Newer
Older
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
// Infer the type of an operator within an RT based on the types of its operands and
// based on the operator itself. Recurse down the tree if necessary.
// Return true if the operator type of the RT is updated.
bool SMPInstr::InferOperatorType(SMPRegTransfer *CurrRT) {
bool updated = false;
bool LeftNumeric, RightNumeric;
set<DefOrUse, LessDefUse>::iterator CurrDef;
set<DefOrUse, LessDefUse>::iterator CurrUse;
SMPOperandType LeftType = UNINIT;
SMPOperandType RightType = UNINIT;
op_t UseOp, DefOp;
long TempImm;
SMPoperator CurrOp = CurrRT->GetOperator();
// See if we can infer the operator type from the operator itself. If so,
// we don't need to recurse down the tree because lower operators no longer
// matter to the final DEF.
switch (CurrOp) {
case SMP_NULL_OPERATOR:
break;
case SMP_CALL: // CALL instruction
if (UNINIT == CurrRT->GetOperatorType()) {
CurrRT->SetOperatorType(CODEPTR);
updated = true;
}
break;
case SMP_INPUT: // input from port
if (UNINIT == CurrRT->GetOperatorType()) {
CurrRT->SetOperatorType(UNKNOWN); // Should we leave UNINIT and infer later?
updated = true;
}
break;
case SMP_OUTPUT: // output to port
break;
case SMP_ADDRESS_OF: // take effective address
if (UNINIT == CurrRT->GetOperatorType()) {
CurrRT->SetOperatorType(POINTER);
// Left operand is having its address taken, but we cannot infer what its
// type is.
updated = true;
}
break;
case SMP_U_LEFT_SHIFT: // unsigned left shift
case SMP_S_LEFT_SHIFT: // signed left shift
case SMP_U_RIGHT_SHIFT: // unsigned right shift
case SMP_S_RIGHT_SHIFT: // signed right shift
case SMP_ROTATE_LEFT:
case SMP_ROTATE_LEFT_CARRY: // rotate left through carry
case SMP_ROTATE_RIGHT:
case SMP_ROTATE_RIGHT_CARRY: // rotate right through carry
case SMP_ADD_CARRY: // add with carry
case SMP_SUBTRACT_BORROW: // subtract with borrow
case SMP_U_MULTIPLY:
case SMP_S_MULTIPLY:
case SMP_U_DIVIDE:
case SMP_S_DIVIDE:
case SMP_U_REMAINDER:
case SMP_SIGN_EXTEND:
case SMP_ZERO_EXTEND:
case SMP_BITWISE_NOT: // unary operator
case SMP_BITWISE_XOR:
case SMP_NEGATE: // unary negation
case SMP_S_COMPARE: // signed compare (subtraction-based)
case SMP_U_COMPARE: // unsigned compare (AND-based)
case SMP_LESS_THAN: // boolean test operators
case SMP_GREATER_THAN:
case SMP_LESS_EQUAL:
case SMP_GREATER_EQUAL:
case SMP_EQUAL:
case SMP_NOT_EQUAL:
case SMP_LOGICAL_AND:
case SMP_LOGICAL_OR:
case SMP_UNARY_NUMERIC_OPERATION: // miscellaneous; produces NUMERIC result
case SMP_BINARY_NUMERIC_OPERATION: // miscellaneous; produces NUMERIC result
case SMP_SYSTEM_OPERATION: // for instructions such as CPUID, RDTSC, etc.; NUMERIC
case SMP_UNARY_FLOATING_ARITHMETIC: // all the same to our type system; all NUMERIC
case SMP_BINARY_FLOATING_ARITHMETIC: // all the same to our type system; all NUMERIC
if (UNINIT == CurrRT->GetOperatorType()) {
CurrRT->SetOperatorType(NUMERIC);
updated = true;
}
// Left operand should be NUMERIC if it exists.
UseOp = CurrRT->GetLeftOperand();
if ((UseOp.type != o_void) && (UseOp.type != o_imm)) {
CurrUse = this->Uses.FindRef(UseOp);
if (CurrUse == this->GetLastUse()) {
msg("WARNING: Adding missing USE of ");
PrintOperand(UseOp);
msg(" in %s\n", this->GetDisasm());
this->Uses.SetRef(UseOp, NUMERIC, -1);
updated = true;
}
else if (UNINIT == CurrUse->GetType()) {
CurrUse = this->SetUseType(UseOp, NUMERIC);
updated = true;
}
}
// Right operand should be NUMERIC if it exists.
if (CurrRT->HasRightSubTree()) {
// Recurse into subtree
updated |= this->InferOperatorType(CurrRT->GetRightTree());
}
else {
UseOp = CurrRT->GetRightOperand();
if ((UseOp.type != o_void) && (UseOp.type != o_imm)) {
CurrUse = this->Uses.FindRef(UseOp);
if (CurrUse == this->GetLastUse()) {
msg("WARNING: Adding missing USE of ");
PrintOperand(UseOp);
msg(" in %s\n", this->GetDisasm());
this->Uses.SetRef(UseOp, NUMERIC, -1);
updated = true;
}
else if (UNINIT == CurrUse->GetType()) {
CurrUse = this->SetUseType(UseOp, NUMERIC);
updated = true;
}
}
}
break;
case SMP_ADD:
case SMP_SUBTRACT:
case SMP_BITWISE_AND:
case SMP_BITWISE_OR:
// If both operands are NUMERIC, operator and result are NUMERIC.
