Skip to content
Snippets Groups Projects
SMPInstr.cpp 157 KiB
Newer Older
3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337

	DeltaOp.type = o_imm;
	DeltaOp.value = delta;

	TempRT->SetLeftOperand(StackOp);    // ESP := RightRT
	TempRT->SetOperator(SMP_ASSIGN); 
	RightRT->SetLeftOperand(StackOp); // ESP + delta
	RightRT->SetOperator(SMP_ADD);
	RightRT->SetRightOperand(DeltaOp);
	TempRT->SetRightTree(RightRT);
	this->RTL.push_back(TempRT);
	return;
} // end of SMPInstr::AddToStackPointer()

// Add to the stack pointer to deallocate stack space, e.g. for a pop instruction.
void SMPInstr::SubFromStackPointer(uval_t delta) {
	SMPRegTransfer *TempRT = new SMPRegTransfer;
	SMPRegTransfer *RightRT = new SMPRegTransfer;
	op_t StackOp, DeltaOp;

	StackOp.type = o_reg;
	StackOp.reg = R_sp;
	StackOp.addr = 0;
	StackOp.hasSIB = 0;
	StackOp.dtyp = dt_dword;

	DeltaOp.type = o_imm;
	DeltaOp.value = delta;

	TempRT->SetLeftOperand(StackOp);    // ESP := RightRT
	TempRT->SetOperator(SMP_ASSIGN);
	RightRT->SetLeftOperand(StackOp); // ESP - delta
	RightRT->SetOperator(SMP_SUBTRACT);
	RightRT->SetRightOperand(DeltaOp);
	TempRT->SetRightTree(RightRT);
	this->RTL.push_back(TempRT);
	return;
} // end of SMPInstr::SubFromStackPointer()

#define SMP_FIRST_POP_FLAGS  NN_popfw
#define SMP_LAST_POP_FLAGS  NN_popfq
#define SMP_FIRST_POP_ALL  NN_popaw
#define SMP_LAST_POP_ALL  NN_popaq
// Build the RTL for a pop instruction
bool SMPInstr::BuildPopRTL(void) {
	size_t OpNum, OpSize;
	bool DestFound = false;
	SMPRegTransfer *TempRT = NULL;
	op_t StackOp, FlagsOp;
	StackOp.type = o_displ;
	StackOp.reg = R_sp;
	StackOp.addr = 0;  // [ESP+0]
	StackOp.hasSIB = 0;
	StackOp.dtyp = dt_dword;
	FlagsOp.type = o_reg;
	FlagsOp.reg = X86_FLAGS_REG;
	FlagsOp.dtyp = dt_dword;

	// Handle special cases first.
	if ((SMP_FIRST_POP_FLAGS <= this->SMPcmd.itype) && (SMP_LAST_POP_FLAGS >= this->SMPcmd.itype)) {
		TempRT = new SMPRegTransfer;
		TempRT->SetLeftOperand(FlagsOp);
		TempRT->SetOperator(SMP_ASSIGN);
		TempRT->SetRightOperand(StackOp);
		this->RTL.push_back(TempRT);
		TempRT = NULL;
		// Now create the stack pointer increment effect.
		this->AddToStackPointer(4);
		return true;
	}

	if ((SMP_FIRST_POP_ALL <= this->SMPcmd.itype) && (SMP_LAST_POP_ALL >= this->SMPcmd.itype)) {
		// We pop off 7 registers from the 8 that were pushed on the stack.
		//  The pushed stack pointer is ignored. Instead, the stack pointer value is
		//  adjusted at the end, per the Intel instruction manuals.

		op_t RegOp;
		RegOp.type = o_reg;

		// EDI comes from [ESP+0]
		RegOp.reg = R_di;
		StackOp.addr = 0;  // [ESP+0]
		TempRT = new SMPRegTransfer;
		TempRT->SetLeftOperand(RegOp);
		TempRT->SetOperator(SMP_ASSIGN);
		TempRT->SetRightOperand(StackOp);
		this->RTL.push_back(TempRT);
		TempRT = NULL;

		// ESI comes from [ESP+4]
		RegOp.reg = R_si;
		StackOp.addr = 4;  // [ESP+4]
		TempRT = new SMPRegTransfer;
		TempRT->SetLeftOperand(RegOp);
		TempRT->SetOperator(SMP_ASSIGN);
		TempRT->SetRightOperand(StackOp);
		this->RTL.push_back(TempRT);
		TempRT = NULL;

		// EBP comes from [ESP+8]
		RegOp.reg = R_bp;
		StackOp.addr = 8;  // [ESP+8]
		TempRT = new SMPRegTransfer;
		TempRT->SetLeftOperand(RegOp);
		TempRT->SetOperator(SMP_ASSIGN);
		TempRT->SetRightOperand(StackOp);
		this->RTL.push_back(TempRT);
		TempRT = NULL;

		// Skip over saved ESP at [ESP+12]

		// EBX comes from [ESP+16]
		RegOp.reg = R_bx;
		StackOp.addr = 16;  // [ESP+16]
		TempRT = new SMPRegTransfer;
		TempRT->SetLeftOperand(RegOp);
		TempRT->SetOperator(SMP_ASSIGN);
		TempRT->SetRightOperand(StackOp);
		this->RTL.push_back(TempRT);
		TempRT = NULL;

		// EDX comes from [ESP+20]
		RegOp.reg = R_dx;
		StackOp.addr = 20;  // [ESP+20]
		TempRT = new SMPRegTransfer;
		TempRT->SetLeftOperand(RegOp);
		TempRT->SetOperator(SMP_ASSIGN);
		TempRT->SetRightOperand(StackOp);
		this->RTL.push_back(TempRT);
		TempRT = NULL;

