Skip to content
Snippets Groups Projects
SMPInstr.cpp 157 KiB
Newer Older
		if (UNINIT != CurrRT->GetOperatorType()) // all done with this RT  **!!** NO
			continue;
		if (SMP_NULL_OPERATOR == CurrRT->GetOperator()) // nothing to infer
			continue;
		changed |= this->InferOperatorType(CurrRT);
	} // end for all RTs in the RTL
	return changed;
} // end of SMPInstr::InferTypes()

// Infer the type of an operator within an RT based on the types of its operands and
//  based on the operator itself. Recurse down the tree if necessary.
// Return true if the operator type of the RT is updated.
bool SMPInstr::InferOperatorType(SMPRegTransfer *CurrRT) {
	bool updated = false;
	bool LeftNumeric, RightNumeric;
	bool LeftPointer, RightPointer;
	set<DefOrUse, LessDefUse>::iterator CurrDef;
	set<DefOrUse, LessDefUse>::iterator CurrUse;
	SMPOperandType LeftType = UNINIT;
	SMPOperandType RightType = UNINIT;
	op_t UseOp, DefOp;
	long TempImm;
	SMPoperator CurrOp = CurrRT->GetOperator();

	// See if we can infer the operator type from the operator itself. If so,
	//  we don't need to recurse down the tree because lower operators no longer
	//  matter to the final DEF.
	switch (CurrOp) {
		case SMP_NULL_OPERATOR:
			break;

		case SMP_CALL:  // CALL instruction
			if (UNINIT == CurrRT->GetOperatorType()) {
				CurrRT->SetOperatorType(CODEPTR);
				updated = true;
				UseOp = CurrRT->GetRightOperand();
				CurrUse = this->Uses.FindRef(UseOp);
				assert(CurrUse != this->GetLastUse());
				if (UNINIT == CurrUse->GetType()) {
					CurrUse = this->SetUseType(UseOp, CODEPTR);
				}
				else if (CODEPTR != CurrUse->GetType()) {
					msg("WARNING: call target is type %d, setting to CODEPTR at %x in %s\n",
						CurrUse->GetType(), this->GetAddr(), this->GetDisasm());
					CurrUse = this->SetUseType(UseOp, CODEPTR);
				}
			}
			break;

		case SMP_INPUT:  // input from port
			if (UNINIT == CurrRT->GetOperatorType()) {
				CurrRT->SetOperatorType(UNKNOWN);  // Leave DEF as UNINIT and infer later
				updated = true;
			}
			break;

		case SMP_OUTPUT: // output to port
			break;

		case SMP_ADDRESS_OF: // take effective address
			if (UNINIT == CurrRT->GetOperatorType()) {
				CurrRT->SetOperatorType(POINTER);
				// Left operand is having its address taken, but we cannot infer what its
				//  type is.
				updated = true;
			}
			break;

		case SMP_U_LEFT_SHIFT: // unsigned left shift
		case SMP_S_LEFT_SHIFT: // signed left shift
		case SMP_U_RIGHT_SHIFT: // unsigned right shift
		case SMP_S_RIGHT_SHIFT: // signed right shift
		case SMP_ROTATE_LEFT:
		case SMP_ROTATE_LEFT_CARRY: // rotate left through carry
		case SMP_ROTATE_RIGHT:
		case SMP_ROTATE_RIGHT_CARRY: // rotate right through carry
		case SMP_ADD_CARRY:   // add with carry
		case SMP_SUBTRACT_BORROW:  // subtract with borrow
		case SMP_U_MULTIPLY:
		case SMP_S_MULTIPLY:
		case SMP_U_DIVIDE:
		case SMP_S_DIVIDE:
		case SMP_U_REMAINDER:
		case SMP_SIGN_EXTEND:
		case SMP_ZERO_EXTEND:
		case SMP_BITWISE_NOT: // unary operator
		case SMP_BITWISE_XOR:
		case SMP_NEGATE:    // unary negation
		case SMP_S_COMPARE: // signed compare (subtraction-based)
		case SMP_U_COMPARE: // unsigned compare (AND-based)
		case SMP_LESS_THAN: // boolean test operators
		case SMP_GREATER_THAN:
		case SMP_LESS_EQUAL:
		case SMP_GREATER_EQUAL:
		case SMP_EQUAL:
		case SMP_NOT_EQUAL:
		case SMP_LOGICAL_AND:
		case SMP_LOGICAL_OR:
		case SMP_UNARY_NUMERIC_OPERATION:  // miscellaneous; produces NUMERIC result
		case SMP_BINARY_NUMERIC_OPERATION:  // miscellaneous; produces NUMERIC result
		case SMP_SYSTEM_OPERATION:   // for instructions such as CPUID, RDTSC, etc.; NUMERIC
		case SMP_UNARY_FLOATING_ARITHMETIC:  // all the same to our type system; all NUMERIC
		case SMP_BINARY_FLOATING_ARITHMETIC:  // all the same to our type system; all NUMERIC
			if (UNINIT == CurrRT->GetOperatorType()) {
				CurrRT->SetOperatorType(NUMERIC);
				updated = true;
			}
			// Left operand should be NUMERIC if it exists.
			UseOp = CurrRT->GetLeftOperand();
			if (UseOp.type != o_void) {
				CurrUse = this->Uses.FindRef(UseOp);
				if (CurrUse == this->GetLastUse()) {
					msg("WARNING: Adding missing USE of ");
					PrintOperand(UseOp);
					msg(" in %s\n", this->GetDisasm());
					this->Uses.SetRef(UseOp, NUMERIC, -1);
					updated = true;
				}
				else if (UNINIT == CurrUse->GetType()) {
					CurrUse = this->SetUseType(UseOp, NUMERIC);
					updated = true;
				}
			}
			// Right operand should be NUMERIC if it exists.
			if (CurrRT->HasRightSubTree()) {
				// Recurse into subtree
				updated |= this->InferOperatorType(CurrRT->GetRightTree());
			}
			else {
				UseOp = CurrRT->GetRightOperand();
				if (UseOp.type != o_void) {
					CurrUse = this->Uses.FindRef(UseOp);
					if (CurrUse == this->GetLastUse()) {
						msg("WARNING: Adding missing USE of ");
						PrintOperand(UseOp);
						msg(" in %s\n", this->GetDisasm());
						this->Uses.SetRef(UseOp, NUMERIC, -1);
						updated = true;
					}
					else if (UNINIT == CurrUse->GetType()) {
						CurrUse = this->SetUseType(UseOp, NUMERIC);
						updated = true;
					}
				}
			}
			break;

