Skip to content
Snippets Groups Projects
SMPInstr.cpp 154 KiB
Newer Older
		TempRT->SetLeftOperand(RegOp);
		TempRT->SetOperator(SMP_ASSIGN);
		TempRT->SetRightOperand(StackOp);
		this->RTL.push_back(TempRT);
		TempRT = NULL;

		// EDX comes from [ESP+20]
		RegOp.reg = R_dx;
		StackOp.addr = 20;  // [ESP+20]
		TempRT = new SMPRegTransfer;
		TempRT->SetLeftOperand(RegOp);
		TempRT->SetOperator(SMP_ASSIGN);
		TempRT->SetRightOperand(StackOp);
		this->RTL.push_back(TempRT);
		TempRT = NULL;

		// ECX comes from [ESP+24]
		RegOp.reg = R_cx;
		StackOp.addr = 24;  // [ESP+24]
		TempRT = new SMPRegTransfer;
		TempRT->SetLeftOperand(RegOp);
		TempRT->SetOperator(SMP_ASSIGN);
		TempRT->SetRightOperand(StackOp);
		this->RTL.push_back(TempRT);
		TempRT = NULL;

		// EAX comes from [ESP+28]
		RegOp.reg = R_ax;
		StackOp.addr = 28;  // [ESP+28]
		TempRT = new SMPRegTransfer;
		TempRT->SetLeftOperand(RegOp);
		TempRT->SetOperator(SMP_ASSIGN);
		TempRT->SetRightOperand(StackOp);
		this->RTL.push_back(TempRT);
		TempRT = NULL;

		// Now create the stack pointer increment effect.
		this->AddToStackPointer(32);
		return true;
	} // end for "pop all" instructions

	// If we reach this point, we have a simple POP instruction.
	for (OpNum = 0; !DestFound && (OpNum < UA_MAXOP); ++OpNum) {
		op_t TempOp = this->SMPcmd.Operands[OpNum];
		if (this->features & DefMacros[OpNum]) { // DEF
			if (MDKnownOperandType(TempOp)) {
				DestFound = true;
				TempRT = new SMPRegTransfer;
				TempRT->SetLeftOperand(TempOp);
				TempRT->SetOperator(SMP_ASSIGN);
				StackOp.dtyp = TempOp.dtyp;  // size of transfer
				TempRT->SetRightOperand(StackOp);
				this->RTL.push_back(TempRT);
				// Now create the stack pointer increment effect.
				OpSize = GetOpDataSize(TempOp);
				this->AddToStackPointer((uval_t) OpSize);
			}
		}
	} // end for (OpNum = 0; ...)

#if SMP_DEBUG_BUILD_RTL
	if (!DestFound) {
		msg("ERROR: Could not find pop operand at %x for %s\n", this->GetAddr(), this->GetDisasm());
	}
#endif
	return DestFound;
} // end of SMPInstr::BuildPopRTL()

#define SMP_FIRST_PUSH_FLAGS  NN_pushfw
#define SMP_LAST_PUSH_FLAGS  NN_pushfq
#define SMP_FIRST_PUSH_ALL  NN_pushaw
#define SMP_LAST_PUSH_ALL  NN_pushaq
// Build the RTL for a push instruction
bool SMPInstr::BuildPushRTL(void) {
	size_t OpNum, OpSize;
	bool SourceFound = false;
	SMPRegTransfer *TempRT = NULL;
	op_t StackOp, FlagsOp;
	StackOp.type = o_displ;
	StackOp.reg = R_sp;
	StackOp.addr = (ea_t) -4;  // [ESP-4]
	StackOp.hasSIB = 0;
	StackOp.dtyp = dt_dword;
	FlagsOp.type = o_reg;
	FlagsOp.reg = X86_FLAGS_REG;
	FlagsOp.dtyp = dt_dword;

	// Handle special cases first.
	if ((SMP_FIRST_PUSH_FLAGS <= this->SMPcmd.itype) && (SMP_LAST_PUSH_FLAGS >= this->SMPcmd.itype)) {
		TempRT = new SMPRegTransfer;
		TempRT->SetRightOperand(FlagsOp);
		TempRT->SetOperator(SMP_ASSIGN);
		TempRT->SetLeftOperand(StackOp);
		this->RTL.push_back(TempRT);
		// Now create the stack pointer increment effect.
		this->SubFromStackPointer(4);
		return true;
	}

	if ((SMP_FIRST_PUSH_ALL <= this->SMPcmd.itype) && (SMP_LAST_PUSH_ALL >= this->SMPcmd.itype)) {
		op_t RegOp;
		RegOp.type = o_reg;

		// EDI goes to [ESP-32]
		RegOp.reg = R_di;
		StackOp.addr = (ea_t) -32;  // [ESP-32]
		TempRT = new SMPRegTransfer;
		TempRT->SetRightOperand(RegOp);
		TempRT->SetOperator(SMP_ASSIGN);
		TempRT->SetLeftOperand(StackOp);
		this->RTL.push_back(TempRT);
		TempRT = NULL;

		// ESI goes to [ESP-28]
		RegOp.reg = R_si;
		StackOp.addr = (ea_t) -28;  // [ESP-28]
		TempRT = new SMPRegTransfer;
		TempRT->SetRightOperand(RegOp);
		TempRT->SetOperator(SMP_ASSIGN);
		TempRT->SetLeftOperand(StackOp);
		this->RTL.push_back(TempRT);
		TempRT = NULL;

		// EBP goes to [ESP-24]
		RegOp.reg = R_bp;
		StackOp.addr = (ea_t) -24;  // [ESP-24]
		TempRT = new SMPRegTransfer;
		TempRT->SetRightOperand(RegOp);
		TempRT->SetOperator(SMP_ASSIGN);
		TempRT->SetLeftOperand(StackOp);
		this->RTL.push_back(TempRT);
		TempRT = NULL;