		// ECX comes from [ESP+24]
		RegOp.reg = R_cx;
		StackOp.addr = 24;  // [ESP+24]
		TempRT = new SMPRegTransfer;
		TempRT->SetLeftOperand(RegOp);
		TempRT->SetOperator(SMP_ASSIGN);
		TempRT->SetRightOperand(StackOp);
		this->RTL.push_back(TempRT);
		TempRT = NULL;

		// EAX comes from [ESP+28]
		RegOp.reg = R_ax;
		StackOp.addr = 28;  // [ESP+28]
		TempRT = new SMPRegTransfer;
		TempRT->SetLeftOperand(RegOp);
		TempRT->SetOperator(SMP_ASSIGN);
		TempRT->SetRightOperand(StackOp);
		this->RTL.push_back(TempRT);
		TempRT = NULL;

		// Now create the stack pointer increment effect.
		this->AddToStackPointer(32);
		return true;
	} // end for "pop all" instructions

	// If we reach this point, we have a simple POP instruction.
	for (OpNum = 0; !DestFound && (OpNum < UA_MAXOP); ++OpNum) {
		op_t TempOp = this->SMPcmd.Operands[OpNum];
		if (this->features & DefMacros[OpNum]) { // DEF
			if (MDKnownOperandType(TempOp)) {
				DestFound = true;
				TempRT = new SMPRegTransfer;
				TempRT->SetLeftOperand(TempOp);
				TempRT->SetOperator(SMP_ASSIGN);
				StackOp.dtyp = TempOp.dtyp;  // size of transfer
				TempRT->SetRightOperand(StackOp);
				this->RTL.push_back(TempRT);
				// Now create the stack pointer increment effect.
				OpSize = GetOpDataSize(TempOp);
				this->AddToStackPointer((uval_t) OpSize);
			}
		}
	} // end for (OpNum = 0; ...)

#if SMP_DEBUG_BUILD_RTL
	if (!DestFound) {
		msg("ERROR: Could not find pop operand at %x for %s\n", this->GetAddr(), this->GetDisasm());
	}
#endif
	return DestFound;
} // end of SMPInstr::BuildPopRTL()

#define SMP_FIRST_PUSH_FLAGS  NN_pushfw
#define SMP_LAST_PUSH_FLAGS  NN_pushfq
#define SMP_FIRST_PUSH_ALL  NN_pushaw
#define SMP_LAST_PUSH_ALL  NN_pushaq
// Build the RTL for a push instruction
bool SMPInstr::BuildPushRTL(void) {
	size_t OpNum, OpSize;
	bool SourceFound = false;
	SMPRegTransfer *TempRT = NULL;
	op_t StackOp, FlagsOp;
	StackOp.type = o_displ;
	StackOp.reg = R_sp;
	StackOp.addr = (ea_t) -4;  // [ESP-4]
	StackOp.hasSIB = 0;
	StackOp.dtyp = dt_dword;
	FlagsOp.type = o_reg;
	FlagsOp.reg = X86_FLAGS_REG;
	FlagsOp.dtyp = dt_dword;

	// Handle special cases first.
	if ((SMP_FIRST_PUSH_FLAGS <= this->SMPcmd.itype) && (SMP_LAST_PUSH_FLAGS >= this->SMPcmd.itype)) {
		TempRT = new SMPRegTransfer;
		TempRT->SetRightOperand(FlagsOp);
		TempRT->SetOperator(SMP_ASSIGN);
		TempRT->SetLeftOperand(StackOp);
		this->RTL.push_back(TempRT);
		// Now create the stack pointer increment effect.
		this->SubFromStackPointer(4);
		return true;
	}

	if ((SMP_FIRST_PUSH_ALL <= this->SMPcmd.itype) && (SMP_LAST_PUSH_ALL >= this->SMPcmd.itype)) {
		op_t RegOp;
		RegOp.type = o_reg;

		// EDI goes to [ESP-32]
		RegOp.reg = R_di;
		StackOp.addr = (ea_t) -32;  // [ESP-32]
		TempRT = new SMPRegTransfer;
		TempRT->SetRightOperand(RegOp);
		TempRT->SetOperator(SMP_ASSIGN);
		TempRT->SetLeftOperand(StackOp);
		this->RTL.push_back(TempRT);
		TempRT = NULL;

		// ESI goes to [ESP-28]
		RegOp.reg = R_si;
		StackOp.addr = (ea_t) -28;  // [ESP-28]
		TempRT = new SMPRegTransfer;
		TempRT->SetRightOperand(RegOp);
		TempRT->SetOperator(SMP_ASSIGN);
		TempRT->SetLeftOperand(StackOp);
		this->RTL.push_back(TempRT);
		TempRT = NULL;

		// EBP goes to [ESP-24]
		RegOp.reg = R_bp;
		StackOp.addr = (ea_t) -24;  // [ESP-24]
		TempRT = new SMPRegTransfer;
		TempRT->SetRightOperand(RegOp);
		TempRT->SetOperator(SMP_ASSIGN);
		TempRT->SetLeftOperand(StackOp);
		this->RTL.push_back(TempRT);
		TempRT = NULL;

		// ESP goes to [ESP-20]
		RegOp.reg = R_sp;
		StackOp.addr = (ea_t) -20;  // [ESP-20]
		TempRT = new SMPRegTransfer;
		TempRT->SetRightOperand(RegOp);
		TempRT->SetOperator(SMP_ASSIGN);
		TempRT->SetLeftOperand(StackOp);
		this->RTL.push_back(TempRT);
		TempRT = NULL;