		case SMP_ADD:
		case SMP_SUBTRACT:
		case SMP_BITWISE_AND:
		case SMP_BITWISE_OR:
			// If both operands are NUMERIC, operator and result are NUMERIC.
			// If one operand is NUMERIC and the other is not UNINIT and not NUMERIC,
			//  then the operator and the result will inherit this second type.
			if (UNINIT == CurrRT->GetOperatorType()) {
				UseOp = CurrRT->GetLeftOperand();
				assert(o_void != UseOp.type);
				CurrUse = this->Uses.FindRef(UseOp);
				if (CurrUse == this->GetLastUse()) {
					msg("WARNING: Adding missing USE of ");
					PrintOperand(UseOp);
					msg(" at %x in %s\n", this->GetAddr(), this->GetDisasm());
					this->Uses.SetRef(UseOp);
					updated = true;
					LeftNumeric = false;
					break;
					LeftType = CurrUse->GetType();
					LeftNumeric = (NUMERIC == LeftType);
				// Process right operand
				if (CurrRT->HasRightSubTree()) {
					updated |= this->InferOperatorType(CurrRT->GetRightTree());
					RightType = CurrRT->GetRightTree()->GetOperatorType();
					if (UNINIT == RightType) {
						break;
					}
					else {
						RightNumeric = (NUMERIC == RightType);
					}
				}
				else {
					UseOp = CurrRT->GetRightOperand();
					CurrUse = this->Uses.FindRef(UseOp);
					if (CurrUse == this->GetLastUse()) {
						msg("WARNING: Adding missing USE of ");
						PrintOperand(UseOp);
						msg(" in %s\n", this->GetDisasm());
						this->Uses.SetRef(UseOp);
						updated = true;
						RightNumeric = false;
						break;
						RightType = CurrUse->GetType();
						RightNumeric = (NUMERIC == RightType);
				} // end if RIghtSubtree else RightOperand
				// Infer operator type from LeftNumeric and RightNumeric
				LeftPointer = ((LeftType >= POINTER) && (LeftType <= HEAPPTR));
				RightPointer = ((RightType >= POINTER) && (RightType <= HEAPPTR));
				if (LeftNumeric && RightNumeric) {
					CurrRT->SetOperatorType(NUMERIC);
					updated = true;
				}
				else if (LeftNumeric || RightNumeric) {
					if (LeftNumeric && (UNINIT != RightType)) {
						CurrRT->SetOperatorType(RightType);
						updated = true;
					}
					else if (RightNumeric && (UNINIT != LeftType)) {
						CurrRT->SetOperatorType(LeftType);
						updated = true;
					}
				}
				else if (LeftPointer && RightPointer) {
					// Arithmetic on two pointers
					if (SMP_ADD == CurrOp) {
						CurrRT->SetOperatorType(UNKNOWN);
					}
					else if (SMP_SUBTRACT == CurrOp) {
						CurrRT->SetOperatorType(PTROFFSET);
					}
					else { // bitwise AND or OR of two pointers
						msg("WARNING: hash of two pointers in %s\n", this->GetDisasm());
						CurrRT->SetOperatorType(NUMERIC); // hash operation?
					}
					updated = true;
				}
				else if ((LeftPointer && (RightType == PTROFFSET))
					|| (RightPointer && (LeftType == PTROFFSET))) {
					// Arithmetic on PTR and PTROFFSET
					if (SMP_ADD == CurrOp) {
						// We assume (A-B) is being added to B or vice versa **!!**
						CurrRT->SetOperatorType(POINTER);
					}
					else if (SMP_SUBTRACT == CurrOp) {
						// We assume B - (B - A) == A    **!!**
						CurrRT->SetOperatorType(POINTER);
					}
					else { // bitwise AND or OR of pointer and pointer difference
						msg("WARNING: hash of PTROFFSET and POINTER at %x in %s\n",
							this->GetAddr(), this->GetDisasm());
						CurrRT->SetOperatorType(NUMERIC); // hash operation?
					}
					updated = true;
				}
			} // end if UNINIT operator type
			else if (CurrRT->HasRightSubTree()) {
				// Must need to iterate through the right tree again, as the operator
				//  has been typed.
				updated |= this->InferOperatorType(CurrRT->GetRightTree());
			}
			break;