		// ESP goes to [ESP-20]
		RegOp.reg = R_sp;
		StackOp.addr = (ea_t) -20;  // [ESP-20]
		TempRT = new SMPRegTransfer;
		TempRT->SetRightOperand(RegOp);
		TempRT->SetOperator(SMP_ASSIGN);
		TempRT->SetLeftOperand(StackOp);
		this->RTL.push_back(TempRT);
		TempRT = NULL;

		// EBX goes to [ESP-16]
		RegOp.reg = R_bx;
		StackOp.addr = (ea_t) -16;  // [ESP-16]
		TempRT = new SMPRegTransfer;
		TempRT->SetRightOperand(RegOp);
		TempRT->SetOperator(SMP_ASSIGN);
		TempRT->SetLeftOperand(StackOp);
		this->RTL.push_back(TempRT);
		TempRT = NULL;

		// EDX goes to [ESP-12]
		RegOp.reg = R_dx;
		StackOp.addr = (ea_t) -12;  // [ESP-12]
		TempRT = new SMPRegTransfer;
		TempRT->SetRightOperand(RegOp);
		TempRT->SetOperator(SMP_ASSIGN);
		TempRT->SetLeftOperand(StackOp);
		this->RTL.push_back(TempRT);
		TempRT = NULL;

		// ECX goes to [ESP-8]
		RegOp.reg = R_cx;
		StackOp.addr = (ea_t) -8;  // [ESP-8]
		TempRT = new SMPRegTransfer;
		TempRT->SetRightOperand(RegOp);
		TempRT->SetOperator(SMP_ASSIGN);
		TempRT->SetLeftOperand(StackOp);
		this->RTL.push_back(TempRT);
		TempRT = NULL;

		// EAX goes to [ESP-4]
		RegOp.reg = R_ax;
		StackOp.addr = (ea_t) -4;  // [ESP-4]
		TempRT = new SMPRegTransfer;
		TempRT->SetRightOperand(RegOp);
		TempRT->SetOperator(SMP_ASSIGN);
		TempRT->SetLeftOperand(StackOp);
		this->RTL.push_back(TempRT);
		TempRT = NULL;

		// Now create the stack pointer increment effect.
		this->SubFromStackPointer(32);
		return true;
	} // end for "pop all" instructions

	// If we reach this point, we have a simple PUSH instruction.
	for (OpNum = 0; !SourceFound && (OpNum < UA_MAXOP); ++OpNum) {
		op_t TempOp = this->SMPcmd.Operands[OpNum];
		if (this->features & UseMacros[OpNum]) { // USE
			if (MDKnownOperandType(TempOp)) {
				SourceFound = true;
				OpSize = GetOpDataSize(TempOp);
				TempRT = new SMPRegTransfer;
				TempRT->SetRightOperand(TempOp);
				TempRT->SetOperator(SMP_ASSIGN);
				StackOp.dtyp = TempOp.dtyp;  // size of transfer
				StackOp.addr = (ea_t) (-((signed int) OpSize));
				TempRT->SetLeftOperand(StackOp);
				this->RTL.push_back(TempRT);
				TempRT = NULL;
				// Now create the stack pointer increment effect.
				this->SubFromStackPointer((uval_t) OpSize);
			}
		}
	} // end for (OpNum = 0; ...)

#if SMP_DEBUG_BUILD_RTL
	if (!SourceFound) {
		msg("ERROR: Could not find push operand at %x for %s\n", this->GetAddr(), this->GetDisasm());
	}
#endif
	return SourceFound;
} // end of SMPInstr::BuildPushRTL()

// Build RTL trees from the SMPcmd info.
bool SMPInstr::BuildRTL(void) {
	op_t FlagsOp;
	FlagsOp.type = o_reg;
	FlagsOp.reg = X86_FLAGS_REG;
	SMPRegTransfer *NopRT = NULL;  // no-op register transfer

	// We don't want to explicitly represent the various no-ops except as NULL operations.
	//  E.g. mov esi,esi should not generate DEF and USE of esi, because esi does not change.
	if (this->MDIsNop()) {
		NopRT = new SMPRegTransfer;
		NopRT->SetOperator(SMP_NULL_OPERATOR);
		this->RTL.push_back(NopRT);
		NopRT = NULL;
		return true;
	}

	switch (this->SMPcmd.itype) {
		case NN_aaa:                 // ASCII Adjust after Addition
		case NN_aad:                 // ASCII Adjust AX before Division
		case NN_aam:                 // ASCII Adjust AX after Multiply
		case NN_aas:                 // ASCII Adjust AL after Subtraction
			return this->BuildUnaryRTL(SMP_UNARY_NUMERIC_OPERATION);

		case NN_adc:                 // Add with Carry
			return this->BuildBinaryPlusFlagsRTL(SMP_ADD_CARRY);

		case NN_add:                 // Add
			return this->BuildBinaryRTL(SMP_ADD);

		case NN_and:                 // Logical AND
			return this->BuildBinaryRTL(SMP_BITWISE_AND);

		case NN_arpl:                // Adjust RPL Field of Selector
		case NN_bound:               // Check Array Index Against Bounds
			return false;
			break;

		case NN_bsf:                 // Bit Scan Forward
		case NN_bsr:                 // Bit Scan Reverse
			return this->BuildUnary2OpndRTL(SMP_UNARY_NUMERIC_OPERATION);

		case NN_bt:                  // Bit Test
			return this->BuildFlagsDestBinaryRTL(SMP_BINARY_NUMERIC_OPERATION);

