Newer
Older
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
}
} // end for (OpNum = 0; ...)
// The compare string instruction always uses DS:ESI and ES:EDI as its source
// operands, regardless of the explicit operands given.
if (!Source1Found || !Source2Found) {
if (!Source1Found)
delete RightRT;
else
delete TempRT;
#if SMP_DEBUG_BUILD_RTL
msg("ERROR: Could not find CMP/TEST/SCAS operand at %x for %s\n", this->GetAddr(), this->GetDisasm());
#endif
}
else {
this->RTL.push_back(TempRT);
// Now, create the repeat prefix effects
if (HasRepeatPrefix) { // Must be CMPS or SCAS
// The repeat causes USE and DEF of ECX as a counter
SMPRegTransfer *CounterRT = new SMPRegTransfer;
SMPRegTransfer *RightRT = new SMPRegTransfer;
CounterRT->SetLeftOperand(CountOp);
CounterRT->SetOperator(SMP_ASSIGN);
RightRT->SetLeftOperand(CountOp);
RightRT->SetOperator(SMP_UNARY_NUMERIC_OPERATION);
RightRT->SetRightOperand(VoidOp);
CounterRT->SetRightTree(RightRT);
this->RTL.push_back(CounterRT);
}
if ((NN_cmps == this->SMPcmd.itype) || (NN_scas == this->SMPcmd.itype)) {
// The ESI and EDI registers get incremented or decremented, depending
// on the direction flag DF, for CMPS; only EDI for SCAS.
// This is true with or without a repeat prefix.
op_t ESIOp, EDIOp;
ESIOp.type = o_reg;
ESIOp.reg = R_si;
EDIOp.type = o_reg;
EDIOp.reg = R_di;
if (NN_cmps == this->SMPcmd.itype) {
this->RTL.ExtraKills.push_back(ESIOp);
}
this->RTL.ExtraKills.push_back(EDIOp);
}
}
return (Source1Found && Source2Found);
} // end of SMPInstr::BuildFlagsDestBinaryRTL()
// Build the RTL for a direct or indirect call instruction
bool SMPInstr::BuildCallRTL(void) {
size_t OpNum;
bool SourceFound = false;
op_t VoidOp;
VoidOp.type = o_void;
SMPRegTransfer *TempRT = NULL;
for (OpNum = 0; !SourceFound && (OpNum < UA_MAXOP); ++OpNum) {
op_t TempOp = this->SMPcmd.Operands[OpNum];
if (this->features & DefMacros[OpNum]) { // DEF
if (MDKnownOperandType(TempOp)) {
#if SMP_DEBUG_BUILD_RTL
msg("ERROR: Found destination operand for call at %x : %s\n",
this->GetAddr(), this->GetDisasm());
#endif
}
}
else { // USE
if (MDKnownOperandType(TempOp)) {
SourceFound = true;
TempRT = new SMPRegTransfer;
TempRT->SetLeftOperand(VoidOp);
TempRT->SetOperator(SMP_CALL);
TempRT->SetRightOperand(TempOp);
}
}
} // end for (OpNum = 0; ...)
if (!SourceFound) {
#if SMP_DEBUG_BUILD_RTL
msg("ERROR: Could not find CALL operand at %x for %s\n", this->GetAddr(), this->GetDisasm());
#endif
}
else {
this->RTL.push_back(TempRT);
}
return SourceFound;
} // end of SMPInstr::BuildCallRTL()
// Build the RTL for a return instruction, with or without extra bytes popped off stack
bool SMPInstr::BuildReturnRTL(void) {
size_t OpNum;
uval_t PopBytes = 4; // default: pop off return address
for (OpNum = 0; OpNum < UA_MAXOP; ++OpNum) {
op_t TempOp = this->SMPcmd.Operands[OpNum];
if (this->features & DefMacros[OpNum]) { // DEF
if (MDKnownOperandType(TempOp)) {
#if SMP_DEBUG_BUILD_RTL
msg("ERROR: Found destination operand for RET at %x : %s\n",
this->GetAddr(), this->GetDisasm());
#endif
}
}
else { // USE
if (MDKnownOperandType(TempOp)) {
if (o_imm == TempOp.type) {
PopBytes += TempOp.value;
}
else {
#if SMP_DEBUG_BUILD_RTL
msg("ERROR: Found unexpected operand for return at %x : %s\n",
this->GetAddr(), this->GetDisasm());
#endif
}
}
}
} // end for (OpNum = 0; ...)
this->AddToStackPointer(PopBytes);
return true;
} // end of SMPInstr::BuildReturnRTL()
// Build the RTL for an ENTER instruction
bool SMPInstr::BuildEnterRTL(void) {
// An "ENTER k,0" instruction with allocation k and nesting level 0 does the following:
// push ebp
// mov ebp,esp
// sub esp,k
// This can be modeled by the parallel effects:
// [esp-4] := ebp; ebp := esp - 4; esp := esp - k
// If nesting level is greater than zero, we have a block structure language with
// nested procedures, in which additional frame pointers are saved:
// "ENTER k,n" pushes n additional frame pointers on the stack. We will only model
// the change in the stack pointer here, and not attempt to transfer the display
// pointers. A warning will be issued to the log file. Parallel effects are:
// [esp-4] := ebp; ebp := esp - 4; esp := esp - (k + n*4)
// Note that k and n and immediate values so the final expression can be computed.
