Skip to content
Snippets Groups Projects
SMPDataFlowAnalysis.cpp 144 KiB
Newer Older
// *****************************************************************
// Class SMPDUChainArray
// *****************************************************************
SMPDUChainArray::SMPDUChainArray(void) {
	this->SSAName.type = o_void;
	this->DUChains.clear();
	return;
}

SMPDUChainArray::SMPDUChainArray(op_t Name) {
	if (o_reg == Name.type) {
		// We want to map AH, AL, and AX to EAX, etc. throughout our data flow analysis
		//  and type inference systems.
		Name.reg = MDCanonicalizeSubReg(Name.reg);
	}
	this->DUChains.clear();
	return;
}

void SMPDUChainArray::SetName(op_t Name) {
	if (o_reg == Name.type) {
		// We want to map AH, AL, and AX to EAX, etc. throughout our data flow analysis
		//  and type inference systems.
		Name.reg = MDCanonicalizeSubReg(Name.reg);
	}
	this->SSAName = Name;
	return;
}

// DEBUG dump.
void SMPDUChainArray::Dump(void) {
	size_t index;
	for (index = 0; index < this->DUChains.size(); ++index) {
		this->DUChains.at(index).Dump((int) index);
	}
	return;
}

// *****************************************************************
// Class SMPCompleteDUChains
// *****************************************************************

// DEBUG dump.
void SMPCompleteDUChains::Dump(void) {
	size_t index;
	for (index = 0; index < this->ChainsByName.size(); ++index) {
		this->ChainsByName.at(index).Dump();
	}
	return;
} // end of SMPCompleteDUChains::Dump()

clc5q's avatar
clc5q committed
// Initialize the DFACategory[] array to define instruction classes
//   for the purposes of data flow analysis.
void InitDFACategory(void) {
	// Default category is 0, not the start or end of a basic block.
	(void) memset(DFACategory, 0, sizeof(DFACategory));

DFACategory[NN_call] = CALL;                // Call Procedure
DFACategory[NN_callfi] = INDIR_CALL;              // Indirect Call Far Procedure
DFACategory[NN_callni] = INDIR_CALL;              // Indirect Call Near Procedure

DFACategory[NN_hlt] = HALT;                 // Halt

DFACategory[NN_int] = INDIR_CALL;                 // Call to Interrupt Procedure
DFACategory[NN_into] = INDIR_CALL;                // Call to Interrupt Procedure if Overflow Flag = 1
DFACategory[NN_int3] = INDIR_CALL;                // Trap to Debugger
clc5q's avatar
clc5q committed
DFACategory[NN_iretw] = RETURN;               // Interrupt Return
DFACategory[NN_iret] = RETURN;                // Interrupt Return
DFACategory[NN_iretd] = RETURN;               // Interrupt Return (use32)
DFACategory[NN_iretq] = RETURN;               // Interrupt Return (use64)
DFACategory[NN_ja] = COND_BRANCH;                  // Jump if Above (CF=0 & ZF=0)
DFACategory[NN_jae] = COND_BRANCH;                 // Jump if Above or Equal (CF=0)
DFACategory[NN_jb] = COND_BRANCH;                  // Jump if Below (CF=1)
DFACategory[NN_jbe] = COND_BRANCH;                 // Jump if Below or Equal (CF=1 | ZF=1)
DFACategory[NN_jc] = COND_BRANCH;                  // Jump if Carry (CF=1)
DFACategory[NN_jcxz] = COND_BRANCH;                // Jump if CX is 0
DFACategory[NN_jecxz] = COND_BRANCH;               // Jump if ECX is 0
DFACategory[NN_jrcxz] = COND_BRANCH;               // Jump if RCX is 0
DFACategory[NN_je] = COND_BRANCH;                  // Jump if Equal (ZF=1)
DFACategory[NN_jg] = COND_BRANCH;                  // Jump if Greater (ZF=0 & SF=OF)
DFACategory[NN_jge] = COND_BRANCH;                 // Jump if Greater or Equal (SF=OF)
DFACategory[NN_jl] = COND_BRANCH;                  // Jump if Less (SF!=OF)
DFACategory[NN_jle] = COND_BRANCH;                 // Jump if Less or Equal (ZF=1 | SF!=OF)
DFACategory[NN_jna] = COND_BRANCH;                 // Jump if Not Above (CF=1 | ZF=1)
DFACategory[NN_jnae] = COND_BRANCH;                // Jump if Not Above or Equal (CF=1)
DFACategory[NN_jnb] = COND_BRANCH;                 // Jump if Not Below (CF=0)
DFACategory[NN_jnbe] = COND_BRANCH;                // Jump if Not Below or Equal (CF=0 & ZF=0)
DFACategory[NN_jnc] = COND_BRANCH;                 // Jump if Not Carry (CF=0)
DFACategory[NN_jne] = COND_BRANCH;                 // Jump if Not Equal (ZF=0)
DFACategory[NN_jng] = COND_BRANCH;                 // Jump if Not Greater (ZF=1 | SF!=OF)
DFACategory[NN_jnge] = COND_BRANCH;                // Jump if Not Greater or Equal (ZF=1)
DFACategory[NN_jnl] = COND_BRANCH;                 // Jump if Not Less (SF=OF)
DFACategory[NN_jnle] = COND_BRANCH;                // Jump if Not Less or Equal (ZF=0 & SF=OF)
DFACategory[NN_jno] = COND_BRANCH;                 // Jump if Not Overflow (OF=0)
DFACategory[NN_jnp] = COND_BRANCH;                 // Jump if Not Parity (PF=0)
DFACategory[NN_jns] = COND_BRANCH;                 // Jump if Not Sign (SF=0)
DFACategory[NN_jnz] = COND_BRANCH;                 // Jump if Not Zero (ZF=0)
DFACategory[NN_jo] = COND_BRANCH;                  // Jump if Overflow (OF=1)
DFACategory[NN_jp] = COND_BRANCH;                  // Jump if Parity (PF=1)
DFACategory[NN_jpe] = COND_BRANCH;                 // Jump if Parity Even (PF=1)
DFACategory[NN_jpo] = COND_BRANCH;                 // Jump if Parity Odd  (PF=0)
DFACategory[NN_js] = COND_BRANCH;                  // Jump if Sign (SF=1)
DFACategory[NN_jz] = COND_BRANCH;                  // Jump if Zero (ZF=1)
DFACategory[NN_jmp] = JUMP;                 // Jump
DFACategory[NN_jmpfi] = INDIR_JUMP;               // Indirect Far Jump
DFACategory[NN_jmpni] = INDIR_JUMP;               // Indirect Near Jump
DFACategory[NN_jmpshort] = JUMP;            // Jump Short (only in 64-bit mode)

DFACategory[NN_loopw] = COND_BRANCH;               // Loop while ECX != 0
DFACategory[NN_loop] = COND_BRANCH;                // Loop while CX != 0
DFACategory[NN_loopd] = COND_BRANCH;               // Loop while ECX != 0
DFACategory[NN_loopq] = COND_BRANCH;               // Loop while RCX != 0
DFACategory[NN_loopwe] = COND_BRANCH;              // Loop while CX != 0 and ZF=1
DFACategory[NN_loope] = COND_BRANCH;               // Loop while rCX != 0 and ZF=1
DFACategory[NN_loopde] = COND_BRANCH;              // Loop while ECX != 0 and ZF=1
DFACategory[NN_loopqe] = COND_BRANCH;              // Loop while RCX != 0 and ZF=1
DFACategory[NN_loopwne] = COND_BRANCH;             // Loop while CX != 0 and ZF=0
DFACategory[NN_loopne] = COND_BRANCH;              // Loop while rCX != 0 and ZF=0
DFACategory[NN_loopdne] = COND_BRANCH;             // Loop while ECX != 0 and ZF=0
DFACategory[NN_loopqne] = COND_BRANCH;             // Loop while RCX != 0 and ZF=0

DFACategory[NN_retn] = RETURN;                // Return Near from Procedure
DFACategory[NN_retf] = RETURN;                // Return Far from Procedure

//
//      Pentium instructions
//

DFACategory[NN_rsm] = HALT;                 // Resume from System Management Mode

//      Pentium II instructions

DFACategory[NN_sysenter] = CALL;            // Fast Transition to System Call Entry Point
DFACategory[NN_sysexit] = CALL;             // Fast Transition from System Call Entry Point

// AMD syscall/sysret instructions  NOTE: not AMD, found in Intel manual

DFACategory[NN_syscall] = CALL;             // Low latency system call
DFACategory[NN_sysret] = CALL;              // Return from system call

// VMX instructions

DFACategory[NN_vmcall] = INDIR_CALL;              // Call to VM Monitor

  return;

} // end InitDFACategory()
1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781

// Initialize the SMPDefsFlags[] array to define how we emit
//   optimizing annotations.
void InitSMPDefsFlags(void) {
	// Default value is true. Many instructions set the flags.
	(void) memset(SMPDefsFlags, true, sizeof(SMPDefsFlags));