		case SMP_ASSIGN:
			// If right operand has a type, it becomes the type of the SMP_ASSIGN
			//  operator and also of the left operand.
			if ((UNINIT == CurrRT->GetOperatorType()) && !CurrRT->HasRightSubTree()) {
				// we have a right operand, still have not inferred SMP_ASSIGN type
				UseOp = CurrRT->GetRightOperand();
				if (o_void == UseOp.type) {
					msg("ERROR: void operand for SMP_ASSIGN in %s\n", this->GetDisasm());
					return false;
				}
				else if (o_imm == UseOp.type) {
					// Infer whether the immediate is NUMERIC by its value.
					TempImm = (signed long) UseOp.value;
					if ((TempImm > IMMEDNUM_LOWER) && (TempImm < IMMEDNUM_UPPER)) {
						CurrRT->SetOperatorType(NUMERIC);
						DefOp = CurrRT->GetLeftOperand();
						this->SetDefType(DefOp, NUMERIC);
						updated = true;
					}
				}
				else {
					CurrUse = this->Uses.FindRef(UseOp);
					if (CurrUse == this->GetLastUse()) {
						msg("WARNING: Adding missing USE of ");
						PrintOperand(UseOp);
						msg(" in %s\n", this->GetDisasm());
						this->Uses.SetRef(UseOp);
						updated = true;
					}
					else if (UNINIT != CurrUse->GetType()) {
						// SMP_ASSIGN operator and DEF inherit type of the USE
						CurrRT->SetOperatorType(CurrUse->GetType());
						DefOp = CurrRT->GetLeftOperand();
						this->SetDefType(DefOp, CurrUse->GetType());
						updated = true;
					}
				}
			}
			else {
				if (CurrRT->HasRightSubTree()) { // we have a right subtree
					updated |= this->InferOperatorType(CurrRT->GetRightTree());
					RightType = CurrRT->GetRightTree()->GetOperatorType();
				}
				else {
					UseOp = CurrRT->GetRightOperand();
					CurrUse = this->Uses.FindRef(UseOp);
					assert(CurrUse != this->GetLastUse());
					RightType = CurrUse->GetType();
				}
				if ((UNINIT == CurrRT->GetOperatorType()) && (UNINIT != RightType)) {
					// We are now ready to propagate the type from the right
					CurrRT->SetOperatorType(RightType);
					updated = true;
					// Propagate ASSIGN type to left (DEF) operand.
					DefOp = CurrRT->GetLeftOperand();
					CurrDef = this->Defs.FindRef(DefOp);
					assert(CurrDef != this->GetLastDef());
					if ((CurrDef->GetType() != UNINIT) && (CurrDef->GetType() != RightType)) {
						msg("WARNING: changing type of ASSIGN DEF from %d to %d at %x in %s\n",
							CurrDef->GetType(), RightType, this->GetAddr(), this->GetDisasm());
						CurrDef = this->SetDefType(DefOp, RightType);
					}
				}
			}
			break;

		default:
			msg("Unknown operator in %s\n", this->GetDisasm());
			break;
	} // end switch on operator

	return updated;
} // end of SMPInstr::InferOperatorType()

// Handle x86 opcode SIB byte annotations.
void SMPInstr::MDAnnotateSIBStackConstants(FILE *AnnotFile, op_t Opnd, ea_t offset, bool UseFP) {
	int BaseReg = sib_base(Opnd);
	short IndexReg = sib_index(Opnd);
	if (BaseReg == R_none) {
		msg("BaseReg of R_none at %x\n", this->address);
	}
	if (BaseReg == R_sp) { // ESP cannot be IndexReg
		// ESP-relative constant offset
		qfprintf(AnnotFile,
				"%10x %6d PTRIMMEDESP STACK %d displ %s\n",
				this->SMPcmd.ea, this->SMPcmd.size, offset, this->disasm);
	}
	else if (UseFP && ((IndexReg == R_bp) || ((BaseReg == R_bp) && (Opnd.type != o_mem)))) {
		// EBP-relative constant offset
		qfprintf(AnnotFile,
				"%10x %6d PTRIMMEDEBP STACK %d displ %s\n",
				this->SMPcmd.ea, this->SMPcmd.size, offset, this->disasm);
	}