// If one operand is NUMERIC and the other is not UNINIT and not NUMERIC,
// then the operator and the result will inherit this second type.
if (UNINIT == CurrRT->GetOperatorType()) {
UseOp = CurrRT->GetLeftOperand();
assert(o_void != UseOp.type);
if (o_imm == UseOp.type) {
TempImm = (signed long) UseOp.value;
LeftNumeric = ((TempImm > IMMEDNUM_LOWER) && (TempImm < IMMEDNUM_UPPER));
}
else {
CurrUse = this->Uses.FindRef(UseOp);
if (CurrUse == this->GetLastUse()) {
msg("WARNING: Adding missing USE of ");
PrintOperand(UseOp);
msg(" in %s\n", this->GetDisasm());
this->Uses.SetRef(UseOp);
updated = true;
LeftNumeric = false;
break;
}
else {
LeftType = CurrUse->GetType();
LeftNumeric = (NUMERIC == LeftType);
}
}
// Process right operand
if (CurrRT->HasRightSubTree()) {
updated |= this->InferOperatorType(CurrRT->GetRightTree());
RightType = CurrRT->GetRightTree()->GetOperatorType();
if (UNINIT == RightType) {
break;
}
else if (NUMERIC != RightType) {
RightNumeric = false;
}
else {
RightNumeric = true;
}
}
else {
UseOp = CurrRT->GetRightOperand();
assert(o_void != UseOp.type);
if (o_imm == UseOp.type) {
TempImm = (signed long) UseOp.value;
RightNumeric = ((TempImm > IMMEDNUM_LOWER) && (TempImm < IMMEDNUM_UPPER));
}
else {
CurrUse = this->Uses.FindRef(UseOp);
if (CurrUse == this->GetLastUse()) {
msg("WARNING: Adding missing USE of ");
PrintOperand(UseOp);
msg(" in %s\n", this->GetDisasm());
this->Uses.SetRef(UseOp);
updated = true;
RightNumeric = false;
break;
}
else {
RightType = CurrUse->GetType();
RightNumeric = (NUMERIC == RightType);
}
}
}
// Infer operator type from LeftNumeric and RightNumeric
if (LeftNumeric && RightNumeric) {
CurrRT->SetOperatorType(NUMERIC);
updated = true;
}
else if (LeftNumeric || RightNumeric) {
if (LeftNumeric && (UNINIT != RightType)) {
CurrRT->SetOperatorType(RightType);
updated = true;
}
else if (RightNumeric && (UNINIT != LeftType)) {
CurrRT->SetOperatorType(LeftType);
updated = true;
}
}
else if (((LeftType >= POINTER) && (LeftType <= HEAPPTR))
&& ((RightType >= POINTER) && (RightType <= HEAPPTR))) {
// Addition or subtraction of pointers
if (SMP_ADD == CurrOp) {
CurrRT->SetOperatorType(UNKNOWN);
}
else if (SMP_SUBTRACT == CurrOp) {
CurrRT->SetOperatorType(PTROFFSET);
}
else { // bitwise AND or OR of two pointers
msg("WARNING: hash of two pointers in %s\n", this->GetDisasm());
CurrRT->SetOperatorType(NUMERIC); // hash operation?
}
updated = true;
}
} // end if UNINIT operator type
else if (CurrRT->HasRightSubTree()) {
// Must need to iterate through the right tree again, as the operator
// has been typed.
updated |= this->InferOperatorType(CurrRT->GetRightTree());
}
break;
case SMP_ASSIGN:
// If right operand has a type, it becomes the type of the SMP_ASSIGN
// operator and also of the left operand.
if ((UNINIT == CurrRT->GetOperatorType()) && !CurrRT->HasRightSubTree()) {
// we have a right operand, still have not inferred SMP_ASSIGN type
UseOp = CurrRT->GetRightOperand();
if (o_void == UseOp.type) {
msg("ERROR: void operand for SMP_ASSIGN in %s\n", this->GetDisasm());
return false;
}
else if (o_imm == UseOp.type) {
// Infer whether the immediate is NUMERIC by its value.