SMPDefsFlags[NN_null] = false;            // Unknown Operation
SMPDefsFlags[NN_bound] = false;               // Check Array Index Against Bounds
SMPDefsFlags[NN_call] = false;                // Call Procedure
SMPDefsFlags[NN_callfi] = false;              // Indirect Call Far Procedure
SMPDefsFlags[NN_callni] = false;              // Indirect Call Near Procedure
SMPDefsFlags[NN_cbw] = false;                 // AL -> AX (with sign)           
SMPDefsFlags[NN_cwde] = false;                // AX -> EAX (with sign)            
SMPDefsFlags[NN_cdqe] = false;                // EAX -> RAX (with sign)           
SMPDefsFlags[NN_clts] = false;                // Clear Task-Switched Flag in CR0
SMPDefsFlags[NN_cwd] = false;                 // AX -> DX:AX (with sign)
SMPDefsFlags[NN_cdq] = false;                 // EAX -> EDX:EAX (with sign)
SMPDefsFlags[NN_cqo] = false;                 // RAX -> RDX:RAX (with sign)
SMPDefsFlags[NN_enterw] = false;              // Make Stack Frame for Procedure Parameters   
SMPDefsFlags[NN_enter] = false;               // Make Stack Frame for Procedure Parameters   
SMPDefsFlags[NN_enterd] = false;              // Make Stack Frame for Procedure Parameters   
SMPDefsFlags[NN_enterq] = false;              // Make Stack Frame for Procedure Parameters   
SMPDefsFlags[NN_hlt] = false;                 // Halt
SMPDefsFlags[NN_in] = false;                  // Input from Port                          
SMPDefsFlags[NN_ins] = false;                 // Input Byte(s) from Port to String        
SMPDefsFlags[NN_iretw] = false;               // Interrupt Return
SMPDefsFlags[NN_iret] = false;                // Interrupt Return
SMPDefsFlags[NN_iretd] = false;               // Interrupt Return (use32)
SMPDefsFlags[NN_iretq] = false;               // Interrupt Return (use64)
SMPDefsFlags[NN_ja] = false;                  // Jump if Above (CF=0 & ZF=0)
SMPDefsFlags[NN_jae] = false;                 // Jump if Above or Equal (CF=0)
SMPDefsFlags[NN_jb] = false;                  // Jump if Below (CF=1)
SMPDefsFlags[NN_jbe] = false;                 // Jump if Below or Equal (CF=1 | ZF=1)
SMPDefsFlags[NN_jc] = false;                  // Jump if Carry (CF=1)
SMPDefsFlags[NN_jcxz] = false;                // Jump if CX is 0
SMPDefsFlags[NN_jecxz] = false;               // Jump if ECX is 0
SMPDefsFlags[NN_jrcxz] = false;               // Jump if RCX is 0
SMPDefsFlags[NN_je] = false;                  // Jump if Equal (ZF=1)
SMPDefsFlags[NN_jg] = false;                  // Jump if Greater (ZF=0 & SF=OF)
SMPDefsFlags[NN_jge] = false;                 // Jump if Greater or Equal (SF=OF)
SMPDefsFlags[NN_jl] = false;                  // Jump if Less (SF!=OF)
SMPDefsFlags[NN_jle] = false;                 // Jump if Less or Equal (ZF=1 | SF!=OF)
SMPDefsFlags[NN_jna] = false;                 // Jump if Not Above (CF=1 | ZF=1)
SMPDefsFlags[NN_jnae] = false;                // Jump if Not Above or Equal (CF=1)
SMPDefsFlags[NN_jnb] = false;                 // Jump if Not Below (CF=0)
SMPDefsFlags[NN_jnbe] = false;                // Jump if Not Below or Equal (CF=0 & ZF=0)
SMPDefsFlags[NN_jnc] = false;                 // Jump if Not Carry (CF=0)
SMPDefsFlags[NN_jne] = false;                 // Jump if Not Equal (ZF=0)
SMPDefsFlags[NN_jng] = false;                 // Jump if Not Greater (ZF=1 | SF!=OF)
SMPDefsFlags[NN_jnge] = false;                // Jump if Not Greater or Equal (ZF=1)
SMPDefsFlags[NN_jnl] = false;                 // Jump if Not Less (SF=OF)
SMPDefsFlags[NN_jnle] = false;                // Jump if Not Less or Equal (ZF=0 & SF=OF)
SMPDefsFlags[NN_jno] = false;                 // Jump if Not Overflow (OF=0)
SMPDefsFlags[NN_jnp] = false;                 // Jump if Not Parity (PF=0)
SMPDefsFlags[NN_jns] = false;                 // Jump if Not Sign (SF=0)
SMPDefsFlags[NN_jnz] = false;                 // Jump if Not Zero (ZF=0)
SMPDefsFlags[NN_jo] = false;                  // Jump if Overflow (OF=1)
SMPDefsFlags[NN_jp] = false;                  // Jump if Parity (PF=1)
SMPDefsFlags[NN_jpe] = false;                 // Jump if Parity Even (PF=1)
SMPDefsFlags[NN_jpo] = false;                 // Jump if Parity Odd  (PF=0)
SMPDefsFlags[NN_js] = false;                  // Jump if Sign (SF=1)
SMPDefsFlags[NN_jz] = false;                  // Jump if Zero (ZF=1)
SMPDefsFlags[NN_jmp] = false;                 // Jump
SMPDefsFlags[NN_jmpfi] = false;               // Indirect Far Jump
SMPDefsFlags[NN_jmpni] = false;               // Indirect Near Jump
SMPDefsFlags[NN_jmpshort] = false;            // Jump Short (not used)
SMPDefsFlags[NN_lahf] = false;                // Load Flags into AH Register
SMPDefsFlags[NN_lea] = false;                 // Load Effective Address            
SMPDefsFlags[NN_leavew] = false;              // High Level Procedure Exit         
SMPDefsFlags[NN_leave] = false;               // High Level Procedure Exit         
SMPDefsFlags[NN_leaved] = false;              // High Level Procedure Exit         
SMPDefsFlags[NN_leaveq] = false;              // High Level Procedure Exit         
SMPDefsFlags[NN_lgdt] = false;                // Load Global Descriptor Table Register
SMPDefsFlags[NN_lidt] = false;                // Load Interrupt Descriptor Table Register
SMPDefsFlags[NN_lgs] = false;                 // Load Full Pointer to GS:xx
SMPDefsFlags[NN_lss] = false;                 // Load Full Pointer to SS:xx
SMPDefsFlags[NN_lds] = false;                 // Load Full Pointer to DS:xx
SMPDefsFlags[NN_les] = false;                 // Load Full Pointer to ES:xx
SMPDefsFlags[NN_lfs] = false;                 // Load Full Pointer to FS:xx
SMPDefsFlags[NN_loopwe] = false;              // Loop while CX != 0 and ZF=1
SMPDefsFlags[NN_loope] = false;               // Loop while rCX != 0 and ZF=1
SMPDefsFlags[NN_loopde] = false;              // Loop while ECX != 0 and ZF=1
SMPDefsFlags[NN_loopqe] = false;              // Loop while RCX != 0 and ZF=1
SMPDefsFlags[NN_loopwne] = false;             // Loop while CX != 0 and ZF=0
SMPDefsFlags[NN_loopne] = false;              // Loop while rCX != 0 and ZF=0
SMPDefsFlags[NN_loopdne] = false;             // Loop while ECX != 0 and ZF=0
SMPDefsFlags[NN_loopqne] = false;             // Loop while RCX != 0 and ZF=0
SMPDefsFlags[NN_ltr] = false;                 // Load Task Register
SMPDefsFlags[NN_mov] = false;                 // Move Data
SMPDefsFlags[NN_movsp] = false;               // Move to/from Special Registers
SMPDefsFlags[NN_movs] = false;                // Move Byte(s) from String to String
SMPDefsFlags[NN_movsx] = false;               // Move with Sign-Extend
SMPDefsFlags[NN_movzx] = false;               // Move with Zero-Extend
SMPDefsFlags[NN_nop] = false;                 // No Operation
SMPDefsFlags[NN_out] = false;                 // Output to Port
SMPDefsFlags[NN_outs] = false;                // Output Byte(s) to Port
SMPDefsFlags[NN_pop] = false;                 // Pop a word from the Stack
SMPDefsFlags[NN_popaw] = false;               // Pop all General Registers
SMPDefsFlags[NN_popa] = false;                // Pop all General Registers
SMPDefsFlags[NN_popad] = false;               // Pop all General Registers (use32)
SMPDefsFlags[NN_popaq] = false;               // Pop all General Registers (use64)
SMPDefsFlags[NN_push] = false;                // Push Operand onto the Stack
SMPDefsFlags[NN_pushaw] = false;              // Push all General Registers
SMPDefsFlags[NN_pusha] = false;               // Push all General Registers
SMPDefsFlags[NN_pushad] = false;              // Push all General Registers (use32)
SMPDefsFlags[NN_pushaq] = false;              // Push all General Registers (use64)
SMPDefsFlags[NN_pushfw] = false;              // Push Flags Register onto the Stack
SMPDefsFlags[NN_pushf] = false;               // Push Flags Register onto the Stack
SMPDefsFlags[NN_pushfd] = false;              // Push Flags Register onto the Stack (use32)
SMPDefsFlags[NN_pushfq] = false;              // Push Flags Register onto the Stack (use64)
SMPDefsFlags[NN_rep] = false;                 // Repeat String Operation
SMPDefsFlags[NN_repe] = false;                // Repeat String Operation while ZF=1
SMPDefsFlags[NN_repne] = false;               // Repeat String Operation while ZF=0
SMPDefsFlags[NN_retn] = false;                // Return Near from Procedure
SMPDefsFlags[NN_retf] = false;                // Return Far from Procedure
SMPDefsFlags[NN_shl] = false;                 // Shift Logical Left
SMPDefsFlags[NN_shr] = false;                 // Shift Logical Right
SMPDefsFlags[NN_seta] = false;                // Set Byte if Above (CF=0 & ZF=0)
SMPDefsFlags[NN_setae] = false;               // Set Byte if Above or Equal (CF=0)
SMPDefsFlags[NN_setb] = false;                // Set Byte if Below (CF=1)
SMPDefsFlags[NN_setbe] = false;               // Set Byte if Below or Equal (CF=1 | ZF=1)
SMPDefsFlags[NN_setc] = false;                // Set Byte if Carry (CF=1)
SMPDefsFlags[NN_sete] = false;                // Set Byte if Equal (ZF=1)
SMPDefsFlags[NN_setg] = false;                // Set Byte if Greater (ZF=0 & SF=OF)
SMPDefsFlags[NN_setge] = false;               // Set Byte if Greater or Equal (SF=OF)
SMPDefsFlags[NN_setl] = false;                // Set Byte if Less (SF!=OF)
SMPDefsFlags[NN_setle] = false;               // Set Byte if Less or Equal (ZF=1 | SF!=OF)
SMPDefsFlags[NN_setna] = false;               // Set Byte if Not Above (CF=1 | ZF=1)
SMPDefsFlags[NN_setnae] = false;              // Set Byte if Not Above or Equal (CF=1)
SMPDefsFlags[NN_setnb] = false;               // Set Byte if Not Below (CF=0)
SMPDefsFlags[NN_setnbe] = false;              // Set Byte if Not Below or Equal (CF=0 & ZF=0)
SMPDefsFlags[NN_setnc] = false;               // Set Byte if Not Carry (CF=0)
SMPDefsFlags[NN_setne] = false;               // Set Byte if Not Equal (ZF=0)
SMPDefsFlags[NN_setng] = false;               // Set Byte if Not Greater (ZF=1 | SF!=OF)
SMPDefsFlags[NN_setnge] = false;              // Set Byte if Not Greater or Equal (ZF=1)
SMPDefsFlags[NN_setnl] = false;               // Set Byte if Not Less (SF=OF)
SMPDefsFlags[NN_setnle] = false;              // Set Byte if Not Less or Equal (ZF=0 & SF=OF)
SMPDefsFlags[NN_setno] = false;               // Set Byte if Not Overflow (OF=0)
SMPDefsFlags[NN_setnp] = false;               // Set Byte if Not Parity (PF=0)
SMPDefsFlags[NN_setns] = false;               // Set Byte if Not Sign (SF=0)
SMPDefsFlags[NN_setnz] = false;               // Set Byte if Not Zero (ZF=0)
SMPDefsFlags[NN_seto] = false;                // Set Byte if Overflow (OF=1)
SMPDefsFlags[NN_setp] = false;                // Set Byte if Parity (PF=1)
SMPDefsFlags[NN_setpe] = false;               // Set Byte if Parity Even (PF=1)
SMPDefsFlags[NN_setpo] = false;               // Set Byte if Parity Odd  (PF=0)
SMPDefsFlags[NN_sets] = false;                // Set Byte if Sign (SF=1)
SMPDefsFlags[NN_setz] = false;                // Set Byte if Zero (ZF=1)
SMPDefsFlags[NN_sgdt] = false;                // Store Global Descriptor Table Register
SMPDefsFlags[NN_sidt] = false;                // Store Interrupt Descriptor Table Register
SMPDefsFlags[NN_sldt] = false;                // Store Local Descriptor Table Register
SMPDefsFlags[NN_str] = false;                 // Store Task Register
SMPDefsFlags[NN_wait] = false;                // Wait until BUSY# Pin is Inactive (HIGH)
SMPDefsFlags[NN_xchg] = false;                // Exchange Register/Memory with Register