	return;
} // end of MDAnnotateSIBStackConstants

// Emit annotations for constants used as ptr offsets from EBP or
//  ESP into the stack frame. Only pay attention to EBP-relative
//  offsets if EBP is being used as a frame pointer (UseFP == true).
void SMPInstr::AnnotateStackConstants(bool UseFP, FILE *AnnotFile) {
	op_t Opnd;
#if 0
	if (this->address == 0x80925f4) {
		msg("PROBLEM INSTRUCTION: \n");
		this->PrintOperands();
	}
#endif
	for (int i = 0; i < UA_MAXOP; ++i) {
		Opnd = SMPcmd.Operands[i];
		if (Opnd.type == o_displ) {
			ea_t offset = Opnd.addr;
			if (Opnd.hasSIB) {
				MDAnnotateSIBStackConstants(AnnotFile, Opnd, offset, UseFP);
			}
			else { // no SIB
				ushort BaseReg = Opnd.reg;
				if (BaseReg == R_sp) {
					// ESP-relative constant offset
					qfprintf(AnnotFile,
							"%10x %6d PTRIMMEDESP STACK %d displ %s\n",
							SMPcmd.ea, SMPcmd.size, offset, disasm);
				}
				else if (UseFP && (BaseReg == R_bp)) {
					// EBP-relative constant offset
					qfprintf(AnnotFile,
							"%10x %6d PTRIMMEDEBP STACK %d displ %s\n",
							SMPcmd.ea, SMPcmd.size, offset, disasm);
				}
			} // end if (Opnd.hasSIB) ... else ...
		} // end if (Opnd.type == o_displ) 
		else if (Opnd.type == o_phrase) {
			ea_t offset = 0; // mmStrata thinks [esp] is [esp+0]
			if (Opnd.hasSIB) {
				MDAnnotateSIBStackConstants(AnnotFile, Opnd, offset, UseFP);
			}
			else { // Something like [ecx]
				ushort BaseReg = Opnd.reg;
				if (BaseReg == R_sp) {
					// ESP-relative constant offset
					qfprintf(AnnotFile,
							"%10x %6d PTRIMMEDESP STACK %d displ %s\n",
							SMPcmd.ea, SMPcmd.size, offset, disasm);
				}
				else if (UseFP && (BaseReg == R_bp)) {
					// EBP-relative constant offset
					qfprintf(AnnotFile,
							"%10x %6d PTRIMMEDEBP STACK %d displ %s\n",
							SMPcmd.ea, SMPcmd.size, offset, disasm);
				}
			} // end if (Opnd.hasSIB) ... else ...
		} // end else if (Opnd.type == o_phrase)
	} // end for all operands

	// If we move a stack pointer or frame pointer into another register, we
	//  need to annotate the implicit zero offset, e.g. mov edi,esp == mov edi,esp+0
	//  and edi is becoming a stack pointer that mmStrata needs to track.
	if (this->MDIsStackPointerCopy(UseFP)) {
		if (UseFP && this->GetFirstUse()->GetOp().is_reg(R_bp)) {
			qfprintf(AnnotFile,	"%10x %6d PTRIMMEDEBP STACK 0 displ %s\n",
					SMPcmd.ea, SMPcmd.size, disasm);
		}
		else {
			qfprintf(AnnotFile,	"%10x %6d PTRIMMEDESP STACK 0 displ %s\n",
					SMPcmd.ea, SMPcmd.size, disasm);
		}
	}

	return;
} // end of SMPInstr::AnnotateStackConstants()

// Emit all annotations for the instruction in the absence of RTL type inference.
void SMPInstr::EmitAnnotations(bool UseFP, bool AllocSeen, FILE *AnnotFile) {
	ea_t addr = this->address;
	flags_t InstrFlags = getFlags(addr);
	bool MemDest = this->HasDestMemoryOperand();
	bool MemSrc = this->HasSourceMemoryOperand();
	bool SecondSrcOperandNum = this->IsSecondSrcOperandNumeric(InstrFlags);

	++OptCount[OptType]; // keep count for debugging info

#if SMP_DEBUG_MEM
	if (MemDest || MemSrc) {
		msg("OptType: %d %s", OptType, disasm);
		this->PrintOperands();
	}
#endif

	// Emit appropriate optimization annotations.
	bool SDTInstrumentation = false;
	switch (OptType) {
		case 0:  // SDT will have to handle these
		{
#if SMP_DEBUG_TYPE0
			msg("OptType 0: %x  %s\n", addr, disasm);
#endif
			// mmStrata wants to suppress warnings on the PUSH
			//  instructions that precede the LocalVarsAllocInstr
			//  (i.e. the PUSHes of callee-saved regs).
			if (!AllocSeen && this->MDIsPushInstr()) {
				qfprintf(AnnotFile, "%10x %6d INSTR LOCAL NoWarn %s \n",
						addr, -3, disasm);
			}
			else {
				SDTInstrumentation = true;
			}
			break;
		}

		case 1:  // nothing for SDT to do
		{	qfprintf(AnnotFile, "%10x %6d INSTR LOCAL NoMetaUpdate %s \n",
					addr, -1, disasm);
			++AnnotationCount[OptType];
			break;
		}

		case 4:  // INC, DEC, etc.: no SDT work unless MemDest
		{	if (MemDest || MemSrc) {
				SDTInstrumentation = true;
				break;  // treat as category 0
	 		}
			qfprintf(AnnotFile, "%10x %6d INSTR LOCAL Always1stSrc %s \n",
					addr, -1, disasm);
			++AnnotationCount[OptType];
			break;
		}