		// EBX goes to [ESP-16]
		RegOp.reg = R_bx;
		StackOp.addr = (ea_t) -16;  // [ESP-16]
		TempRT = new SMPRegTransfer;
		TempRT->SetRightOperand(RegOp);
		TempRT->SetOperator(SMP_ASSIGN);
		TempRT->SetLeftOperand(StackOp);
		this->RTL.push_back(TempRT);
		TempRT = NULL;

		// EDX goes to [ESP-12]
		RegOp.reg = R_dx;
		StackOp.addr = (ea_t) -12;  // [ESP-12]
		TempRT = new SMPRegTransfer;
		TempRT->SetRightOperand(RegOp);
		TempRT->SetOperator(SMP_ASSIGN);
		TempRT->SetLeftOperand(StackOp);
		this->RTL.push_back(TempRT);
		TempRT = NULL;

		// ECX goes to [ESP-8]
		RegOp.reg = R_cx;
		StackOp.addr = (ea_t) -8;  // [ESP-8]
		TempRT = new SMPRegTransfer;
		TempRT->SetRightOperand(RegOp);
		TempRT->SetOperator(SMP_ASSIGN);
		TempRT->SetLeftOperand(StackOp);
		this->RTL.push_back(TempRT);
		TempRT = NULL;

		// EAX goes to [ESP-4]
		RegOp.reg = R_ax;
		StackOp.addr = (ea_t) -4;  // [ESP-4]
		TempRT = new SMPRegTransfer;
		TempRT->SetRightOperand(RegOp);
		TempRT->SetOperator(SMP_ASSIGN);
		TempRT->SetLeftOperand(StackOp);
		this->RTL.push_back(TempRT);
		TempRT = NULL;

		// Now create the stack pointer increment effect.
		this->SubFromStackPointer(32);
		return true;
	} // end for "pop all" instructions

	// If we reach this point, we have a simple PUSH instruction.
	for (OpNum = 0; !SourceFound && (OpNum < UA_MAXOP); ++OpNum) {
		op_t TempOp = this->SMPcmd.Operands[OpNum];
		if (this->features & UseMacros[OpNum]) { // USE
			if (MDKnownOperandType(TempOp)) {
				SourceFound = true;
				OpSize = GetOpDataSize(TempOp);
				TempRT = new SMPRegTransfer;
				TempRT->SetRightOperand(TempOp);
				TempRT->SetOperator(SMP_ASSIGN);
				StackOp.dtyp = TempOp.dtyp;  // size of transfer
				StackOp.addr = (ea_t) (-((signed int) OpSize));
				TempRT->SetLeftOperand(StackOp);
				this->RTL.push_back(TempRT);
				TempRT = NULL;
				// Now create the stack pointer increment effect.
				this->SubFromStackPointer((uval_t) OpSize);
			}
		}
	} // end for (OpNum = 0; ...)

#if SMP_DEBUG_BUILD_RTL
	if (!SourceFound) {
		msg("ERROR: Could not find push operand at %x for %s\n", this->GetAddr(), this->GetDisasm());
	}
#endif
	return SourceFound;
} // end of SMPInstr::BuildPushRTL()

// Build RTL trees from the SMPcmd info.
bool SMPInstr::BuildRTL(void) {
	op_t FlagsOp;
	FlagsOp.type = o_reg;
	FlagsOp.reg = X86_FLAGS_REG;
	SMPRegTransfer *NopRT = NULL;  // no-op register transfer

	// We don't want to explicitly represent the various no-ops except as NULL operations.
	//  E.g. mov esi,esi should not generate DEF and USE of esi, because esi does not change.
	if (this->MDIsNop()) {
		NopRT = new SMPRegTransfer;
		NopRT->SetOperator(SMP_NULL_OPERATOR);
		this->RTL.push_back(NopRT);
		NopRT = NULL;
		return true;
	}

	switch (this->SMPcmd.itype) {
		case NN_aaa:                 // ASCII Adjust after Addition
		case NN_aad:                 // ASCII Adjust AX before Division
		case NN_aam:                 // ASCII Adjust AX after Multiply
		case NN_aas:                 // ASCII Adjust AL after Subtraction
			return this->BuildUnaryRTL(SMP_UNARY_NUMERIC_OPERATION);

		case NN_adc:                 // Add with Carry
			return this->BuildBinaryPlusFlagsRTL(SMP_ADD_CARRY);

		case NN_add:                 // Add
			return this->BuildBinaryRTL(SMP_ADD);

		case NN_and:                 // Logical AND
			return this->BuildBinaryRTL(SMP_BITWISE_AND);

		case NN_arpl:                // Adjust RPL Field of Selector
		case NN_bound:               // Check Array Index Against Bounds
			return false;
			break;

		case NN_bsf:                 // Bit Scan Forward
		case NN_bsr:                 // Bit Scan Reverse
			return this->BuildUnary2OpndRTL(SMP_UNARY_NUMERIC_OPERATION);

		case NN_bt:                  // Bit Test
			return this->BuildFlagsDestBinaryRTL(SMP_BINARY_NUMERIC_OPERATION);

		case NN_btc:                 // Bit Test and Complement
		case NN_btr:                 // Bit Test and Reset
		case NN_bts:                 // Bit Test and Set
			// Has effects on both the carry flag and the first operand
			this->RTL.ExtraKills.push_back(FlagsOp);
			return this->BuildBinaryRTL(SMP_BINARY_NUMERIC_OPERATION);

		case NN_call:                // Call Procedure
		case NN_callfi:              // Indirect Call Far Procedure
		case NN_callni:              // Indirect Call Near Procedure
			return this->BuildCallRTL();

