Skip to content
Snippets Groups Projects
SMPDataFlowAnalysis.cpp 276 KiB
Newer Older
SMPDefsFlags[NN_pinsrq] = false;               // Insert Qword
SMPDefsFlags[NN_pmaxsb] = false;               // Maximum of Packed Signed Byte Integers
SMPDefsFlags[NN_pmaxsd] = false;               // Maximum of Packed Signed Dword Integers
SMPDefsFlags[NN_pmaxud] = false;               // Maximum of Packed Unsigned Dword Integers
SMPDefsFlags[NN_pmaxuw] = false;               // Maximum of Packed Word Integers
SMPDefsFlags[NN_pminsb] = false;               // Minimum of Packed Signed Byte Integers
SMPDefsFlags[NN_pminsd] = false;               // Minimum of Packed Signed Dword Integers
SMPDefsFlags[NN_pminud] = false;               // Minimum of Packed Unsigned Dword Integers
SMPDefsFlags[NN_pminuw] = false;               // Minimum of Packed Word Integers
SMPDefsFlags[NN_pmovsxbw] = false;             // Packed Move with Sign Extend
SMPDefsFlags[NN_pmovsxbd] = false;             // Packed Move with Sign Extend
SMPDefsFlags[NN_pmovsxbq] = false;             // Packed Move with Sign Extend
SMPDefsFlags[NN_pmovsxwd] = false;             // Packed Move with Sign Extend
SMPDefsFlags[NN_pmovsxwq] = false;             // Packed Move with Sign Extend
SMPDefsFlags[NN_pmovsxdq] = false;             // Packed Move with Sign Extend
SMPDefsFlags[NN_pmovzxbw] = false;             // Packed Move with Zero Extend
SMPDefsFlags[NN_pmovzxbd] = false;             // Packed Move with Zero Extend
SMPDefsFlags[NN_pmovzxbq] = false;             // Packed Move with Zero Extend
SMPDefsFlags[NN_pmovzxwd] = false;             // Packed Move with Zero Extend
SMPDefsFlags[NN_pmovzxwq] = false;             // Packed Move with Zero Extend
SMPDefsFlags[NN_pmovzxdq] = false;             // Packed Move with Zero Extend
SMPDefsFlags[NN_pmuldq] = false;               // Multiply Packed Signed Dword Integers
SMPDefsFlags[NN_pmulld] = false;               // Multiply Packed Signed Dword Integers and Store Low Result
SMPDefsFlags[NN_roundpd] = false;              // Round Packed Double Precision Floating-Point Values
SMPDefsFlags[NN_roundps] = false;              // Round Packed Single Precision Floating-Point Values
SMPDefsFlags[NN_roundsd] = false;              // Round Scalar Double Precision Floating-Point Values
SMPDefsFlags[NN_roundss] = false;              // Round Scalar Single Precision Floating-Point Values

// SSSE4.2 instructions
SMPDefsFlags[NN_crc32] = false;                // Accumulate CRC32 Value
SMPDefsFlags[NN_pcmpgtq] = false;              // Compare Packed Data for Greater Than

// AMD SSE4a instructions

SMPDefsFlags[NN_extrq] = false;                // Extract Field From Register
SMPDefsFlags[NN_insertq] = false;              // Insert Field
SMPDefsFlags[NN_movntsd] = false;              // Move Non-Temporal Scalar Double-Precision Floating-Point
SMPDefsFlags[NN_movntss] = false;              // Move Non-Temporal Scalar Single-Precision Floating-Point

// xsave/xrstor instructions

SMPDefsFlags[NN_xgetbv] = false;               // Get Value of Extended Control Register
SMPDefsFlags[NN_xrstor] = false;               // Restore Processor Extended States
SMPDefsFlags[NN_xsave] = false;                // Save Processor Extended States
SMPDefsFlags[NN_xsetbv] = false;               // Set Value of Extended Control Register

// Intel Safer Mode Extensions (SMX)

// AMD-V Virtualization ISA Extension

SMPDefsFlags[NN_invlpga] = false;              // Invalidate TLB Entry in a Specified ASID
SMPDefsFlags[NN_skinit] = false;               // Secure Init and Jump with Attestation
SMPDefsFlags[NN_vmexit] = false;               // Stop Executing Guest, Begin Executing Host
SMPDefsFlags[NN_vmload] = false;               // Load State from VMCB
SMPDefsFlags[NN_vmmcall] = false;              // Call VMM
SMPDefsFlags[NN_vmrun] = false;                // Run Virtual Machine
SMPDefsFlags[NN_vmsave] = false;               // Save State to VMCB

// VMX+ instructions

SMPDefsFlags[NN_invept] = false;               // Invalidate Translations Derived from EPT
SMPDefsFlags[NN_invvpid] = false;              // Invalidate Translations Based on VPID

// Intel Atom instructions

SMPDefsFlags[NN_movbe] = false;                // Move Data After Swapping Bytes

// Intel AES instructions

SMPDefsFlags[NN_aesenc] = false;                // Perform One Round of an AES Encryption Flow
SMPDefsFlags[NN_aesenclast] = false;            // Perform the Last Round of an AES Encryption Flow
SMPDefsFlags[NN_aesdec] = false;                // Perform One Round of an AES Decryption Flow
SMPDefsFlags[NN_aesdeclast] = false;            // Perform the Last Round of an AES Decryption Flow
SMPDefsFlags[NN_aesimc] = false;                // Perform the AES InvMixColumn Transformation
SMPDefsFlags[NN_aeskeygenassist] = false;       // AES Round Key Generation Assist

// Carryless multiplication

SMPDefsFlags[NN_pclmulqdq] = false;            // Carry-Less Multiplication Quadword

3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491
// Returns modified by operand size prefixes

SMPDefsFlags[NN_retnw] = false;               // Return Near from Procedure (use16)
SMPDefsFlags[NN_retnd] = false;               // Return Near from Procedure (use32)
SMPDefsFlags[NN_retnq] = false;               // Return Near from Procedure (use64)
SMPDefsFlags[NN_retfw] = false;               // Return Far from Procedure (use16)
SMPDefsFlags[NN_retfd] = false;               // Return Far from Procedure (use32)
SMPDefsFlags[NN_retfq] = false;               // Return Far from Procedure (use64)

// RDRAND support

// new GPR instructions

SMPDefsFlags[NN_mulx] = false;                 // Unsigned Multiply Without Affecting Flags
SMPDefsFlags[NN_pdep] = false;                 // Parallel Bits Deposit
SMPDefsFlags[NN_pext] = false;                 // Parallel Bits Extract
SMPDefsFlags[NN_rorx] = false;                 // Rotate Right Logical Without Affecting Flags
SMPDefsFlags[NN_sarx] = false;                 // Shift Arithmetically Right Without Affecting Flags
SMPDefsFlags[NN_shlx] = false;                 // Shift Logically Left Without Affecting Flags
SMPDefsFlags[NN_shrx] = false;                 // Shift Logically Right Without Affecting Flags

SMPDefsFlags[NN_xsaveopt] = false;             // Save Processor Extended States Optimized
SMPDefsFlags[NN_invpcid] =  false;             // Invalidate Processor Context ID
SMPDefsFlags[NN_rdseed] = false;               // Read Random Seed
SMPDefsFlags[NN_rdfsbase] = false;             // Read FS Segment Base
SMPDefsFlags[NN_rdgsbase] = false;             // Read GS Segment Base
SMPDefsFlags[NN_wrfsbase] = false;             // Write FS Segment Base
SMPDefsFlags[NN_wrgsbase] = false;             // Write GS Segment Base