		case 5: // ADD, etc.: If numeric 2nd src operand, no SDT work.
		{	if (MemDest || MemSrc) {
				SDTInstrumentation = true;
				break;  // treat as category 0
			}
			if (SecondSrcOperandNum && !this->MDIsFrameAllocInstr()) { // treat as category 1
				qfprintf(AnnotFile, "%10x %6d INSTR LOCAL %s %s \n",
						addr, -1, OptExplanation[OptType], disasm);
				++AnnotationCount[OptType];
			}
			break;
		}

		case 6: // Only OS code should include these; problem for SDT
		{	if (MemDest) {
				SDTInstrumentation = true;
				break;  // treat as category 0
			}
			qfprintf(AnnotFile, "%10x %6d INSTR LOCAL AlwaysPTR %s \n",
					addr, -OptType, disasm);
			++AnnotationCount[OptType];
			break;
		}

		case 8: // Implicitly writes to EDX:EAX, always numeric.
		{	qfprintf(AnnotFile, "%10x %6d INSTR LOCAL n EDX EAX ZZ %s %s \n",
					addr, -2, OptExplanation[OptType], disasm);
			++AnnotationCount[OptType];
			SDTInstrumentation = true;
			break;
		}

		case 9:  // Either writes to FP reg (cat. 1) or memory (cat. 0)
		{	if (MemDest) {
#if SMP_DEBUG
				// MemDest seems to happen too much.
				msg("Floating point MemDest: %s \n", disasm);
#endif
				SDTInstrumentation = true;
				break; // treat as category 0
			}
			qfprintf(AnnotFile, "%10x %6d INSTR LOCAL %s %s \n",
					addr, -1, OptExplanation[OptType], disasm);
			++AnnotationCount[OptType];
			break;
		}

		default: // 2,3,7: Optimization possibilities depend on operands
		{ 
#if SMP_DEBUG2
			if (OptType ==  3) {  // MOV instr class
				if (MemDest) {
					msg("MemDest on MOV: %s\n", disasm);
				}
				else if (!SecondSrcOperandNum) {
					msg("MOV: not 2nd op numeric: %s\n", disasm);
						this->PrintOperands();
				}
			}
#endif
			SDTInstrumentation = true;
			if (MemDest) {
#if SMP_DEBUG_XOR
				if (OptType == 2)
					msg("MemDest on OptType 2: %s\n", disasm);
#endif
				break;  // treat as category 0
			}
			if ((OptType == 2) || (OptType == 7) || SecondSrcOperandNum) {
				qfprintf(AnnotFile, "%10x %6d INSTR LOCAL n %s %s %s \n",
						addr, -2, this->DestString(OptType), 
						OptExplanation[OptType], disasm);
				++AnnotationCount[OptType];
			}
			break;
		}
	} // end switch (OptType)
	
	// If mmStrata is going to have to deal with the
	//  instruction, then we can annotate EBP and ESP
	//  relative constant offsets. If we have emitted
	//  an annotation of type -1, there is no point
	//  in telling mmStrata about these constants.
	if (SDTInstrumentation) {
		this->AnnotateStackConstants(UseFP, AnnotFile);
		if (strlen(this->DeadRegsString) > 0) {
			// Optimize by informing mmStrata of dead registers. It can avoid saving
			//  and restoring dead state. This is particularly important for EFLAGS,
			//  as restoring the flags is a pipeline serializing instruction.
			qfprintf(AnnotFile, "%10x %6d INSTR DEADREGS %s ZZ %s \n",
				addr, this->SMPcmd.size, this->DeadRegsString, disasm);
		}
	}
	return;
} // end of SMPInstr::EmitAnnotations()
// Emit all annotations for the instruction using RTL type inference.
void SMPInstr::EmitTypeAnnotations(bool UseFP, bool AllocSeen, FILE *AnnotFile) {
	ea_t addr = this->address;
	flags_t InstrFlags = getFlags(addr);
	int TypeGroup = SMPTypeCategory[this->SMPcmd.itype];
	bool NumericDEFs = this->AllDefsNumeric();  // all DEFs are NUMERIC or CODEPTR
	bool MemDest = this->HasDestMemoryOperand();
	bool MemSrc = this->HasSourceMemoryOperand();
	bool SecondSrcOperandNum = this->IsSecondSrcOperandNumeric(InstrFlags);

