Newer
Older
/*
* SMPDataFlowAnalysis.cpp - <see below>.
*
* Copyright (c) 2000, 2001, 2010 - University of Virginia
*
* This file is part of the Memory Error Detection System (MEDS) infrastructure.
* This file may be used and modified for non-commercial purposes as long as
* all copyright, permission, and nonwarranty notices are preserved.
* Redistribution is prohibited without prior written consent from the University
* of Virginia.
*
* Please contact the authors for restrictions applying to commercial use.
*
* THIS SOURCE IS PROVIDED "AS IS" AND WITHOUT ANY EXPRESS OR IMPLIED
* WARRANTIES, INCLUDING, WITHOUT LIMITATION, THE IMPLIED WARRANTIES OF
* MERCHANTIBILITY AND FITNESS FOR A PARTICULAR PURPOSE.
*
* Author: University of Virginia
* e-mail: jwd@virginia.com
* URL : http://www.cs.virginia.edu/
*
* Additional copyrights 2010, 2011 by Zephyr Software LLC
* e-mail: {clc,jwd}@zephyr-software.com
* URL : http://www.zephyr-software.com/
*
// This module contains common types an helper classes needed for the
#include <string>
#include <ida.hpp>
#include <idp.hpp>
#include <allins.hpp>
#include <auto.hpp>
#include <bytes.hpp>
#include <funcs.hpp>
#include <intel.hpp>
#include <loader.hpp>
#include <lines.hpp>
#include <name.hpp>
#include "SMPDataFlowAnalysis.h"
#include "SMPStaticAnalyzer.h"
#include "SMPInstr.h"
#include "SMPBasicBlock.h"
#include "SMPFunction.h"
// Set these to 1 for debugging output
#define SMP_DEBUG_CONTROLFLOW 0 // tells what processing stage is entered
#define SMP_DEBUG_CHUNKS 1 // tracking down tail chunks for functions
#define SMP_DEBUG_FRAMEFIXUP 0 // Fixing up stack frame info the way we want the offsets
#define SMP_DEBUG_OPERAND_TYPES 1 // leave on; warnings that should never happen
#if IDA_SDK_VERSION > 560
#define MAX_IDA_REG R_mxcsr
#else
#define MAX_IDA_REG 80
#endif
const char *RegNames[MAX_IDA_REG + 1] =
{ "EAX", "ECX", "EDX", "EBX", "ESP", "EBP", "ESI", "EDI",
"R8", "R9", "R10", "R11", "R12", "R13", "R14", "R15",
"AL", "CL", "DL", "BL", "AH", "CH", "DH", "BH",
"SPL", "BPL", "SIL", "DIL", "EIP", "ES", "CS", "SS",
"DS", "FS", "GS", "CF", "ZF", "SF", "OF", "PF",
"AF", "TF", "IF", "DF", "EFLAGS", "FPU_ST0", "FPU_ST1", "FPU_ST2",
"FPU_ST3", "FPU_ST4", "FPU_ST5", "FPU_ST6", "FPU_ST7", "FPU_CTRL", "FPU_STAT", "FPU_TAGS",
"MMX0", "MMX1", "MMX2", "MMX3", "MMX4", "MMX5", "MMX6", "MMX7",
"XMM0", "XMM1", "XMM2", "XMM3", "XMM4", "XMM5", "XMM6", "XMM7",
"XMM8", "XMM9", "XMM10", "XMM11", "XMM12", "XMM13", "XMM14", "XMM15",
"MXCSR"
const unsigned char RegSizes[MAX_IDA_REG + 1] =
{ 4, 4, 4, 4, 4, 4, 4, 4,
4, 4, 4, 4, 4, 4, 4, 4,
1, 1, 1, 1, 1, 1, 1, 1,
4, 4, 4, 4, 4, 4, 4, 4,
4, 4, 4, 4, 4, 4, 4, 4,
4, 4, 4, 4, 4, 8, 8, 8,
8, 8, 8, 8, 8, 4, 4, 4,
16, 16, 16, 16, 16, 16, 16, 16,
16, 16, 16, 16, 16, 16, 16, 16,
16, 16, 16, 16, 16, 16, 16, 16,
4
};
const char *ErrorStrings[1] = { "ERROR_REG" };
const char *WordRegStrings[4] = { "AX", "CX", "DX", "BX" };
const char *SignednessStrings[4] = { "UNKNOWNSIGN", "SIGNED", "UNSIGNED", "UNKNOWNSIGN" };
const char *LeaSignednessStrings[4] = { "NOFLAGUNKNOWNSIGN", "NOFLAGSIGNED", "NOFLAGUNSIGNED", "NOFLAGUNKNOWNSIGN" };
// Distinguishes subword regs from their parent regs
const char *MDGetRegName(op_t RegOp) {
if ((o_reg != RegOp.type) || (R_none == RegOp.reg) || (MAX_IDA_REG < RegOp.reg))
return ErrorStrings[0];
else if ((RegOp.dtyp == dt_word) && (RegOp.reg >= R_ax) && (RegOp.reg <= R_bx)) {
// 16-bit registers
return WordRegStrings[RegOp.reg];
}
else {
return RegNames[RegOp.reg];
}
}
SMPitype DFACategory[NN_last+1];
// Define instruction categories for data type analysis.