// new AVX instructions

SMPDefsFlags[NN_vaddpd] = false;               // Add Packed Double-Precision Floating-Point Values
SMPDefsFlags[NN_vaddps] = false;               // Packed Single-FP Add
SMPDefsFlags[NN_vaddsd] = false;               // Add Scalar Double-Precision Floating-Point Values
SMPDefsFlags[NN_vaddss] = false;               // Scalar Single-FP Add
SMPDefsFlags[NN_vaddsubpd] = false;            // Add /Sub packed DP FP numbers
SMPDefsFlags[NN_vaddsubps] = false;            // Add /Sub packed SP FP numbers
SMPDefsFlags[NN_vaesdec] = false;              // Perform One Round of an AES Decryption Flow
SMPDefsFlags[NN_vaesdeclast] = false;          // Perform the Last Round of an AES Decryption Flow
SMPDefsFlags[NN_vaesenc] = false;              // Perform One Round of an AES Encryption Flow
SMPDefsFlags[NN_vaesenclast] = false;          // Perform the Last Round of an AES Encryption Flow
SMPDefsFlags[NN_vaesimc] = false;              // Perform the AES InvMixColumn Transformation
SMPDefsFlags[NN_vaeskeygenassist] = false;     // AES Round Key Generation Assist
SMPDefsFlags[NN_vandnpd] = false;              // Bitwise Logical AND NOT of Packed Double-Precision Floating-Point Values
SMPDefsFlags[NN_vandnps] = false;              // Bitwise Logical And Not for Single-FP
SMPDefsFlags[NN_vandpd] = false;               // Bitwise Logical AND of Packed Double-Precision Floating-Point Values
SMPDefsFlags[NN_vandps] = false;               // Bitwise Logical And for Single-FP
SMPDefsFlags[NN_vblendpd] = false;             // Blend Packed Double Precision Floating-Point Values
SMPDefsFlags[NN_vblendps] = false;             // Blend Packed Single Precision Floating-Point Values
SMPDefsFlags[NN_vblendvpd] = false;            // Variable Blend Packed Double Precision Floating-Point Values
SMPDefsFlags[NN_vblendvps] = false;            // Variable Blend Packed Single Precision Floating-Point Values
SMPDefsFlags[NN_vbroadcastf128] = false;       // Broadcast 128 Bits of Floating-Point Data
SMPDefsFlags[NN_vbroadcasti128] = false;       // Broadcast 128 Bits of Integer Data
SMPDefsFlags[NN_vbroadcastsd] = false;         // Broadcast Double-Precision Floating-Point Element
SMPDefsFlags[NN_vbroadcastss] = false;         // Broadcast Single-Precision Floating-Point Element
SMPDefsFlags[NN_vcmppd] = false;               // Compare Packed Double-Precision Floating-Point Values
SMPDefsFlags[NN_vcmpps] = false;               // Packed Single-FP Compare
SMPDefsFlags[NN_vcmpsd] = false;               // Compare Scalar Double-Precision Floating-Point Values
SMPDefsFlags[NN_vcmpss] = false;               // Scalar Single-FP Compare
SMPDefsFlags[NN_vcomisd] = false;              // Compare Scalar Ordered Double-Precision Floating-Point Values and Set EFLAGS
SMPDefsFlags[NN_vcomiss] = false;              // Scalar Ordered Single-FP Compare and Set EFLAGS
SMPDefsFlags[NN_vcvtdq2pd] = false;            // Convert Packed Doubleword Integers to Packed Single-Precision Floating-Point Values
SMPDefsFlags[NN_vcvtdq2ps] = false;            // Convert Packed Doubleword Integers to Packed Double-Precision Floating-Point Values
SMPDefsFlags[NN_vcvtpd2dq] = false;            // Convert Packed Double-Precision Floating-Point Values to Packed Doubleword Integers
SMPDefsFlags[NN_vcvtpd2ps] = false;            // Convert Packed Double-Precision Floating-Point Values to Packed Single-Precision Floating-Point Values
SMPDefsFlags[NN_vcvtph2ps] = false;            // Convert 16-bit FP Values to Single-Precision FP Values
SMPDefsFlags[NN_vcvtps2dq] = false;            // Convert Packed Single-Precision Floating-Point Values to Packed Doubleword Integers
SMPDefsFlags[NN_vcvtps2pd] = false;            // Convert Packed Single-Precision Floating-Point Values to Packed Double-Precision Floating-Point Values
SMPDefsFlags[NN_vcvtps2ph] = false;            // Convert Single-Precision FP value to 16-bit FP value
SMPDefsFlags[NN_vcvtsd2si] = false;            // Convert Scalar Double-Precision Floating-Point Value to Doubleword Integer
SMPDefsFlags[NN_vcvtsd2ss] = false;            // Convert Scalar Double-Precision Floating-Point Value to Scalar Single-Precision Floating-Point Value
SMPDefsFlags[NN_vcvtsi2sd] = false;            // Convert Doubleword Integer to Scalar Double-Precision Floating-Point Value
SMPDefsFlags[NN_vcvtsi2ss] = false;            // Scalar signed INT32 to Single-FP conversion
SMPDefsFlags[NN_vcvtss2sd] = false;            // Convert Scalar Single-Precision Floating-Point Value to Scalar Double-Precision Floating-Point Value
SMPDefsFlags[NN_vcvtss2si] = false;            // Scalar Single-FP to signed INT32 conversion
SMPDefsFlags[NN_vcvttpd2dq] = false;           // Convert With Truncation Packed Double-Precision Floating-Point Values to Packed Doubleword Integers
SMPDefsFlags[NN_vcvttps2dq] = false;           // Convert With Truncation Packed Single-Precision Floating-Point Values to Packed Doubleword Integers
SMPDefsFlags[NN_vcvttsd2si] = false;           // Convert with Truncation Scalar Double-Precision Floating-Point Value to Doubleword Integer
SMPDefsFlags[NN_vcvttss2si] = false;           // Scalar Single-FP to signed INT32 conversion (truncate)
SMPDefsFlags[NN_vdivpd] = false;               // Divide Packed Double-Precision Floating-Point Values
SMPDefsFlags[NN_vdivps] = false;               // Packed Single-FP Divide
SMPDefsFlags[NN_vdivsd] = false;               // Divide Scalar Double-Precision Floating-Point Values
SMPDefsFlags[NN_vdivss] = false;               // Scalar Single-FP Divide
SMPDefsFlags[NN_vdppd] = false;                // Dot Product of Packed Double Precision Floating-Point Values
SMPDefsFlags[NN_vdpps] = false;                // Dot Product of Packed Single Precision Floating-Point Values
SMPDefsFlags[NN_vextractf128] = false;         // Extract Packed Floating-Point Values
SMPDefsFlags[NN_vextracti128] = false;         // Extract Packed Integer Values
SMPDefsFlags[NN_vextractps] = false;           // Extract Packed Floating-Point Values
SMPDefsFlags[NN_vfmadd132pd] = false;          // Fused Multiply-Add of Packed Double-Precision Floating-Point Values
SMPDefsFlags[NN_vfmadd132ps] = false;          // Fused Multiply-Add of Packed Single-Precision Floating-Point Values
SMPDefsFlags[NN_vfmadd132sd] = false;          // Fused Multiply-Add of Scalar Double-Precision Floating-Point Values
SMPDefsFlags[NN_vfmadd132ss] = false;          // Fused Multiply-Add of Scalar Single-Precision Floating-Point Values
SMPDefsFlags[NN_vfmadd213pd] = false;          // Fused Multiply-Add of Packed Double-Precision Floating-Point Values
SMPDefsFlags[NN_vfmadd213ps] = false;          // Fused Multiply-Add of Packed Single-Precision Floating-Point Values
SMPDefsFlags[NN_vfmadd213sd] = false;          // Fused Multiply-Add of Scalar Double-Precision Floating-Point Values
SMPDefsFlags[NN_vfmadd213ss] = false;          // Fused Multiply-Add of Scalar Single-Precision Floating-Point Values
SMPDefsFlags[NN_vfmadd231pd] = false;          // Fused Multiply-Add of Packed Double-Precision Floating-Point Values
SMPDefsFlags[NN_vfmadd231ps] = false;          // Fused Multiply-Add of Packed Single-Precision Floating-Point Values
SMPDefsFlags[NN_vfmadd231sd] = false;          // Fused Multiply-Add of Scalar Double-Precision Floating-Point Values
SMPDefsFlags[NN_vfmadd231ss] = false;          // Fused Multiply-Add of Scalar Single-Precision Floating-Point Values
SMPDefsFlags[NN_vfmaddsub132pd] = false;       // Fused Multiply-Alternating Add/Subtract of Packed Double-Precision Floating-Point Values
SMPDefsFlags[NN_vfmaddsub132ps] = false;       // Fused Multiply-Alternating Add/Subtract of Packed Single-Precision Floating-Point Values
SMPDefsFlags[NN_vfmaddsub213pd] = false;       // Fused Multiply-Alternating Add/Subtract of Packed Double-Precision Floating-Point Values
SMPDefsFlags[NN_vfmaddsub213ps] = false;       // Fused Multiply-Alternating Add/Subtract of Packed Single-Precision Floating-Point Values
SMPDefsFlags[NN_vfmaddsub231pd] = false;       // Fused Multiply-Alternating Add/Subtract of Packed Double-Precision Floating-Point Values
SMPDefsFlags[NN_vfmaddsub231ps] = false;       // Fused Multiply-Alternating Add/Subtract of Packed Single-Precision Floating-Point Values
SMPDefsFlags[NN_vfmsub132pd] = false;          // Fused Multiply-Subtract of Packed Double-Precision Floating-Point Values
SMPDefsFlags[NN_vfmsub132ps] = false;          // Fused Multiply-Subtract of Packed Single-Precision Floating-Point Values
SMPDefsFlags[NN_vfmsub132sd] = false;          // Fused Multiply-Subtract of Scalar Double-Precision Floating-Point Values
SMPDefsFlags[NN_vfmsub132ss] = false;          // Fused Multiply-Subtract of Scalar Single-Precision Floating-Point Values
SMPDefsFlags[NN_vfmsub213pd] = false;          // Fused Multiply-Subtract of Packed Double-Precision Floating-Point Values
SMPDefsFlags[NN_vfmsub213ps] = false;          // Fused Multiply-Subtract of Packed Single-Precision Floating-Point Values
SMPDefsFlags[NN_vfmsub213sd] = false;          // Fused Multiply-Subtract of Scalar Double-Precision Floating-Point Values
SMPDefsFlags[NN_vfmsub213ss] = false;          // Fused Multiply-Subtract of Scalar Single-Precision Floating-Point Values
SMPDefsFlags[NN_vfmsub231pd] = false;          // Fused Multiply-Subtract of Packed Double-Precision Floating-Point Values
SMPDefsFlags[NN_vfmsub231ps] = false;          // Fused Multiply-Subtract of Packed Single-Precision Floating-Point Values
SMPDefsFlags[NN_vfmsub231sd] = false;          // Fused Multiply-Subtract of Scalar Double-Precision Floating-Point Values
SMPDefsFlags[NN_vfmsub231ss] = false;          // Fused Multiply-Subtract of Scalar Single-Precision Floating-Point Values
SMPDefsFlags[NN_vfmsubadd132pd] = false;       // Fused Multiply-Alternating Subtract/Add of Packed Double-Precision Floating-Point Values
SMPDefsFlags[NN_vfmsubadd132ps] = false;       // Fused Multiply-Alternating Subtract/Add of Packed Single-Precision Floating-Point Values
SMPDefsFlags[NN_vfmsubadd213pd] = false;       // Fused Multiply-Alternating Subtract/Add of Packed Double-Precision Floating-Point Values
SMPDefsFlags[NN_vfmsubadd213ps] = false;       // Fused Multiply-Alternating Subtract/Add of Packed Single-Precision Floating-Point Values
SMPDefsFlags[NN_vfmsubadd231pd] = false;       // Fused Multiply-Alternating Subtract/Add of Packed Double-Precision Floating-Point Values
SMPDefsFlags[NN_vfmsubadd231ps] = false;       // Fused Multiply-Alternating Subtract/Add of Packed Single-Precision Floating-Point Values
SMPDefsFlags[NN_vfnmadd132pd] = false;         // Fused Negative Multiply-Add of Packed Double-Precision Floating-Point Values
SMPDefsFlags[NN_vfnmadd132ps] = false;         // Fused Negative Multiply-Add of Packed Single-Precision Floating-Point Values
SMPDefsFlags[NN_vfnmadd132sd] = false;         // Fused Negative Multiply-Add of Scalar Double-Precision Floating-Point Values
SMPDefsFlags[NN_vfnmadd132ss] = false;         // Fused Negative Multiply-Add of Scalar Single-Precision Floating-Point Values
SMPDefsFlags[NN_vfnmadd213pd] = false;         // Fused Negative Multiply-Add of Packed Double-Precision Floating-Point Values