TempImm = (signed long) UseOp.value;
if ((TempImm > IMMEDNUM_LOWER) && (TempImm < IMMEDNUM_UPPER)) {
CurrRT->SetOperatorType(NUMERIC);
DefOp = CurrRT->GetLeftOperand();
this->SetDefType(DefOp, NUMERIC);
updated = true;
}
}
else {
CurrUse = this->Uses.FindRef(UseOp);
if (CurrUse == this->GetLastUse()) {
msg("WARNING: Adding missing USE of ");
PrintOperand(UseOp);
msg(" in %s\n", this->GetDisasm());
this->Uses.SetRef(UseOp);
updated = true;
}
else if (UNINIT != CurrUse->GetType()) {
// SMP_ASSIGN operator and DEF inherit type of the USE
CurrRT->SetOperatorType(CurrUse->GetType());
DefOp = CurrRT->GetLeftOperand();
this->SetDefType(DefOp, CurrUse->GetType());
updated = true;
}
}
}
else {
if (CurrRT->HasRightSubTree()) { // we have a right subtree
updated |= this->InferOperatorType(CurrRT->GetRightTree());
RightType = CurrRT->GetRightTree()->GetOperatorType();
}
else { // Why are we here if no subtree and SMP_ASSIGN != UNINIT?
msg("WARNING: SMP_ASSIGN type already inferred for %s\n",
this->GetDisasm());
this->TypeInferenceComplete = true;
}
}
break;
default:
msg("Unknown operator in %s\n", this->GetDisasm());
break;
} // end switch on operator
return updated;
} // end of SMPInstr::InferOperatorType()
// Set the type (NUMERIC or POINTER) of DEFs for this instruction if the type can
// be determined from the OptType (optimization category). We can also set all
// DEFs of the CPU flags to NUMERIC as they cannot be POINTER.
void SMPInstr::MDAnalyzeDefType(void) {
int SMPType = SMPTypeCategory[this->SMPcmd.itype];
// See explanation of type categories in InitTypeCategory().
if (SMPType == 6) {
for (index = 0; index < this->Defs.GetSize(); ++index) {
this->Defs.SetType(index, POINTER);
}
}
else if ((SMPType == 2) || (SMPType >= 7 && SMPType <= 9)
|| (SMPType == 13) || (SMPType == 15)) {
for (index = 0; index < this->Defs.GetSize(); ++index) {
this->Defs.SetType(index, NUMERIC);
}
}
// Now, set all flags DEFs to NUMERIC.
vector<DefOrUse>::iterator DefIter;
index = 0;
for (DefIter = this->Defs.GetFirstRef(); DefIter != this->Defs.GetLastRef(); ++DefIter) {
op_t TempOp = DefIter->GetOp();
if (TempOp.is_reg(X86_FLAGS_REG)) {
this->Defs.SetType(index, NUMERIC);
}
++index;
}
return;
} // end of SMPInstr::MDAnalyzeDefType()
// Set the type (NUMERIC or POINTER) of USEs for this instruction if the type can
// be determined from the OptType (optimization category). We can also set all
// USEs of the CPU flags to NUMERIC as they cannot be POINTER.
void SMPInstr::MDAnalyzeUseType(void) {
int SMPType = SMPTypeCategory[this->SMPcmd.itype];
// We start out with a clone of the NUMERIC part of the corresponding function for DEFs.
// The key idea is that if an instruction produces a NUMERIC result, its USES were
// NUMERIC within this instruction. Thus, if an exclusive-or instruction produces a
// result of type NUMERIC, its source operands were being used as numeric values
// regardless of their shadow metadata type. That does not mean that we can change
// the metadata to NUMERIC. You can certainly load a POINTER and use it as a NUMERIC,
// an example being the hash function computation that hashes an address into a numeric
// hash table index. What it does mean is that if all USEs for a particular SSA DEF
// are NUMERIC, then there is no point in looking up the metadata for this variable
// anywhere in this def-use chain. We can emit optimizing annotations when a complete
// USE chain for a particular DEF is numeric.
// See explanation of type categories in InitTypeCategory().
if ((SMPType == 2) || (SMPType >= 7 && SMPType <= 9)
|| (SMPType == 14) || (SMPType == 15)) {
for (index = 0; index < this->Uses.GetSize(); ++index) {
this->Uses.SetType(index, NUMERIC);
}
}
// Now, set all flags USEs to NUMERIC.
vector<DefOrUse>::iterator UseIter;
index = 0;
for (UseIter = this->Uses.GetFirstRef(); UseIter != this->Uses.GetLastRef(); ++UseIter) {
op_t TempOp = UseIter->GetOp();
if (TempOp.is_reg(X86_FLAGS_REG)) {
this->Uses.SetType(index, NUMERIC);
}
++index;
}
return;
} // end of SMPInstr::MDAnalyzeUseType()
// Handle x86 opcode SIB byte annotations.