int SMPTypeCategory[NN_last+1];
// Define which instructions define and use the CPU flags.
bool SMPDefsFlags[NN_last + 1];
bool SMPUsesFlags[NN_last + 1];
// Hash a global name and SSA number into an int, for use in SMPFunction.GlobalDefAddrBySSA map
int HashGlobalNameAndSSA(op_t DefOp, int SSANum) {
return ((SSANum << 16) | (DefOp.reg));
}
// Get the size in bytes of the data type of an operand.
size_t GetOpDataSize(op_t DataOp) {
size_t DataSize;
if (o_reg == DataOp.type) {
DataSize = RegSizes[DataOp.reg];
if (DataOp.dtyp == dt_word) {
DataSize = 2;
#if 0
// msg("Found 16-bit register using dtyp field.\n");
#endif
}
return DataSize;
}
switch (DataOp.dtyp) {
case dt_byte:
DataSize = 1;
break;
case dt_word:
DataSize = 2;
break;
case dt_dword:
case dt_float:
case dt_code:
case dt_unicode:
case dt_string:
DataSize = 4;
break;
case dt_double:
case dt_qword:
DataSize = 8;
break;
case dt_tbyte:
DataSize = 10;
break;
case dt_packreal:
DataSize = 12;
break;
case dt_byte16:
case dt_ldbl:
DataSize = 16;
break;
case dt_fword:
DataSize = 6;
break;
case dt_3byte:
DataSize = 3;
break;
default:
msg("ERROR: unexpected data type %d in GetOpDataSize() :", DataOp.dtyp);
PrintOperand(DataOp);
msg("\n");
DataSize = 4;
break;
}
return DataSize;
} // end of GetOpDataSize()
// Return one of the bit width masks for the current operand.
// Pass in DataSize in bytes if known, else pass in DataSize = 0.
unsigned short ComputeOperandBitWidthMask(op_t CurrOp, size_t DataSize) {
unsigned short BitWidthMask = 32;
if (0 == DataSize)
DataSize = GetOpDataSize(CurrOp);
if (4 == DataSize)
BitWidthMask = FG_MASK_BITWIDTH_32;
else if (8 == DataSize)
BitWidthMask = FG_MASK_BITWIDTH_64;
else if (1 == DataSize)
BitWidthMask = FG_MASK_BITWIDTH_8;
else if (2 == DataSize)
BitWidthMask = FG_MASK_BITWIDTH_16;
else if (16 == DataSize)
BitWidthMask = FG_MASK_BITWIDTH_128;
else if (3 == DataSize)
BitWidthMask = FG_MASK_BITWIDTH_24;
else if (6 == DataSize)
BitWidthMask = FG_MASK_BITWIDTH_48;
else if (12 == DataSize)
BitWidthMask = FG_MASK_BITWIDTH_96;
else if (32 == DataSize)
BitWidthMask = FG_MASK_BITWIDTH_256;
else {
msg("ERROR: Unknown DataSize: %u bytes Operand: ", DataSize);
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
PrintOperand(CurrOp);
msg("\n");
}
return BitWidthMask;
} // end of ComputeOperandBitWidthMask()
// Compute largest bit width from a SignMiscInfo bit mask.
size_t LargestBitWidthFromMask(unsigned short WidthTypeInfo) {
unsigned short BitWidthMask = WidthTypeInfo & FG_MASK_BITWIDTH_FIELDS;
size_t LargestWidth = 0;
// Go from highest bit width to lowest.