SMPDefsFlags[NN_vfnmadd213ps] = false;         // Fused Negative Multiply-Add of Packed Single-Precision Floating-Point Values
SMPDefsFlags[NN_vfnmadd213sd] = false;         // Fused Negative Multiply-Add of Scalar Double-Precision Floating-Point Values
SMPDefsFlags[NN_vfnmadd213ss] = false;         // Fused Negative Multiply-Add of Scalar Single-Precision Floating-Point Values
SMPDefsFlags[NN_vfnmadd231pd] = false;         // Fused Negative Multiply-Add of Packed Double-Precision Floating-Point Values
SMPDefsFlags[NN_vfnmadd231ps] = false;         // Fused Negative Multiply-Add of Packed Single-Precision Floating-Point Values
SMPDefsFlags[NN_vfnmadd231sd] = false;         // Fused Negative Multiply-Add of Scalar Double-Precision Floating-Point Values
SMPDefsFlags[NN_vfnmadd231ss] = false;         // Fused Negative Multiply-Add of Scalar Single-Precision Floating-Point Values
SMPDefsFlags[NN_vfnmsub132pd] = false;         // Fused Negative Multiply-Subtract of Packed Double-Precision Floating-Point Values
SMPDefsFlags[NN_vfnmsub132ps] = false;         // Fused Negative Multiply-Subtract of Packed Single-Precision Floating-Point Values
SMPDefsFlags[NN_vfnmsub132sd] = false;         // Fused Negative Multiply-Subtract of Scalar Double-Precision Floating-Point Values
SMPDefsFlags[NN_vfnmsub132ss] = false;         // Fused Negative Multiply-Subtract of Scalar Single-Precision Floating-Point Values
SMPDefsFlags[NN_vfnmsub213pd] = false;         // Fused Negative Multiply-Subtract of Packed Double-Precision Floating-Point Values
SMPDefsFlags[NN_vfnmsub213ps] = false;         // Fused Negative Multiply-Subtract of Packed Single-Precision Floating-Point Values
SMPDefsFlags[NN_vfnmsub213sd] = false;         // Fused Negative Multiply-Subtract of Scalar Double-Precision Floating-Point Values
SMPDefsFlags[NN_vfnmsub213ss] = false;         // Fused Negative Multiply-Subtract of Scalar Single-Precision Floating-Point Values
SMPDefsFlags[NN_vfnmsub231pd] = false;         // Fused Negative Multiply-Subtract of Packed Double-Precision Floating-Point Values
SMPDefsFlags[NN_vfnmsub231ps] = false;         // Fused Negative Multiply-Subtract of Packed Single-Precision Floating-Point Values
SMPDefsFlags[NN_vfnmsub231sd] = false;         // Fused Negative Multiply-Subtract of Scalar Double-Precision Floating-Point Values
SMPDefsFlags[NN_vfnmsub231ss] = false;         // Fused Negative Multiply-Subtract of Scalar Single-Precision Floating-Point Values
SMPDefsFlags[NN_vgatherdps] = false;           // Gather Packed SP FP Values Using Signed Dword Indices
SMPDefsFlags[NN_vgatherdpd] = false;           // Gather Packed DP FP Values Using Signed Dword Indices
SMPDefsFlags[NN_vgatherqps] = false;           // Gather Packed SP FP Values Using Signed Qword Indices
SMPDefsFlags[NN_vgatherqpd] = false;           // Gather Packed DP FP Values Using Signed Qword Indices
SMPDefsFlags[NN_vhaddpd] = false;              // Add horizontally packed DP FP numbers
SMPDefsFlags[NN_vhaddps] = false;              // Add horizontally packed SP FP numbers
SMPDefsFlags[NN_vhsubpd] = false;              // Sub horizontally packed DP FP numbers
SMPDefsFlags[NN_vhsubps] = false;              // Sub horizontally packed SP FP numbers
SMPDefsFlags[NN_vinsertf128] = false;          // Insert Packed Floating-Point Values
SMPDefsFlags[NN_vinserti128] = false;          // Insert Packed Integer Values
SMPDefsFlags[NN_vinsertps] = false;            // Insert Packed Single Precision Floating-Point Value
SMPDefsFlags[NN_vlddqu] = false;               // Load Unaligned Packed Integer Values
SMPDefsFlags[NN_vldmxcsr] = false;             // Load Streaming SIMD Extensions Technology Control/Status Register
SMPDefsFlags[NN_vmaskmovdqu] = false;          // Store Selected Bytes of Double Quadword with NT Hint
SMPDefsFlags[NN_vmaskmovpd] = false;           // Conditionally Load Packed Double-Precision Floating-Point Values
SMPDefsFlags[NN_vmaskmovps] = false;           // Conditionally Load Packed Single-Precision Floating-Point Values
SMPDefsFlags[NN_vmaxpd] = false;               // Return Maximum Packed Double-Precision Floating-Point Values
SMPDefsFlags[NN_vmaxps] = false;               // Packed Single-FP Maximum
SMPDefsFlags[NN_vmaxsd] = false;               // Return Maximum Scalar Double-Precision Floating-Point Value
SMPDefsFlags[NN_vmaxss] = false;               // Scalar Single-FP Maximum
SMPDefsFlags[NN_vminpd] = false;               // Return Minimum Packed Double-Precision Floating-Point Values
SMPDefsFlags[NN_vminps] = false;               // Packed Single-FP Minimum
SMPDefsFlags[NN_vminsd] = false;               // Return Minimum Scalar Double-Precision Floating-Point Value
SMPDefsFlags[NN_vminss] = false;               // Scalar Single-FP Minimum
SMPDefsFlags[NN_vmovapd] = false;              // Move Aligned Packed Double-Precision Floating-Point Values
SMPDefsFlags[NN_vmovaps] = false;              // Move Aligned Four Packed Single-FP
SMPDefsFlags[NN_vmovd] = false;                // Move 32 bits
SMPDefsFlags[NN_vmovddup] = false;             // Move One Double-FP and Duplicate
SMPDefsFlags[NN_vmovdqa] = false;              // Move Aligned Double Quadword
SMPDefsFlags[NN_vmovdqu] = false;              // Move Unaligned Double Quadword
SMPDefsFlags[NN_vmovhlps] = false;             // Move High to Low Packed Single-FP
SMPDefsFlags[NN_vmovhpd] = false;              // Move High Packed Double-Precision Floating-Point Values
SMPDefsFlags[NN_vmovhps] = false;              // Move High Packed Single-FP
SMPDefsFlags[NN_vmovlhps] = false;             // Move Low to High Packed Single-FP
SMPDefsFlags[NN_vmovlpd] = false;              // Move Low Packed Double-Precision Floating-Point Values
SMPDefsFlags[NN_vmovlps] = false;              // Move Low Packed Single-FP
SMPDefsFlags[NN_vmovmskpd] = false;            // Extract Packed Double-Precision Floating-Point Sign Mask
SMPDefsFlags[NN_vmovmskps] = false;            // Move Mask to Register
SMPDefsFlags[NN_vmovntdq] = false;             // Store Double Quadword Using Non-Temporal Hint
SMPDefsFlags[NN_vmovntdqa] = false;            // Load Double Quadword Non-Temporal Aligned Hint
SMPDefsFlags[NN_vmovntpd] = false;             // Store Packed Double-Precision Floating-Point Values Using Non-Temporal Hint
SMPDefsFlags[NN_vmovntps] = false;             // Move Aligned Four Packed Single-FP Non Temporal
SMPDefsFlags[NN_vmovntsd] = false;             // Move Non-Temporal Scalar Double-Precision Floating-Point
SMPDefsFlags[NN_vmovntss] = false;             // Move Non-Temporal Scalar Single-Precision Floating-Point
SMPDefsFlags[NN_vmovq] = false;                // Move 64 bits
SMPDefsFlags[NN_vmovsd] = false;               // Move Scalar Double-Precision Floating-Point Values
SMPDefsFlags[NN_vmovshdup] = false;            // Move Packed Single-FP High and Duplicate
SMPDefsFlags[NN_vmovsldup] = false;            // Move Packed Single-FP Low and Duplicate
SMPDefsFlags[NN_vmovss] = false;               // Move Scalar Single-FP
SMPDefsFlags[NN_vmovupd] = false;              // Move Unaligned Packed Double-Precision Floating-Point Values
SMPDefsFlags[NN_vmovups] = false;              // Move Unaligned Four Packed Single-FP
SMPDefsFlags[NN_vmpsadbw] = false;             // Compute Multiple Packed Sums of Absolute Difference
SMPDefsFlags[NN_vmulpd] = false;               // Multiply Packed Double-Precision Floating-Point Values
SMPDefsFlags[NN_vmulps] = false;               // Packed Single-FP Multiply
SMPDefsFlags[NN_vmulsd] = false;               // Multiply Scalar Double-Precision Floating-Point Values
SMPDefsFlags[NN_vmulss] = false;               // Scalar Single-FP Multiply
SMPDefsFlags[NN_vorpd] = false;                // Bitwise Logical OR of Double-Precision Floating-Point Values
SMPDefsFlags[NN_vorps] = false;                // Bitwise Logical OR for Single-FP Data
SMPDefsFlags[NN_vpabsb] = false;               // Packed Absolute Value Byte
SMPDefsFlags[NN_vpabsd] = false;               // Packed Absolute Value Doubleword
SMPDefsFlags[NN_vpabsw] = false;               // Packed Absolute Value Word
SMPDefsFlags[NN_vpackssdw] = false;            // Pack with Signed Saturation (Dword->Word)
SMPDefsFlags[NN_vpacksswb] = false;            // Pack with Signed Saturation (Word->Byte)
SMPDefsFlags[NN_vpackusdw] = false;            // Pack with Unsigned Saturation
SMPDefsFlags[NN_vpackuswb] = false;            // Pack with Unsigned Saturation (Word->Byte)
SMPDefsFlags[NN_vpaddb] = false;               // Packed Add Byte
SMPDefsFlags[NN_vpaddd] = false;               // Packed Add Dword
SMPDefsFlags[NN_vpaddq] = false;               // Add Packed Quadword Integers
SMPDefsFlags[NN_vpaddsb] = false;              // Packed Add with Saturation (Byte)
SMPDefsFlags[NN_vpaddsw] = false;              // Packed Add with Saturation (Word)
SMPDefsFlags[NN_vpaddusb] = false;             // Packed Add Unsigned with Saturation (Byte)
SMPDefsFlags[NN_vpaddusw] = false;             // Packed Add Unsigned with Saturation (Word)
SMPDefsFlags[NN_vpaddw] = false;               // Packed Add Word
SMPDefsFlags[NN_vpalignr] = false;             // Packed Align Right
SMPDefsFlags[NN_vpand] = false;                // Bitwise Logical And
SMPDefsFlags[NN_vpandn] = false;               // Bitwise Logical And Not
SMPDefsFlags[NN_vpavgb] = false;               // Packed Average (Byte)
SMPDefsFlags[NN_vpavgw] = false;               // Packed Average (Word)
SMPDefsFlags[NN_vpblendd] = false;             // Blend Packed Dwords
SMPDefsFlags[NN_vpblendvb] = false;            // Variable Blend Packed Bytes
SMPDefsFlags[NN_vpblendw] = false;             // Blend Packed Words
SMPDefsFlags[NN_vpbroadcastb] = false;         // Broadcast a Byte Integer
SMPDefsFlags[NN_vpbroadcastd] = false;         // Broadcast a Dword Integer
SMPDefsFlags[NN_vpbroadcastq] = false;         // Broadcast a Qword Integer
SMPDefsFlags[NN_vpbroadcastw] = false;         // Broadcast a Word Integer
SMPDefsFlags[NN_vpclmulqdq] = false;           // Carry-Less Multiplication Quadword
SMPDefsFlags[NN_vpcmpeqb] = false;             // Packed Compare for Equal (Byte)
SMPDefsFlags[NN_vpcmpeqd] = false;             // Packed Compare for Equal (Dword)
SMPDefsFlags[NN_vpcmpeqq] = false;             // Compare Packed Qword Data for Equal
SMPDefsFlags[NN_vpcmpeqw] = false;             // Packed Compare for Equal (Word)
SMPDefsFlags[NN_vpcmpestri] = false;           // Packed Compare Explicit Length Strings, Return Index
SMPDefsFlags[NN_vpcmpestrm] = false;           // Packed Compare Explicit Length Strings, Return Mask
SMPDefsFlags[NN_vpcmpgtb] = false;             // Packed Compare for Greater Than (Byte)
SMPDefsFlags[NN_vpcmpgtd] = false;             // Packed Compare for Greater Than (Dword)
SMPDefsFlags[NN_vpcmpgtq] = false;             // Compare Packed Data for Greater Than
SMPDefsFlags[NN_vpcmpgtw] = false;             // Packed Compare for Greater Than (Word)
SMPDefsFlags[NN_vpcmpistri] = false;           // Packed Compare Implicit Length Strings, Return Index
SMPDefsFlags[NN_vpcmpistrm] = false;           // Packed Compare Implicit Length Strings, Return Mask
SMPDefsFlags[NN_vperm2f128] = false;           // Permute Floating-Point Values