//
//      486 instructions
//

SMPDefsFlags[NN_bswap] = false;               // Swap bytes in register
SMPDefsFlags[NN_invd] = false;                // Invalidate Data Cache
SMPDefsFlags[NN_wbinvd] = false;              // Invalidate Data Cache (write changes)
SMPDefsFlags[NN_invlpg] = false;              // Invalidate TLB entry

//
//      Pentium instructions
//

SMPDefsFlags[NN_rdmsr] = false;               // Read Machine Status Register
SMPDefsFlags[NN_wrmsr] = false;               // Write Machine Status Register
SMPDefsFlags[NN_cpuid] = false;               // Get CPU ID
SMPDefsFlags[NN_rdtsc] = false;               // Read Time Stamp Counter

//
//      Pentium Pro instructions
//

SMPDefsFlags[NN_cmova] = false;               // Move if Above (CF=0 & ZF=0)
SMPDefsFlags[NN_cmovb] = false;               // Move if Below (CF=1)
SMPDefsFlags[NN_cmovbe] = false;              // Move if Below or Equal (CF=1 | ZF=1)
SMPDefsFlags[NN_cmovg] = false;               // Move if Greater (ZF=0 & SF=OF)
SMPDefsFlags[NN_cmovge] = false;              // Move if Greater or Equal (SF=OF)
SMPDefsFlags[NN_cmovl] = false;               // Move if Less (SF!=OF)
SMPDefsFlags[NN_cmovle] = false;              // Move if Less or Equal (ZF=1 | SF!=OF)
SMPDefsFlags[NN_cmovnb] = false;              // Move if Not Below (CF=0)
SMPDefsFlags[NN_cmovno] = false;              // Move if Not Overflow (OF=0)
SMPDefsFlags[NN_cmovnp] = false;              // Move if Not Parity (PF=0)
SMPDefsFlags[NN_cmovns] = false;              // Move if Not Sign (SF=0)
SMPDefsFlags[NN_cmovnz] = false;              // Move if Not Zero (ZF=0)
SMPDefsFlags[NN_cmovo] = false;               // Move if Overflow (OF=1)
SMPDefsFlags[NN_cmovp] = false;               // Move if Parity (PF=1)
SMPDefsFlags[NN_cmovs] = false;               // Move if Sign (SF=1)
SMPDefsFlags[NN_cmovz] = false;               // Move if Zero (ZF=1)
SMPDefsFlags[NN_fcmovb] = false;              // Floating Move if Below          
SMPDefsFlags[NN_fcmove] = false;              // Floating Move if Equal          
SMPDefsFlags[NN_fcmovbe] = false;             // Floating Move if Below or Equal 
SMPDefsFlags[NN_fcmovu] = false;              // Floating Move if Unordered      
SMPDefsFlags[NN_fcmovnb] = false;             // Floating Move if Not Below      
SMPDefsFlags[NN_fcmovne] = false;             // Floating Move if Not Equal      
SMPDefsFlags[NN_fcmovnbe] = false;            // Floating Move if Not Below or Equal
SMPDefsFlags[NN_fcmovnu] = false;             // Floating Move if Not Unordered     
SMPDefsFlags[NN_rdpmc] = false;               // Read Performance Monitor Counter