if (BitWidthMask & FG_MASK_BITWIDTH_256)
LargestWidth = 256;
else if (BitWidthMask & FG_MASK_BITWIDTH_128)
LargestWidth = 128;
else if (BitWidthMask & FG_MASK_BITWIDTH_96)
LargestWidth = 96;
else if (BitWidthMask & FG_MASK_BITWIDTH_64)
LargestWidth = 64;
else if (BitWidthMask & FG_MASK_BITWIDTH_48)
LargestWidth = 48;
else if (BitWidthMask & FG_MASK_BITWIDTH_32)
LargestWidth = 32;
else if (BitWidthMask & FG_MASK_BITWIDTH_24)
LargestWidth = 24;
else if (BitWidthMask & FG_MASK_BITWIDTH_16)
LargestWidth = 16;
else if (BitWidthMask & FG_MASK_BITWIDTH_8)
LargestWidth = 8;
return LargestWidth;
} // end of LargestBitWidthFromMask()
// Is CurrOp a general purpose register? (not flags, instruction pointer, non-integer reg, etc.)
bool MDIsGeneralPurposeReg(op_t CurrOp) {
// intel.hpp defines two ranges that are general purpose regs in enum RegNo.
return ((o_reg == CurrOp.type)
&& (((CurrOp.reg >= R_ax) && (CurrOp.reg <= R_di))
|| ((CurrOp.reg >= R_al) && (CurrOp.reg <= R_dil))));
}
clc5q
committed
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
// Are operands equal?
bool IsEqOp(op_t Opnd1, op_t Opnd2) {
if (Opnd1.type != Opnd2.type)
return false;
switch (Opnd1.type) {
case o_void: return true;
case o_reg: return ((Opnd1.reg == Opnd2.reg) && (Opnd1.dtyp == Opnd2.dtyp));
case o_mem: return (Opnd1.addr == Opnd2.addr);
case o_phrase: if (Opnd1.hasSIB && Opnd2.hasSIB) return (Opnd1.sib == Opnd2.sib);
else return false; // no SIB != has SIB
case o_displ: if (Opnd1.hasSIB && Opnd2.hasSIB)
return ((Opnd1.sib == Opnd2.sib) && (Opnd1.addr == Opnd2.addr));
else if ((!Opnd1.hasSIB) && (!Opnd2.hasSIB))
return ((Opnd1.addr == Opnd2.addr) && (Opnd1.reg == Opnd2.reg));
else return false; // no SIB != has SIB
case o_imm: return (Opnd1.value == Opnd2.value);
case o_far: // fall through to o_near case
case o_near: return (Opnd1.addr == Opnd2.addr);
case o_trreg: // fall through
case o_dbreg: // fall through
case o_crreg: // fall through
case o_fpreg: // fall through
case o_mmxreg: // fall through
case o_xmmreg: return (Opnd1.reg == Opnd2.reg); // no subword regs to deal with
default: msg("Unknown operand type in LessOp.\n"); return false;
}; // end switch (Opnd1.type)}
} // end of function IsEqOp()
// We need to make subword registers equal to their containing registers when we
// do comparisons, so that we will realize that register EAX is killed by a prior DEF
// of register AL, for example, and vice versa. To keep sets ordered strictly,
// we also have to make AL and AH be equal to each other as well as equal to EAX.
#define FIRST_x86_SUBWORD_REG R_al
#define LAST_x86_SUBWORD_REG R_bh
bool MDLessReg(const ushort Reg1, const ushort Reg2) {
ushort SReg1 = MDCanonicalizeSubReg(Reg1);
ushort SReg2 = MDCanonicalizeSubReg(Reg2);
return (SReg1 < SReg2);
} // end of MDLessReg()
ushort MDCanonicalizeSubReg(const ushort Reg1) {
bool Subword = ((Reg1 >= FIRST_x86_SUBWORD_REG) && (Reg1 <= LAST_x86_SUBWORD_REG));
ushort SReg1 = Reg1;
if (Subword) {
// See enumeration RegNo in intel.hpp.
if (SReg1 < 20) // AL, CL, DL or BL
SReg1 -= 16;
else // AH, CH, DH or BH
SReg1 -= 20;
}
return SReg1;
} // end of MDCanonicalizeSubReg()
// In SSA computations, we are storing the GlobalNames index into the op_t fields
// n, offb, and offo. This function extracts an unsigned int from these three 8-bit
// fields.
unsigned int ExtractGlobalIndex(op_t GlobalOp) {
unsigned int index = 0;
index |= (((unsigned int) GlobalOp.offo) & 0x000000ff);
index <<= 8;
index |= (((unsigned int) GlobalOp.offb) & 0x000000ff);
index <<= 8;
index |= (((unsigned int) GlobalOp.n) & 0x000000ff);
void SetGlobalIndex(op_t *TempOp, size_t index) {
TempOp->n = (char) (index & 0x000000ff);
TempOp->offb = (char) ((index & 0x0000ff00) >> 8);
TempOp->offo = (char) ((index & 0x00ff0000) >> 16);
return;
}
clc5q
committed
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
// Return true if CurrOp could be an indirect memory reference.