		case NN_btc:                 // Bit Test and Complement
		case NN_btr:                 // Bit Test and Reset
		case NN_bts:                 // Bit Test and Set
			// Has effects on both the carry flag and the first operand
			this->RTL.ExtraKills.push_back(FlagsOp);
			return this->BuildBinaryRTL(SMP_BINARY_NUMERIC_OPERATION);

		case NN_call:                // Call Procedure
		case NN_callfi:              // Indirect Call Far Procedure
		case NN_callni:              // Indirect Call Near Procedure
			return this->BuildCallRTL();

		case NN_cbw:                 // AL -> AX (with sign)
		case NN_cwde:                // AX -> EAX (with sign)
		case NN_cdqe:                // EAX -> RAX (with sign)
			return this->BuildUnaryRTL(SMP_SIGN_EXTEND);

		case NN_clc:                 // Clear Carry Flag
		case NN_cld:                 // Clear Direction Flag
			return this->BuildUnaryRTL(SMP_UNARY_NUMERIC_OPERATION);

		case NN_cli:                 // Clear Interrupt Flag
		case NN_clts:                // Clear Task-Switched Flag in CR0
			// We don't track the interrupt flag or the special registers,
			//  so we can just consider these to be no-ops.
			NopRT = new SMPRegTransfer;
			NopRT->SetOperator(SMP_NULL_OPERATOR);
			this->RTL.push_back(NopRT);
			NopRT = NULL;
			return true;

		case NN_cmc:                 // Complement Carry Flag
			return this->BuildUnaryRTL(SMP_UNARY_NUMERIC_OPERATION);

		case NN_cmp:                 // Compare Two Operands
			return this->BuildFlagsDestBinaryRTL(SMP_S_COMPARE);

		case NN_cmps:                // Compare Strings
			return this->BuildFlagsDestBinaryRTL(SMP_U_COMPARE);

		case NN_cwd:                 // AX -> DX:AX (with sign)
		case NN_cdq:                 // EAX -> EDX:EAX (with sign)
		case NN_cqo:                 // RAX -> RDX:RAX (with sign)
			return this->BuildUnary2OpndRTL(SMP_SIGN_EXTEND);
3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000

		case NN_daa:                 // Decimal Adjust AL after Addition
		case NN_das:                 // Decimal Adjust AL after Subtraction
			return this->BuildUnaryRTL(SMP_UNARY_NUMERIC_OPERATION);

		case NN_dec:                 // Decrement by 1
			return this->BuildBinaryRTL(SMP_SUBTRACT);

		case NN_div:                 // Unsigned Divide
			return this->BuildMultiplyDivideRTL(SMP_U_DIVIDE);

		case NN_enterw:              // Make Stack Frame for Procedure Parameters
		case NN_enter:               // Make Stack Frame for Procedure Parameters
		case NN_enterd:              // Make Stack Frame for Procedure Parameters
		case NN_enterq:              // Make Stack Frame for Procedure Parameters
			return this->BuildEnterRTL();

		case NN_hlt:                 // Halt
			// Treat as a no-op
			NopRT = new SMPRegTransfer;
			NopRT->SetOperator(SMP_NULL_OPERATOR);
			this->RTL.push_back(NopRT);
			NopRT = NULL;
			return true;

		case NN_idiv:                // Signed Divide
			return this->BuildMultiplyDivideRTL(SMP_S_DIVIDE);

		case NN_imul:                // Signed Multiply
			return this->BuildMultiplyDivideRTL(SMP_S_MULTIPLY);

		case NN_in:                  // Input from Port
			return this->BuildUnary2OpndRTL(SMP_INPUT);

		case NN_inc:                 // Increment by 1
			return this->BuildBinaryRTL(SMP_ADD);

		case NN_ins:                 // Input Byte(s) from Port to String
			return false;
			break;

		case NN_int:                 // Call to Interrupt Procedure
		case NN_into:                // Call to Interrupt Procedure if Overflow Flag = 1
		case NN_int3:                // Trap to Debugger
			return this->BuildCallRTL();

		case NN_iretw:               // Interrupt Return
		case NN_iret:                // Interrupt Return
		case NN_iretd:               // Interrupt Return (use32)
		case NN_iretq:               // Interrupt Return (use64)
			return this->BuildReturnRTL();

		case NN_ja:                  // Jump if Above (CF=0 & ZF=0)
		case NN_jae:                 // Jump if Above or Equal (CF=0)
		case NN_jb:                  // Jump if Below (CF=1)
		case NN_jbe:                 // Jump if Below or Equal (CF=1 | ZF=1)
		case NN_jc:                  // Jump if Carry (CF=1)
			return this->BuildJumpRTL(SMP_BINARY_NUMERIC_OPERATION);

		case NN_jcxz:                // Jump if CX is 0
		case NN_jecxz:               // Jump if ECX is 0
		case NN_jrcxz:               // Jump if RCX is 0
			return this->BuildJumpRTL(SMP_EQUAL); // special case in BuildJumpRTL()

		case NN_je:                  // Jump if Equal (ZF=1)
			return this->BuildJumpRTL(SMP_EQUAL);

		case NN_jg:                  // Jump if Greater (ZF=0 & SF=OF)
			return this->BuildJumpRTL(SMP_GREATER_THAN);

		case NN_jge:                 // Jump if Greater or Equal (SF=OF)
			return this->BuildJumpRTL(SMP_GREATER_EQUAL);

		case NN_jl:                  // Jump if Less (SF!=OF)
			return this->BuildJumpRTL(SMP_LESS_THAN);

		case NN_jle:                 // Jump if Less or Equal (ZF=1 | SF!=OF)
			return this->BuildJumpRTL(SMP_LESS_EQUAL);