//
//      FPP instructuions
//

SMPDefsFlags[NN_fld] = false;                 // Load Real              
SMPDefsFlags[NN_fst] = false;                 // Store Real            
SMPDefsFlags[NN_fstp] = false;                // Store Real and Pop   
SMPDefsFlags[NN_fxch] = false;                // Exchange Registers
SMPDefsFlags[NN_fild] = false;                // Load Integer           
SMPDefsFlags[NN_fist] = false;                // Store Integer
SMPDefsFlags[NN_fistp] = false;               // Store Integer and Pop
SMPDefsFlags[NN_fbld] = false;                // Load BCD
SMPDefsFlags[NN_fbstp] = false;               // Store BCD and Pop
SMPDefsFlags[NN_fadd] = false;                // Add Real
SMPDefsFlags[NN_faddp] = false;               // Add Real and Pop
SMPDefsFlags[NN_fiadd] = false;               // Add Integer
SMPDefsFlags[NN_fsub] = false;                // Subtract Real
SMPDefsFlags[NN_fsubp] = false;               // Subtract Real and Pop
SMPDefsFlags[NN_fisub] = false;               // Subtract Integer
SMPDefsFlags[NN_fsubr] = false;               // Subtract Real Reversed
SMPDefsFlags[NN_fsubrp] = false;              // Subtract Real Reversed and Pop
SMPDefsFlags[NN_fisubr] = false;              // Subtract Integer Reversed
SMPDefsFlags[NN_fmul] = false;                // Multiply Real
SMPDefsFlags[NN_fmulp] = false;               // Multiply Real and Pop
SMPDefsFlags[NN_fimul] = false;               // Multiply Integer
SMPDefsFlags[NN_fdiv] = false;                // Divide Real
SMPDefsFlags[NN_fdivp] = false;               // Divide Real and Pop
SMPDefsFlags[NN_fidiv] = false;               // Divide Integer
SMPDefsFlags[NN_fdivr] = false;               // Divide Real Reversed
SMPDefsFlags[NN_fdivrp] = false;              // Divide Real Reversed and Pop
SMPDefsFlags[NN_fidivr] = false;              // Divide Integer Reversed
SMPDefsFlags[NN_fsqrt] = false;               // Square Root
SMPDefsFlags[NN_fscale] = false;              // Scale:  st(0) <- st(0) * 2^st(1)
SMPDefsFlags[NN_fprem] = false;               // Partial Remainder
SMPDefsFlags[NN_frndint] = false;             // Round to Integer
SMPDefsFlags[NN_fxtract] = false;             // Extract exponent and significand
SMPDefsFlags[NN_fabs] = false;                // Absolute value
SMPDefsFlags[NN_fchs] = false;                // Change Sign
SMPDefsFlags[NN_ficom] = false;               // Compare Integer
SMPDefsFlags[NN_ficomp] = false;              // Compare Integer and Pop
SMPDefsFlags[NN_ftst] = false;                // Test
SMPDefsFlags[NN_fxam] = false;                // Examine
SMPDefsFlags[NN_fptan] = false;               // Partial tangent
SMPDefsFlags[NN_fpatan] = false;              // Partial arctangent
SMPDefsFlags[NN_f2xm1] = false;               // 2^x - 1
SMPDefsFlags[NN_fyl2x] = false;               // Y * lg2(X)
SMPDefsFlags[NN_fyl2xp1] = false;             // Y * lg2(X+1)
SMPDefsFlags[NN_fldz] = false;                // Load +0.0
SMPDefsFlags[NN_fld1] = false;                // Load +1.0
SMPDefsFlags[NN_fldpi] = false;               // Load PI=3.14...
SMPDefsFlags[NN_fldl2t] = false;              // Load lg2(10)
SMPDefsFlags[NN_fldl2e] = false;              // Load lg2(e)
SMPDefsFlags[NN_fldlg2] = false;              // Load lg10(2)
SMPDefsFlags[NN_fldln2] = false;              // Load ln(2)
SMPDefsFlags[NN_finit] = false;               // Initialize Processor
SMPDefsFlags[NN_fninit] = false;              // Initialize Processor (no wait)
SMPDefsFlags[NN_fsetpm] = false;              // Set Protected Mode
SMPDefsFlags[NN_fldcw] = false;               // Load Control Word
SMPDefsFlags[NN_fstcw] = false;               // Store Control Word
SMPDefsFlags[NN_fnstcw] = false;              // Store Control Word (no wait)
SMPDefsFlags[NN_fstsw] = false;               // Store Status Word to memory or AX
SMPDefsFlags[NN_fnstsw] = false;              // Store Status Word (no wait) to memory or AX
SMPDefsFlags[NN_fclex] = false;               // Clear Exceptions
SMPDefsFlags[NN_fnclex] = false;              // Clear Exceptions (no wait)
SMPDefsFlags[NN_fstenv] = false;              // Store Environment
SMPDefsFlags[NN_fnstenv] = false;             // Store Environment (no wait)
SMPDefsFlags[NN_fldenv] = false;              // Load Environment
SMPDefsFlags[NN_fsave] = false;               // Save State
SMPDefsFlags[NN_fnsave] = false;              // Save State (no wait)
SMPDefsFlags[NN_frstor] = false;              // Restore State      
SMPDefsFlags[NN_fincstp] = false;             // Increment Stack Pointer
SMPDefsFlags[NN_fdecstp] = false;             // Decrement Stack Pointer
SMPDefsFlags[NN_ffree] = false;               // Free Register
SMPDefsFlags[NN_fnop] = false;                // No Operation
SMPDefsFlags[NN_feni] = false;                // (8087 only)
SMPDefsFlags[NN_fneni] = false;               // (no wait) (8087 only)
SMPDefsFlags[NN_fdisi] = false;               // (8087 only)
SMPDefsFlags[NN_fndisi] = false;              // (no wait) (8087 only)

//
//      80387 instructions
//

SMPDefsFlags[NN_fprem1] = false;              // Partial Remainder ( < half )
SMPDefsFlags[NN_fsincos] = false;             // t<-cos(st); st<-sin(st); push t
SMPDefsFlags[NN_fsin] = false;                // Sine
SMPDefsFlags[NN_fcos] = false;                // Cosine
SMPDefsFlags[NN_fucom] = false;               // Compare Unordered Real
SMPDefsFlags[NN_fucomp] = false;              // Compare Unordered Real and Pop
SMPDefsFlags[NN_fucompp] = false;             // Compare Unordered Real and Pop Twice

//
//      Instructions added 28.02.96
//

SMPDefsFlags[NN_svdc] = false;                // Save Register and Descriptor
SMPDefsFlags[NN_rsdc] = false;                // Restore Register and Descriptor
SMPDefsFlags[NN_svldt] = false;               // Save LDTR and Descriptor
SMPDefsFlags[NN_rsldt] = false;               // Restore LDTR and Descriptor
SMPDefsFlags[NN_svts] = false;                // Save TR and Descriptor
SMPDefsFlags[NN_rsts] = false;                // Restore TR and Descriptor
SMPDefsFlags[NN_icebp] = false;               // ICE Break Point

//
//      MMX instructions
//

SMPDefsFlags[NN_emms] = false;                // Empty MMX state
SMPDefsFlags[NN_movd] = false;                // Move 32 bits
SMPDefsFlags[NN_movq] = false;                // Move 64 bits
SMPDefsFlags[NN_packsswb] = false;            // Pack with Signed Saturation (Word->Byte)
SMPDefsFlags[NN_packssdw] = false;            // Pack with Signed Saturation (Dword->Word)
SMPDefsFlags[NN_packuswb] = false;            // Pack with Unsigned Saturation (Word->Byte)
SMPDefsFlags[NN_paddb] = false;               // Packed Add Byte
SMPDefsFlags[NN_paddw] = false;               // Packed Add Word
SMPDefsFlags[NN_paddd] = false;               // Packed Add Dword
SMPDefsFlags[NN_paddsb] = false;              // Packed Add with Saturation (Byte)
SMPDefsFlags[NN_paddsw] = false;              // Packed Add with Saturation (Word)
SMPDefsFlags[NN_paddusb] = false;             // Packed Add Unsigned with Saturation (Byte)
SMPDefsFlags[NN_paddusw] = false;             // Packed Add Unsigned with Saturation (Word)
SMPDefsFlags[NN_pand] = false;                // Bitwise Logical And
SMPDefsFlags[NN_pandn] = false;               // Bitwise Logical And Not
SMPDefsFlags[NN_pcmpeqb] = false;             // Packed Compare for Equal (Byte)
SMPDefsFlags[NN_pcmpeqw] = false;             // Packed Compare for Equal (Word)
SMPDefsFlags[NN_pcmpeqd] = false;             // Packed Compare for Equal (Dword)
SMPDefsFlags[NN_pcmpgtb] = false;             // Packed Compare for Greater Than (Byte)
SMPDefsFlags[NN_pcmpgtw] = false;             // Packed Compare for Greater Than (Word)
SMPDefsFlags[NN_pcmpgtd] = false;             // Packed Compare for Greater Than (Dword)
SMPDefsFlags[NN_pmaddwd] = false;             // Packed Multiply and Add
SMPDefsFlags[NN_pmulhw] = false;              // Packed Multiply High
SMPDefsFlags[NN_pmullw] = false;              // Packed Multiply Low
SMPDefsFlags[NN_por] = false;                 // Bitwise Logical Or
SMPDefsFlags[NN_psllw] = false;               // Packed Shift Left Logical (Word)
SMPDefsFlags[NN_pslld] = false;               // Packed Shift Left Logical (Dword)
SMPDefsFlags[NN_psllq] = false;               // Packed Shift Left Logical (Qword)
SMPDefsFlags[NN_psraw] = false;               // Packed Shift Right Arithmetic (Word)
SMPDefsFlags[NN_psrad] = false;               // Packed Shift Right Arithmetic (Dword)
SMPDefsFlags[NN_psrlw] = false;               // Packed Shift Right Logical (Word)
SMPDefsFlags[NN_psrld] = false;               // Packed Shift Right Logical (Dword)
SMPDefsFlags[NN_psrlq] = false;               // Packed Shift Right Logical (Qword)
SMPDefsFlags[NN_psubb] = false;               // Packed Subtract Byte
SMPDefsFlags[NN_psubw] = false;               // Packed Subtract Word
SMPDefsFlags[NN_psubd] = false;               // Packed Subtract Dword
SMPDefsFlags[NN_psubsb] = false;              // Packed Subtract with Saturation (Byte)
SMPDefsFlags[NN_psubsw] = false;              // Packed Subtract with Saturation (Word)
SMPDefsFlags[NN_psubusb] = false;             // Packed Subtract Unsigned with Saturation (Byte)
SMPDefsFlags[NN_psubusw] = false;             // Packed Subtract Unsigned with Saturation (Word)
SMPDefsFlags[NN_punpckhbw] = false;           // Unpack High Packed Data (Byte->Word)
SMPDefsFlags[NN_punpckhwd] = false;           // Unpack High Packed Data (Word->Dword)
SMPDefsFlags[NN_punpckhdq] = false;           // Unpack High Packed Data (Dword->Qword)
SMPDefsFlags[NN_punpcklbw] = false;           // Unpack Low Packed Data (Byte->Word)
SMPDefsFlags[NN_punpcklwd] = false;           // Unpack Low Packed Data (Word->Dword)
SMPDefsFlags[NN_punpckldq] = false;           // Unpack Low Packed Data (Dword->Qword)
SMPDefsFlags[NN_pxor] = false;                // Bitwise Logical Exclusive Or