bool MDIsIndirectMemoryOpnd(op_t CurrOp, bool UseFP) {
bool indirect = false;
if ((CurrOp.type != o_mem) && (CurrOp.type != o_phrase) && (CurrOp.type != o_displ))
return false;
if (CurrOp.hasSIB) {
int BaseReg = sib_base(CurrOp);
short IndexReg = sib_index(CurrOp);
if ((R_none != IndexReg) && (R_sp != IndexReg)) {
if ((R_bp == IndexReg) && UseFP)
;
else
indirect = true;
}
if (0 != sib_scale(CurrOp))
indirect = true;
if (R_none != BaseReg) {
if ((BaseReg == R_bp) && (CurrOp.type == o_mem)) {
; // EBP ==> no base register for o_mem type
}
else if ((BaseReg == R_bp) && UseFP)
; // EBP used as frame pointer for direct access
else if (BaseReg == R_sp)
; // ESP used as stack pointer for direct access
else
indirect = true; // conservative; some register used for addressing
// other than a stack or frame pointer
}
} // end if hasSIB
else { // no SIB; can have base register only
ushort BaseReg = CurrOp.reg;
if (CurrOp.type == o_mem) { // no base register for o_mem
if (!((0 == BaseReg) || (R_bp == BaseReg))) {
msg("base reg %d ignored \n", BaseReg);
}
}
else if ((BaseReg == R_bp) && UseFP)
; // EBP used as frame pointer for direct access
else if (BaseReg == R_sp)
; // ESP used as stack pointer for direct access
else {
indirect = true;
}
}
return indirect;
} // end MDIsIndirectMemoryOpnd()
// Extract the base and index registers and scale factor and displacement from the
// memory operand.
void MDExtractAddressFields(op_t MemOp, int &BaseReg, int &IndexReg, ushort &Scale, ea_t &Offset) {
assert((MemOp.type == o_phrase) || (MemOp.type == o_displ) || (MemOp.type == o_mem));
Scale = 0;
BaseReg = R_none;
IndexReg = R_none;
Offset = MemOp.addr;
if (MemOp.hasSIB) {
BaseReg = sib_base(MemOp);
IndexReg = (int) sib_index(MemOp);
if (R_sp == IndexReg) // signifies no index register
IndexReg = R_none;
if (R_none != IndexReg) {
clc5q
committed
}
if (R_none != BaseReg) {
if ((BaseReg == R_bp) && (MemOp.type == o_mem)) {
BaseReg = R_none;
// **!!** BaseReg allowed for o_mem with SIB byte???
clc5q
committed
}
}
}
else { // no SIB byte; can have base reg but no index reg or scale factor
BaseReg = (int) MemOp.reg; // cannot be R_none for no SIB case
if (MemOp.type == o_mem) {
BaseReg = R_none; // no Base register for o_mem operands
}
}
return;
} // end of MDExtractAddressFields()
// Is CurrOp a memory operand?
bool IsMemOperand(op_t CurrOp) {
return ((o_mem == CurrOp.type) || (o_displ == CurrOp.type) || (o_phrase == CurrOp.type));
}
// MACHINE DEPENDENT: Is CurrOp the flags register?
bool MDIsFlagsReg(op_t CurrOp) {
return ((o_reg == CurrOp.type) && CurrOp.is_reg(X86_FLAGS_REG));
}
clc5q
committed
// MACHINE DEPENDENT: Is register a stack pointer or frame pointer?
bool MDIsStackPtrReg(int RegNumber, bool UseFP) {
return ((RegNumber == R_sp) || (UseFP && (RegNumber == R_bp)));
}
// MACHINE DEPENDENT: Is operand a stack memory access?
bool MDIsStackAccessOpnd(op_t CurrOp, bool UseFP) {
int BaseReg;
int IndexReg;
ushort ScaleFactor;
ea_t offset;
if ((o_displ != CurrOp.type) && (o_phrase != CurrOp.type)) {
return false;
}
MDExtractAddressFields(CurrOp, BaseReg, IndexReg, ScaleFactor, offset);
clc5q
committed
return MDIsStackPtrReg(BaseReg, UseFP);
} // end of MDIsStackAccessOpnd()
// MACHINE DEPENDENT: Is operand a caller-saved register?
bool MDIsCallerSavedReg(op_t CurrOp) {
if (o_reg != CurrOp.type)
return false;
ushort CurrReg = MDCanonicalizeSubReg(CurrOp.reg);
return ((R_ax == CurrReg) || (R_cx == CurrReg) || (R_dx == CurrReg));
} // end of MDIsCallerSavedReg()
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
// DEBUG Print DEF and/or USE for an operand.
void PrintDefUse(ulong feature, int OpNum) {
// CF_ macros number the operands from 1 to 6, while OpNum
// is a 0 to 5 index into the insn_t.Operands[] array.