size_t OpNum;
uval_t NestingLevel = 0;
uval_t AllocBytes = 0;
bool AllocFound = false;
bool NestingLevelFound = false;
op_t StackPointerOp; // ESP
StackPointerOp.type = o_reg;
StackPointerOp.reg = R_sp;
op_t FramePointerOp; // EBP
FramePointerOp.type = o_reg;
FramePointerOp.reg = R_bp;
op_t Immed4Op; // 4
Immed4Op.type = o_imm;
Immed4Op.value = 4;
Immed4Op.dtyp = dt_dword;
op_t SavedEBP; // [ESP-4], location of saved EBP
SavedEBP.type = o_displ;
SavedEBP.addr = (ea_t) -4;
SavedEBP.dtyp = dt_dword;
SavedEBP.reg = R_sp;
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
for (OpNum = 0; !(AllocFound && NestingLevelFound) && (OpNum < UA_MAXOP); ++OpNum) {
op_t TempOp = this->SMPcmd.Operands[OpNum];
if (this->features & DefMacros[OpNum]) { // DEF
if (MDKnownOperandType(TempOp)) {
#if SMP_DEBUG_BUILD_RTL
msg("ERROR: Found destination operand for ENTER at %x : %s\n",
this->GetAddr(), this->GetDisasm());
#endif
}
}
else { // USE
if (MDKnownOperandType(TempOp)) {
if (o_imm == TempOp.type) {
if (!AllocFound) {
AllocBytes = TempOp.value;
AllocFound = true;
}
else {
NestingLevel = TempOp.value;
NestingLevelFound = true;
}
}
else {
#if SMP_DEBUG_BUILD_RTL
msg("ERROR: Found unexpected operand for ENTER at %x : %s\n",
this->GetAddr(), this->GetDisasm());
#endif
}
}
}
} // end for (OpNum = 0; ...)
if (!AllocFound) {
#if SMP_DEBUG_BUILD_RTL
msg("ERROR: Could not find allocation operand for ENTER at %x : %s\n",
this->GetAddr(), this->GetDisasm());
#endif
}
else {
SMPRegTransfer *TempRT = new SMPRegTransfer;
// Add first effect: [esp-4] := ebp
TempRT->SetLeftOperand(SavedEBP);
TempRT->SetOperator(SMP_ASSIGN);
TempRT->SetRightOperand(FramePointerOp);
this->RTL.push_back(TempRT);
TempRT = NULL;
// Add second effect: ebp := esp - 4
TempRT = new SMPRegTransfer;
TempRT->SetLeftOperand(FramePointerOp);
TempRT->SetOperator(SMP_ASSIGN);
SMPRegTransfer *RightRT = new SMPRegTransfer;
RightRT->SetLeftOperand(StackPointerOp);
RightRT->SetOperator(SMP_SUBTRACT);
RightRT->SetRightOperand(Immed4Op);
TempRT->SetRightTree(RightRT);
this->RTL.push_back(TempRT);
TempRT = NULL;
RightRT = NULL;
// Add final effect on stack pointer
AllocBytes += (4 * NestingLevel);
if (0 != NestingLevel) {
msg("WARNING: Nested procedures in ENTER instruction at %x : %s\n",
this->GetAddr(), this->GetDisasm());
}
this->AddToStackPointer(AllocBytes);
}
return AllocFound;
} // end of SMPInstr::BuildEnterRTL()
// Build the RTL for an LEAVE instruction
bool SMPInstr::BuildLeaveRTL(void) {
// A LEAVE instruction simulates the following instructions:
// mov ebp into esp (deallocates stack frame)
// pop saved ebp off stack into ebp
// We will model these two instructions with three parallel effects:
// esp := ebp; ebp := [ebp+0]; esp = esp + 4;
// There cannot be two definitions of esp in the list of effects, so we do:
// esp := ebp + 4; ebp := [ebp+0] as our two parallel effects
op_t StackPointerOp; // ESP
StackPointerOp.type = o_reg;
StackPointerOp.reg = R_sp;
op_t FramePointerOp; // EBP
FramePointerOp.type = o_reg;
FramePointerOp.reg = R_bp;
op_t Immed4Op; // 4
Immed4Op.type = o_imm;
Immed4Op.value = 4;
Immed4Op.dtyp = dt_dword;
op_t SavedEBP; // [EBP+0]
SavedEBP.type = o_displ;
SavedEBP.addr = 0;
SavedEBP.dtyp = dt_dword;
SavedEBP.reg = R_bp;
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
// Build first effect: ESP := EBP + 4
SMPRegTransfer *TempRT = new SMPRegTransfer;
TempRT->SetLeftOperand(StackPointerOp);
TempRT->SetOperator(SMP_ASSIGN);
SMPRegTransfer *RightRT = new SMPRegTransfer;
RightRT->SetOperator(SMP_ADD);
RightRT->SetLeftOperand(FramePointerOp);
RightRT->SetRightOperand(Immed4Op);
TempRT->SetRightTree(RightRT);
this->RTL.push_back(TempRT);
TempRT = NULL;
RightRT = NULL;
// Build second effect: EBP := [EBP+0]
TempRT = new SMPRegTransfer;
TempRT->SetLeftOperand(FramePointerOp);
TempRT->SetOperator(SMP_ASSIGN);
TempRT->SetRightOperand(SavedEBP);
this->RTL.push_back(TempRT);
TempRT = NULL;
return true;
} // end of SMPInstr::BuildLeaveRTL()
// Build OptCategory 8 RTLs, which set system info into EDX:EAX.