//
//      Undocumented Deschutes processor instructions
//

SMPDefsFlags[NN_fxsave] = false;              // Fast save FP context        
SMPDefsFlags[NN_fxrstor] = false;             // Fast restore FP context     

//      Pentium II instructions

SMPDefsFlags[NN_sysexit] = false;             // Fast Transition from System Call Entry Point

//      3DNow! instructions

SMPDefsFlags[NN_pavgusb] = false;             // Packed 8-bit Unsigned Integer Averaging
SMPDefsFlags[NN_pfadd] = false;               // Packed Floating-Point Addition
SMPDefsFlags[NN_pfsub] = false;               // Packed Floating-Point Subtraction
SMPDefsFlags[NN_pfsubr] = false;              // Packed Floating-Point Reverse Subtraction
SMPDefsFlags[NN_pfacc] = false;               // Packed Floating-Point Accumulate
SMPDefsFlags[NN_pfcmpge] = false;             // Packed Floating-Point Comparison, Greater or Equal
SMPDefsFlags[NN_pfcmpgt] = false;             // Packed Floating-Point Comparison, Greater
SMPDefsFlags[NN_pfcmpeq] = false;             // Packed Floating-Point Comparison, Equal
SMPDefsFlags[NN_pfmin] = false;               // Packed Floating-Point Minimum
SMPDefsFlags[NN_pfmax] = false;               // Packed Floating-Point Maximum
SMPDefsFlags[NN_pi2fd] = false;               // Packed 32-bit Integer to Floating-Point
SMPDefsFlags[NN_pf2id] = false;               // Packed Floating-Point to 32-bit Integer
SMPDefsFlags[NN_pfrcp] = false;               // Packed Floating-Point Reciprocal Approximation
SMPDefsFlags[NN_pfrsqrt] = false;             // Packed Floating-Point Reciprocal Square Root Approximation
SMPDefsFlags[NN_pfmul] = false;               // Packed Floating-Point Multiplication
SMPDefsFlags[NN_pfrcpit1] = false;            // Packed Floating-Point Reciprocal First Iteration Step
SMPDefsFlags[NN_pfrsqit1] = false;            // Packed Floating-Point Reciprocal Square Root First Iteration Step
SMPDefsFlags[NN_pfrcpit2] = false;            // Packed Floating-Point Reciprocal Second Iteration Step
SMPDefsFlags[NN_pmulhrw] = false;             // Packed Floating-Point 16-bit Integer Multiply with rounding
SMPDefsFlags[NN_femms] = false;               // Faster entry/exit of the MMX or floating-point state
SMPDefsFlags[NN_prefetch] = false;            // Prefetch at least a 32-byte line into L1 data cache
SMPDefsFlags[NN_prefetchw] = false;           // Prefetch processor cache line into L1 data cache (mark as modified)


//      Pentium III instructions

SMPDefsFlags[NN_addps] = false;               // Packed Single-FP Add
SMPDefsFlags[NN_addss] = false;               // Scalar Single-FP Add
SMPDefsFlags[NN_andnps] = false;              // Bitwise Logical And Not for Single-FP
SMPDefsFlags[NN_andps] = false;               // Bitwise Logical And for Single-FP
SMPDefsFlags[NN_cmpps] = false;               // Packed Single-FP Compare
SMPDefsFlags[NN_cmpss] = false;               // Scalar Single-FP Compare
SMPDefsFlags[NN_cvtpi2ps] = false;            // Packed signed INT32 to Packed Single-FP conversion
SMPDefsFlags[NN_cvtps2pi] = false;            // Packed Single-FP to Packed INT32 conversion
SMPDefsFlags[NN_cvtsi2ss] = false;            // Scalar signed INT32 to Single-FP conversion
SMPDefsFlags[NN_cvtss2si] = false;            // Scalar Single-FP to signed INT32 conversion
SMPDefsFlags[NN_cvttps2pi] = false;           // Packed Single-FP to Packed INT32 conversion (truncate)
SMPDefsFlags[NN_cvttss2si] = false;           // Scalar Single-FP to signed INT32 conversion (truncate)
SMPDefsFlags[NN_divps] = false;               // Packed Single-FP Divide
SMPDefsFlags[NN_divss] = false;               // Scalar Single-FP Divide
SMPDefsFlags[NN_ldmxcsr] = false;             // Load Streaming SIMD Extensions Technology Control/Status Register
SMPDefsFlags[NN_maxps] = false;               // Packed Single-FP Maximum
SMPDefsFlags[NN_maxss] = false;               // Scalar Single-FP Maximum
SMPDefsFlags[NN_minps] = false;               // Packed Single-FP Minimum
SMPDefsFlags[NN_minss] = false;               // Scalar Single-FP Minimum
SMPDefsFlags[NN_movaps] = false;              // Move Aligned Four Packed Single-FP  
SMPDefsFlags[NN_movhlps] = false;             // Move High to Low Packed Single-FP
SMPDefsFlags[NN_movhps] = false;              // Move High Packed Single-FP
SMPDefsFlags[NN_movlhps] = false;             // Move Low to High Packed Single-FP
SMPDefsFlags[NN_movlps] = false;              // Move Low Packed Single-FP
SMPDefsFlags[NN_movmskps] = false;            // Move Mask to Register
SMPDefsFlags[NN_movss] = false;               // Move Scalar Single-FP
SMPDefsFlags[NN_movups] = false;              // Move Unaligned Four Packed Single-FP
SMPDefsFlags[NN_mulps] = false;               // Packed Single-FP Multiply
SMPDefsFlags[NN_mulss] = false;               // Scalar Single-FP Multiply
SMPDefsFlags[NN_orps] = false;                // Bitwise Logical OR for Single-FP Data
SMPDefsFlags[NN_rcpps] = false;               // Packed Single-FP Reciprocal
SMPDefsFlags[NN_rcpss] = false;               // Scalar Single-FP Reciprocal
SMPDefsFlags[NN_rsqrtps] = false;             // Packed Single-FP Square Root Reciprocal
SMPDefsFlags[NN_rsqrtss] = false;             // Scalar Single-FP Square Root Reciprocal
SMPDefsFlags[NN_shufps] = false;              // Shuffle Single-FP
SMPDefsFlags[NN_sqrtps] = false;              // Packed Single-FP Square Root
SMPDefsFlags[NN_sqrtss] = false;              // Scalar Single-FP Square Root
SMPDefsFlags[NN_stmxcsr] = false;             // Store Streaming SIMD Extensions Technology Control/Status Register 
SMPDefsFlags[NN_subps] = false;               // Packed Single-FP Subtract
SMPDefsFlags[NN_subss] = false;               // Scalar Single-FP Subtract
SMPDefsFlags[NN_unpckhps] = false;            // Unpack High Packed Single-FP Data
SMPDefsFlags[NN_unpcklps] = false;            // Unpack Low Packed Single-FP Data
SMPDefsFlags[NN_xorps] = false;               // Bitwise Logical XOR for Single-FP Data
SMPDefsFlags[NN_pavgb] = false;               // Packed Average (Byte)
SMPDefsFlags[NN_pavgw] = false;               // Packed Average (Word)
SMPDefsFlags[NN_pextrw] = false;              // Extract Word
SMPDefsFlags[NN_pinsrw] = false;              // Insert Word
SMPDefsFlags[NN_pmaxsw] = false;              // Packed Signed Integer Word Maximum
SMPDefsFlags[NN_pmaxub] = false;              // Packed Unsigned Integer Byte Maximum
SMPDefsFlags[NN_pminsw] = false;              // Packed Signed Integer Word Minimum
SMPDefsFlags[NN_pminub] = false;              // Packed Unsigned Integer Byte Minimum
SMPDefsFlags[NN_pmovmskb] = false;            // Move Byte Mask to Integer
SMPDefsFlags[NN_pmulhuw] = false;             // Packed Multiply High Unsigned
SMPDefsFlags[NN_psadbw] = false;              // Packed Sum of Absolute Differences
SMPDefsFlags[NN_pshufw] = false;              // Packed Shuffle Word
SMPDefsFlags[NN_maskmovq] = false;            // Byte Mask write  
SMPDefsFlags[NN_movntps] = false;             // Move Aligned Four Packed Single-FP Non Temporal
SMPDefsFlags[NN_movntq] = false;              // Move 64 Bits Non Temporal   
SMPDefsFlags[NN_prefetcht0] = false;          // Prefetch to all cache levels
SMPDefsFlags[NN_prefetcht1] = false;          // Prefetch to all cache levels
SMPDefsFlags[NN_prefetcht2] = false;          // Prefetch to L2 cache
SMPDefsFlags[NN_prefetchnta] = false;         // Prefetch to L1 cache
SMPDefsFlags[NN_sfence] = false;              // Store Fence