		case NN_cbw:                 // AL -> AX (with sign)
		case NN_cwde:                // AX -> EAX (with sign)
		case NN_cdqe:                // EAX -> RAX (with sign)
			return this->BuildUnaryRTL(SMP_SIGN_EXTEND);

		case NN_clc:                 // Clear Carry Flag
		case NN_cld:                 // Clear Direction Flag
			return this->BuildUnaryRTL(SMP_UNARY_NUMERIC_OPERATION);

		case NN_cli:                 // Clear Interrupt Flag
		case NN_clts:                // Clear Task-Switched Flag in CR0
			// We don't track the interrupt flag or the special registers,
			//  so we can just consider these to be no-ops.
			NopRT = new SMPRegTransfer;
			NopRT->SetOperator(SMP_NULL_OPERATOR);
			this->RTL.push_back(NopRT);
			NopRT = NULL;
			return true;

		case NN_cmc:                 // Complement Carry Flag
			return this->BuildUnaryRTL(SMP_UNARY_NUMERIC_OPERATION);

		case NN_cmp:                 // Compare Two Operands
			return this->BuildFlagsDestBinaryRTL(SMP_S_COMPARE);

		case NN_cmps:                // Compare Strings
			return this->BuildFlagsDestBinaryRTL(SMP_U_COMPARE);

		case NN_cwd:                 // AX -> DX:AX (with sign)
		case NN_cdq:                 // EAX -> EDX:EAX (with sign)
		case NN_cqo:                 // RAX -> RDX:RAX (with sign)
			return this->BuildUnary2OpndRTL(SMP_SIGN_EXTEND);
3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000

		case NN_daa:                 // Decimal Adjust AL after Addition
		case NN_das:                 // Decimal Adjust AL after Subtraction
			return this->BuildUnaryRTL(SMP_UNARY_NUMERIC_OPERATION);

		case NN_dec:                 // Decrement by 1
			return this->BuildBinaryRTL(SMP_SUBTRACT);

		case NN_div:                 // Unsigned Divide
			return this->BuildMultiplyDivideRTL(SMP_U_DIVIDE);

		case NN_enterw:              // Make Stack Frame for Procedure Parameters
		case NN_enter:               // Make Stack Frame for Procedure Parameters
		case NN_enterd:              // Make Stack Frame for Procedure Parameters
		case NN_enterq:              // Make Stack Frame for Procedure Parameters
			return this->BuildEnterRTL();

		case NN_hlt:                 // Halt
			// Treat as a no-op
			NopRT = new SMPRegTransfer;
			NopRT->SetOperator(SMP_NULL_OPERATOR);
			this->RTL.push_back(NopRT);
			NopRT = NULL;
			return true;

		case NN_idiv:                // Signed Divide
			return this->BuildMultiplyDivideRTL(SMP_S_DIVIDE);

		case NN_imul:                // Signed Multiply
			return this->BuildMultiplyDivideRTL(SMP_S_MULTIPLY);

		case NN_in:                  // Input from Port
			return this->BuildUnary2OpndRTL(SMP_INPUT);

		case NN_inc:                 // Increment by 1
			return this->BuildBinaryRTL(SMP_ADD);

		case NN_ins:                 // Input Byte(s) from Port to String
			return false;
			break;

		case NN_int:                 // Call to Interrupt Procedure
		case NN_into:                // Call to Interrupt Procedure if Overflow Flag = 1
		case NN_int3:                // Trap to Debugger
			return this->BuildCallRTL();

		case NN_iretw:               // Interrupt Return
		case NN_iret:                // Interrupt Return
		case NN_iretd:               // Interrupt Return (use32)
		case NN_iretq:               // Interrupt Return (use64)
			return this->BuildReturnRTL();

		case NN_ja:                  // Jump if Above (CF=0 & ZF=0)
		case NN_jae:                 // Jump if Above or Equal (CF=0)
		case NN_jb:                  // Jump if Below (CF=1)
		case NN_jbe:                 // Jump if Below or Equal (CF=1 | ZF=1)
		case NN_jc:                  // Jump if Carry (CF=1)
			return this->BuildJumpRTL(SMP_BINARY_NUMERIC_OPERATION);

		case NN_jcxz:                // Jump if CX is 0
		case NN_jecxz:               // Jump if ECX is 0
		case NN_jrcxz:               // Jump if RCX is 0
			return this->BuildJumpRTL(SMP_EQUAL); // special case in BuildJumpRTL()

		case NN_je:                  // Jump if Equal (ZF=1)
			return this->BuildJumpRTL(SMP_EQUAL);

		case NN_jg:                  // Jump if Greater (ZF=0 & SF=OF)
			return this->BuildJumpRTL(SMP_GREATER_THAN);

		case NN_jge:                 // Jump if Greater or Equal (SF=OF)
			return this->BuildJumpRTL(SMP_GREATER_EQUAL);

		case NN_jl:                  // Jump if Less (SF!=OF)
			return this->BuildJumpRTL(SMP_LESS_THAN);

		case NN_jle:                 // Jump if Less or Equal (ZF=1 | SF!=OF)
			return this->BuildJumpRTL(SMP_LESS_EQUAL);

		case NN_jna:                 // Jump if Not Above (CF=1 | ZF=1)
		case NN_jnae:                // Jump if Not Above or Equal (CF=1)
		case NN_jnb:                 // Jump if Not Below (CF=0)
		case NN_jnbe:                // Jump if Not Below or Equal (CF=0 & ZF=0) a.k.a. ja
		case NN_jnc:                 // Jump if Not Carry (CF=0)
			return this->BuildJumpRTL(SMP_BINARY_NUMERIC_OPERATION);