// OpNum == -1 is a signal that this is a DEF or USE or VarKillSet etc.
// operand and not an instruction operand.
if (-1 == OpNum)
return;
switch (OpNum) {
case 0:
if (feature & CF_CHG1)
msg(" DEF");
if (feature & CF_USE1)
msg(" USE");
break;
case 1:
if (feature & CF_CHG2)
msg(" DEF");
if (feature & CF_USE2)
msg(" USE");
break;
case 2:
if (feature & CF_CHG3)
msg(" DEF");
if (feature & CF_USE3)
msg(" USE");
break;
case 3:
if (feature & CF_CHG4)
msg(" DEF");
if (feature & CF_USE4)
msg(" USE");
break;
case 4:
if (feature & CF_CHG5)
msg(" DEF");
if (feature & CF_USE5)
msg(" USE");
break;
case 5:
if (feature & CF_CHG6)
msg(" DEF");
if (feature & CF_USE6)
msg(" USE");
break;
}
return;
} // end PrintDefUse()
// DEBUG print SIB info for an operand.
void PrintSIB(op_t Opnd) {
int BaseReg;
int IndexReg;
ushort ScaleFactor;
ea_t offset;
#define NAME_LEN 5
char BaseName[NAME_LEN] = {'N', 'o', 'n', 'e', '\0'};
char IndexName[NAME_LEN] = {'N', 'o', 'n', 'e', '\0'};
MDExtractAddressFields(Opnd, BaseReg, IndexReg, ScaleFactor, offset);
if (BaseReg != R_none)
qstrncpy(BaseName, RegNames[BaseReg], NAME_LEN - 1);
if (IndexReg != R_none) {
qstrncpy(IndexName, RegNames[IndexReg], NAME_LEN -1);
}
msg(" Base %s Index %s Scale %d", BaseName, IndexName, ScaleFactor);
} // end PrintSIB()
// Annotations: concisely print SIB info for an operand.
void AnnotPrintSIB(op_t Opnd, bool HasOffset, FILE *OutFile) {
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
int BaseReg;
int IndexReg;
ushort ScaleFactor;
ea_t offset;
char OutString[MAXSTR] = {'[', '\0'};
char ScaleString[4];
int count;
op_t BaseOp = InitOp, IndexOp = InitOp;
BaseOp.type = o_reg;
IndexOp.type = o_reg;
BaseOp.dtyp = dt_dword;
IndexOp.dtyp = dt_dword;
MDExtractAddressFields(Opnd, BaseReg, IndexReg, ScaleFactor, offset);
if (ScaleFactor > 0) {
ScaleFactor = 1 << (ScaleFactor - 1);
count = qsnprintf(ScaleString, 4, "%d", ScaleFactor);
}
if (BaseReg != R_none) {
BaseOp.reg = BaseReg;
if (RegSizes[BaseReg] == 1)
BaseOp.dtyp = dt_byte;
(void) qstrncat(OutString, MDGetRegName(BaseOp), MAXSTR-1);
if (IndexReg != R_none) {
IndexOp.reg = IndexReg;
if (RegSizes[IndexReg] == 1)
IndexOp.dtyp = dt_byte;
(void) qstrncat(OutString, "+", MAXSTR-1);
(void) qstrncat(OutString, MDGetRegName(IndexOp), MAXSTR-1);
if (ScaleFactor > 0) {
(void) qstrncat(OutString, "*", MAXSTR-1);
(void) qstrncat(OutString, ScaleString, MAXSTR-1);
}
}
}
else if (IndexReg != R_none) {
IndexOp.reg = IndexReg;
if (RegSizes[IndexReg] == 1)
IndexOp.dtyp = dt_byte;
(void) qstrncat(OutString, MDGetRegName(IndexOp), MAXSTR-1);
if (ScaleFactor > 0) {
(void) qstrncat(OutString, "*", MAXSTR-1);
(void) qstrncat(OutString, ScaleString, MAXSTR-1);
}
}
else {
msg("ERROR: No BaseReg, no IndexReg in SIB\n");
}
if (!HasOffset) // can close the brackets around regs
(void) qstrncat(OutString, "]", MAXSTR-1);
qfprintf(OutFile, " %s", OutString);
} // end AnnotPrintSIB()
// Debug: print one operand from an instruction or DEF or USE list.