SMPDefsFlags[NN_vperm2i128] = false;           // Permute Integer Values
SMPDefsFlags[NN_vpermd] = false;               // Full Doublewords Element Permutation
SMPDefsFlags[NN_vpermilpd] = false;            // Permute Double-Precision Floating-Point Values
SMPDefsFlags[NN_vpermilps] = false;            // Permute Single-Precision Floating-Point Values
SMPDefsFlags[NN_vpermpd] = false;              // Permute Double-Precision Floating-Point Elements
SMPDefsFlags[NN_vpermps] = false;              // Permute Single-Precision Floating-Point Elements
SMPDefsFlags[NN_vpermq] = false;               // Qwords Element Permutation
SMPDefsFlags[NN_vpextrb] = false;              // Extract Byte
SMPDefsFlags[NN_vpextrd] = false;              // Extract Dword
SMPDefsFlags[NN_vpextrq] = false;              // Extract Qword
SMPDefsFlags[NN_vpextrw] = false;              // Extract Word
SMPDefsFlags[NN_vpgatherdd] = false;           // Gather Packed Dword Values Using Signed Dword Indices
SMPDefsFlags[NN_vpgatherdq] = false;           // Gather Packed Qword Values Using Signed Dword Indices
SMPDefsFlags[NN_vpgatherqd] = false;           // Gather Packed Dword Values Using Signed Qword Indices
SMPDefsFlags[NN_vpgatherqq] = false;           // Gather Packed Qword Values Using Signed Qword Indices
SMPDefsFlags[NN_vphaddd] = false;              // Packed Horizontal Add Doubleword
SMPDefsFlags[NN_vphaddsw] = false;          // Packed Horizontal Add and Saturate
SMPDefsFlags[NN_vphaddw] = false;           // Packed Horizontal Add Word
SMPDefsFlags[NN_vphminposuw] = false;       // Packed Horizontal Word Minimum
SMPDefsFlags[NN_vphsubd] = false;           // Packed Horizontal Subtract Doubleword
SMPDefsFlags[NN_vphsubsw] = false;          // Packed Horizontal Subtract and Saturate
SMPDefsFlags[NN_vphsubw] = false;           // Packed Horizontal Subtract Word
SMPDefsFlags[NN_vpinsrb] = false;           // Insert Byte
SMPDefsFlags[NN_vpinsrd] = false;           // Insert Dword
SMPDefsFlags[NN_vpinsrq] = false;           // Insert Qword
SMPDefsFlags[NN_vpinsrw] = false;           // Insert Word
SMPDefsFlags[NN_vpmaddubsw] = false;        // Multiply and Add Packed Signed and Unsigned Bytes
SMPDefsFlags[NN_vpmaddwd] = false;          // Packed Multiply and Add
SMPDefsFlags[NN_vpmaskmovd] = false;        // Conditionally Store Dword Values Using Mask
SMPDefsFlags[NN_vpmaskmovq] = false;        // Conditionally Store Qword Values Using Mask
SMPDefsFlags[NN_vpmaxsb] = false;           // Maximum of Packed Signed Byte Integers
SMPDefsFlags[NN_vpmaxsd] = false;           // Maximum of Packed Signed Dword Integers
SMPDefsFlags[NN_vpmaxsw] = false;           // Packed Signed Integer Word Maximum
SMPDefsFlags[NN_vpmaxub] = false;           // Packed Unsigned Integer Byte Maximum
SMPDefsFlags[NN_vpmaxud] = false;           // Maximum of Packed Unsigned Dword Integers
SMPDefsFlags[NN_vpmaxuw] = false;           // Maximum of Packed Word Integers
SMPDefsFlags[NN_vpminsb] = false;           // Minimum of Packed Signed Byte Integers
SMPDefsFlags[NN_vpminsd] = false;           // Minimum of Packed Signed Dword Integers
SMPDefsFlags[NN_vpminsw] = false;           // Packed Signed Integer Word Minimum
SMPDefsFlags[NN_vpminub] = false;           // Packed Unsigned Integer Byte Minimum
SMPDefsFlags[NN_vpminud] = false;           // Minimum of Packed Unsigned Dword Integers
SMPDefsFlags[NN_vpminuw] = false;           // Minimum of Packed Word Integers
SMPDefsFlags[NN_vpmovmskb] = false;         // Move Byte Mask to Integer
SMPDefsFlags[NN_vpmovsxbd] = false;         // Packed Move with Sign Extend
SMPDefsFlags[NN_vpmovsxbq] = false;         // Packed Move with Sign Extend
SMPDefsFlags[NN_vpmovsxbw] = false;         // Packed Move with Sign Extend
SMPDefsFlags[NN_vpmovsxdq] = false;         // Packed Move with Sign Extend
SMPDefsFlags[NN_vpmovsxwd] = false;         // Packed Move with Sign Extend
SMPDefsFlags[NN_vpmovsxwq] = false;         // Packed Move with Sign Extend
SMPDefsFlags[NN_vpmovzxbd] = false;         // Packed Move with Zero Extend
SMPDefsFlags[NN_vpmovzxbq] = false;         // Packed Move with Zero Extend
SMPDefsFlags[NN_vpmovzxbw] = false;         // Packed Move with Zero Extend
SMPDefsFlags[NN_vpmovzxdq] = false;         // Packed Move with Zero Extend
SMPDefsFlags[NN_vpmovzxwd] = false;         // Packed Move with Zero Extend
SMPDefsFlags[NN_vpmovzxwq] = false;         // Packed Move with Zero Extend
SMPDefsFlags[NN_vpmuldq] = false;           // Multiply Packed Signed Dword Integers
SMPDefsFlags[NN_vpmulhrsw] = false;         // Packed Multiply High with Round and Scale
SMPDefsFlags[NN_vpmulhuw] = false;          // Packed Multiply High Unsigned
SMPDefsFlags[NN_vpmulhw] = false;           // Packed Multiply High
SMPDefsFlags[NN_vpmulld] = false;           // Multiply Packed Signed Dword Integers and Store Low Result
SMPDefsFlags[NN_vpmullw] = false;           // Packed Multiply Low
SMPDefsFlags[NN_vpmuludq] = false;          // Multiply Packed Unsigned Doubleword Integers
SMPDefsFlags[NN_vpor] = false;              // Bitwise Logical Or
SMPDefsFlags[NN_vpsadbw] = false;           // Packed Sum of Absolute Differences
SMPDefsFlags[NN_vpshufb] = false;           // Packed Shuffle Bytes
SMPDefsFlags[NN_vpshufd] = false;           // Shuffle Packed Doublewords
SMPDefsFlags[NN_vpshufhw] = false;          // Shuffle Packed High Words
SMPDefsFlags[NN_vpshuflw] = false;          // Shuffle Packed Low Words
SMPDefsFlags[NN_vpsignb] = false;           // Packed SIGN Byte
SMPDefsFlags[NN_vpsignd] = false;           // Packed SIGN Doubleword
SMPDefsFlags[NN_vpsignw] = false;           // Packed SIGN Word
SMPDefsFlags[NN_vpslld] = false;            // Packed Shift Left Logical (Dword)
SMPDefsFlags[NN_vpslldq] = false;           // Shift Double Quadword Left Logical
SMPDefsFlags[NN_vpsllq] = false;            // Packed Shift Left Logical (Qword)
SMPDefsFlags[NN_vpsllvd] = false;           // Variable Bit Shift Left Logical (Dword)
SMPDefsFlags[NN_vpsllvq] = false;           // Variable Bit Shift Left Logical (Qword)
SMPDefsFlags[NN_vpsllw] = false;            // Packed Shift Left Logical (Word)
SMPDefsFlags[NN_vpsrad] = false;            // Packed Shift Right Arithmetic (Dword)
SMPDefsFlags[NN_vpsravd] = false;           // Variable Bit Shift Right Arithmetic
SMPDefsFlags[NN_vpsraw] = false;            // Packed Shift Right Arithmetic (Word)
SMPDefsFlags[NN_vpsrld] = false;            // Packed Shift Right Logical (Dword)
SMPDefsFlags[NN_vpsrldq] = false;           // Shift Double Quadword Right Logical (Qword)
SMPDefsFlags[NN_vpsrlq] = false;            // Packed Shift Right Logical (Qword)
SMPDefsFlags[NN_vpsrlvd] = false;           // Variable Bit Shift Right Logical (Dword)
SMPDefsFlags[NN_vpsrlvq] = false;           // Variable Bit Shift Right Logical (Qword)
SMPDefsFlags[NN_vpsrlw] = false;            // Packed Shift Right Logical (Word)
SMPDefsFlags[NN_vpsubb] = false;            // Packed Subtract Byte
SMPDefsFlags[NN_vpsubd] = false;            // Packed Subtract Dword
SMPDefsFlags[NN_vpsubq] = false;            // Subtract Packed Quadword Integers
SMPDefsFlags[NN_vpsubsb] = false;           // Packed Subtract with Saturation (Byte)
SMPDefsFlags[NN_vpsubsw] = false;           // Packed Subtract with Saturation (Word)
SMPDefsFlags[NN_vpsubusb] = false;          // Packed Subtract Unsigned with Saturation (Byte)
SMPDefsFlags[NN_vpsubusw] = false;          // Packed Subtract Unsigned with Saturation (Word)
SMPDefsFlags[NN_vpsubw] = false;            // Packed Subtract Word
SMPDefsFlags[NN_vptest] = false;            // Logical Compare
SMPDefsFlags[NN_vpunpckhbw] = false;        // Unpack High Packed Data (Byte->Word)
SMPDefsFlags[NN_vpunpckhdq] = false;        // Unpack High Packed Data (Dword->Qword)
SMPDefsFlags[NN_vpunpckhqdq] = false;       // Unpack High Packed Data (Qword->Xmmword)
SMPDefsFlags[NN_vpunpckhwd] = false;        // Unpack High Packed Data (Word->Dword)
SMPDefsFlags[NN_vpunpcklbw] = false;        // Unpack Low Packed Data (Byte->Word)
SMPDefsFlags[NN_vpunpckldq] = false;        // Unpack Low Packed Data (Dword->Qword)
SMPDefsFlags[NN_vpunpcklqdq] = false;       // Unpack Low Packed Data (Qword->Xmmword)
SMPDefsFlags[NN_vpunpcklwd] = false;        // Unpack Low Packed Data (Word->Dword)
SMPDefsFlags[NN_vpxor] = false;             // Bitwise Logical Exclusive Or
SMPDefsFlags[NN_vrcpps] = false;            // Packed Single-FP Reciprocal
SMPDefsFlags[NN_vrcpss] = false;            // Scalar Single-FP Reciprocal
SMPDefsFlags[NN_vroundpd] = false;          // Round Packed Double Precision Floating-Point Values
SMPDefsFlags[NN_vroundps] = false;          // Round Packed Single Precision Floating-Point Values
SMPDefsFlags[NN_vroundsd] = false;          // Round Scalar Double Precision Floating-Point Values
SMPDefsFlags[NN_vroundss] = false;          // Round Scalar Single Precision Floating-Point Values
SMPDefsFlags[NN_vrsqrtps] = false;          // Packed Single-FP Square Root Reciprocal
SMPDefsFlags[NN_vrsqrtss] = false;          // Scalar Single-FP Square Root Reciprocal
SMPDefsFlags[NN_vshufpd] = false;           // Shuffle Packed Double-Precision Floating-Point Values
SMPDefsFlags[NN_vshufps] = false;           // Shuffle Single-FP
SMPDefsFlags[NN_vsqrtpd] = false;           // Compute Square Roots of Packed Double-Precision Floating-Point Values
SMPDefsFlags[NN_vsqrtps] = false;           // Packed Single-FP Square Root
SMPDefsFlags[NN_vsqrtsd] = false;           // Compute Square Rootof Scalar Double-Precision Floating-Point Value
SMPDefsFlags[NN_vsqrtss] = false;           // Scalar Single-FP Square Root
SMPDefsFlags[NN_vstmxcsr] = false;          // Store Streaming SIMD Extensions Technology Control/Status Register
SMPDefsFlags[NN_vsubpd] = false;            // Subtract Packed Double-Precision Floating-Point Values
SMPDefsFlags[NN_vsubps] = false;            // Packed Single-FP Subtract
SMPDefsFlags[NN_vsubsd] = false;            // Subtract Scalar Double-Precision Floating-Point Values
SMPDefsFlags[NN_vsubss] = false;            // Scalar Single-FP Subtract
SMPDefsFlags[NN_vtestpd] = false;           // Packed Double-Precision Floating-Point Bit Test
SMPDefsFlags[NN_vtestps] = false;           // Packed Single-Precision Floating-Point Bit Test
SMPDefsFlags[NN_vucomisd] = false;          // Unordered Compare Scalar Ordered Double-Precision Floating-Point Values and Set EFLAGS
SMPDefsFlags[NN_vucomiss] = false;          // Scalar Unordered Single-FP Compare and Set EFLAGS
SMPDefsFlags[NN_vunpckhpd] = false;         // Unpack and Interleave High Packed Double-Precision Floating-Point Values
SMPDefsFlags[NN_vunpckhps] = false;         // Unpack High Packed Single-FP Data
SMPDefsFlags[NN_vunpcklpd] = false;         // Unpack and Interleave Low Packed Double-Precision Floating-Point Values
SMPDefsFlags[NN_vunpcklps] = false;         // Unpack Low Packed Single-FP Data
SMPDefsFlags[NN_vxorpd] = false;            // Bitwise Logical OR of Double-Precision Floating-Point Values
SMPDefsFlags[NN_vxorps] = false;            // Bitwise Logical XOR for Single-FP Data
SMPDefsFlags[NN_vzeroall] = false;          // Zero All YMM Registers
SMPDefsFlags[NN_vzeroupper] = false;        // Zero Upper Bits of YMM Registers