		case NN_jne:                 // Jump if Not Equal (ZF=0)
			return this->BuildJumpRTL(SMP_NOT_EQUAL);

		case NN_jng:                 // Jump if Not Greater (ZF=1 | SF!=OF) a.k.a. jle
			return this->BuildJumpRTL(SMP_LESS_EQUAL);

		case NN_jnge:                // Jump if Not Greater or Equal (SF != OF) **
			return this->BuildJumpRTL(SMP_LESS_THAN);

		case NN_jnl:                 // Jump if Not Less (SF=OF) a.k.a. jge
			return this->BuildJumpRTL(SMP_GREATER_EQUAL);

		case NN_jnle:                // Jump if Not Less or Equal (ZF=0 & SF=OF) a.k.a. jg
			return this->BuildJumpRTL(SMP_GREATER_THAN);

		case NN_jno:                 // Jump if Not Overflow (OF=0)
		case NN_jnp:                 // Jump if Not Parity (PF=0)
		case NN_jns:                 // Jump if Not Sign (SF=0)
			return this->BuildJumpRTL(SMP_BINARY_NUMERIC_OPERATION);

		case NN_jnz:                 // Jump if Not Zero (ZF=0)  a.k.a. jne
			return this->BuildJumpRTL(SMP_NOT_EQUAL);

		case NN_jo:                  // Jump if Overflow (OF=1)
		case NN_jp:                  // Jump if Parity (PF=1)
		case NN_jpe:                 // Jump if Parity Even (PF=1)
		case NN_jpo:                 // Jump if Parity Odd  (PF=0)
		case NN_js:                  // Jump if Sign (SF=1)
			return this->BuildJumpRTL(SMP_BINARY_NUMERIC_OPERATION);

		case NN_jz:                  // Jump if Zero (ZF=1)
			return this->BuildJumpRTL(SMP_EQUAL);

		case NN_jmp:                 // Jump
		case NN_jmpfi:               // Indirect Far Jump
		case NN_jmpni:               // Indirect Near Jump
		case NN_jmpshort:            // Jump Short (not used)
			return this->BuildJumpRTL(SMP_NULL_OPERATOR);

		case NN_lahf:                // Load Flags into AH Register
			return this->BuildMoveRTL(SMP_NULL_OPERATOR);

		case NN_lar:                 // Load Access Right Byte
			return false;
			break;

		case NN_lea:                 // Load Effective Address
			return this->BuildUnary2OpndRTL(SMP_ADDRESS_OF);

		case NN_leavew:              // High Level Procedure Exit
		case NN_leave:               // High Level Procedure Exit
		case NN_leaved:              // High Level Procedure Exit
		case NN_leaveq:              // High Level Procedure Exit
			return this->BuildLeaveRTL();

		case NN_lgdt:                // Load Global Descriptor Table Register
		case NN_lidt:                // Load Interrupt Descriptor Table Register
		case NN_lgs:                 // Load Full Pointer to GS:xx
		case NN_lss:                 // Load Full Pointer to SS:xx
		case NN_lds:                 // Load Full Pointer to DS:xx
		case NN_les:                 // Load Full Pointer to ES:xx
		case NN_lfs:                 // Load Full Pointer to FS:xx
		case NN_lldt:                // Load Local Descriptor Table Register
		case NN_lmsw:                // Load Machine Status Word
		case NN_lock:                // Assert LOCK# Signal Prefix
		case NN_lods:                // Load String
			return false;
			break;

		case NN_loopw:               // Loop while ECX != 0
		case NN_loop:                // Loop while CX != 0
		case NN_loopd:               // Loop while ECX != 0
		case NN_loopq:               // Loop while RCX != 0
		case NN_loopwe:              // Loop while CX != 0 and ZF=1
		case NN_loope:               // Loop while rCX != 0 and ZF=1
		case NN_loopde:              // Loop while ECX != 0 and ZF=1
		case NN_loopqe:              // Loop while RCX != 0 and ZF=1
		case NN_loopwne:             // Loop while CX != 0 and ZF=0
		case NN_loopne:              // Loop while rCX != 0 and ZF=0
		case NN_loopdne:             // Loop while ECX != 0 and ZF=0
		case NN_loopqne:             // Loop while RCX != 0 and ZF=0
			return false;
			break;

		case NN_lsl:                 // Load Segment Limit
		case NN_ltr:                 // Load Task Register
			return false;
			break;

		case NN_mov:                 // Move Data
		case NN_movsp:               // Move to/from Special Registers
		case NN_movs:                // Move Byte(s) from String to String
			return this->BuildMoveRTL(SMP_NULL_OPERATOR);

		case NN_movsx:               // Move with Sign-Extend
			return this->BuildUnary2OpndRTL(SMP_SIGN_EXTEND);

		case NN_movzx:               // Move with Zero-Extend
			return this->BuildUnary2OpndRTL(SMP_ZERO_EXTEND);

		case NN_mul:                 // Unsigned Multiplication of AL or AX
			return this->BuildMultiplyDivideRTL(SMP_U_MULTIPLY);

		case NN_neg:                 // Two's Complement Negation
			return this->BuildUnaryRTL(SMP_NEGATE);

		case NN_nop:                 // No Operation
			NopRT = new SMPRegTransfer;
			NopRT->SetOperator(SMP_NULL_OPERATOR);
			this->RTL.push_back(NopRT);
			NopRT = NULL;
			return true;

		case NN_not:                 // One's Complement Negation
			return this->BuildUnaryRTL(SMP_BITWISE_NOT);