void SMPInstr::MDAnnotateSIBStackConstants(FILE *AnnotFile, op_t Opnd, ea_t offset, bool UseFP) {
int BaseReg = sib_base(Opnd);
short IndexReg = sib_index(Opnd);
if (BaseReg == R_none) {
msg("BaseReg of R_none at %x\n", this->address);
}
if (BaseReg == R_sp) { // ESP cannot be IndexReg
// ESP-relative constant offset
qfprintf(AnnotFile,
"%10x %6d PTRIMMEDESP STACK %d displ %s\n",
this->SMPcmd.ea, this->SMPcmd.size, offset, this->disasm);
}
else if (UseFP && ((IndexReg == R_bp) || ((BaseReg == R_bp) && (Opnd.type != o_mem)))) {
// EBP-relative constant offset
qfprintf(AnnotFile,
"%10x %6d PTRIMMEDEBP STACK %d displ %s\n",
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
this->SMPcmd.ea, this->SMPcmd.size, offset, this->disasm);
}
return;
} // end of MDAnnotateSIBStackConstants
// Emit annotations for constants used as ptr offsets from EBP or
// ESP into the stack frame. Only pay attention to EBP-relative
// offsets if EBP is being used as a frame pointer (UseFP == true).
void SMPInstr::AnnotateStackConstants(bool UseFP, FILE *AnnotFile) {
op_t Opnd;
#if 0
if (this->address == 0x80925f4) {
msg("PROBLEM INSTRUCTION: \n");
this->PrintOperands();
}
#endif
for (int i = 0; i < UA_MAXOP; ++i) {
Opnd = SMPcmd.Operands[i];
if (Opnd.type == o_displ) {
ea_t offset = Opnd.addr;
if (Opnd.hasSIB) {
MDAnnotateSIBStackConstants(AnnotFile, Opnd, offset, UseFP);
}
else { // no SIB
ushort BaseReg = Opnd.reg;
if (BaseReg == R_sp) {
// ESP-relative constant offset
qfprintf(AnnotFile,
"%10x %6d PTRIMMEDESP STACK %d displ %s\n",
SMPcmd.ea, SMPcmd.size, offset, disasm);
}
else if (UseFP && (BaseReg == R_bp)) {
// EBP-relative constant offset
qfprintf(AnnotFile,
"%10x %6d PTRIMMEDEBP STACK %d displ %s\n",
SMPcmd.ea, SMPcmd.size, offset, disasm);
}
} // end if (Opnd.hasSIB) ... else ...
} // end if (Opnd.type == o_displ)
else if (Opnd.type == o_phrase) {
ea_t offset = 0; // mmStrata thinks [esp] is [esp+0]
if (Opnd.hasSIB) {
MDAnnotateSIBStackConstants(AnnotFile, Opnd, offset, UseFP);
}
else { // Something like [ecx]
ushort BaseReg = Opnd.reg;
if (BaseReg == R_sp) {
// ESP-relative constant offset
qfprintf(AnnotFile,
"%10x %6d PTRIMMEDESP STACK %d displ %s\n",
SMPcmd.ea, SMPcmd.size, offset, disasm);
}
else if (UseFP && (BaseReg == R_bp)) {
// EBP-relative constant offset
qfprintf(AnnotFile,
"%10x %6d PTRIMMEDEBP STACK %d displ %s\n",
SMPcmd.ea, SMPcmd.size, offset, disasm);
}
} // end if (Opnd.hasSIB) ... else ...
} // end else if (Opnd.type == o_phrase)
} // end for all operands
// If we move a stack pointer or frame pointer into another register, we
// need to annotate the implicit zero offset, e.g. mov edi,esp == mov edi,esp+0
// and edi is becoming a stack pointer that mmStrata needs to track.
if (this->MDIsStackPointerCopy(UseFP)) {
if (UseFP && this->GetFirstUse()->GetOp().is_reg(R_bp)) {
qfprintf(AnnotFile, "%10x %6d PTRIMMEDEBP STACK 0 displ %s\n",
SMPcmd.ea, SMPcmd.size, disasm);
}
else {
qfprintf(AnnotFile, "%10x %6d PTRIMMEDESP STACK 0 displ %s\n",
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
SMPcmd.ea, SMPcmd.size, disasm);
}
}
return;
} // end of SMPInstr::AnnotateStackConstants()
// Emit all annotations for the instruction.
void SMPInstr::EmitAnnotations(bool UseFP, bool AllocSeen, FILE *AnnotFile) {
ea_t addr = this->address;
flags_t InstrFlags = getFlags(addr);
bool MemDest = this->HasDestMemoryOperand();
bool MemSrc = this->HasSourceMemoryOperand();
bool SecondSrcOperandNum = this->IsSecondSrcOperandNumeric(InstrFlags);
++OptCount[OptType]; // keep count for debugging info
#if SMP_DEBUG_MEM
if (MemDest || MemSrc) {
msg("OptType: %d %s", OptType, disasm);
this->PrintOperands();
}
#endif
// Emit appropriate optimization annotations.
bool SDTInstrumentation = false;
switch (OptType) {
case 0: // SDT will have to handle these
{
#if SMP_DEBUG_TYPE0
msg("OptType 0: %x %s\n", addr, disasm);
#endif
// mmStrata wants to suppress warnings on the PUSH
// instructions that precede the LocalVarsAllocInstr
// (i.e. the PUSHes of callee-saved regs).