// Transactional Synchronization Extensions

SMPDefsFlags[NN_xabort] = false;               // Transaction Abort
SMPDefsFlags[NN_xbegin] = false;               // Transaction Begin
SMPDefsFlags[NN_xend] = false;                 // Transaction End
SMPDefsFlags[NN_xtest] = false;                // Test If In Transactional Execution

// Virtual PC synthetic instructions

SMPDefsFlags[NN_vmgetinfo] = false;            // Virtual PC - Get VM Information
SMPDefsFlags[NN_vmsetinfo] = false;            // Virtual PC - Set VM Information
SMPDefsFlags[NN_vmdxdsbl] = false;             // Virtual PC - Disable Direct Execution
SMPDefsFlags[NN_vmdxenbl] = false;             // Virtual PC - Enable Direct Execution
SMPDefsFlags[NN_vmcpuid] = false;              // Virtual PC - Virtualized CPU Information
SMPDefsFlags[NN_vmhlt] = false;                // Virtual PC - Halt
SMPDefsFlags[NN_vmsplaf] = false;              // Virtual PC - Spin Lock Acquisition Failed
SMPDefsFlags[NN_vmpushfd] = false;             // Virtual PC - Push virtualized flags register
SMPDefsFlags[NN_vmpopfd] = false;              // Virtual PC - Pop virtualized flags register
SMPDefsFlags[NN_vmcli] = false;                // Virtual PC - Clear Interrupt Flag
SMPDefsFlags[NN_vmsti] = false;                // Virtual PC - Set Interrupt Flag
SMPDefsFlags[NN_vmiretd] = false;              // Virtual PC - Return From Interrupt
SMPDefsFlags[NN_vmsgdt] = false;               // Virtual PC - Store Global Descriptor Table
SMPDefsFlags[NN_vmsidt] = false;               // Virtual PC - Store Interrupt Descriptor Table
SMPDefsFlags[NN_vmsldt] = false;               // Virtual PC - Store Local Descriptor Table
SMPDefsFlags[NN_vmstr] = false;                // Virtual PC - Store Task Register
SMPDefsFlags[NN_vmsdte] = false;               // Virtual PC - Store to Descriptor Table Entry
SMPDefsFlags[NN_vpcext] = false;               // Virtual PC - ISA extension

#endif // 599 < IDA_SDK_VERSION

SMPDefsFlags[NN_last] = false;

  return;

} // end InitSMPDefsFlags()

// Initialize the SMPUsesFlags[] array to define how we emit
//   optimizing annotations.
void InitSMPUsesFlags(void) {
	// Default value is false. Few instructions use the flags.
	(void) memset(SMPUsesFlags, false, sizeof(SMPUsesFlags));