void PrintOneOperand(op_t Opnd, ulong features, int OpNum) {
if (Opnd.type != o_void) {
PrintOperand(Opnd);
PrintDefUse(features, OpNum);
}
return;
} // end of PrintOneOperand()
// Debug: print one operand.
void PrintOperand(op_t Opnd) {
if (Opnd.type == o_void)
return;
else if (Opnd.type == o_mem) {
msg(" Operand: memory : addr: %x", Opnd.addr);
PrintSIB(Opnd);
}
}
else if (Opnd.type == o_phrase) {
if (Opnd.hasSIB) { // has SIB info
PrintSIB(Opnd);
}
else { // no SIB info
ushort BaseReg = Opnd.phrase;
msg(" reg %s", RegNames[BaseReg]);
}
if (Opnd.addr != 0) {
}
}
else if (Opnd.type == o_displ) {
ea_t offset = Opnd.addr;
if (Opnd.hasSIB) {
PrintSIB(Opnd);
msg(" displ %d", offset);
}
else {
ushort BaseReg = Opnd.reg;
msg(" reg %s displ %d", RegNames[BaseReg], offset);
}
}
else if (Opnd.type == o_reg) {
msg(" Operand: register %s", RegNames[Opnd.reg]);
}
else if (Opnd.type == o_imm) {
msg(" Operand: immed %d", Opnd.value);
}
else if (Opnd.type == o_far) {
msg(" Operand: FarPtrImmed addr: %x", Opnd.addr);
}
else if (Opnd.type == o_near) {
msg(" Operand: NearPtrImmed addr: %x", Opnd.addr);
else if (Opnd.type == o_trreg) {
msg(" Operand: TaskReg reg: %d", Opnd.reg);
else if (Opnd.type == o_dbreg) {
msg(" Operand: DebugReg reg: %d", Opnd.reg);
else if (Opnd.type == o_crreg) {
msg(" Operand: ControlReg reg: %d", Opnd.reg);
else if (Opnd.type == o_fpreg) {
msg(" Operand: FloatReg reg: %d", Opnd.reg);
else if (Opnd.type == o_mmxreg) {
msg(" Operand: MMXReg reg: %d", Opnd.reg);
else if (Opnd.type == o_xmmreg) {
msg(" Operand: XMMReg reg: %d", Opnd.reg);
}
if (!(Opnd.showed()))
msg(" HIDDEN ");
return;
} // end of PrintOperand()
// Print an operand that has no features flags or operand position number, such
// as the op_t types found in lists and sets throughout the blocks, phi functions, etc.
void PrintListOperand(op_t Opnd, int SSANum) {
if (Opnd.type != o_void) {
PrintOperand(Opnd);
msg(" SSANum: %d ", SSANum);
}
return;
} // end of PrintListOperand()
// Annotations: concisely print one operand.
void AnnotPrintOperand(op_t Opnd, FILE *OutFile) {
op_t BaseOp = InitOp;
op_t IndexOp = InitOp;
BaseOp.type = o_reg;
IndexOp.type = o_reg;
BaseOp.dtyp = dt_dword;
IndexOp.dtyp = dt_dword;
if (Opnd.type == o_mem) {
qfprintf(OutFile, " %x", Opnd.addr);
if (Opnd.hasSIB) {
AnnotPrintSIB(Opnd, false, OutFile);
}
}
else if (Opnd.type == o_phrase) {
if (Opnd.hasSIB) { // has SIB info
AnnotPrintSIB(Opnd, false, OutFile);
}
else { // no SIB info
ushort BaseReg = Opnd.phrase;
BaseOp.reg = BaseReg;
if (RegSizes[BaseReg] == 1)
BaseOp.dtyp = dt_byte;
qfprintf(OutFile, " [%s]", MDGetRegName(BaseOp));
}
if (Opnd.addr != 0) {
msg(" \n WARNING: addr for o_phrase type: %x\n", Opnd.addr);
}
}
else if (Opnd.type == o_displ) {
ea_t offset = Opnd.addr;
int SignedOffset = (int) offset;
if (Opnd.hasSIB) {
AnnotPrintSIB(Opnd, (SignedOffset != 0), OutFile);
if (SignedOffset > 0) // print plus sign
qfprintf(OutFile, "+%d]", SignedOffset);
else if (SignedOffset < 0) // minus sign will print automatically
qfprintf(OutFile, "%d]", SignedOffset);
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
}
else {
ushort BaseReg = Opnd.reg;
BaseOp.reg = BaseReg;
if (RegSizes[BaseReg] == 1)
BaseOp.dtyp = dt_byte;
if (SignedOffset >= 0) // print plus sign
qfprintf(OutFile, " [%s+%d]", MDGetRegName(BaseOp), SignedOffset);
else // minus sign will print automatically
qfprintf(OutFile, " [%s%d]", MDGetRegName(BaseOp), SignedOffset);
}
}
else if (Opnd.type == o_reg) {
qfprintf(OutFile, " %s", MDGetRegName(Opnd));
}
else if (Opnd.type == o_imm) {
qfprintf(OutFile, " %d", Opnd.value);
}
else if ((Opnd.type == o_far) || (Opnd.type == o_near)) {
qfprintf(OutFile, " %x", Opnd.addr);
}
else {
qfprintf(OutFile, " ERROROP");
}
return;
} // end of AnnotPrintOperand()
// MACHINE DEPENDENT: Is operand type a known type that we want to analyze?