if (!AllocSeen && this->MDIsPushInstr()) {
qfprintf(AnnotFile, "%10x %6d INSTR LOCAL NoWarn %s \n",
addr, -3, disasm);
}
else {
SDTInstrumentation = true;
}
break;
}
case 1: // nothing for SDT to do
{ qfprintf(AnnotFile, "%10x %6d INSTR LOCAL NoMetaUpdate %s \n",
addr, -1, disasm);
++AnnotationCount[OptType];
break;
}
case 4: // INC, DEC, etc.: no SDT work unless MemDest
{ if (MemDest || MemSrc) {
SDTInstrumentation = true;
break; // treat as category 0
}
qfprintf(AnnotFile, "%10x %6d INSTR LOCAL Always1stSrc %s \n",
addr, -1, disasm);
++AnnotationCount[OptType];
break;
}
case 5: // ADD, etc.: If numeric 2nd src operand, no SDT work.
{ if (MemDest || MemSrc) {
SDTInstrumentation = true;
break; // treat as category 0
}
clc5q
committed
if (SecondSrcOperandNum && !this->MDIsFrameAllocInstr()) { // treat as category 1
qfprintf(AnnotFile, "%10x %6d INSTR LOCAL %s %s \n",
addr, -1, OptExplanation[OptType], disasm);
++AnnotationCount[OptType];
}
clc5q
committed
else {
SDTInstrumentation = true;
}
break;
}
case 6: // Only OS code should include these; problem for SDT
{ if (MemDest) {
SDTInstrumentation = true;
break; // treat as category 0
}
qfprintf(AnnotFile, "%10x %6d INSTR LOCAL AlwaysPTR %s \n",
addr, -OptType, disasm);
++AnnotationCount[OptType];
break;
}
case 8: // Implicitly writes to EDX:EAX, always numeric.
{ qfprintf(AnnotFile, "%10x %6d INSTR LOCAL n EDX EAX ZZ %s %s \n",
addr, -2, OptExplanation[OptType], disasm);
++AnnotationCount[OptType];
SDTInstrumentation = true;
break;
}
case 9: // Either writes to FP reg (cat. 1) or memory (cat. 0)
{ if (MemDest) {
#if SMP_DEBUG
// MemDest seems to happen too much.
msg("Floating point MemDest: %s \n", disasm);
#endif
SDTInstrumentation = true;
break; // treat as category 0
}
qfprintf(AnnotFile, "%10x %6d INSTR LOCAL %s %s \n",
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
addr, -1, OptExplanation[OptType], disasm);
++AnnotationCount[OptType];
break;
}
default: // 2,3,7: Optimization possibilities depend on operands
{
#if SMP_DEBUG2
if (OptType == 3) { // MOV instr class
if (MemDest) {
msg("MemDest on MOV: %s\n", disasm);
}
else if (!SecondSrcOperandNum) {
msg("MOV: not 2nd op numeric: %s\n", disasm);
this->PrintOperands();
}
}
#endif
SDTInstrumentation = true;
if (MemDest) {
#if SMP_DEBUG_XOR
if (OptType == 2)
msg("MemDest on OptType 2: %s\n", disasm);
#endif
break; // treat as category 0
}
if ((OptType == 2) || (OptType == 7) || SecondSrcOperandNum) {
qfprintf(AnnotFile, "%10x %6d INSTR LOCAL n %s %s %s \n",
addr, -2, this->DestString(OptType),
OptExplanation[OptType], disasm);
++AnnotationCount[OptType];
}
break;
}
} // end switch (OptType)
// If mmStrata is going to have to deal with the
// instruction, then we can annotate EBP and ESP
// relative constant offsets. If we have emitted
// an annotation of type -1, there is no point
// in telling mmStrata about these constants.
if (SDTInstrumentation) {
this->AnnotateStackConstants(UseFP, AnnotFile);
if (strlen(this->DeadRegsString) > 0) {
// Optimize by informing mmStrata of dead registers. It can avoid saving
// and restoring dead state. This is particularly important for EFLAGS,
// as restoring the flags is a pipeline serializing instruction.