// Pentium III Pseudo instructions

SMPDefsFlags[NN_cmpeqps] = false;             // Packed Single-FP Compare EQ
SMPDefsFlags[NN_cmpltps] = false;             // Packed Single-FP Compare LT
SMPDefsFlags[NN_cmpleps] = false;             // Packed Single-FP Compare LE
SMPDefsFlags[NN_cmpunordps] = false;          // Packed Single-FP Compare UNORD
SMPDefsFlags[NN_cmpneqps] = false;            // Packed Single-FP Compare NOT EQ
SMPDefsFlags[NN_cmpnltps] = false;            // Packed Single-FP Compare NOT LT
SMPDefsFlags[NN_cmpnleps] = false;            // Packed Single-FP Compare NOT LE
SMPDefsFlags[NN_cmpordps] = false;            // Packed Single-FP Compare ORDERED
SMPDefsFlags[NN_cmpeqss] = false;             // Scalar Single-FP Compare EQ
SMPDefsFlags[NN_cmpltss] = false;             // Scalar Single-FP Compare LT
SMPDefsFlags[NN_cmpless] = false;             // Scalar Single-FP Compare LE
SMPDefsFlags[NN_cmpunordss] = false;          // Scalar Single-FP Compare UNORD
SMPDefsFlags[NN_cmpneqss] = false;            // Scalar Single-FP Compare NOT EQ
SMPDefsFlags[NN_cmpnltss] = false;            // Scalar Single-FP Compare NOT LT
SMPDefsFlags[NN_cmpnless] = false;            // Scalar Single-FP Compare NOT LE
SMPDefsFlags[NN_cmpordss] = false;            // Scalar Single-FP Compare ORDERED

// AMD K7 instructions

// Revisit AMD if we port to it.
SMPDefsFlags[NN_pf2iw] = false;               // Packed Floating-Point to Integer with Sign Extend
SMPDefsFlags[NN_pfnacc] = false;              // Packed Floating-Point Negative Accumulate
SMPDefsFlags[NN_pfpnacc] = false;             // Packed Floating-Point Mixed Positive-Negative Accumulate
SMPDefsFlags[NN_pi2fw] = false;               // Packed 16-bit Integer to Floating-Point
SMPDefsFlags[NN_pswapd] = false;              // Packed Swap Double Word

// Undocumented FP instructions (thanks to norbert.juffa@adm.com)

SMPDefsFlags[NN_fstp1] = false;               // Alias of Store Real and Pop
SMPDefsFlags[NN_fxch4] = false;               // Alias of Exchange Registers
SMPDefsFlags[NN_ffreep] = false;              // Free Register and Pop
SMPDefsFlags[NN_fxch7] = false;               // Alias of Exchange Registers
SMPDefsFlags[NN_fstp8] = false;               // Alias of Store Real and Pop
SMPDefsFlags[NN_fstp9] = false;               // Alias of Store Real and Pop

// Pentium 4 instructions

SMPDefsFlags[NN_addpd] = false;               // Add Packed Double-Precision Floating-Point Values
SMPDefsFlags[NN_addsd] = false;               // Add Scalar Double-Precision Floating-Point Values
SMPDefsFlags[NN_andnpd] = false;              // Bitwise Logical AND NOT of Packed Double-Precision Floating-Point Values
SMPDefsFlags[NN_andpd] = false;               // Bitwise Logical AND of Packed Double-Precision Floating-Point Values
SMPDefsFlags[NN_clflush] = false;             // Flush Cache Line
SMPDefsFlags[NN_cmppd] = false;               // Compare Packed Double-Precision Floating-Point Values
SMPDefsFlags[NN_cmpsd] = false;               // Compare Scalar Double-Precision Floating-Point Values
SMPDefsFlags[NN_cvtdq2pd] = false;            // Convert Packed Doubleword Integers to Packed Single-Precision Floating-Point Values
SMPDefsFlags[NN_cvtdq2ps] = false;            // Convert Packed Doubleword Integers to Packed Double-Precision Floating-Point Values
SMPDefsFlags[NN_cvtpd2dq] = false;            // Convert Packed Double-Precision Floating-Point Values to Packed Doubleword Integers
SMPDefsFlags[NN_cvtpd2pi] = false;            // Convert Packed Double-Precision Floating-Point Values to Packed Doubleword Integers
SMPDefsFlags[NN_cvtpd2ps] = false;            // Convert Packed Double-Precision Floating-Point Values to Packed Single-Precision Floating-Point Values
SMPDefsFlags[NN_cvtpi2pd] = false;            // Convert Packed Doubleword Integers to Packed Double-Precision Floating-Point Values
SMPDefsFlags[NN_cvtps2dq] = false;            // Convert Packed Single-Precision Floating-Point Values to Packed Doubleword Integers
SMPDefsFlags[NN_cvtps2pd] = false;            // Convert Packed Single-Precision Floating-Point Values to Packed Double-Precision Floating-Point Values
SMPDefsFlags[NN_cvtsd2si] = false;            // Convert Scalar Double-Precision Floating-Point Value to Doubleword Integer
SMPDefsFlags[NN_cvtsd2ss] = false;            // Convert Scalar Double-Precision Floating-Point Value to Scalar Single-Precision Floating-Point Value
SMPDefsFlags[NN_cvtsi2sd] = false;            // Convert Doubleword Integer to Scalar Double-Precision Floating-Point Value
SMPDefsFlags[NN_cvtss2sd] = false;            // Convert Scalar Single-Precision Floating-Point Value to Scalar Double-Precision Floating-Point Value
SMPDefsFlags[NN_cvttpd2dq] = false;           // Convert With Truncation Packed Double-Precision Floating-Point Values to Packed Doubleword Integers
SMPDefsFlags[NN_cvttpd2pi] = false;           // Convert with Truncation Packed Double-Precision Floating-Point Values to Packed Doubleword Integers
SMPDefsFlags[NN_cvttps2dq] = false;           // Convert With Truncation Packed Single-Precision Floating-Point Values to Packed Doubleword Integers
SMPDefsFlags[NN_cvttsd2si] = false;           // Convert with Truncation Scalar Double-Precision Floating-Point Value to Doubleword Integer
SMPDefsFlags[NN_divpd] = false;               // Divide Packed Double-Precision Floating-Point Values
SMPDefsFlags[NN_divsd] = false;               // Divide Scalar Double-Precision Floating-Point Values
SMPDefsFlags[NN_lfence] = false;              // Load Fence
SMPDefsFlags[NN_maskmovdqu] = false;          // Store Selected Bytes of Double Quadword 
SMPDefsFlags[NN_maxpd] = false;               // Return Maximum Packed Double-Precision Floating-Point Values
SMPDefsFlags[NN_maxsd] = false;               // Return Maximum Scalar Double-Precision Floating-Point Value
SMPDefsFlags[NN_mfence] = false;              // Memory Fence
SMPDefsFlags[NN_minpd] = false;               // Return Minimum Packed Double-Precision Floating-Point Values
SMPDefsFlags[NN_minsd] = false;               // Return Minimum Scalar Double-Precision Floating-Point Value
SMPDefsFlags[NN_movapd] = false;              // Move Aligned Packed Double-Precision Floating-Point Values 
SMPDefsFlags[NN_movdq2q] = false;             // Move Quadword from XMM to MMX Register
SMPDefsFlags[NN_movdqa] = false;              // Move Aligned Double Quadword  
SMPDefsFlags[NN_movdqu] = false;              // Move Unaligned Double Quadword  
SMPDefsFlags[NN_movhpd] = false;              // Move High Packed Double-Precision Floating-Point Values 
SMPDefsFlags[NN_movlpd] = false;              // Move Low Packed Double-Precision Floating-Point Values 
SMPDefsFlags[NN_movmskpd] = false;            // Extract Packed Double-Precision Floating-Point Sign Mask
SMPDefsFlags[NN_movntdq] = false;             // Store Double Quadword Using Non-Temporal Hint
SMPDefsFlags[NN_movnti] = false;              // Store Doubleword Using Non-Temporal Hint
SMPDefsFlags[NN_movntpd] = false;             // Store Packed Double-Precision Floating-Point Values Using Non-Temporal Hint
SMPDefsFlags[NN_movq2dq] = false;             // Move Quadword from MMX to XMM Register
SMPDefsFlags[NN_movsd] = false;               // Move Scalar Double-Precision Floating-Point Values
SMPDefsFlags[NN_movupd] = false;              // Move Unaligned Packed Double-Precision Floating-Point Values
SMPDefsFlags[NN_mulpd] = false;               // Multiply Packed Double-Precision Floating-Point Values
SMPDefsFlags[NN_mulsd] = false;               // Multiply Scalar Double-Precision Floating-Point Values
SMPDefsFlags[NN_orpd] = false;                // Bitwise Logical OR of Double-Precision Floating-Point Values
SMPDefsFlags[NN_paddq] = false;               // Add Packed Quadword Integers
SMPDefsFlags[NN_pause] = false;               // Spin Loop Hint
SMPDefsFlags[NN_pmuludq] = false;             // Multiply Packed Unsigned Doubleword Integers
SMPDefsFlags[NN_pshufd] = false;              // Shuffle Packed Doublewords
SMPDefsFlags[NN_pshufhw] = false;             // Shuffle Packed High Words
SMPDefsFlags[NN_pshuflw] = false;             // Shuffle Packed Low Words
SMPDefsFlags[NN_pslldq] = false;              // Shift Double Quadword Left Logical
SMPDefsFlags[NN_psrldq] = false;              // Shift Double Quadword Right Logical
SMPDefsFlags[NN_psubq] = false;               // Subtract Packed Quadword Integers
SMPDefsFlags[NN_punpckhqdq] = false;          // Unpack High Data
SMPDefsFlags[NN_punpcklqdq] = false;          // Unpack Low Data
SMPDefsFlags[NN_shufpd] = false;              // Shuffle Packed Double-Precision Floating-Point Values
SMPDefsFlags[NN_sqrtpd] = false;              // Compute Square Roots of Packed Double-Precision Floating-Point Values
SMPDefsFlags[NN_sqrtsd] = false;              // Compute Square Rootof Scalar Double-Precision Floating-Point Value
SMPDefsFlags[NN_subpd] = false;               // Subtract Packed Double-Precision Floating-Point Values
SMPDefsFlags[NN_subsd] = false;               // Subtract Scalar Double-Precision Floating-Point Values
SMPDefsFlags[NN_unpckhpd] = false;            // Unpack and Interleave High Packed Double-Precision Floating-Point Values
SMPDefsFlags[NN_unpcklpd] = false;            // Unpack and Interleave Low Packed Double-Precision Floating-Point Values
SMPDefsFlags[NN_xorpd] = false;               // Bitwise Logical OR of Double-Precision Floating-Point Values