bool MDKnownOperandType(op_t TempOp) {
bool GoodOpType = ((TempOp.type >= o_reg) && (TempOp.type <= o_xmmreg));
#if SMP_DEBUG_OPERAND_TYPES
if (!GoodOpType && (o_void != TempOp.type)) {
msg("WARNING: Operand type %d \n", TempOp.type);
}
#endif
return GoodOpType;
// Meet function over any two types in the type lattice.
SMPOperandType SMPTypeMeet(SMPOperandType Type1, SMPOperandType Type2) {
SMPOperandType MeetType = UNKNOWN;
bool ProfDerived = IsProfDerived(Type1) || IsProfDerived(Type2);
if (IsEqType(UNINIT, Type1))
MeetType = Type2;
else if (IsEqType(UNINIT, Type2) || IsEqType(Type1, Type2)
|| IsUnknown(Type1))
MeetType = Type1;
else if (IsNumeric(Type1)) {
if (IsNumeric(Type2)) // one is NUMERIC, one is CODEPTR
MeetType = NUMERIC;
else if (IsDataPtr(Type2) || IsUnknown(Type2))
MeetType = UNKNOWN;
else
msg("ERROR #1 in SMPTypeMeet.\n");
}
else if (IsDataPtr(Type1)) {
if (IsDataPtr(Type2)) // two different POINTER subtypes
MeetType = POINTER;
else if (IsNumeric(Type2) || IsUnknown(Type2))
MeetType = UNKNOWN;
else
msg("ERROR #2 in SMPTypeMeet.\n");
if (ProfDerived && IsNotEqType(UNINIT, MeetType))
MeetType = MakeProfDerived(MeetType);
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
// *****************************************************************
// Class DisAsmString
// *****************************************************************
DisAsmString::DisAsmString(void) {
this->CurrAddr = BADADDR;
this->StringLen = 0;
this->CachedDisAsm[0] = '\0';
return;
}
char *DisAsmString::GetDisAsm(ea_t InstAddr) {
if (InstAddr != this->CurrAddr) {
this->CurrAddr = InstAddr;
bool IDAsuccess = generate_disasm_line(InstAddr, this->CachedDisAsm, sizeof(this->CachedDisAsm) - 1);
if (IDAsuccess) {
// Remove interactive color-coding tags.
this->StringLen = tag_remove(this->CachedDisAsm, this->CachedDisAsm, 0);
if (-1 >= StringLen) {
msg("ERROR: tag_remove failed at addr %x \n", InstAddr);
this->CachedDisAsm[0] = '\0';
}
}
else {
msg("ERROR: generate_disasm_line failed at addr %x \n", InstAddr);
this->CachedDisAsm[0] = '\0';
}
}
return (char *) this->CachedDisAsm;
} // end of DisAsmString::GetDisasm()
// Set the disasm text for the SSA marker instructions, which have no IDA Pro disasm because
// they are pseudo-instructions that we add at the top of each function to hold LiveIn name info.
void DisAsmString::SetMarkerInstText(ea_t InstAddr) {
if (InstAddr != this->CurrAddr) {
this->CurrAddr = InstAddr;
qstrncpy(this->CachedDisAsm, "\tfnop\t; Top of function SSA marker for SMP",
sizeof(this->CachedDisAsm) - 1);
this->StringLen = (ssize_t) strlen(this->CachedDisAsm);
}
return;
} // end of DisAsmString::SetMarkerInstText()
// *****************************************************************
// Class DefOrUse
// *****************************************************************
// Default constructor to make the compilers happy.
DefOrUse::DefOrUse(void) {
this->Operand.type = o_void;
this->OpType = UNINIT;
this->NonSpeculativeOpType = UNINIT;
this->SSANumber = -2;
this->MetadataStatus = DEF_METADATA_UNANALYZED;
this->IndWrite = false;
this->NoTruncation = false;
clc5q
committed
this->NoOverflow = false;
return;
}
// Constructor.