		case NN_jna:                 // Jump if Not Above (CF=1 | ZF=1)
		case NN_jnae:                // Jump if Not Above or Equal (CF=1)
		case NN_jnb:                 // Jump if Not Below (CF=0)
		case NN_jnbe:                // Jump if Not Below or Equal (CF=0 & ZF=0) a.k.a. ja
		case NN_jnc:                 // Jump if Not Carry (CF=0)
			return this->BuildJumpRTL(SMP_BINARY_NUMERIC_OPERATION);

		case NN_jne:                 // Jump if Not Equal (ZF=0)
			return this->BuildJumpRTL(SMP_NOT_EQUAL);

		case NN_jng:                 // Jump if Not Greater (ZF=1 | SF!=OF) a.k.a. jle
			return this->BuildJumpRTL(SMP_LESS_EQUAL);

		case NN_jnge:                // Jump if Not Greater or Equal (SF != OF) **
			return this->BuildJumpRTL(SMP_LESS_THAN);

		case NN_jnl:                 // Jump if Not Less (SF=OF) a.k.a. jge
			return this->BuildJumpRTL(SMP_GREATER_EQUAL);

		case NN_jnle:                // Jump if Not Less or Equal (ZF=0 & SF=OF) a.k.a. jg
			return this->BuildJumpRTL(SMP_GREATER_THAN);

		case NN_jno:                 // Jump if Not Overflow (OF=0)
		case NN_jnp:                 // Jump if Not Parity (PF=0)
		case NN_jns:                 // Jump if Not Sign (SF=0)
			return this->BuildJumpRTL(SMP_BINARY_NUMERIC_OPERATION);

		case NN_jnz:                 // Jump if Not Zero (ZF=0)  a.k.a. jne
			return this->BuildJumpRTL(SMP_NOT_EQUAL);

		case NN_jo:                  // Jump if Overflow (OF=1)
		case NN_jp:                  // Jump if Parity (PF=1)
		case NN_jpe:                 // Jump if Parity Even (PF=1)
		case NN_jpo:                 // Jump if Parity Odd  (PF=0)
		case NN_js:                  // Jump if Sign (SF=1)
			return this->BuildJumpRTL(SMP_BINARY_NUMERIC_OPERATION);

		case NN_jz:                  // Jump if Zero (ZF=1)
			return this->BuildJumpRTL(SMP_EQUAL);

		case NN_jmp:                 // Jump
		case NN_jmpfi:               // Indirect Far Jump
		case NN_jmpni:               // Indirect Near Jump
		case NN_jmpshort:            // Jump Short (not used)
			return this->BuildJumpRTL(SMP_NULL_OPERATOR);

		case NN_lahf:                // Load Flags into AH Register
			return this->BuildMoveRTL(SMP_NULL_OPERATOR);

		case NN_lar:                 // Load Access Right Byte
			return false;
			break;

		case NN_lea:                 // Load Effective Address
			return this->BuildUnary2OpndRTL(SMP_ADDRESS_OF);

		case NN_leavew:              // High Level Procedure Exit
		case NN_leave:               // High Level Procedure Exit
		case NN_leaved:              // High Level Procedure Exit
		case NN_leaveq:              // High Level Procedure Exit
			return this->BuildLeaveRTL();

		case NN_lgdt:                // Load Global Descriptor Table Register
		case NN_lidt:                // Load Interrupt Descriptor Table Register
		case NN_lgs:                 // Load Full Pointer to GS:xx
		case NN_lss:                 // Load Full Pointer to SS:xx
		case NN_lds:                 // Load Full Pointer to DS:xx
		case NN_les:                 // Load Full Pointer to ES:xx
		case NN_lfs:                 // Load Full Pointer to FS:xx
		case NN_lldt:                // Load Local Descriptor Table Register
		case NN_lmsw:                // Load Machine Status Word
		case NN_lock:                // Assert LOCK# Signal Prefix
		case NN_lods:                // Load String
			return false;
			break;

		case NN_loopw:               // Loop while ECX != 0
		case NN_loop:                // Loop while CX != 0
		case NN_loopd:               // Loop while ECX != 0
		case NN_loopq:               // Loop while RCX != 0
		case NN_loopwe:              // Loop while CX != 0 and ZF=1
		case NN_loope:               // Loop while rCX != 0 and ZF=1
		case NN_loopde:              // Loop while ECX != 0 and ZF=1
		case NN_loopqe:              // Loop while RCX != 0 and ZF=1
		case NN_loopwne:             // Loop while CX != 0 and ZF=0
		case NN_loopne:              // Loop while rCX != 0 and ZF=0
		case NN_loopdne:             // Loop while ECX != 0 and ZF=0
		case NN_loopqne:             // Loop while RCX != 0 and ZF=0
			return false;
			break;

		case NN_lsl:                 // Load Segment Limit
		case NN_ltr:                 // Load Task Register
			return false;
			break;

		case NN_mov:                 // Move Data
		case NN_movsp:               // Move to/from Special Registers
		case NN_movs:                // Move Byte(s) from String to String
			return this->BuildMoveRTL(SMP_NULL_OPERATOR);

		case NN_movsx:               // Move with Sign-Extend
			return this->BuildUnary2OpndRTL(SMP_SIGN_EXTEND);

		case NN_movzx:               // Move with Zero-Extend
			return this->BuildUnary2OpndRTL(SMP_ZERO_EXTEND);

		case NN_mul:                 // Unsigned Multiplication of AL or AX
			return this->BuildMultiplyDivideRTL(SMP_U_MULTIPLY);

		case NN_neg:                 // Two's Complement Negation
			return this->BuildUnaryRTL(SMP_NEGATE);