SMPUsesFlags[NN_null] = true;            // Unknown Operation
SMPUsesFlags[NN_aaa] = true;                 // ASCII adjust after addition
SMPUsesFlags[NN_aas] = true;				 // ASCII adjust after subtraction
SMPUsesFlags[NN_adc] = true;                 // Add with Carry
SMPUsesFlags[NN_cmps] = true;                // Compare Strings (uses DF direction flag)
SMPUsesFlags[NN_daa] = true;                 // Decimal Adjust AL after Addition
SMPUsesFlags[NN_das] = true;                 // Decimal Adjust AL after Subtraction
SMPUsesFlags[NN_ins] = true;                 // Input Byte(s) from Port to String        
SMPUsesFlags[NN_into] = true;                // Call to Interrupt Procedure if Overflow Flag = 1
SMPUsesFlags[NN_ja] = true;                  // Jump if Above (CF=0 & ZF=0)
SMPUsesFlags[NN_jae] = true;                 // Jump if Above or Equal (CF=0)
SMPUsesFlags[NN_jb] = true;                  // Jump if Below (CF=1)
SMPUsesFlags[NN_jbe] = true;                 // Jump if Below or Equal (CF=1 | ZF=1)
SMPUsesFlags[NN_jc] = true;                  // Jump if Carry (CF=1)
SMPUsesFlags[NN_jcxz] = true;                // Jump if CX is 0
SMPUsesFlags[NN_jecxz] = true;               // Jump if ECX is 0
SMPUsesFlags[NN_jrcxz] = true;               // Jump if RCX is 0
SMPUsesFlags[NN_je] = true;                  // Jump if Equal (ZF=1)
SMPUsesFlags[NN_jg] = true;                  // Jump if Greater (ZF=0 & SF=OF)
SMPUsesFlags[NN_jge] = true;                 // Jump if Greater or Equal (SF=OF)
SMPUsesFlags[NN_jl] = true;                  // Jump if Less (SF!=OF)
SMPUsesFlags[NN_jle] = true;                 // Jump if Less or Equal (ZF=1 | SF!=OF)
SMPUsesFlags[NN_jna] = true;                 // Jump if Not Above (CF=1 | ZF=1)
SMPUsesFlags[NN_jnae] = true;                // Jump if Not Above or Equal (CF=1)
SMPUsesFlags[NN_jnb] = true;                 // Jump if Not Below (CF=0)
SMPUsesFlags[NN_jnbe] = true;                // Jump if Not Below or Equal (CF=0 & ZF=0)
SMPUsesFlags[NN_jnc] = true;                 // Jump if Not Carry (CF=0)
SMPUsesFlags[NN_jne] = true;                 // Jump if Not Equal (ZF=0)
SMPUsesFlags[NN_jng] = true;                 // Jump if Not Greater (ZF=1 | SF!=OF)
SMPUsesFlags[NN_jnge] = true;                // Jump if Not Greater or Equal (ZF=1)
SMPUsesFlags[NN_jnl] = true;                 // Jump if Not Less (SF=OF)
SMPUsesFlags[NN_jnle] = true;                // Jump if Not Less or Equal (ZF=0 & SF=OF)
SMPUsesFlags[NN_jno] = true;                 // Jump if Not Overflow (OF=0)
SMPUsesFlags[NN_jnp] = true;                 // Jump if Not Parity (PF=0)
SMPUsesFlags[NN_jns] = true;                 // Jump if Not Sign (SF=0)
SMPUsesFlags[NN_jnz] = true;                 // Jump if Not Zero (ZF=0)
SMPUsesFlags[NN_jo] = true;                  // Jump if Overflow (OF=1)
SMPUsesFlags[NN_jp] = true;                  // Jump if Parity (PF=1)
SMPUsesFlags[NN_jpe] = true;                 // Jump if Parity Even (PF=1)
SMPUsesFlags[NN_jpo] = true;                 // Jump if Parity Odd  (PF=0)
SMPUsesFlags[NN_js] = true;                  // Jump if Sign (SF=1)
SMPUsesFlags[NN_jz] = true;                  // Jump if Zero (ZF=1)
SMPUsesFlags[NN_lahf] = true;                // Load Flags into AH Register
SMPUsesFlags[NN_lods] = true;                // Load String
SMPUsesFlags[NN_loopwe] = true;              // Loop while CX != 0 and ZF=1
SMPUsesFlags[NN_loope] = true;               // Loop while rCX != 0 and ZF=1
SMPUsesFlags[NN_loopde] = true;              // Loop while ECX != 0 and ZF=1
SMPUsesFlags[NN_loopqe] = true;              // Loop while RCX != 0 and ZF=1
SMPUsesFlags[NN_loopwne] = true;             // Loop while CX != 0 and ZF=0
SMPUsesFlags[NN_loopne] = true;              // Loop while rCX != 0 and ZF=0
SMPUsesFlags[NN_loopdne] = true;             // Loop while ECX != 0 and ZF=0
SMPUsesFlags[NN_loopqne] = true;             // Loop while RCX != 0 and ZF=0
SMPUsesFlags[NN_movs] = true;  		         // Move String (uses flags if REP prefix)
SMPUsesFlags[NN_outs] = true;                // Output Byte(s) to Port
SMPUsesFlags[NN_pushfw] = true;              // Push Flags Register onto the Stack
SMPUsesFlags[NN_pushf] = true;               // Push Flags Register onto the Stack
SMPUsesFlags[NN_pushfd] = true;              // Push Flags Register onto the Stack (use32)
SMPUsesFlags[NN_pushfq] = true;              // Push Flags Register onto the Stack (use64)
SMPUsesFlags[NN_rcl] = true;                 // Rotate Through Carry Left
SMPUsesFlags[NN_rcr] = true;                 // Rotate Through Carry Right
SMPUsesFlags[NN_repe] = true;                // Repeat String Operation while ZF=1
SMPUsesFlags[NN_repne] = true;               // Repeat String Operation while ZF=0
SMPUsesFlags[NN_sbb] = true;                 // Integer Subtraction with Borrow
SMPUsesFlags[NN_scas] = true;                // Compare String (uses DF direction flag)
SMPUsesFlags[NN_seta] = true;                // Set Byte if Above (CF=0 & ZF=0)
SMPUsesFlags[NN_setae] = true;               // Set Byte if Above or Equal (CF=0)
SMPUsesFlags[NN_setb] = true;                // Set Byte if Below (CF=1)
SMPUsesFlags[NN_setbe] = true;               // Set Byte if Below or Equal (CF=1 | ZF=1)
SMPUsesFlags[NN_setc] = true;                // Set Byte if Carry (CF=1)
SMPUsesFlags[NN_sete] = true;                // Set Byte if Equal (ZF=1)
SMPUsesFlags[NN_setg] = true;                // Set Byte if Greater (ZF=0 & SF=OF)
SMPUsesFlags[NN_setge] = true;               // Set Byte if Greater or Equal (SF=OF)
SMPUsesFlags[NN_setl] = true;                // Set Byte if Less (SF!=OF)
SMPUsesFlags[NN_setle] = true;               // Set Byte if Less or Equal (ZF=1 | SF!=OF)
SMPUsesFlags[NN_setna] = true;               // Set Byte if Not Above (CF=1 | ZF=1)
SMPUsesFlags[NN_setnae] = true;              // Set Byte if Not Above or Equal (CF=1)
SMPUsesFlags[NN_setnb] = true;               // Set Byte if Not Below (CF=0)
SMPUsesFlags[NN_setnbe] = true;              // Set Byte if Not Below or Equal (CF=0 & ZF=0)
SMPUsesFlags[NN_setnc] = true;               // Set Byte if Not Carry (CF=0)
SMPUsesFlags[NN_setne] = true;               // Set Byte if Not Equal (ZF=0)
SMPUsesFlags[NN_setng] = true;               // Set Byte if Not Greater (ZF=1 | SF!=OF)
SMPUsesFlags[NN_setnge] = true;              // Set Byte if Not Greater or Equal (ZF=1)
SMPUsesFlags[NN_setnl] = true;               // Set Byte if Not Less (SF=OF)
SMPUsesFlags[NN_setnle] = true;              // Set Byte if Not Less or Equal (ZF=0 & SF=OF)
SMPUsesFlags[NN_setno] = true;               // Set Byte if Not Overflow (OF=0)
SMPUsesFlags[NN_setnp] = true;               // Set Byte if Not Parity (PF=0)
SMPUsesFlags[NN_setns] = true;               // Set Byte if Not Sign (SF=0)
SMPUsesFlags[NN_setnz] = true;               // Set Byte if Not Zero (ZF=0)
SMPUsesFlags[NN_seto] = true;                // Set Byte if Overflow (OF=1)
SMPUsesFlags[NN_setp] = true;                // Set Byte if Parity (PF=1)
SMPUsesFlags[NN_setpe] = true;               // Set Byte if Parity Even (PF=1)
SMPUsesFlags[NN_setpo] = true;               // Set Byte if Parity Odd  (PF=0)
SMPUsesFlags[NN_sets] = true;                // Set Byte if Sign (SF=1)
SMPUsesFlags[NN_setz] = true;                // Set Byte if Zero (ZF=1)
SMPUsesFlags[NN_stos] = true;                // Store String

//
//      486 instructions
//

//
//      Pentium instructions
//

SMPUsesFlags[NN_cpuid] = true;               // Get CPU ID
SMPUsesFlags[NN_cmpxchg8b] = true;           // Compare and Exchange Eight Bytes

//
//      Pentium Pro instructions
//

SMPUsesFlags[NN_cmova] = true;               // Move if Above (CF=0 & ZF=0)
SMPUsesFlags[NN_cmovb] = true;               // Move if Below (CF=1)
SMPUsesFlags[NN_cmovbe] = true;              // Move if Below or Equal (CF=1 | ZF=1)
SMPUsesFlags[NN_cmovg] = true;               // Move if Greater (ZF=0 & SF=OF)
SMPUsesFlags[NN_cmovge] = true;              // Move if Greater or Equal (SF=OF)
SMPUsesFlags[NN_cmovl] = true;               // Move if Less (SF!=OF)
SMPUsesFlags[NN_cmovle] = true;              // Move if Less or Equal (ZF=1 | SF!=OF)
SMPUsesFlags[NN_cmovnb] = true;              // Move if Not Below (CF=0)
SMPUsesFlags[NN_cmovno] = true;              // Move if Not Overflow (OF=0)
SMPUsesFlags[NN_cmovnp] = true;              // Move if Not Parity (PF=0)
SMPUsesFlags[NN_cmovns] = true;              // Move if Not Sign (SF=0)
SMPUsesFlags[NN_cmovnz] = true;              // Move if Not Zero (ZF=0)
SMPUsesFlags[NN_cmovo] = true;               // Move if Overflow (OF=1)
SMPUsesFlags[NN_cmovp] = true;               // Move if Parity (PF=1)
SMPUsesFlags[NN_cmovs] = true;               // Move if Sign (SF=1)
SMPUsesFlags[NN_cmovz] = true;               // Move if Zero (ZF=1)
SMPUsesFlags[NN_fcmovb] = true;              // Floating Move if Below          
SMPUsesFlags[NN_fcmove] = true;              // Floating Move if Equal          
SMPUsesFlags[NN_fcmovbe] = true;             // Floating Move if Below or Equal 
SMPUsesFlags[NN_fcmovu] = true;              // Floating Move if Unordered      
SMPUsesFlags[NN_fcmovnb] = true;             // Floating Move if Not Below      
SMPUsesFlags[NN_fcmovne] = true;             // Floating Move if Not Equal      
SMPUsesFlags[NN_fcmovnbe] = true;            // Floating Move if Not Below or Equal
SMPUsesFlags[NN_fcmovnu] = true;             // Floating Move if Not Unordered     

//
//


//
//      80387 instructions
//


//
//      Instructions added 28.02.96
//

SMPUsesFlags[NN_setalc] = true;              // Set AL to Carry Flag      

//
//      MMX instructions
//


//
//      Undocumented Deschutes processor instructions
//


//      Pentium II instructions


//      3DNow! instructions


//      Pentium III instructions


// Pentium III Pseudo instructions


// AMD K7 instructions

// Revisit AMD if we port to it.