qfprintf(AnnotFile, "%10x %6d INSTR DEADREGS %s ZZ %s \n",
addr, this->SMPcmd.size, this->DeadRegsString, disasm);
}
}
return;
} // end of SMPInstr::EmitAnnotations()
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
// Build the RTL for an instruction with a unary opcode
bool SMPInstr::BuildUnaryRTL(SMPoperator UnaryOp) {
size_t OpNum;
bool DestFound = false;
SMPRegTransfer *TempRT = NULL;
op_t VoidOp;
VoidOp.type = o_void;
op_t FPRegOp;
FPRegOp.type = o_fpreg; // floating point register stack
FPRegOp.reg = 0;
op_t FlagsOp;
FlagsOp.type = o_reg;
FlagsOp.reg = X86_FLAGS_REG;
// Handle special cases first
if (SMP_UNARY_FLOATING_ARITHMETIC == UnaryOp) {
// Use of the floating register stack top is implicit
DestFound = true;
TempRT = new SMPRegTransfer;
TempRT->SetLeftOperand(FPRegOp);
TempRT->SetOperator(SMP_ASSIGN);
SMPRegTransfer *RightRT = new SMPRegTransfer;
RightRT->SetLeftOperand(FPRegOp);
RightRT->SetOperator(UnaryOp);
RightRT->SetRightOperand(VoidOp);
TempRT->SetRightTree(RightRT);
this->RTL.push_back(TempRT);
}
else if ((NN_clc == this->SMPcmd.itype) || (NN_cld == this->SMPcmd.itype)
|| (NN_cmc == this->SMPcmd.itype) || (NN_stc == this->SMPcmd.itype)
|| (NN_std == this->SMPcmd.itype)) {
// Flags register is implicit destination.
DestFound = true;
TempRT = new SMPRegTransfer;
TempRT->SetLeftOperand(FlagsOp);
TempRT->SetOperator(SMP_ASSIGN);
SMPRegTransfer *RightRT = new SMPRegTransfer;
if (NN_cmc == this->SMPcmd.itype) { // complement carry flag USEs old carry flag
RightRT->SetLeftOperand(FlagsOp);
RightRT->SetOperator(SMP_BITWISE_NOT);
}
else {
RightRT->SetLeftOperand(VoidOp);
RightRT->SetOperator(UnaryOp);
}
RightRT->SetRightOperand(VoidOp);
TempRT->SetRightTree(RightRT);
this->RTL.push_back(TempRT);
}
for (OpNum = 0; !DestFound && (OpNum < UA_MAXOP); ++OpNum) {
op_t TempOp = this->SMPcmd.Operands[OpNum];
if (this->features & DefMacros[OpNum]) { // DEF
if (MDKnownOperandType(TempOp)) {
DestFound = true;
TempRT = new SMPRegTransfer;
TempRT->SetLeftOperand(TempOp);
TempRT->SetOperator(SMP_ASSIGN);
SMPRegTransfer *RightRT = new SMPRegTransfer;
RightRT->SetLeftOperand(TempOp);
RightRT->SetOperator(UnaryOp);
RightRT->SetRightOperand(VoidOp);
TempRT->SetRightTree(RightRT);
this->RTL.push_back(TempRT);
}
}
} // end for (OpNum = 0; ...)
#if SMP_DEBUG_BUILD_RTL
if (!DestFound) {
msg("ERROR: Could not find unary operand at %x for %s\n", this->GetAddr(), this->GetDisasm());
}
#endif
return DestFound;
} // end of SMPInstr::BuildUnaryRTL()
// Build the RTL for an instruction with a binary arithmetic opcode
bool SMPInstr::BuildBinaryRTL(SMPoperator BinaryOp) {
size_t OpNum;
bool DestFound = false;
bool SourceFound = false;
SMPRegTransfer *TempRT = NULL;
SMPRegTransfer *RightRT = new SMPRegTransfer;
op_t VoidOp;
VoidOp.type = o_void;
op_t FPRegOp;
FPRegOp.type = o_fpreg; // floating point register stack
FPRegOp.reg = 0;
op_t Immed1Op;
Immed1Op.type = o_imm; // immediate 1 for increment or decrement
Immed1Op.value = 1;
// Handle special cases first
if (SMP_BINARY_FLOATING_ARITHMETIC == BinaryOp) {
// Use of the floating register stack top is implicit
DestFound = true;
TempRT = new SMPRegTransfer;
TempRT->SetLeftOperand(FPRegOp);
TempRT->SetOperator(SMP_ASSIGN);
RightRT->SetLeftOperand(FPRegOp);
RightRT->SetOperator(BinaryOp);
RightRT->SetRightOperand(VoidOp);
TempRT->SetRightTree(RightRT);
}
else if ((NN_dec == this->SMPcmd.itype) || (NN_inc == this->SMPcmd.itype)) {
// The immediate value of 1 to add or subtract is implicit.