		case NN_nop:                 // No Operation
			NopRT = new SMPRegTransfer;
			NopRT->SetOperator(SMP_NULL_OPERATOR);
			this->RTL.push_back(NopRT);
			NopRT = NULL;
			return true;

		case NN_not:                 // One's Complement Negation
			return this->BuildUnaryRTL(SMP_BITWISE_NOT);

		case NN_or:                  // Logical Inclusive OR
			return this->BuildBinaryRTL(SMP_BITWISE_OR);

		case NN_out:                 // Output to Port
			return this->BuildBinaryRTL(SMP_OUTPUT);

		case NN_outs:                // Output Byte(s) to Port
			return false;
			break;

		case NN_pop:                 // Pop a word from the Stack
		case NN_popaw:               // Pop all General Registers
		case NN_popa:                // Pop all General Registers
		case NN_popad:               // Pop all General Registers (use32)
		case NN_popaq:               // Pop all General Registers (use64)
		case NN_popfw:               // Pop Stack into Flags Register
		case NN_popf:                // Pop Stack into Flags Register
		case NN_popfd:               // Pop Stack into Eflags Register
		case NN_popfq:               // Pop Stack into Rflags Register
			return this->BuildPopRTL();

		case NN_push:                // Push Operand onto the Stack
		case NN_pushaw:              // Push all General Registers
		case NN_pusha:               // Push all General Registers
		case NN_pushad:              // Push all General Registers (use32)
		case NN_pushaq:              // Push all General Registers (use64)
		case NN_pushfw:              // Push Flags Register onto the Stack
		case NN_pushf:               // Push Flags Register onto the Stack
		case NN_pushfd:              // Push Flags Register onto the Stack (use32)
		case NN_pushfq:              // Push Flags Register onto the Stack (use64)
			return this->BuildPushRTL();

		case NN_rcl:                 // Rotate Through Carry Left
			return this->BuildBinaryPlusFlagsRTL(SMP_ROTATE_LEFT_CARRY);

		case NN_rcr:                 // Rotate Through Carry Right
			return this->BuildBinaryPlusFlagsRTL(SMP_ROTATE_RIGHT_CARRY);

		case NN_rol:                 // Rotate Left
			return this->BuildBinaryRTL(SMP_ROTATE_LEFT);

		case NN_ror:                 // Rotate Right
			return this->BuildBinaryRTL(SMP_ROTATE_RIGHT);

		case NN_rep:                 // Repeat String Operation
		case NN_repe:                // Repeat String Operation while ZF=1
		case NN_repne:               // Repeat String Operation while ZF=0
			return false;
			break;

		case NN_retn:                // Return Near from Procedure
		case NN_retf:                // Return Far from Procedure
			return this->BuildReturnRTL();

		case NN_sahf:                // Store AH into Flags Register
			return this->BuildMoveRTL(SMP_NULL_OPERATOR);

		case NN_sal:                 // Shift Arithmetic Left
			return this->BuildBinaryRTL(SMP_S_LEFT_SHIFT);

		case NN_sar:                 // Shift Arithmetic Right
			return this->BuildBinaryRTL(SMP_S_RIGHT_SHIFT);

		case NN_shl:                 // Shift Logical Left
			return this->BuildBinaryRTL(SMP_U_LEFT_SHIFT);

		case NN_shr:                 // Shift Logical Right
			return this->BuildBinaryRTL(SMP_U_RIGHT_SHIFT);

		case NN_sbb:                 // Integer Subtraction with Borrow
			return this->BuildBinaryPlusFlagsRTL(SMP_SUBTRACT_BORROW);

		case NN_scas:                // Compare String
			return this->BuildBinaryPlusFlagsRTL(SMP_U_COMPARE);

		case NN_seta:                // Set Byte if Above (CF=0 & ZF=0)
		case NN_setae:               // Set Byte if Above or Equal (CF=0)
		case NN_setb:                // Set Byte if Below (CF=1)
		case NN_setbe:               // Set Byte if Below or Equal (CF=1 | ZF=1)
		case NN_setc:                // Set Byte if Carry (CF=1)
		case NN_sete:                // Set Byte if Equal (ZF=1)
		case NN_setg:                // Set Byte if Greater (ZF=0 & SF=OF)
		case NN_setge:               // Set Byte if Greater or Equal (SF=OF)
		case NN_setl:                // Set Byte if Less (SF!=OF)
		case NN_setle:               // Set Byte if Less or Equal (ZF=1 | SF!=OF)
		case NN_setna:               // Set Byte if Not Above (CF=1 | ZF=1)
		case NN_setnae:              // Set Byte if Not Above or Equal (CF=1)
		case NN_setnb:               // Set Byte if Not Below (CF=0)
		case NN_setnbe:              // Set Byte if Not Below or Equal (CF=0 & ZF=0)
		case NN_setnc:               // Set Byte if Not Carry (CF=0)
		case NN_setne:               // Set Byte if Not Equal (ZF=0)
		case NN_setng:               // Set Byte if Not Greater (ZF=1 | SF!=OF)
		case NN_setnge:              // Set Byte if Not Greater or Equal (ZF=1)
		case NN_setnl:               // Set Byte if Not Less (SF=OF)
		case NN_setnle:              // Set Byte if Not Less or Equal (ZF=0 & SF=OF)
		case NN_setno:               // Set Byte if Not Overflow (OF=0)
		case NN_setnp:               // Set Byte if Not Parity (PF=0)
		case NN_setns:               // Set Byte if Not Sign (SF=0)
		case NN_setnz:               // Set Byte if Not Zero (ZF=0)
		case NN_seto:                // Set Byte if Overflow (OF=1)
		case NN_setp:                // Set Byte if Parity (PF=1)
		case NN_setpe:               // Set Byte if Parity Even (PF=1)
		case NN_setpo:               // Set Byte if Parity Odd  (PF=0)
		case NN_sets:                // Set Byte if Sign (SF=1)
		case NN_setz:                // Set Byte if Zero (ZF=1)
			// Destination always get set to NUMERIC 0 or 1, depending on
			//  the condition and the relevant flags bits. Best way to model
			//  this in an RTL is to perform an unspecified unary NUMERIC
			//  operation on the flags register and assign the result to the
			//  destination operand, making it always NUMERIC.
			return this->BuildUnary2OpndRTL(SMP_UNARY_NUMERIC_OPERATION);