	++OptCount[this->OptType]; // keep count for debugging info

	// Emit appropriate optimization annotations.
	bool SDTInstrumentation = false;
	switch (OptType) {
		case 0:  // SDT will have to handle these
		{
			// mmStrata wants to suppress warnings on the PUSH
			//  instructions that precede the LocalVarsAllocInstr
			//  (i.e. the PUSHes of callee-saved regs).
			if (!AllocSeen && this->MDIsPushInstr()) {
				qfprintf(AnnotFile, "%10x %6d INSTR LOCAL NoWarn %s \n",
						addr, -3, disasm);
			}
			else {
				SDTInstrumentation = true;
			}
			break;
		}

		case 1:  // nothing for SDT to do
		{	qfprintf(AnnotFile, "%10x %6d INSTR LOCAL NoMetaUpdate %s \n",
					addr, -1, disasm);
			++AnnotationCount[OptType];
			break;
		}

		case 4:  // INC, DEC, etc.: no SDT work unless MemDest
		{	if (MemDest || MemSrc) { // pretty conservative here?
				SDTInstrumentation = true;
				break;  // treat as category 0
	 		}
			qfprintf(AnnotFile, "%10x %6d INSTR LOCAL Always1stSrc %s \n",
					addr, -1, disasm);
			++AnnotationCount[OptType];
			break;
		}

		case 5: // ADD, etc.: If numeric 2nd src operand, no SDT work.
		{	
#if 1
			if (MemDest || MemSrc) {
				SDTInstrumentation = true;
				break;  // treat as category 0
			}
#endif
			if (SecondSrcOperandNum && !this->MDIsFrameAllocInstr()) { // treat as category 1
				qfprintf(AnnotFile, "%10x %6d INSTR LOCAL %s %s \n",
						addr, -1, OptExplanation[OptType], disasm);
				++AnnotationCount[OptType];
			}
			else if (NumericDEFs) {
				qfprintf(AnnotFile, "%10x %6d INSTR LOCAL n %s NumericDEFs %s \n",
						addr, -2, this->DestString(OptType), disasm);
				++AnnotationCount[OptType];
			}
			else {
				SDTInstrumentation = true;
			}
			break;
		}

		case 6: // Only OS code should include these; problem for SDT
		{	if (MemDest) {
				SDTInstrumentation = true;
				break;  // treat as category 0
			}
			qfprintf(AnnotFile, "%10x %6d INSTR LOCAL AlwaysPTR %s \n",
					addr, -OptType, disasm);
			++AnnotationCount[OptType];
			break;
		}

		case 8: // Implicitly writes to EDX:EAX, always numeric.
		{	qfprintf(AnnotFile, "%10x %6d INSTR LOCAL n EDX EAX ZZ %s %s \n",
					addr, -2, OptExplanation[OptType], disasm);
			++AnnotationCount[OptType];
			SDTInstrumentation = true;
			break;
		}

		case 9:  // Either writes to FP reg (cat. 1) or memory (cat. 0)
		{	
			if (MemDest) {
				SDTInstrumentation = true;
#if 0
				if (NumericDEFs) {
					qfprintf(AnnotFile, "%10x %6d INSTR LOCAL n %s NumericDEFs %s \n",
						addr, -2, this->DestString(OptType), disasm);
					++AnnotationCount[OptType];
				}
#endif
			}
			else {
				qfprintf(AnnotFile, "%10x %6d INSTR LOCAL %s %s \n",
						addr, -1, OptExplanation[OptType], disasm);
				++AnnotationCount[OptType];
			}
			break;
		}

		default: // 2,3,7: Optimization possibilities depend on operands
		{ 
			SDTInstrumentation = true;
#if 1
			if (MemDest) {
				break;  // treat as category 0
			}
#endif
			if ((OptType == 2) || (OptType == 7) || SecondSrcOperandNum) {
				qfprintf(AnnotFile, "%10x %6d INSTR LOCAL n %s %s %s \n",
						addr, -2, this->DestString(OptType), 
						OptExplanation[OptType], disasm);
				++AnnotationCount[OptType];
			}
			else if (NumericDEFs) { // NUMERIC move instruction
				qfprintf(AnnotFile, "%10x %6d INSTR LOCAL n %s NumericDEFs %s \n",
						addr, -2, this->DestString(OptType), disasm);
				++AnnotationCount[OptType];
			}
			break;
		}
	} // end switch (OptType)
	
	// If mmStrata is going to have to deal with the
	//  instruction, then we can annotate EBP and ESP
	//  relative constant offsets. If we have emitted
	//  an annotation of type -1, there is no point
	//  in telling mmStrata about these constants.
	if (SDTInstrumentation) {
		this->AnnotateStackConstants(UseFP, AnnotFile);
		if (strlen(this->DeadRegsString) > 0) {
			// Optimize by informing mmStrata of dead registers. It can avoid saving
			//  and restoring dead state. This is particularly important for EFLAGS,
			//  as restoring the flags is a pipeline serializing instruction.
			qfprintf(AnnotFile, "%10x %6d INSTR DEADREGS %s ZZ %s \n",
				addr, this->SMPcmd.size, this->DeadRegsString, disasm);
		}
	}
	return;
} // end of SMPInstr::EmitTypeAnnotations()

// Build the RTL for an instruction with a unary opcode
bool SMPInstr::BuildUnaryRTL(SMPoperator UnaryOp) {
	size_t OpNum;
	bool DestFound = false;
	SMPRegTransfer *TempRT = NULL;

	op_t VoidOp;
	VoidOp.type = o_void;

	op_t FPRegOp;
	FPRegOp.type = o_fpreg;  // floating point register stack
	FPRegOp.reg = 0;

	op_t FlagsOp;
	FlagsOp.type = o_reg;
	FlagsOp.reg = X86_FLAGS_REG;