DefOrUse::DefOrUse(op_t Ref, SMPOperandType Type, int SSASub) {
if (o_reg == Ref.type) {
// We want to map AH, AL, and AX to EAX, etc. throughout our data flow analysis
// and type inference systems.
Ref.reg = MDCanonicalizeSubReg(Ref.reg);
}
assert(!IsProfDerived(Type));
this->NonSpeculativeOpType = Type;
this->MetadataStatus = DEF_METADATA_UNANALYZED;
this->IndWrite = false;
this->NoTruncation = false;
clc5q
committed
this->NoOverflow = false;
// Copy constructor.
DefOrUse::DefOrUse(const DefOrUse &CopyIn) {
*this = CopyIn;
return;
}
// Assignment operator for copy constructor use.
DefOrUse &DefOrUse::operator=(const DefOrUse &rhs) {
this->Operand = rhs.Operand;
this->OpType = rhs.OpType;
this->NonSpeculativeOpType = rhs.NonSpeculativeOpType;
this->SSANumber = rhs.SSANumber;
this->MetadataStatus = rhs.MetadataStatus;
this->IndWrite = rhs.IndWrite;
this->NoTruncation = rhs.NoTruncation;
clc5q
committed
this->NoOverflow = rhs.NoOverflow;
return *this;
}
// Set the operand type for this DEF or USE - don't forget to take
// into account the speculative (profiler) status.
void DefOrUse::SetType(SMPOperandType Type, const SMPInstr *Instr)
{
SMPOperandType OldType = this->OpType;
SMPOperandType NewType = Type;
if (Instr->GetBlock()->GetFunc()->GetIsSpeculative()) {
NewType = (SMPOperandType)(((int)NewType) | PROF_BASE);
if (!IsProfDerived(OldType))
this->NonSpeculativeOpType = OldType;
}
}
// Set the indirect memory write flag.
void DefOrUse::SetIndWrite(bool IndMemWrite) {
this->IndWrite = IndMemWrite;
return;
}
void DefOrUse::SetNoTruncation(bool NoTruncFlag) {
this->NoTruncation = NoTruncFlag;
return;
}
clc5q
committed
void DefOrUse::SetNoOverflow(bool NoOverflowFlag) {
this->NoOverflow = NoOverflowFlag;
return;
}
// Debug printing.
void DefOrUse::Dump(void) const {
PrintListOperand(this->Operand, this->SSANumber);
if (IsEqType(this->OpType , NUMERIC))
else if (IsEqType(this->OpType , CODEPTR))
else if (IsEqType(this->OpType , POINTER))
else if (IsEqType(this->OpType , STACKPTR))
else if (IsEqType(this->OpType , GLOBALPTR))
else if (IsEqType(this->OpType , HEAPPTR))
else if (IsEqType(this->OpType , PTROFFSET))
clc5q
committed
else if (IsEqType(this->OpType , NEGATEDPTR))
msg("NegP ");
else if (IsEqType(this->OpType , UNKNOWN))
/* emit the profile bit */
msg("Pr ");
// Don't write anything for UNINIT OpType
// Emit the metadata status.
if (DEF_METADATA_UNUSED == this->MetadataStatus)
msg("Mn ");
else if (DEF_METADATA_USED == this->MetadataStatus)
msg("Mu ");
else if (DEF_METADATA_REDUNDANT == this->MetadataStatus)
msg("Mr ");
// Is the DEF possibly aliased because of an indirect write in
// the DEF-USE chain?
if (this->IndWrite)
msg("Al* ");
return;
} // end of DefOrUse::Dump()
// *****************************************************************
// Class DefOrUseSet
// *****************************************************************
// Default constructor.
DefOrUseSet::DefOrUseSet(void) {
this->Refs.clear();
clc5q
committed
// Destructor.
DefOrUseSet::~DefOrUseSet() {
this->Refs.clear();
return;
clc5q
committed
}
// Find the reference for a given operand type.
set<DefOrUse, LessDefUse>::iterator DefOrUseSet::FindRef(op_t SearchOp) {
set<DefOrUse, LessDefUse>::iterator CurrRef;
DefOrUse DummyRef(SearchOp);
CurrRef = this->Refs.find(DummyRef);
return CurrRef;
}
// Insert a new DEF or USE; must be new, insert must succeed else we assert.
set<DefOrUse, LessDefUse>::iterator DefOrUseSet::InsertRef(DefOrUse Ref) {
pair<set<DefOrUse, LessDefUse>::iterator, bool> InsertResult;
InsertResult = this->Refs.insert(Ref);
assert(InsertResult.second);
return InsertResult.first;
}