// Undocumented FP instructions (thanks to norbert.juffa@adm.com)

// Pentium 4 instructions



// AMD syscall/sysret instructions  NOTE: not AMD, found in Intel manual

// AMD64 instructions    NOTE: not AMD, found in Intel manual


// New Pentium instructions (SSE3)


// Missing AMD64 instructions  NOTE: also found in Intel manual


// SSE3 instructions


// SSSE3 instructions


// VMX instructions

// Added with x86-64

// Geode LX 3DNow! extensions

// SSE2 pseudoinstructions

// SSSE4.1 instructions

// SSSE4.2 instructions

// AMD SSE4a instructions

// xsave/xrstor instructions

// Intel Safer Mode Extensions (SMX)

// AMD-V Virtualization ISA Extension

// VMX+ instructions

// Intel Atom instructions

// Intel AES instructions

// Carryless multiplication
// Returns modified by operand size prefixes

// RDRAND support

// new GPR instructions

SMPUsesFlags[NN_adcx] = true;                 // Unsigned Integer Addition of Two Operands with Carry Flag
SMPUsesFlags[NN_adox] = true;                 // Unsigned Integer Addition of Two Operands with Overflow Flag

// new AVX instructions

// Transactional Synchronization Extensions

// Virtual PC synthetic instructions

SMPUsesFlags[NN_last] = false;

  return;

} // end InitSMPUsesFlags()


// Initialize the SMPTypeCategory[] array to define how we infer
//   numeric or pointer operand types for optimizing annotations.
void InitTypeCategory(void) {
	// Default category is 0, no type inference without knowing context.
	(void) memset(SMPTypeCategory, 0, sizeof(SMPTypeCategory));
	// Category 1 instructions will need no mmStrata instrumentation
	//  and are irrelevant to our type system, so we do not attempt
	//  to make type inferences. Many of these operate on numeric
	//  operands such as floating point or MMX/SSE registers. mmStrata
	//  assumes that such registers are always numeric, so we do not
	//  need annotations informing mmStrata that FP/MMX/SSE regs are numeric.
	// Category 2 instructions always have a result type of 'n' (number).
	// Category 3 instructions have a result type of 'n' (number)
	//  whenever the second source operand is an operand of type 'n'.
	//  NOTE: MOV is the only current example, and this will take some thought if 
    //   other examples arise.
	// Category 4 instructions have a result type identical to the 1st source operand type.
	//  NOTE: This is currently set for single-operand instructions such as
	//   INC, DEC. As a result, these are treated pretty much as if
	//   they were category 1 instructions, as there is no metadata update,
	//   even if the operand is a memory operand.
	//   If new instructions are added to this category that are not single
	//   operand and do require some updating, the category should be split.
	// Category 5 instructions have a result type identical to the 1st source operand
	//  type whenever the 2nd source operand is an operand of type 'n' & vice versa.
	//  Examples are add, sub, adc, and sbb. There are subtle exceptions
	//  handled in the SMPInstr::EmitTypeAnnotations() method.
	// Category 6 instructions always have a result type of 'p' (pointer).
	// Category 7 instructions are category 2 instructions with two destinations,
	//  such as multiply and divide instructions that affect EDX:EAX. There are
	//  forms of these instructions that only have one destination, so they have
	//  to be distinguished via the operand info.
    // Category 8 instructions implicitly write a numeric value to EDX:EAX, but
    //  EDX and EAX are not listed as operands. RDTSC, RDPMC, RDMSR, and other
    //  instructions that copy machine registers into EDX:EAX are category 8.
	//  Some instructions in category 8 also write to ECX.
    // Category 9 instructions are floating point instructions that either
    //  have a memory destination (treat as category 13) or a FP reg destination
    //  (treat as category 1, as FP regs are always 'n' and ignored in our system).
	// Category 10 instructions have 'n' results if the sources are all 'n';
	//  we cannot infer the type of the result if the sources are of mixed types.
	//  Bitwise OR and AND and LEA (load effective address) are examples.
	// Category 11 instructions need to have their types and locations on the stack
	//  frame tracked, e.g. push and pop instructions. No direct type inference.
	// Category 12 instructions are similar to category 10, except that we do not
	//  output 'n' annotations when all sources are 'n'; rather, the instruction can
	//  be simply ignored (not instrumented by mmStrata) in that case. Conditional
	//  exchange instructions are examples; we do or do not
	//  move a numeric value into a register that already has numeric metadata.
	// Category 13 instructions imply that their memory destination is 'n'.
	// Category 14 instructions imply that their reg or memory source operand is 'n';
	//  if source is not memory, they are category 1 (inferences, but no instrumentation).
	//  There should never be a memory destination (usual destination is fpreg or flags).
	// Category 15 instructions always have 'n' source AND destination operands;
	//  if addressed using indirect or indexed addressing, they are a subset of category 0
	//  (must be instrumented by mmStrata to keep index in bounds). Memory destinations
	//  are common in this category.

	// NOTE: The Memory Monitor SDT needs just three categories, corresponding
	//  to categories 0, 1, and all others. For all categories > 1, the
	//  annotation should tell the SDT exactly how to update its metadata.
	//  For example, a division instruction will write type 'n' (NUM) as
	//  the metadata for result registers EDX:EAX. So, the annotation should
	//  list 'n', EDX, EAX, and a terminator of ZZ. CWD (convert word to
	//  doubleword) should have a list of n EAX ZZ.