		case NN_sgdt:                // Store Global Descriptor Table Register
		case NN_sidt:                // Store Interrupt Descriptor Table Register
			return false;
			break;

		case NN_shld:                // Double Precision Shift Left
			return this->BuildDoubleShiftRTL(SMP_U_LEFT_SHIFT);

		case NN_shrd:                // Double Precision Shift Right
			return this->BuildDoubleShiftRTL(SMP_U_RIGHT_SHIFT);

		case NN_sldt:                // Store Local Descriptor Table Register
		case NN_smsw:                // Store Machine Status Word
			return false;
			break;

		case NN_stc:                 // Set Carry Flag
		case NN_std:                 // Set Direction Flag
			return this->BuildUnaryRTL(SMP_UNARY_NUMERIC_OPERATION);

		case NN_sti:                 // Set Interrupt Flag
			NopRT = new SMPRegTransfer;
			NopRT->SetOperator(SMP_NULL_OPERATOR);
			this->RTL.push_back(NopRT);
			NopRT = NULL;
			return true;

		case NN_stos:                // Store String
			return this->BuildMoveRTL(SMP_NULL_OPERATOR);

		case NN_str:                 // Store Task Register
			return false;
			break;

		case NN_sub:                 // Integer Subtraction
			return this->BuildBinaryRTL(SMP_SUBTRACT);

		case NN_test:                // Logical Compare
			return this->BuildFlagsDestBinaryRTL(SMP_U_COMPARE);

		case NN_verr:                // Verify a Segment for Reading
		case NN_verw:                // Verify a Segment for Writing
		case NN_wait:                // Wait until BUSY# Pin is Inactive (HIGH)
			NopRT = new SMPRegTransfer;
			NopRT->SetOperator(SMP_NULL_OPERATOR);
			this->RTL.push_back(NopRT);
			NopRT = NULL;
			if (NN_wait != this->SMPcmd.itype)
				this->RTL.ExtraKills.push_back(FlagsOp);
			return true;

		case NN_xchg:                // Exchange Register/Memory with Register
			return this->BuildExchangeRTL();

		case NN_xlat:                // Table Lookup Translation
			return false;
			break;

		case NN_xor:                 // Logical Exclusive OR
			return this->BuildBinaryRTL(SMP_BITWISE_XOR);


		//
		//      486 instructions
		//

		case NN_cmpxchg:             // Compare and Exchange
			return this->BuildCompareExchangeRTL();

		case NN_bswap:               // Swap bits in EAX
			return false;
			break;

		case NN_xadd:                // t<-dest; dest<-src+dest; src<-t
			return this->BuildExchangeAddRTL();

		case NN_invd:                // Invalidate Data Cache
		case NN_wbinvd:              // Invalidate Data Cache (write changes)
		case NN_invlpg:              // Invalidate TLB entry
			NopRT = new SMPRegTransfer;
			NopRT->SetOperator(SMP_NULL_OPERATOR);
			this->RTL.push_back(NopRT);
			NopRT = NULL;
			return true;

		//
		//      Pentium instructions
		//

		case NN_rdmsr:               // Read Machine Status Register
			return this->BuildOptType8RTL();

		case NN_wrmsr:               // Write Machine Status Register
			return false;
			break;

		case NN_cpuid:               // Get CPU ID
			return this->BuildOptType8RTL();

		case NN_cmpxchg8b:           // Compare and Exchange Eight Bytes
			return false;
			break;

		case NN_rdtsc:               // Read Time Stamp Counter
			return this->BuildOptType8RTL();

		case NN_rsm:                 // Resume from System Management Mode
			NopRT = new SMPRegTransfer;
			NopRT->SetOperator(SMP_NULL_OPERATOR);
			this->RTL.push_back(NopRT);
			NopRT = NULL;
			return true;


		//
		//      Pentium Pro instructions
		//

		case NN_cmova:               // Move if Above (CF=0 & ZF=0)
		case NN_cmovb:               // Move if Below (CF=1)
		case NN_cmovbe:              // Move if Below or Equal (CF=1 | ZF=1)
			return this->BuildMoveRTL(SMP_BINARY_NUMERIC_OPERATION);

		case NN_cmovg:               // Move if Greater (ZF=0 & SF=OF)
			return this->BuildMoveRTL(SMP_GREATER_THAN);

		case NN_cmovge:              // Move if Greater or Equal (SF=OF)
			return this->BuildMoveRTL(SMP_GREATER_EQUAL);

		case NN_cmovl:               // Move if Less (SF!=OF)
			return this->BuildMoveRTL(SMP_LESS_THAN);

		case NN_cmovle:              // Move if Less or Equal (ZF=1 | SF!=OF)
			return this->BuildMoveRTL(SMP_LESS_EQUAL);

		case NN_cmovnb:              // Move if Not Below (CF=0)
		case NN_cmovno:              // Move if Not Overflow (OF=0)
		case NN_cmovnp:              // Move if Not Parity (PF=0)
		case NN_cmovns:              // Move if Not Sign (SF=0)
			return this->BuildMoveRTL(SMP_BINARY_NUMERIC_OPERATION);