		case NN_or:                  // Logical Inclusive OR
			return this->BuildBinaryRTL(SMP_BITWISE_OR);

		case NN_out:                 // Output to Port
			return this->BuildBinaryRTL(SMP_OUTPUT);

		case NN_outs:                // Output Byte(s) to Port
			return false;
			break;

		case NN_pop:                 // Pop a word from the Stack
		case NN_popaw:               // Pop all General Registers
		case NN_popa:                // Pop all General Registers
		case NN_popad:               // Pop all General Registers (use32)
		case NN_popaq:               // Pop all General Registers (use64)
		case NN_popfw:               // Pop Stack into Flags Register
		case NN_popf:                // Pop Stack into Flags Register
		case NN_popfd:               // Pop Stack into Eflags Register
		case NN_popfq:               // Pop Stack into Rflags Register
			return this->BuildPopRTL();

		case NN_push:                // Push Operand onto the Stack
		case NN_pushaw:              // Push all General Registers
		case NN_pusha:               // Push all General Registers
		case NN_pushad:              // Push all General Registers (use32)
		case NN_pushaq:              // Push all General Registers (use64)
		case NN_pushfw:              // Push Flags Register onto the Stack
		case NN_pushf:               // Push Flags Register onto the Stack
		case NN_pushfd:              // Push Flags Register onto the Stack (use32)
		case NN_pushfq:              // Push Flags Register onto the Stack (use64)
			return this->BuildPushRTL();

		case NN_rcl:                 // Rotate Through Carry Left
			return this->BuildBinaryPlusFlagsRTL(SMP_ROTATE_LEFT_CARRY);

		case NN_rcr:                 // Rotate Through Carry Right
			return this->BuildBinaryPlusFlagsRTL(SMP_ROTATE_RIGHT_CARRY);

		case NN_rol:                 // Rotate Left
			return this->BuildBinaryRTL(SMP_ROTATE_LEFT);

		case NN_ror:                 // Rotate Right
			return this->BuildBinaryRTL(SMP_ROTATE_RIGHT);

		case NN_rep:                 // Repeat String Operation
		case NN_repe:                // Repeat String Operation while ZF=1
		case NN_repne:               // Repeat String Operation while ZF=0
			return false;
			break;

		case NN_retn:                // Return Near from Procedure
		case NN_retf:                // Return Far from Procedure
			return this->BuildReturnRTL();

		case NN_sahf:                // Store AH into Flags Register
			return this->BuildMoveRTL(SMP_NULL_OPERATOR);

		case NN_sal:                 // Shift Arithmetic Left
			return this->BuildBinaryRTL(SMP_S_LEFT_SHIFT);

		case NN_sar:                 // Shift Arithmetic Right
			return this->BuildBinaryRTL(SMP_S_RIGHT_SHIFT);

		case NN_shl:                 // Shift Logical Left
			return this->BuildBinaryRTL(SMP_U_LEFT_SHIFT);

		case NN_shr:                 // Shift Logical Right
			return this->BuildBinaryRTL(SMP_U_RIGHT_SHIFT);

		case NN_sbb:                 // Integer Subtraction with Borrow
			return this->BuildBinaryPlusFlagsRTL(SMP_SUBTRACT_BORROW);

		case NN_scas:                // Compare String
			return this->BuildBinaryPlusFlagsRTL(SMP_U_COMPARE);

		case NN_seta:                // Set Byte if Above (CF=0 & ZF=0)
		case NN_setae:               // Set Byte if Above or Equal (CF=0)
		case NN_setb:                // Set Byte if Below (CF=1)
		case NN_setbe:               // Set Byte if Below or Equal (CF=1 | ZF=1)
		case NN_setc:                // Set Byte if Carry (CF=1)
		case NN_sete:                // Set Byte if Equal (ZF=1)
		case NN_setg:                // Set Byte if Greater (ZF=0 & SF=OF)
		case NN_setge:               // Set Byte if Greater or Equal (SF=OF)
		case NN_setl:                // Set Byte if Less (SF!=OF)
		case NN_setle:               // Set Byte if Less or Equal (ZF=1 | SF!=OF)
		case NN_setna:               // Set Byte if Not Above (CF=1 | ZF=1)
		case NN_setnae:              // Set Byte if Not Above or Equal (CF=1)
		case NN_setnb:               // Set Byte if Not Below (CF=0)
		case NN_setnbe:              // Set Byte if Not Below or Equal (CF=0 & ZF=0)
		case NN_setnc:               // Set Byte if Not Carry (CF=0)
		case NN_setne:               // Set Byte if Not Equal (ZF=0)
		case NN_setng:               // Set Byte if Not Greater (ZF=1 | SF!=OF)
		case NN_setnge:              // Set Byte if Not Greater or Equal (ZF=1)
		case NN_setnl:               // Set Byte if Not Less (SF=OF)
		case NN_setnle:              // Set Byte if Not Less or Equal (ZF=0 & SF=OF)
		case NN_setno:               // Set Byte if Not Overflow (OF=0)
		case NN_setnp:               // Set Byte if Not Parity (PF=0)
		case NN_setns:               // Set Byte if Not Sign (SF=0)
		case NN_setnz:               // Set Byte if Not Zero (ZF=0)
		case NN_seto:                // Set Byte if Overflow (OF=1)
		case NN_setp:                // Set Byte if Parity (PF=1)
		case NN_setpe:               // Set Byte if Parity Even (PF=1)
		case NN_setpo:               // Set Byte if Parity Odd  (PF=0)
		case NN_sets:                // Set Byte if Sign (SF=1)
		case NN_setz:                // Set Byte if Zero (ZF=1)
			// Destination always get set to NUMERIC 0 or 1, depending on
			//  the condition and the relevant flags bits. Best way to model
			//  this in an RTL is to perform an unspecified unary NUMERIC
			//  operation on the flags register and assign the result to the
			//  destination operand, making it always NUMERIC.
			return this->BuildUnary2OpndRTL(SMP_UNARY_NUMERIC_OPERATION);