// AMD syscall/sysret instructions  NOTE: not AMD, found in Intel manual


// AMD64 instructions    NOTE: not AMD, found in Intel manual

SMPDefsFlags[NN_swapgs] = false;              // Exchange GS base with KernelGSBase MSR

// New Pentium instructions (SSE3)

SMPDefsFlags[NN_movddup] = false;             // Move One Double-FP and Duplicate
SMPDefsFlags[NN_movshdup] = false;            // Move Packed Single-FP High and Duplicate
SMPDefsFlags[NN_movsldup] = false;            // Move Packed Single-FP Low and Duplicate

// Missing AMD64 instructions  NOTE: also found in Intel manual

SMPDefsFlags[NN_movsxd] = false;              // Move with Sign-Extend Doubleword

// SSE3 instructions

SMPDefsFlags[NN_addsubpd] = false;            // Add /Sub packed DP FP numbers
SMPDefsFlags[NN_addsubps] = false;            // Add /Sub packed SP FP numbers
SMPDefsFlags[NN_haddpd] = false;              // Add horizontally packed DP FP numbers
SMPDefsFlags[NN_haddps] = false;              // Add horizontally packed SP FP numbers
SMPDefsFlags[NN_hsubpd] = false;              // Sub horizontally packed DP FP numbers
SMPDefsFlags[NN_hsubps] = false;              // Sub horizontally packed SP FP numbers
SMPDefsFlags[NN_monitor] = false;             // Set up a linear address range to be monitored by hardware
SMPDefsFlags[NN_mwait] = false;               // Wait until write-back store performed within the range specified by the MONITOR instruction
SMPDefsFlags[NN_fisttp] = false;              // Store ST in intXX (chop) and pop
SMPDefsFlags[NN_lddqu] = false;               // Load unaligned integer 128-bit

// SSSE3 instructions

SMPDefsFlags[NN_psignb] = false;              // Packed SIGN Byte
SMPDefsFlags[NN_psignw] = false;              // Packed SIGN Word
SMPDefsFlags[NN_psignd] = false;              // Packed SIGN Doubleword
SMPDefsFlags[NN_pshufb] = false;              // Packed Shuffle Bytes
SMPDefsFlags[NN_pmulhrsw] = false;            // Packed Multiply High with Round and Scale
SMPDefsFlags[NN_pmaddubsw] = false;           // Multiply and Add Packed Signed and Unsigned Bytes
SMPDefsFlags[NN_phsubsw] = false;             // Packed Horizontal Subtract and Saturate
SMPDefsFlags[NN_phaddsw] = false;             // Packed Horizontal Add and Saturate
SMPDefsFlags[NN_phaddw] = false;              // Packed Horizontal Add Word
SMPDefsFlags[NN_phaddd] = false;              // Packed Horizontal Add Doubleword
SMPDefsFlags[NN_phsubw] = false;              // Packed Horizontal Subtract Word
SMPDefsFlags[NN_phsubd] = false;              // Packed Horizontal Subtract Doubleword
SMPDefsFlags[NN_palignr] = false;             // Packed Align Right
SMPDefsFlags[NN_pabsb] = false;               // Packed Absolute Value Byte
SMPDefsFlags[NN_pabsw] = false;               // Packed Absolute Value Word
SMPDefsFlags[NN_pabsd] = false;               // Packed Absolute Value Doubleword

// VMX instructions

SMPDefsFlags[NN_last] = false;

  return;

} // end InitSMPDefsFlags()

// Initialize the SMPUsesFlags[] array to define how we emit
//   optimizing annotations.
void InitSMPUsesFlags(void) {
	// Default value is false. Few instructions use the flags.
	(void) memset(SMPUsesFlags, false, sizeof(SMPUsesFlags));