	// Handle special cases first
	if (SMP_UNARY_FLOATING_ARITHMETIC == UnaryOp) {
		// Use of the floating register stack top is implicit
		DestFound = true;
		TempRT = new SMPRegTransfer;
		TempRT->SetLeftOperand(FPRegOp);
		TempRT->SetOperator(SMP_ASSIGN);
		SMPRegTransfer *RightRT = new SMPRegTransfer;
		RightRT->SetLeftOperand(FPRegOp);
		RightRT->SetOperator(UnaryOp);
		RightRT->SetRightOperand(VoidOp);
		TempRT->SetRightTree(RightRT);
		this->RTL.push_back(TempRT);
	}
	else if ((NN_clc == this->SMPcmd.itype) || (NN_cld == this->SMPcmd.itype)
		|| (NN_cmc == this->SMPcmd.itype) || (NN_stc == this->SMPcmd.itype)
		|| (NN_std == this->SMPcmd.itype)) {
		// Flags register is implicit destination.
		DestFound = true;
		TempRT = new SMPRegTransfer;
		TempRT->SetLeftOperand(FlagsOp);
		TempRT->SetOperator(SMP_ASSIGN);
		SMPRegTransfer *RightRT = new SMPRegTransfer;
		if (NN_cmc == this->SMPcmd.itype) { // complement carry flag USEs old carry flag
			RightRT->SetLeftOperand(FlagsOp);
			RightRT->SetOperator(SMP_BITWISE_NOT);
		}
		else {
			RightRT->SetLeftOperand(VoidOp);
			RightRT->SetOperator(UnaryOp);
		}
		RightRT->SetRightOperand(VoidOp);
		TempRT->SetRightTree(RightRT);
		this->RTL.push_back(TempRT);
	}

	for (OpNum = 0; !DestFound && (OpNum < UA_MAXOP); ++OpNum) {
		op_t TempOp = this->SMPcmd.Operands[OpNum];
		if (this->features & DefMacros[OpNum]) { // DEF
			if (MDKnownOperandType(TempOp)) {
				DestFound = true;
				TempRT = new SMPRegTransfer;
				TempRT->SetLeftOperand(TempOp);
				TempRT->SetOperator(SMP_ASSIGN);
				SMPRegTransfer *RightRT = new SMPRegTransfer;
				RightRT->SetLeftOperand(TempOp);
				RightRT->SetOperator(UnaryOp);
				RightRT->SetRightOperand(VoidOp);
				TempRT->SetRightTree(RightRT);
				this->RTL.push_back(TempRT);
			}
		}
	} // end for (OpNum = 0; ...)

#if SMP_DEBUG_BUILD_RTL
	if (!DestFound) {
		msg("ERROR: Could not find unary operand at %x for %s\n", this->GetAddr(), this->GetDisasm());
	}
#endif
	return DestFound;
} // end of SMPInstr::BuildUnaryRTL()

// Build the RTL for an instruction with a binary arithmetic opcode
bool SMPInstr::BuildBinaryRTL(SMPoperator BinaryOp) {
	size_t OpNum;
	bool DestFound = false;
	bool SourceFound = false;
	SMPRegTransfer *TempRT = NULL;
	SMPRegTransfer *RightRT = new SMPRegTransfer;

	op_t VoidOp;
	VoidOp.type = o_void;

	op_t FPRegOp;
	FPRegOp.type = o_fpreg;  // floating point register stack
	FPRegOp.reg = 0;

	op_t Immed1Op;
	Immed1Op.type = o_imm;  // immediate 1 for increment or decrement
	Immed1Op.value = 1;

	// Handle special cases first
	if (SMP_BINARY_FLOATING_ARITHMETIC == BinaryOp) {
		// Use of the floating register stack top is implicit
		DestFound = true;
		TempRT = new SMPRegTransfer;
		TempRT->SetLeftOperand(FPRegOp);
		TempRT->SetOperator(SMP_ASSIGN);
		RightRT->SetLeftOperand(FPRegOp);
		RightRT->SetOperator(BinaryOp);
		RightRT->SetRightOperand(VoidOp);
		TempRT->SetRightTree(RightRT);
	}
	else if ((NN_dec == this->SMPcmd.itype) || (NN_inc == this->SMPcmd.itype)) {
		// The immediate value of 1 to add or subtract is implicit.
		SourceFound = true;
		RightRT->SetRightOperand(Immed1Op);
	}

	for (OpNum = 0; !(DestFound && SourceFound) && (OpNum < UA_MAXOP); ++OpNum) {
		op_t TempOp = this->SMPcmd.Operands[OpNum];
		if (this->features & DefMacros[OpNum]) { // DEF
			if (MDKnownOperandType(TempOp)) {
				DestFound = true;
				TempRT = new SMPRegTransfer;
				TempRT->SetLeftOperand(TempOp);
				TempRT->SetOperator(SMP_ASSIGN);
				RightRT->SetLeftOperand(TempOp);
				RightRT->SetOperator(BinaryOp);
				TempRT->SetRightTree(RightRT);
			}
		}
		else { // USE
			if (MDKnownOperandType(TempOp)) {
				SourceFound = true;
				RightRT->SetRightOperand(TempOp);
			}
		}
	} // end for (OpNum = 0; ...)