		case NN_sgdt:                // Store Global Descriptor Table Register
		case NN_sidt:                // Store Interrupt Descriptor Table Register
			return false;
			break;

		case NN_shld:                // Double Precision Shift Left
			return this->BuildDoubleShiftRTL(SMP_U_LEFT_SHIFT);

		case NN_shrd:                // Double Precision Shift Right
			return this->BuildDoubleShiftRTL(SMP_U_RIGHT_SHIFT);

		case NN_sldt:                // Store Local Descriptor Table Register
		case NN_smsw:                // Store Machine Status Word
			return false;
			break;

		case NN_stc:                 // Set Carry Flag
		case NN_std:                 // Set Direction Flag
			return this->BuildUnaryRTL(SMP_UNARY_NUMERIC_OPERATION);

		case NN_sti:                 // Set Interrupt Flag
			NopRT = new SMPRegTransfer;
			NopRT->SetOperator(SMP_NULL_OPERATOR);
			this->RTL.push_back(NopRT);
			NopRT = NULL;
			return true;

		case NN_stos:                // Store String
			return this->BuildMoveRTL(SMP_NULL_OPERATOR);

		case NN_str:                 // Store Task Register
			return false;
			break;

		case NN_sub:                 // Integer Subtraction
			return this->BuildBinaryRTL(SMP_SUBTRACT);

		case NN_test:                // Logical Compare
			return this->BuildFlagsDestBinaryRTL(SMP_U_COMPARE);

		case NN_verr:                // Verify a Segment for Reading
		case NN_verw:                // Verify a Segment for Writing
		case NN_wait:                // Wait until BUSY# Pin is Inactive (HIGH)
			NopRT = new SMPRegTransfer;
			NopRT->SetOperator(SMP_NULL_OPERATOR);
			this->RTL.push_back(NopRT);
			NopRT = NULL;
			if (NN_wait != this->SMPcmd.itype)
				this->RTL.ExtraKills.push_back(FlagsOp);
			return true;

		case NN_xchg:                // Exchange Register/Memory with Register
			return this->BuildExchangeRTL();

		case NN_xlat:                // Table Lookup Translation
			return false;
			break;

		case NN_xor:                 // Logical Exclusive OR
			return this->BuildBinaryRTL(SMP_BITWISE_XOR);


		//
		//      486 instructions
		//

		case NN_cmpxchg:             // Compare and Exchange
			return this->BuildCompareExchangeRTL();

		case NN_bswap:               // Swap bits in EAX
			return false;
			break;

		case NN_xadd:                // t<-dest; dest<-src+dest; src<-t
			return this->BuildExchangeAddRTL();

		case NN_invd:                // Invalidate Data Cache
		case NN_wbinvd:              // Invalidate Data Cache (write changes)
		case NN_invlpg:              // Invalidate TLB entry
			NopRT = new SMPRegTransfer;
			NopRT->SetOperator(SMP_NULL_OPERATOR);
			this->RTL.push_back(NopRT);
			NopRT = NULL;
			return true;

		//
		//      Pentium instructions
		//

		case NN_rdmsr:               // Read Machine Status Register
			return this->BuildOptType8RTL();

		case NN_wrmsr:               // Write Machine Status Register
			return false;
			break;

		case NN_cpuid:               // Get CPU ID
			return this->BuildOptType8RTL();

		case NN_cmpxchg8b:           // Compare and Exchange Eight Bytes
			return false;
			break;

		case NN_rdtsc:               // Read Time Stamp Counter
			return this->BuildOptType8RTL();

		case NN_rsm:                 // Resume from System Management Mode
			NopRT = new SMPRegTransfer;
			NopRT->SetOperator(SMP_NULL_OPERATOR);
			this->RTL.push_back(NopRT);
			NopRT = NULL;
			return true;


		//
		//      Pentium Pro instructions
		//

		case NN_cmova:               // Move if Above (CF=0 & ZF=0)
		case NN_cmovb:               // Move if Below (CF=1)
		case NN_cmovbe:              // Move if Below or Equal (CF=1 | ZF=1)
			return this->BuildMoveRTL(SMP_BINARY_NUMERIC_OPERATION);

		case NN_cmovg:               // Move if Greater (ZF=0 & SF=OF)
			return this->BuildMoveRTL(SMP_GREATER_THAN);

		case NN_cmovge:              // Move if Greater or Equal (SF=OF)
			return this->BuildMoveRTL(SMP_GREATER_EQUAL);

		case NN_cmovl:               // Move if Less (SF!=OF)
			return this->BuildMoveRTL(SMP_LESS_THAN);

		case NN_cmovle:              // Move if Less or Equal (ZF=1 | SF!=OF)
			return this->BuildMoveRTL(SMP_LESS_EQUAL);

		case NN_cmovnb:              // Move if Not Below (CF=0)
		case NN_cmovno:              // Move if Not Overflow (OF=0)
		case NN_cmovnp:              // Move if Not Parity (PF=0)
		case NN_cmovns:              // Move if Not Sign (SF=0)
			return this->BuildMoveRTL(SMP_BINARY_NUMERIC_OPERATION);

		case NN_cmovnz:              // Move if Not Zero (ZF=0)
			return this->BuildMoveRTL(SMP_NOT_EQUAL);