SMPUsesFlags[NN_null] = true;            // Unknown Operation
#if 1
SMPUsesFlags[NN_aaa] = true;                 // ASCII adjust after addition
SMPUsesFlags[NN_aas] = true;				 // ASCII adjust after subtraction
#endif
SMPUsesFlags[NN_adc] = true;                 // Add with Carry
SMPUsesFlags[NN_cmps] = true;                // Compare Strings (uses DF direction flag)
SMPUsesFlags[NN_into] = true;                // Call to Interrupt Procedure if Overflow Flag = 1
SMPUsesFlags[NN_ja] = true;                  // Jump if Above (CF=0 & ZF=0)
SMPUsesFlags[NN_jae] = true;                 // Jump if Above or Equal (CF=0)
SMPUsesFlags[NN_jb] = true;                  // Jump if Below (CF=1)
SMPUsesFlags[NN_jbe] = true;                 // Jump if Below or Equal (CF=1 | ZF=1)
SMPUsesFlags[NN_jc] = true;                  // Jump if Carry (CF=1)
SMPUsesFlags[NN_jcxz] = true;                // Jump if CX is 0
SMPUsesFlags[NN_jecxz] = true;               // Jump if ECX is 0
SMPUsesFlags[NN_jrcxz] = true;               // Jump if RCX is 0
SMPUsesFlags[NN_je] = true;                  // Jump if Equal (ZF=1)
SMPUsesFlags[NN_jg] = true;                  // Jump if Greater (ZF=0 & SF=OF)
SMPUsesFlags[NN_jge] = true;                 // Jump if Greater or Equal (SF=OF)
SMPUsesFlags[NN_jl] = true;                  // Jump if Less (SF!=OF)
SMPUsesFlags[NN_jle] = true;                 // Jump if Less or Equal (ZF=1 | SF!=OF)
SMPUsesFlags[NN_jna] = true;                 // Jump if Not Above (CF=1 | ZF=1)
SMPUsesFlags[NN_jnae] = true;                // Jump if Not Above or Equal (CF=1)
SMPUsesFlags[NN_jnb] = true;                 // Jump if Not Below (CF=0)
SMPUsesFlags[NN_jnbe] = true;                // Jump if Not Below or Equal (CF=0 & ZF=0)
SMPUsesFlags[NN_jnc] = true;                 // Jump if Not Carry (CF=0)
SMPUsesFlags[NN_jne] = true;                 // Jump if Not Equal (ZF=0)
SMPUsesFlags[NN_jng] = true;                 // Jump if Not Greater (ZF=1 | SF!=OF)
SMPUsesFlags[NN_jnge] = true;                // Jump if Not Greater or Equal (ZF=1)
SMPUsesFlags[NN_jnl] = true;                 // Jump if Not Less (SF=OF)
SMPUsesFlags[NN_jnle] = true;                // Jump if Not Less or Equal (ZF=0 & SF=OF)
SMPUsesFlags[NN_jno] = true;                 // Jump if Not Overflow (OF=0)
SMPUsesFlags[NN_jnp] = true;                 // Jump if Not Parity (PF=0)
SMPUsesFlags[NN_jns] = true;                 // Jump if Not Sign (SF=0)
SMPUsesFlags[NN_jnz] = true;                 // Jump if Not Zero (ZF=0)
SMPUsesFlags[NN_jo] = true;                  // Jump if Overflow (OF=1)
SMPUsesFlags[NN_jp] = true;                  // Jump if Parity (PF=1)
SMPUsesFlags[NN_jpe] = true;                 // Jump if Parity Even (PF=1)
SMPUsesFlags[NN_jpo] = true;                 // Jump if Parity Odd  (PF=0)
SMPUsesFlags[NN_js] = true;                  // Jump if Sign (SF=1)
SMPUsesFlags[NN_jz] = true;                  // Jump if Zero (ZF=1)
SMPUsesFlags[NN_lahf] = true;                // Load Flags into AH Register
SMPUsesFlags[NN_loopwe] = true;              // Loop while CX != 0 and ZF=1
SMPUsesFlags[NN_loope] = true;               // Loop while rCX != 0 and ZF=1
SMPUsesFlags[NN_loopde] = true;              // Loop while ECX != 0 and ZF=1
SMPUsesFlags[NN_loopqe] = true;              // Loop while RCX != 0 and ZF=1
SMPUsesFlags[NN_loopwne] = true;             // Loop while CX != 0 and ZF=0
SMPUsesFlags[NN_loopne] = true;              // Loop while rCX != 0 and ZF=0
SMPUsesFlags[NN_loopdne] = true;             // Loop while ECX != 0 and ZF=0
SMPUsesFlags[NN_loopqne] = true;             // Loop while RCX != 0 and ZF=0
SMPUsesFlags[NN_movs] = true;  		     // Move String (uses flags if REP prefix)
SMPUsesFlags[NN_pushfw] = true;              // Push Flags Register onto the Stack
SMPUsesFlags[NN_pushf] = true;               // Push Flags Register onto the Stack
SMPUsesFlags[NN_pushfd] = true;              // Push Flags Register onto the Stack (use32)
SMPUsesFlags[NN_pushfq] = true;              // Push Flags Register onto the Stack (use64)
SMPUsesFlags[NN_repe] = true;                // Repeat String Operation while ZF=1
SMPUsesFlags[NN_repne] = true;               // Repeat String Operation while ZF=0
SMPUsesFlags[NN_sahf] = true;                // Store AH into Flags Register
SMPUsesFlags[NN_shl] = true;                 // Shift Logical Left
SMPUsesFlags[NN_shr] = true;                 // Shift Logical Right
SMPUsesFlags[NN_sbb] = true;                 // Integer Subtraction with Borrow
SMPUsesFlags[NN_scas] = true;                // Compare String (uses DF direction flag)
SMPUsesFlags[NN_seta] = true;                // Set Byte if Above (CF=0 & ZF=0)
SMPUsesFlags[NN_setae] = true;               // Set Byte if Above or Equal (CF=0)
SMPUsesFlags[NN_setb] = true;                // Set Byte if Below (CF=1)
SMPUsesFlags[NN_setbe] = true;               // Set Byte if Below or Equal (CF=1 | ZF=1)
SMPUsesFlags[NN_setc] = true;                // Set Byte if Carry (CF=1)
SMPUsesFlags[NN_sete] = true;                // Set Byte if Equal (ZF=1)
SMPUsesFlags[NN_setg] = true;                // Set Byte if Greater (ZF=0 & SF=OF)
SMPUsesFlags[NN_setge] = true;               // Set Byte if Greater or Equal (SF=OF)
SMPUsesFlags[NN_setl] = true;                // Set Byte if Less (SF!=OF)
SMPUsesFlags[NN_setle] = true;               // Set Byte if Less or Equal (ZF=1 | SF!=OF)
SMPUsesFlags[NN_setna] = true;               // Set Byte if Not Above (CF=1 | ZF=1)
SMPUsesFlags[NN_setnae] = true;              // Set Byte if Not Above or Equal (CF=1)
SMPUsesFlags[NN_setnb] = true;               // Set Byte if Not Below (CF=0)
SMPUsesFlags[NN_setnbe] = true;              // Set Byte if Not Below or Equal (CF=0 & ZF=0)
SMPUsesFlags[NN_setnc] = true;               // Set Byte if Not Carry (CF=0)
SMPUsesFlags[NN_setne] = true;               // Set Byte if Not Equal (ZF=0)
SMPUsesFlags[NN_setng] = true;               // Set Byte if Not Greater (ZF=1 | SF!=OF)
SMPUsesFlags[NN_setnge] = true;              // Set Byte if Not Greater or Equal (ZF=1)
SMPUsesFlags[NN_setnl] = true;               // Set Byte if Not Less (SF=OF)
SMPUsesFlags[NN_setnle] = true;              // Set Byte if Not Less or Equal (ZF=0 & SF=OF)
SMPUsesFlags[NN_setno] = true;               // Set Byte if Not Overflow (OF=0)
SMPUsesFlags[NN_setnp] = true;               // Set Byte if Not Parity (PF=0)
SMPUsesFlags[NN_setns] = true;               // Set Byte if Not Sign (SF=0)
SMPUsesFlags[NN_setnz] = true;               // Set Byte if Not Zero (ZF=0)
SMPUsesFlags[NN_seto] = true;                // Set Byte if Overflow (OF=1)
SMPUsesFlags[NN_setp] = true;                // Set Byte if Parity (PF=1)
SMPUsesFlags[NN_setpe] = true;               // Set Byte if Parity Even (PF=1)
SMPUsesFlags[NN_setpo] = true;               // Set Byte if Parity Odd  (PF=0)
SMPUsesFlags[NN_sets] = true;                // Set Byte if Sign (SF=1)
SMPUsesFlags[NN_setz] = true;                // Set Byte if Zero (ZF=1)
SMPUsesFlags[NN_stos] = true;                // Store String

//
//      486 instructions
//

//
//      Pentium instructions
//

SMPUsesFlags[NN_cpuid] = true;               // Get CPU ID
SMPUsesFlags[NN_cmpxchg8b] = true;           // Compare and Exchange Eight Bytes

//
//      Pentium Pro instructions
//

SMPUsesFlags[NN_cmova] = true;               // Move if Above (CF=0 & ZF=0)
SMPUsesFlags[NN_cmovb] = true;               // Move if Below (CF=1)
SMPUsesFlags[NN_cmovbe] = true;              // Move if Below or Equal (CF=1 | ZF=1)
SMPUsesFlags[NN_cmovg] = true;               // Move if Greater (ZF=0 & SF=OF)
SMPUsesFlags[NN_cmovge] = true;              // Move if Greater or Equal (SF=OF)
SMPUsesFlags[NN_cmovl] = true;               // Move if Less (SF!=OF)
SMPUsesFlags[NN_cmovle] = true;              // Move if Less or Equal (ZF=1 | SF!=OF)
SMPUsesFlags[NN_cmovnb] = true;              // Move if Not Below (CF=0)
SMPUsesFlags[NN_cmovno] = true;              // Move if Not Overflow (OF=0)
SMPUsesFlags[NN_cmovnp] = true;              // Move if Not Parity (PF=0)
SMPUsesFlags[NN_cmovns] = true;              // Move if Not Sign (SF=0)
SMPUsesFlags[NN_cmovnz] = true;              // Move if Not Zero (ZF=0)
SMPUsesFlags[NN_cmovo] = true;               // Move if Overflow (OF=1)
SMPUsesFlags[NN_cmovp] = true;               // Move if Parity (PF=1)
SMPUsesFlags[NN_cmovs] = true;               // Move if Sign (SF=1)
SMPUsesFlags[NN_cmovz] = true;               // Move if Zero (ZF=1)
SMPUsesFlags[NN_fcmovb] = true;              // Floating Move if Below          
SMPUsesFlags[NN_fcmove] = true;              // Floating Move if Equal          
SMPUsesFlags[NN_fcmovbe] = true;             // Floating Move if Below or Equal 
SMPUsesFlags[NN_fcmovu] = true;              // Floating Move if Unordered      
SMPUsesFlags[NN_fcmovnb] = true;             // Floating Move if Not Below      
SMPUsesFlags[NN_fcmovne] = true;             // Floating Move if Not Equal      
SMPUsesFlags[NN_fcmovnbe] = true;            // Floating Move if Not Below or Equal
SMPUsesFlags[NN_fcmovnu] = true;             // Floating Move if Not Unordered     

//
//


//
//      80387 instructions
//


//
//      Instructions added 28.02.96
//

SMPUsesFlags[NN_setalc] = true;              // Set AL to Carry Flag      

//
//      MMX instructions
//


//
//      Undocumented Deschutes processor instructions
//


//      Pentium II instructions


//      3DNow! instructions


//      Pentium III instructions


// Pentium III Pseudo instructions


// AMD K7 instructions

// Revisit AMD if we port to it.

// Undocumented FP instructions (thanks to norbert.juffa@adm.com)

// Pentium 4 instructions



// AMD syscall/sysret instructions  NOTE: not AMD, found in Intel manual

// AMD64 instructions    NOTE: not AMD, found in Intel manual


// New Pentium instructions (SSE3)


// Missing AMD64 instructions  NOTE: also found in Intel manual


// SSE3 instructions


// SSSE3 instructions


// VMX instructions


SMPUsesFlags[NN_last] = false;

  return;

} // end InitSMPUsesFlags()


// Initialize the SMPTypeCategory[] array to define how we infer
//   numeric or pointer operand types for optimizing annotations.
void InitTypeCategory(void) {
	// Default category is 0, no type inference without knowing context.
	(void) memset(SMPTypeCategory, 0, sizeof(SMPTypeCategory));
	// Category 1 instructions have no valid inferences about their operand
	//  types that can be drawn, but will need no mmStrata instrumentation