		case NN_cmovnz:              // Move if Not Zero (ZF=0)
			return this->BuildMoveRTL(SMP_NOT_EQUAL);

		case NN_cmovo:               // Move if Overflow (OF=1)
		case NN_cmovp:               // Move if Parity (PF=1)
		case NN_cmovs:               // Move if Sign (SF=1)
			return this->BuildMoveRTL(SMP_BINARY_NUMERIC_OPERATION);

		case NN_cmovz:               // Move if Zero (ZF=1)
			return this->BuildMoveRTL(SMP_EQUAL);

		case NN_fcmovb:              // Floating Move if Below
			return this->BuildMoveRTL(SMP_BINARY_NUMERIC_OPERATION);

		case NN_fcmove:              // Floating Move if Equal
			return this->BuildMoveRTL(SMP_EQUAL);

		case NN_fcmovbe:             // Floating Move if Below or Equal
			return this->BuildMoveRTL(SMP_BINARY_NUMERIC_OPERATION);

		case NN_fcmovu:              // Floating Move if Unordered
			return this->BuildMoveRTL(SMP_BINARY_NUMERIC_OPERATION);

		case NN_fcmovnb:             // Floating Move if Not Below
			return this->BuildMoveRTL(SMP_BINARY_NUMERIC_OPERATION);

		case NN_fcmovne:             // Floating Move if Not Equal
			return this->BuildMoveRTL(SMP_NOT_EQUAL);

		case NN_fcmovnbe:            // Floating Move if Not Below or Equal
			return this->BuildMoveRTL(SMP_BINARY_NUMERIC_OPERATION);

		case NN_fcmovnu:             // Floating Move if Not Unordered
			return this->BuildMoveRTL(SMP_BINARY_NUMERIC_OPERATION);


		case NN_fcomi:               // FP Compare: result in EFLAGS
		case NN_fucomi:              // FP Unordered Compare: result in EFLAGS
		case NN_fcomip:              // FP Compare: result in EFLAGS: pop stack
		case NN_fucomip:             // FP Unordered Compare: result in EFLAGS: pop stack
			return false;
			break;

		case NN_rdpmc:               // Read Performance Monitor Counter
			return this->BuildOptType8RTL();

		//
		//      FPP instructions
		//

		case NN_fld:                 // Load Real
		case NN_fst:                 // Store Real
		case NN_fstp:                // Store Real and Pop
			return this->BuildMoveRTL(SMP_NULL_OPERATOR);

		case NN_fxch:                // Exchange Registers
			// FP registers remain NUMERIC anyway, so this is a no-op to our type system.
			NopRT = new SMPRegTransfer;
			NopRT->SetOperator(SMP_NULL_OPERATOR);
			this->RTL.push_back(NopRT);
			NopRT = NULL;
			return true;

		case NN_fild:                // Load Integer
		case NN_fist:                // Store Integer
		case NN_fistp:               // Store Integer and Pop
		case NN_fbld:                // Load BCD
		case NN_fbstp:               // Store BCD and Pop
			return this->BuildMoveRTL(SMP_NULL_OPERATOR);

		case NN_fadd:                // Add Real
		case NN_faddp:               // Add Real and Pop
		case NN_fiadd:               // Add Integer
		case NN_fsub:                // Subtract Real
		case NN_fsubp:               // Subtract Real and Pop
		case NN_fisub:               // Subtract Integer
		case NN_fsubr:               // Subtract Real Reversed
		case NN_fsubrp:              // Subtract Real Reversed and Pop
		case NN_fisubr:              // Subtract Integer Reversed
		case NN_fmul:                // Multiply Real
		case NN_fmulp:               // Multiply Real and Pop
		case NN_fimul:               // Multiply Integer
		case NN_fdiv:                // Divide Real
		case NN_fdivp:               // Divide Real and Pop
		case NN_fidiv:               // Divide Integer
		case NN_fdivr:               // Divide Real Reversed
		case NN_fdivrp:              // Divide Real Reversed and Pop
		case NN_fidivr:              // Divide Integer Reversed
			return this->BuildBinaryRTL(SMP_BINARY_FLOATING_ARITHMETIC);

		case NN_fsqrt:               // Square Root
		case NN_fscale:              // Scale:  st(0) <- st(0) * 2^st(1)
		case NN_fprem:               // Partial Remainder
		case NN_frndint:             // Round to Integer
		case NN_fxtract:             // Extract exponent and significand
		case NN_fabs:                // Absolute value
		case NN_fchs:                // Change Sign
			return this->BuildUnaryRTL(SMP_UNARY_FLOATING_ARITHMETIC);

		case NN_fcom:                // Compare Real
		case NN_fcomp:               // Compare Real and Pop
		case NN_fcompp:              // Compare Real and Pop Twice
		case NN_ficom:               // Compare Integer
		case NN_ficomp:              // Compare Integer and Pop
		case NN_ftst:                // Test
		case NN_fxam:                // Examine
			// Floating comparison instructions use FP reg stack locations
			//  as sources and set only the FP flags. All of these are numeric
			//  type and we don't track any of them, so all such instructions
			//  can be considered to be no-ops.
			NopRT = new SMPRegTransfer;
			NopRT->SetOperator(SMP_NULL_OPERATOR);
			this->RTL.push_back(NopRT);
			NopRT = NULL;
			return true;