	if (!DestFound || !SourceFound) {
		assert(NULL != RightRT);
		delete RightRT;
		if (NULL != TempRT)
			delete TempRT;
#if SMP_DEBUG_BUILD_RTL
		msg("ERROR: Could not find binary operand at %x for %s\n", this->GetAddr(), this->GetDisasm());
#endif
	}
	else {
		this->RTL.push_back(TempRT);
	}
	return (DestFound && SourceFound);
} // end of SMPInstr::BuildBinaryRTL()

// Build the RTL for an double-word shift instruction
bool SMPInstr::BuildDoubleShiftRTL(SMPoperator BinaryOp) {
	size_t OpNum;
	bool DestFound = false;
	bool SourceFound = false;
	bool CountFound = false;
	SMPRegTransfer *TempRT = NULL;
	SMPRegTransfer *RightRT = new SMPRegTransfer;
	SMPRegTransfer *LowerRightRT = new SMPRegTransfer;

	op_t VoidOp;
	VoidOp.type = o_void;

	op_t FlagsOp;
	FlagsOp.type = o_reg;
	FlagsOp.reg = X86_FLAGS_REG;

	for (OpNum = 0; !(DestFound && SourceFound && CountFound) && (OpNum < UA_MAXOP); ++OpNum) {
		op_t TempOp = this->SMPcmd.Operands[OpNum];
		if (this->features & DefMacros[OpNum]) { // DEF
			if (MDKnownOperandType(TempOp)) {
				DestFound = true;
				TempRT = new SMPRegTransfer;
				TempRT->SetLeftOperand(TempOp);
				TempRT->SetOperator(SMP_ASSIGN);
				RightRT->SetLeftOperand(TempOp);
				RightRT->SetOperator(BinaryOp);
				TempRT->SetRightTree(RightRT);
				LowerRightRT->SetOperator(BinaryOp);
				RightRT->SetRightTree(LowerRightRT);
			}
		}
		else { // USE
			if (MDKnownOperandType(TempOp)) {
				if (!SourceFound) {
					SourceFound = true;
					LowerRightRT->SetLeftOperand(TempOp);
				}
				else {
					CountFound = true;
					LowerRightRT->SetRightOperand(TempOp);
				}
			}
		}
	} // end for (OpNum = 0; ...)

	if (!DestFound || !SourceFound || !CountFound) {
		if (NULL != TempRT)
			delete TempRT;
#if SMP_DEBUG_BUILD_RTL
		msg("ERROR: Could not find double-shift operand at %x for %s\n", this->GetAddr(), this->GetDisasm());
#endif
	}
	else {
		this->RTL.push_back(TempRT);
		// The carry flag gets the last shifted out bit.
		this->RTL.ExtraKills.push_back(FlagsOp);
	}
	return (DestFound && SourceFound);
} // end of SMPInstr::BuildDoubleShiftRTL()

// Build the RTL for a multiply or divide, which can have implicit EAX and/or EDX operands
bool SMPInstr::BuildMultiplyDivideRTL(SMPoperator BinaryOp) {
	size_t OpNum;
	bool DestFound = false;
	bool SourceFound = false;
	bool HiddenEAXUse = false;
	SMPRegTransfer *TempRT = NULL;
	SMPRegTransfer *RightRT = new SMPRegTransfer;

	op_t VoidOp;
	VoidOp.type = o_void;

	op_t FPRegOp;
	FPRegOp.type = o_fpreg;  // floating point register stack
	FPRegOp.reg = 0;

	op_t Immed1Op;
	Immed1Op.type = o_imm;  // immediate 1 for increment or decrement
	FPRegOp.value = 1;

	// Detect the cases in which EDX:EDX is the destination and EAX is a hidden operand.
	//  See detailed comments on the multiply and divide instructions in MDFixupDefUseLists().
	for (OpNum = 0; !(DestFound && SourceFound) && (OpNum < UA_MAXOP); ++OpNum) {
		op_t TempOp = this->SMPcmd.Operands[OpNum];
		if (!TempOp.showed()) { // hidden operand
			if (TempOp.is_reg(R_ax)) { // not R_al, so it is not 8 bits
				// This for always has a hidden use of EDX:EAX
				HiddenEAXUse = true;
			}
		}
	}

	for (OpNum = 0; !(DestFound && SourceFound) && (OpNum < UA_MAXOP); ++OpNum) {
		op_t TempOp = this->SMPcmd.Operands[OpNum];
		if (this->features & DefMacros[OpNum]) { // DEF
			if (MDKnownOperandType(TempOp)) {
				DestFound = true;
				TempRT = new SMPRegTransfer;
				TempRT->SetLeftOperand(TempOp);
				TempRT->SetOperator(SMP_ASSIGN);
				RightRT->SetLeftOperand(TempOp);
				RightRT->SetOperator(BinaryOp);
				TempRT->SetRightTree(RightRT);
			}
		}
		else { // USE
			if (MDKnownOperandType(TempOp)) {
				SourceFound = true;
				RightRT->SetRightOperand(TempOp);
			}
		}
	} // end for (OpNum = 0; ...)