		case NN_cmovo:               // Move if Overflow (OF=1)
		case NN_cmovp:               // Move if Parity (PF=1)
		case NN_cmovs:               // Move if Sign (SF=1)
			return this->BuildMoveRTL(SMP_BINARY_NUMERIC_OPERATION);

		case NN_cmovz:               // Move if Zero (ZF=1)
			return this->BuildMoveRTL(SMP_EQUAL);

		case NN_fcmovb:              // Floating Move if Below
			return this->BuildMoveRTL(SMP_BINARY_NUMERIC_OPERATION);

		case NN_fcmove:              // Floating Move if Equal
			return this->BuildMoveRTL(SMP_EQUAL);

		case NN_fcmovbe:             // Floating Move if Below or Equal
			return this->BuildMoveRTL(SMP_BINARY_NUMERIC_OPERATION);

		case NN_fcmovu:              // Floating Move if Unordered
			return this->BuildMoveRTL(SMP_BINARY_NUMERIC_OPERATION);

		case NN_fcmovnb:             // Floating Move if Not Below
			return this->BuildMoveRTL(SMP_BINARY_NUMERIC_OPERATION);

		case NN_fcmovne:             // Floating Move if Not Equal
			return this->BuildMoveRTL(SMP_NOT_EQUAL);

		case NN_fcmovnbe:            // Floating Move if Not Below or Equal
			return this->BuildMoveRTL(SMP_BINARY_NUMERIC_OPERATION);

		case NN_fcmovnu:             // Floating Move if Not Unordered
			return this->BuildMoveRTL(SMP_BINARY_NUMERIC_OPERATION);


		case NN_fcomi:               // FP Compare: result in EFLAGS
		case NN_fucomi:              // FP Unordered Compare: result in EFLAGS
		case NN_fcomip:              // FP Compare: result in EFLAGS: pop stack
		case NN_fucomip:             // FP Unordered Compare: result in EFLAGS: pop stack
			return false;
			break;

		case NN_rdpmc:               // Read Performance Monitor Counter
			return this->BuildOptType8RTL();

		//
		//      FPP instructions
		//

		case NN_fld:                 // Load Real
		case NN_fst:                 // Store Real
		case NN_fstp:                // Store Real and Pop
			return this->BuildMoveRTL(SMP_NULL_OPERATOR);

		case NN_fxch:                // Exchange Registers
			// FP registers remain NUMERIC anyway, so this is a no-op to our type system.
			NopRT = new SMPRegTransfer;
			NopRT->SetOperator(SMP_NULL_OPERATOR);
			this->RTL.push_back(NopRT);
			NopRT = NULL;
			return true;

		case NN_fild:                // Load Integer
		case NN_fist:                // Store Integer
		case NN_fistp:               // Store Integer and Pop
		case NN_fbld:                // Load BCD
		case NN_fbstp:               // Store BCD and Pop
			return this->BuildMoveRTL(SMP_NULL_OPERATOR);

		case NN_fadd:                // Add Real
		case NN_faddp:               // Add Real and Pop
		case NN_fiadd:               // Add Integer
		case NN_fsub:                // Subtract Real
		case NN_fsubp:               // Subtract Real and Pop
		case NN_fisub:               // Subtract Integer
		case NN_fsubr:               // Subtract Real Reversed
		case NN_fsubrp:              // Subtract Real Reversed and Pop
		case NN_fisubr:              // Subtract Integer Reversed
		case NN_fmul:                // Multiply Real
		case NN_fmulp:               // Multiply Real and Pop
		case NN_fimul:               // Multiply Integer
		case NN_fdiv:                // Divide Real
		case NN_fdivp:               // Divide Real and Pop
		case NN_fidiv:               // Divide Integer
		case NN_fdivr:               // Divide Real Reversed
		case NN_fdivrp:              // Divide Real Reversed and Pop
		case NN_fidivr:              // Divide Integer Reversed
			return this->BuildBinaryRTL(SMP_BINARY_FLOATING_ARITHMETIC);

		case NN_fsqrt:               // Square Root
		case NN_fscale:              // Scale:  st(0) <- st(0) * 2^st(1)
		case NN_fprem:               // Partial Remainder
		case NN_frndint:             // Round to Integer
		case NN_fxtract:             // Extract exponent and significand
		case NN_fabs:                // Absolute value
		case NN_fchs:                // Change Sign
			return this->BuildUnaryRTL(SMP_UNARY_FLOATING_ARITHMETIC);

		case NN_fcom:                // Compare Real
		case NN_fcomp:               // Compare Real and Pop
		case NN_fcompp:              // Compare Real and Pop Twice
		case NN_ficom:               // Compare Integer
		case NN_ficomp:              // Compare Integer and Pop
		case NN_ftst:                // Test
		case NN_fxam:                // Examine
			// Floating comparison instructions use FP reg stack locations
			//  as sources and set only the FP flags. All of these are numeric
			//  type and we don't track any of them, so all such instructions
			//  can be considered to be no-ops.
			NopRT = new SMPRegTransfer;
			NopRT->SetOperator(SMP_NULL_OPERATOR);
			this->RTL.push_back(NopRT);
			NopRT = NULL;
			return true;

		case NN_fptan:               // Partial tangent
		case NN_fpatan:              // Partial arctangent
		case NN_f2xm1:               // 2^x - 1
		case NN_fyl2x:               // Y * lg2(X)
		case NN_fyl2xp1:             // Y * lg2(X+1)
			// We can consider it a unary operation when both arguments come
			//  off the floating point register stack, unless we even start
			//  modeling the different locations in the FP register stack.