		case NN_fptan:               // Partial tangent
		case NN_fpatan:              // Partial arctangent
		case NN_f2xm1:               // 2^x - 1
		case NN_fyl2x:               // Y * lg2(X)
		case NN_fyl2xp1:             // Y * lg2(X+1)
			// We can consider it a unary operation when both arguments come
			//  off the floating point register stack, unless we even start
			//  modeling the different locations in the FP register stack.
			return this->BuildUnaryRTL(SMP_UNARY_FLOATING_ARITHMETIC);

		case NN_fldz:                // Load +0.0
		case NN_fld1:                // Load +1.0
		case NN_fldpi:               // Load PI=3.14...
		case NN_fldl2t:              // Load lg2(10)
		case NN_fldl2e:              // Load lg2(e)
		case NN_fldlg2:              // Load lg10(2)
		case NN_fldln2:              // Load ln(2)
		case NN_finit:               // Initialize Processor
		case NN_fninit:              // Initialize Processor (no wait)
		case NN_fsetpm:              // Set Protected Mode
		case NN_fldcw:               // Load Control Word
		case NN_fstcw:               // Store Control Word
		case NN_fnstcw:              // Store Control Word (no wait)
		case NN_fstsw:               // Store Status Word
		case NN_fnstsw:              // Store Status Word (no wait)
		case NN_fclex:               // Clear Exceptions
		case NN_fnclex:              // Clear Exceptions (no wait)
			// Floating point stack and control word and flags operations
			//  with no memory operands are no-ops to us.
			NopRT = new SMPRegTransfer;
			NopRT->SetOperator(SMP_NULL_OPERATOR);
			this->RTL.push_back(NopRT);
			NopRT = NULL;
			return true;

		case NN_fstenv:              // Store Environment
		case NN_fnstenv:             // Store Environment (no wait)
		case NN_fldenv:              // Load Environment
		case NN_fsave:               // Save State
		case NN_fnsave:              // Save State (no wait)
		case NN_frstor:              // Restore State
		case NN_fincstp:             // Increment Stack Pointer
		case NN_fdecstp:             // Decrement Stack Pointer
		case NN_ffree:               // Free Register
		case NN_fnop:                // No Operation
		case NN_feni:                // (8087 only)
		case NN_fneni:               // (no wait) (8087 only)
		case NN_fdisi:               // (8087 only)
		case NN_fndisi:              // (no wait) (8087 only)
			return false;
			break;


		//
		//      80387 instructions
		//

		case NN_fprem1:              // Partial Remainder ( < half )
		case NN_fsincos:             // t<-cos(st); st<-sin(st); push t
		case NN_fsin:                // Sine
		case NN_fcos:                // Cosine
		case NN_fucom:               // Compare Unordered Real
		case NN_fucomp:              // Compare Unordered Real and Pop
		case NN_fucompp:             // Compare Unordered Real and Pop Twice
			// Floating point stack and control word and flags operations
			//  with no memory operands are no-ops to us.
			NopRT = new SMPRegTransfer;
			NopRT->SetOperator(SMP_NULL_OPERATOR);
			this->RTL.push_back(NopRT);
			NopRT = NULL;
			return true;


		//
		//      Instructions added 28.02.96
		//

		case NN_setalc:              // Set AL to Carry Flag
		case NN_svdc:                // Save Register and Descriptor
		case NN_rsdc:                // Restore Register and Descriptor
		case NN_svldt:               // Save LDTR and Descriptor
		case NN_rsldt:               // Restore LDTR and Descriptor
		case NN_svts:                // Save TR and Descriptor
		case NN_rsts:                // Restore TR and Descriptor
		case NN_icebp:               // ICE Break Point
		case NN_loadall:             // Load the entire CPU state from ES:EDI

		//
		//      MMX instructions
		//

		case NN_emms:                // Empty MMX state
		case NN_movd:                // Move 32 bits
		case NN_movq:                // Move 64 bits
		case NN_packsswb:            // Pack with Signed Saturation (Word->Byte)
		case NN_packssdw:            // Pack with Signed Saturation (Dword->Word)
		case NN_packuswb:            // Pack with Unsigned Saturation (Word->Byte)
		case NN_paddb:               // Packed Add Byte
		case NN_paddw:               // Packed Add Word
		case NN_paddd:               // Packed Add Dword
		case NN_paddsb:              // Packed Add with Saturation (Byte)
		case NN_paddsw:              // Packed Add with Saturation (Word)
		case NN_paddusb:             // Packed Add Unsigned with Saturation (Byte)
		case NN_paddusw:             // Packed Add Unsigned with Saturation (Word)
		case NN_pand:                // Bitwise Logical And
		case NN_pandn:               // Bitwise Logical And Not
		case NN_pcmpeqb:             // Packed Compare for Equal (Byte)
		case NN_pcmpeqw:             // Packed Compare for Equal (Word)
		case NN_pcmpeqd:             // Packed Compare for Equal (Dword)
		case NN_pcmpgtb:             // Packed Compare for Greater Than (Byte)
		case NN_pcmpgtw:             // Packed Compare for Greater Than (Word)
		case NN_pcmpgtd:             // Packed Compare for Greater Than (Dword)
		case NN_pmaddwd:             // Packed Multiply and Add
		case NN_pmulhw:              // Packed Multiply High
		case NN_pmullw:              // Packed Multiply Low
		case NN_por:                 // Bitwise Logical Or
		case NN_psllw:               // Packed Shift Left Logical (Word)
		case NN_pslld:               // Packed Shift Left Logical (Dword)
		case NN_psllq:               // Packed Shift Left Logical (Qword)
		case NN_psraw:               // Packed Shift Right Arithmetic (Word)
		case NN_psrad:               // Packed Shift Right Arithmetic (Dword)
		case NN_psrlw:               // Packed Shift Right Logical (Word)
		case NN_psrld:               // Packed Shift Right Logical (Dword)