SourceFound = true;
RightRT->SetRightOperand(Immed1Op);
}
for (OpNum = 0; !(DestFound && SourceFound) && (OpNum < UA_MAXOP); ++OpNum) {
op_t TempOp = this->SMPcmd.Operands[OpNum];
if (this->features & DefMacros[OpNum]) { // DEF
if (MDKnownOperandType(TempOp)) {
DestFound = true;
TempRT = new SMPRegTransfer;
TempRT->SetLeftOperand(TempOp);
TempRT->SetOperator(SMP_ASSIGN);
RightRT->SetLeftOperand(TempOp);
RightRT->SetOperator(BinaryOp);
TempRT->SetRightTree(RightRT);
}
}
else { // USE
if (MDKnownOperandType(TempOp)) {
SourceFound = true;
RightRT->SetRightOperand(TempOp);
}
}
} // end for (OpNum = 0; ...)
if (!DestFound || !SourceFound) {
assert(NULL != RightRT);
delete RightRT;
if (NULL != TempRT)
delete TempRT;
#if SMP_DEBUG_BUILD_RTL
msg("ERROR: Could not find binary operand at %x for %s\n", this->GetAddr(), this->GetDisasm());
#endif
}
else {
this->RTL.push_back(TempRT);
}
return (DestFound && SourceFound);
} // end of SMPInstr::BuildBinaryRTL()
// Build the RTL for an double-word shift instruction
bool SMPInstr::BuildDoubleShiftRTL(SMPoperator BinaryOp) {
size_t OpNum;
bool DestFound = false;
bool SourceFound = false;
bool CountFound = false;
SMPRegTransfer *TempRT = NULL;
SMPRegTransfer *RightRT = new SMPRegTransfer;
SMPRegTransfer *LowerRightRT = new SMPRegTransfer;
op_t VoidOp;
VoidOp.type = o_void;
op_t FlagsOp;
FlagsOp.type = o_reg;
FlagsOp.reg = X86_FLAGS_REG;
for (OpNum = 0; !(DestFound && SourceFound && CountFound) && (OpNum < UA_MAXOP); ++OpNum) {
op_t TempOp = this->SMPcmd.Operands[OpNum];
if (this->features & DefMacros[OpNum]) { // DEF
if (MDKnownOperandType(TempOp)) {
DestFound = true;
TempRT = new SMPRegTransfer;
TempRT->SetLeftOperand(TempOp);
TempRT->SetOperator(SMP_ASSIGN);
RightRT->SetLeftOperand(TempOp);
RightRT->SetOperator(BinaryOp);
TempRT->SetRightTree(RightRT);
LowerRightRT->SetOperator(BinaryOp);
RightRT->SetRightTree(LowerRightRT);
}
}
else { // USE
if (MDKnownOperandType(TempOp)) {
if (!SourceFound) {
SourceFound = true;
LowerRightRT->SetLeftOperand(TempOp);
}
else {
CountFound = true;
LowerRightRT->SetRightOperand(TempOp);
}
}
}
} // end for (OpNum = 0; ...)
if (!DestFound || !SourceFound || !CountFound) {
if (NULL != TempRT)
delete TempRT;
#if SMP_DEBUG_BUILD_RTL
msg("ERROR: Could not find double-shift operand at %x for %s\n", this->GetAddr(), this->GetDisasm());
#endif
}
else {
this->RTL.push_back(TempRT);
// The carry flag gets the last shifted out bit.
this->RTL.ExtraKills.push_back(FlagsOp);
}
return (DestFound && SourceFound);
} // end of SMPInstr::BuildDoubleShiftRTL()
// Build the RTL for a multiply or divide, which can have implicit EAX and/or EDX operands
bool SMPInstr::BuildMultiplyDivideRTL(SMPoperator BinaryOp) {
size_t OpNum;
bool DestFound = false;
bool SourceFound = false;
bool HiddenEAXUse = false;
SMPRegTransfer *TempRT = NULL;
SMPRegTransfer *RightRT = new SMPRegTransfer;
op_t VoidOp;
VoidOp.type = o_void;
op_t FPRegOp;
FPRegOp.type = o_fpreg; // floating point register stack
FPRegOp.reg = 0;
op_t Immed1Op;
Immed1Op.type = o_imm; // immediate 1 for increment or decrement
FPRegOp.value = 1;
// Detect the cases in which EDX:EDX is the destination and EAX is a hidden operand.
// See detailed comments on the multiply and divide instructions in MDFixupDefUseLists().
for (OpNum = 0; !(DestFound && SourceFound) && (OpNum < UA_MAXOP); ++OpNum) {
op_t TempOp = this->SMPcmd.Operands[OpNum];
if (!TempOp.showed()) { // hidden operand
if (TempOp.is_reg(R_ax)) { // not R_al, so it is not 8 bits
// This for always has a hidden use of EDX:EAX
HiddenEAXUse = true;
}
}
}
for (OpNum = 0; !(DestFound && SourceFound) && (OpNum < UA_MAXOP); ++OpNum) {
op_t TempOp = this->SMPcmd.Operands[OpNum];
if (this->features & DefMacros[OpNum]) { // DEF
if (MDKnownOperandType(TempOp)) {
DestFound = true;
TempRT = new SMPRegTransfer;
TempRT->SetLeftOperand(TempOp);
TempRT->SetOperator(SMP_ASSIGN);
RightRT->SetLeftOperand(TempOp);
RightRT->SetOperator(BinaryOp);
TempRT->SetRightTree(RightRT);
}
}
else { // USE
if (MDKnownOperandType(TempOp)) {
SourceFound = true;
RightRT->SetRightOperand(TempOp);
}
}
} // end for (OpNum = 0; ...)
if (!DestFound || !SourceFound) {
assert(NULL != RightRT);
delete RightRT;
if (NULL != TempRT)
delete TempRT;
#if SMP_DEBUG_BUILD_RTL
msg("ERROR: Could not find mul/div operand at %x for %s\n", this->GetAddr(), this->GetDisasm());
#endif
}
else {
this->RTL.push_back(TempRT);
if (HiddenEAXUse) {
// Need another effect for EDX, which was implicit.