SMPTypeCategory[NN_null] = 0;            // Unknown Operation
SMPTypeCategory[NN_aaa] = 2;                 // ASCII Adjust after Addition
SMPTypeCategory[NN_aad] = 2;                 // ASCII Adjust AX before Division
SMPTypeCategory[NN_aam] = 2;                 // ASCII Adjust AX after Multiply
SMPTypeCategory[NN_aas] = 2;                 // ASCII Adjust AL after Subtraction
SMPTypeCategory[NN_adc] = 5;                 // Add with Carry
SMPTypeCategory[NN_add] = 5;                 // Add
SMPTypeCategory[NN_and] = 10;                // Logical AND
SMPTypeCategory[NN_arpl] = 1;                // Adjust RPL Field of Selector
SMPTypeCategory[NN_bound] = 1;               // Check Array Index Against Bounds
SMPTypeCategory[NN_bsf] = 2;                 // Bit Scan Forward
SMPTypeCategory[NN_bsr] = 2;                 // Bit Scan Reverse
SMPTypeCategory[NN_bt] = 10;                  // Bit Test
SMPTypeCategory[NN_btc] = 10;                 // Bit Test and Complement
SMPTypeCategory[NN_btr] = 10;                 // Bit Test and Reset
SMPTypeCategory[NN_bts] = 10;                 // Bit Test and Set
SMPTypeCategory[NN_call] = 1;                // Call Procedure
SMPTypeCategory[NN_callfi] = 1;              // Indirect Call Far Procedure
SMPTypeCategory[NN_callni] = 1;              // Indirect Call Near Procedure
SMPTypeCategory[NN_cbw] = 2;                 // AL -> AX (with sign)            ** No ops?
SMPTypeCategory[NN_cwde] = 2;                // AX -> EAX (with sign)           **
SMPTypeCategory[NN_cdqe] = 2;                // EAX -> RAX (with sign)          **
SMPTypeCategory[NN_clc] = 1;                 // Clear Carry Flag
SMPTypeCategory[NN_cld] = 1;                 // Clear Direction Flag
SMPTypeCategory[NN_cli] = 1;                 // Clear Interrupt Flag
SMPTypeCategory[NN_clts] = 1;                // Clear Task-Switched Flag in CR0
SMPTypeCategory[NN_cmc] = 1;                 // Complement Carry Flag
SMPTypeCategory[NN_cmp] = 1;                 // Compare Two Operands
SMPTypeCategory[NN_cmps] = 14;                // Compare Strings
SMPTypeCategory[NN_cwd] = 2;                 // AX -> DX:AX (with sign)
SMPTypeCategory[NN_cdq] = 2;                 // EAX -> EDX:EAX (with sign)
SMPTypeCategory[NN_cqo] = 2;                 // RAX -> RDX:RAX (with sign)
SMPTypeCategory[NN_daa] = 2;                 // Decimal Adjust AL after Addition
SMPTypeCategory[NN_das] = 2;                 // Decimal Adjust AL after Subtraction
SMPTypeCategory[NN_dec] = 4;                 // Decrement by 1
SMPTypeCategory[NN_div] = 7;                 // Unsigned Divide
SMPTypeCategory[NN_enterw] = 0;              // Make Stack Frame for Procedure Parameters  **
SMPTypeCategory[NN_enter] = 0;               // Make Stack Frame for Procedure Parameters  **
SMPTypeCategory[NN_enterd] = 0;              // Make Stack Frame for Procedure Parameters  **
SMPTypeCategory[NN_enterq] = 0;              // Make Stack Frame for Procedure Parameters  **
SMPTypeCategory[NN_hlt] = 0;                 // Halt
SMPTypeCategory[NN_idiv] = 7;                // Signed Divide
SMPTypeCategory[NN_imul] = 7;                // Signed Multiply
SMPTypeCategory[NN_in] = 0;                  // Input from Port                         **
SMPTypeCategory[NN_inc] = 4;                 // Increment by 1
SMPTypeCategory[NN_ins] = 2;                 // Input Byte(s) from Port to String       **
SMPTypeCategory[NN_int] = 0;                 // Call to Interrupt Procedure
SMPTypeCategory[NN_into] = 0;                // Call to Interrupt Procedure if Overflow Flag = 1
SMPTypeCategory[NN_int3] = 0;                // Trap to Debugger
SMPTypeCategory[NN_iretw] = 0;               // Interrupt Return
SMPTypeCategory[NN_iret] = 0;                // Interrupt Return
SMPTypeCategory[NN_iretd] = 0;               // Interrupt Return (use32)
SMPTypeCategory[NN_iretq] = 0;               // Interrupt Return (use64)
SMPTypeCategory[NN_ja] = 1;                  // Jump if Above (CF=0 & ZF=0)
SMPTypeCategory[NN_jae] = 1;                 // Jump if Above or Equal (CF=0)
SMPTypeCategory[NN_jb] = 1;                  // Jump if Below (CF=1)
SMPTypeCategory[NN_jbe] = 1;                 // Jump if Below or Equal (CF=1 | ZF=1)
SMPTypeCategory[NN_jc] = 1;                  // Jump if Carry (CF=1)
SMPTypeCategory[NN_jcxz] = 1;                // Jump if CX is 0
SMPTypeCategory[NN_jecxz] = 1;               // Jump if ECX is 0
SMPTypeCategory[NN_jrcxz] = 1;               // Jump if RCX is 0
SMPTypeCategory[NN_je] = 1;                  // Jump if Equal (ZF=1)
SMPTypeCategory[NN_jg] = 1;                  // Jump if Greater (ZF=0 & SF=OF)
SMPTypeCategory[NN_jge] = 1;                 // Jump if Greater or Equal (SF=OF)
SMPTypeCategory[NN_jl] = 1;                  // Jump if Less (SF!=OF)
SMPTypeCategory[NN_jle] = 1;                 // Jump if Less or Equal (ZF=1 | SF!=OF)
SMPTypeCategory[NN_jna] = 1;                 // Jump if Not Above (CF=1 | ZF=1)
SMPTypeCategory[NN_jnae] = 1;                // Jump if Not Above or Equal (CF=1)
SMPTypeCategory[NN_jnb] = 1;                 // Jump if Not Below (CF=0)
SMPTypeCategory[NN_jnbe] = 1;                // Jump if Not Below or Equal (CF=0 & ZF=0)
SMPTypeCategory[NN_jnc] = 1;                 // Jump if Not Carry (CF=0)
SMPTypeCategory[NN_jne] = 1;                 // Jump if Not Equal (ZF=0)
SMPTypeCategory[NN_jng] = 1;                 // Jump if Not Greater (ZF=1 | SF!=OF)
SMPTypeCategory[NN_jnge] = 1;                // Jump if Not Greater or Equal (ZF=1)
SMPTypeCategory[NN_jnl] = 1;                 // Jump if Not Less (SF=OF)
SMPTypeCategory[NN_jnle] = 1;                // Jump if Not Less or Equal (ZF=0 & SF=OF)
SMPTypeCategory[NN_jno] = 1;                 // Jump if Not Overflow (OF=0)
SMPTypeCategory[NN_jnp] = 1;                 // Jump if Not Parity (PF=0)
SMPTypeCategory[NN_jns] = 1;                 // Jump if Not Sign (SF=0)
SMPTypeCategory[NN_jnz] = 1;                 // Jump if Not Zero (ZF=0)
SMPTypeCategory[NN_jo] = 1;                  // Jump if Overflow (OF=1)
SMPTypeCategory[NN_jp] = 1;                  // Jump if Parity (PF=1)
SMPTypeCategory[NN_jpe] = 1;                 // Jump if Parity Even (PF=1)
SMPTypeCategory[NN_jpo] = 1;                 // Jump if Parity Odd  (PF=0)
SMPTypeCategory[NN_js] = 1;                  // Jump if Sign (SF=1)
SMPTypeCategory[NN_jz] = 1;                  // Jump if Zero (ZF=1)
SMPTypeCategory[NN_jmp] = 1;                 // Jump
SMPTypeCategory[NN_jmpfi] = 1;               // Indirect Far Jump
SMPTypeCategory[NN_jmpni] = 1;               // Indirect Near Jump
SMPTypeCategory[NN_jmpshort] = 1;            // Jump Short (not used)
SMPTypeCategory[NN_lahf] = 2;                // Load Flags into AH Register
SMPTypeCategory[NN_lar] = 2;                 // Load Access Rights Byte
SMPTypeCategory[NN_lea] = 10;                // Load Effective Address           **
SMPTypeCategory[NN_leavew] = 0;              // High Level Procedure Exit        **
SMPTypeCategory[NN_leave] = 0;               // High Level Procedure Exit        **
SMPTypeCategory[NN_leaved] = 0;              // High Level Procedure Exit        **
SMPTypeCategory[NN_leaveq] = 0;              // High Level Procedure Exit        **
SMPTypeCategory[NN_lgdt] = 0;                // Load Global Descriptor Table Register
SMPTypeCategory[NN_lidt] = 0;                // Load Interrupt Descriptor Table Register
SMPTypeCategory[NN_lgs] = 6;                 // Load Full Pointer to GS:xx
SMPTypeCategory[NN_lss] = 6;                 // Load Full Pointer to SS:xx
SMPTypeCategory[NN_lds] = 6;                 // Load Full Pointer to DS:xx
SMPTypeCategory[NN_les] = 6;                 // Load Full Pointer to ES:xx
SMPTypeCategory[NN_lfs] = 6;                 // Load Full Pointer to FS:xx
SMPTypeCategory[NN_lldt] = 0;                // Load Local Descriptor Table Register
SMPTypeCategory[NN_lmsw] = 1;                // Load Machine Status Word
SMPTypeCategory[NN_lock] = 1;                // Assert LOCK# Signal Prefix
SMPTypeCategory[NN_lods] = 0;                // Load String
SMPTypeCategory[NN_loopw] = 1;               // Loop while ECX != 0
SMPTypeCategory[NN_loop] = 1;                // Loop while CX != 0
SMPTypeCategory[NN_loopd] = 1;               // Loop while ECX != 0
SMPTypeCategory[NN_loopq] = 1;               // Loop while RCX != 0
SMPTypeCategory[NN_loopwe] = 1;              // Loop while CX != 0 and ZF=1
SMPTypeCategory[NN_loope] = 1;               // Loop while rCX != 0 and ZF=1
SMPTypeCategory[NN_loopde] = 1;              // Loop while ECX != 0 and ZF=1
SMPTypeCategory[NN_loopqe] = 1;              // Loop while RCX != 0 and ZF=1
SMPTypeCategory[NN_loopwne] = 1;             // Loop while CX != 0 and ZF=0
SMPTypeCategory[NN_loopne] = 1;              // Loop while rCX != 0 and ZF=0
SMPTypeCategory[NN_loopdne] = 1;             // Loop while ECX != 0 and ZF=0
SMPTypeCategory[NN_loopqne] = 1;             // Loop while RCX != 0 and ZF=0
SMPTypeCategory[NN_lsl] = 6;                 // Load Segment Limit
SMPTypeCategory[NN_ltr] = 1;                 // Load Task Register
SMPTypeCategory[NN_mov] = 3;                 // Move Data
SMPTypeCategory[NN_movsp] = 3;               // Move to/from Special Registers
SMPTypeCategory[NN_movs] = 0;                // Move Byte(s) from String to String
SMPTypeCategory[NN_movsx] = 3;               // Move with Sign-Extend
SMPTypeCategory[NN_movzx] = 3;               // Move with Zero-Extend
SMPTypeCategory[NN_mul] = 7;                 // Unsigned Multiplication of AL or AX
SMPTypeCategory[NN_neg] = 2;                 // Two's Complement Negation   !!!!****!!!! Change this when mmStrata handles NEGATEDPTR type.
SMPTypeCategory[NN_nop] = 1;                 // No Operation
SMPTypeCategory[NN_not] = 2;                 // One's Complement Negation
SMPTypeCategory[NN_or] = 10;                  // Logical Inclusive OR
SMPTypeCategory[NN_out] = 0;                 // Output to Port
SMPTypeCategory[NN_outs] = 0;                // Output Byte(s) to Port
SMPTypeCategory[NN_pop] = 11;                 // Pop a word from the Stack
SMPTypeCategory[NN_popaw] = 11;               // Pop all General Registers
SMPTypeCategory[NN_popa] = 11;                // Pop all General Registers
SMPTypeCategory[NN_popad] = 11;               // Pop all General Registers (use32)
SMPTypeCategory[NN_popaq] = 11;               // Pop all General Registers (use64)
SMPTypeCategory[NN_popfw] = 11;               // Pop Stack into Flags Register         **
SMPTypeCategory[NN_popf] = 11;                // Pop Stack into Flags Register         **
SMPTypeCategory[NN_popfd] = 11;               // Pop Stack into Eflags Register        **
SMPTypeCategory[NN_popfq] = 11;               // Pop Stack into Rflags Register        **
SMPTypeCategory[NN_push] = 11;                // Push Operand onto the Stack
SMPTypeCategory[NN_pushaw] = 11;              // Push all General Registers
SMPTypeCategory[NN_pusha] = 11;               // Push all General Registers
SMPTypeCategory[NN_pushad] = 11;              // Push all General Registers (use32)
SMPTypeCategory[NN_pushaq] = 11;              // Push all General Registers (use64)
SMPTypeCategory[NN_pushfw] = 11;              // Push Flags Register onto the Stack
SMPTypeCategory[NN_pushf] = 11;               // Push Flags Register onto the Stack
SMPTypeCategory[NN_pushfd] = 11;              // Push Flags Register onto the Stack (use32)
SMPTypeCategory[NN_pushfq] = 11;              // Push Flags Register onto the Stack (use64)
SMPTypeCategory[NN_rcl] = 2;                 // Rotate Through Carry Left
SMPTypeCategory[NN_rcr] = 2;                 // Rotate Through Carry Right
SMPTypeCategory[NN_rol] = 2;                 // Rotate Left
SMPTypeCategory[NN_ror] = 2;                 // Rotate Right
SMPTypeCategory[NN_rep] = 0;                 // Repeat String Operation
SMPTypeCategory[NN_repe] = 0;                // Repeat String Operation while ZF=1
SMPTypeCategory[NN_repne] = 0;               // Repeat String Operation while ZF=0
SMPTypeCategory[NN_retn] = 0;                // Return Near from Procedure
SMPTypeCategory[NN_retf] = 0;                // Return Far from Procedure
SMPTypeCategory[NN_sahf] = 14;                // Store AH into Flags Register
SMPTypeCategory[NN_sal] = 2;                 // Shift Arithmetic Left
SMPTypeCategory[NN_sar] = 2;                 // Shift Arithmetic Right
SMPTypeCategory[NN_shl] = 2;                 // Shift Logical Left
SMPTypeCategory[NN_shr] = 2;                 // Shift Logical Right
SMPTypeCategory[NN_sbb] = 5;                 // Integer Subtraction with Borrow
SMPTypeCategory[NN_scas] = 14;                // Compare String
SMPTypeCategory[NN_seta] = 2;                // Set Byte if Above (CF=0 & ZF=0)
SMPTypeCategory[NN_setae] = 2;               // Set Byte if Above or Equal (CF=0)
SMPTypeCategory[NN_setb] = 2;                // Set Byte if Below (CF=1)
SMPTypeCategory[NN_setbe] = 2;               // Set Byte if Below or Equal (CF=1 | ZF=1)
SMPTypeCategory[NN_setc] = 2;                // Set Byte if Carry (CF=1)
SMPTypeCategory[NN_sete] = 2;                // Set Byte if Equal (ZF=1)
SMPTypeCategory[NN_setg] = 2;                // Set Byte if Greater (ZF=0 & SF=OF)
SMPTypeCategory[NN_setge] = 2;               // Set Byte if Greater or Equal (SF=OF)