetRef(RightOp);
			}
		}
	}
	else { // recurse into right subtree
		this->SyncRTLDefUse(CurrRT->GetRightTree());
	}
	return;
} // end of SMPInstr::SyncRTLDefUse()