// Make a deep copy from existing effect and change EAX dest to EDX.
// For divisions, we also change EAX source to EDX.
SMPRegTransfer *EDXRT = new SMPRegTransfer;
SMPRegTransfer *EDXRightRT = new SMPRegTransfer;
op_t EDXOp;
EDXRT->SetOperator(SMP_ASSIGN);
EDXOp = TempRT->GetLeftOperand();
assert(EDXOp.is_reg(R_ax));
EDXOp.reg = R_dx;
EDXRT->SetLeftOperand(EDXOp);
op_t SourceOp = RightRT->GetLeftOperand();
if ((NN_div == this->SMPcmd.itype) || (NN_idiv == this->SMPcmd.itype)) {
// Need to change left operand of RightRT to EDX. i.e. we are
// changing the effect from eax := eax DIV foo to edx := edx DIV foo.
assert(SourceOp.is_reg(R_ax));
EDXRightRT->SetLeftOperand(EDXOp);
}
else { // just use same source operands for multiplies
EDXRightRT->SetLeftOperand(SourceOp);
}
EDXRightRT->SetOperator(BinaryOp);
EDXRightRT->SetRightOperand(RightRT->GetRightOperand());
EDXRT->SetRightTree(EDXRightRT);
this->RTL.push_back(EDXRT);
}
}
return (DestFound && SourceFound);
} // end of SMPInstr::BuildMultiplyDivideRTL()
// Build the RTL for an instruction with a tertiary arithmetic opcode applied to
// two operands plus an implied FLAGS operand, e.g. add with carry adds the carry bit
// and two operands together; rotate through carry, etc.
bool SMPInstr::BuildBinaryPlusFlagsRTL(SMPoperator BinaryOp) {
size_t OpNum;
bool DestFound = false;
bool SourceFound = false;
SMPRegTransfer *TempRT = NULL;
op_t FlagsOp;
FlagsOp.type = o_reg;
FlagsOp.reg = X86_FLAGS_REG;
SMPRegTransfer *RightRT = new SMPRegTransfer;
SMPRegTransfer *FlagsRightRT = new SMPRegTransfer;
for (OpNum = 0; !(DestFound && SourceFound) && (OpNum < UA_MAXOP); ++OpNum) {
op_t TempOp = this->SMPcmd.Operands[OpNum];
if (this->features & DefMacros[OpNum]) { // DEF
if (MDKnownOperandType(TempOp)) {
DestFound = true;
TempRT = new SMPRegTransfer;
TempRT->SetLeftOperand(TempOp);
TempRT->SetOperator(SMP_ASSIGN);
RightRT->SetLeftOperand(TempOp);
RightRT->SetOperator(BinaryOp);
TempRT->SetRightTree(RightRT);
}
}
else { // USE
if (MDKnownOperandType(TempOp)) {
SourceFound = true;
FlagsRightRT->SetLeftOperand(TempOp);
FlagsRightRT->SetOperator(BinaryOp);
FlagsRightRT->SetRightOperand(FlagsOp);
RightRT->SetRightTree(FlagsRightRT);
}
}
} // end for (OpNum = 0; ...)
if (!DestFound || !SourceFound) {
if (DestFound)
delete TempRT; // also deletes linked in RightRT
else
delete RightRT; // will also delete FlagsRightRT if SourceFound is true
if (!SourceFound) // FlagsRightRT not linked into RightRT yet
delete FlagsRightRT; // .. so delete FlagsRightRT separately
#if SMP_DEBUG_BUILD_RTL
msg("ERROR: Could not find binary operand at %x for %s\n", this->GetAddr(), this->GetDisasm());
#endif
}
else {
this->RTL.push_back(TempRT);
}
return (DestFound && SourceFound);
} // end of SMPInstr::BuildBinaryPlusFlagsRTL()
#define SMP_FIRST_SET_OPCODE NN_seta
#define SMP_LAST_SET_OPCODE NN_setz
// Build the RTL for an instruction of form dest := unary_operator(source), dest != source
bool SMPInstr::BuildUnary2OpndRTL(SMPoperator UnaryOp) {
size_t OpNum;
bool DestFound = false;
bool SourceFound = false;
SMPRegTransfer *TempRT = NULL;
SMPRegTransfer *RightRT = new SMPRegTransfer;
op_t VoidOp;
VoidOp.type = o_void;
op_t FlagsOp;
FlagsOp.type = o_reg;