bool SMPInstr::BuildOptType8RTL(void) {
op_t DestOp;
DestOp.type = o_reg;
op_t VoidOp;
VoidOp.type = o_void;
// Create the effect on EDX.
SMPRegTransfer *TempRT = new SMPRegTransfer;
DestOp.reg = R_dx;
TempRT->SetLeftOperand(DestOp);
TempRT->SetOperator(SMP_ASSIGN);
SMPRegTransfer *RightRT = new SMPRegTransfer;
RightRT->SetLeftOperand(VoidOp);
RightRT->SetOperator(SMP_SYSTEM_OPERATION);
RightRT->SetRightOperand(VoidOp);
TempRT->SetRightTree(RightRT);
this->RTL.push_back(TempRT);
// Create the effect on EAX.
TempRT = NULL;
RightRT = NULL;
TempRT = new SMPRegTransfer;
DestOp.reg = R_ax;
TempRT->SetLeftOperand(DestOp);
TempRT->SetOperator(SMP_ASSIGN);
RightRT = new SMPRegTransfer;
RightRT->SetLeftOperand(VoidOp);
RightRT->SetOperator(SMP_SYSTEM_OPERATION);
RightRT->SetRightOperand(VoidOp);
TempRT->SetRightTree(RightRT);
this->RTL.push_back(TempRT);
return true;
} // end of BuildOptType8RTL()
// Build the RTL for a direct or indirect jump instruction
bool SMPInstr::BuildJumpRTL(SMPoperator CondBranchOp) {
size_t OpNum;
bool TargetFound = false;
SMPRegTransfer *TempRT = NULL;
op_t EIPOp, ZeroOp, FlagsOp;
EIPOp.type = o_reg;
EIPOp.reg = R_ip;
ZeroOp.type = o_imm;
ZeroOp.value = 0;
FlagsOp.type = o_reg;
FlagsOp.reg = X86_FLAGS_REG;
op_t CountOp;
CountOp.type = o_reg;
CountOp.reg = R_cx;
for (OpNum = 0; !TargetFound && (OpNum < UA_MAXOP); ++OpNum) {
op_t TempOp = this->SMPcmd.Operands[OpNum];
if (this->features & UseMacros[OpNum]) { // USE
if (MDKnownOperandType(TempOp)) {
TargetFound = true;
TempRT = new SMPRegTransfer;
TempRT->SetLeftOperand(EIPOp);
TempRT->SetOperator(SMP_ASSIGN);
TempRT->SetRightOperand(TempOp);
if (CondBranchOp != SMP_NULL_OPERATOR) {
// Set up a guard expression comparing EFLAGS to zero.
// NOTE: This is imprecise for value-set purposes, but OK for types.
SMPGuard *BranchCondition = new SMPGuard;
BranchCondition->SetOperator(CondBranchOp);
// The conditional jumps on ECX==0 compare to ECX, not EFLAGS.
if ((NN_jcxz <= this->SMPcmd.itype) && (NN_jrcxz >= this->SMPcmd.itype))
BranchCondition->SetLeftOperand(CountOp);
else
BranchCondition->SetLeftOperand(FlagsOp);
BranchCondition->SetRightOperand(ZeroOp);
TempRT->SetGuard(BranchCondition);
}
this->RTL.push_back(TempRT);
}
}
} // end for (OpNum = 0; ...)
#if SMP_DEBUG_BUILD_RTL
if (!TargetFound) {
msg("ERROR: Could not find jump target at %x for %s\n", this->GetAddr(), this->GetDisasm());
}
#endif
return TargetFound;
} // end of SMPInstr::BuildJumpRTL()
// Add to the stack pointer to deallocate stack space, e.g. for a pop instruction.
void SMPInstr::AddToStackPointer(uval_t delta) {
SMPRegTransfer *TempRT = new SMPRegTransfer;
SMPRegTransfer *RightRT = new SMPRegTransfer;
op_t StackOp, DeltaOp;
StackOp.type = o_reg;
StackOp.reg = R_sp;
StackOp.addr = 0;
StackOp.hasSIB = 0;
StackOp.dtyp = dt_dword;
DeltaOp.type = o_imm;
DeltaOp.value = delta;
TempRT->SetLeftOperand(StackOp); // ESP := RightRT
TempRT->SetOperator(SMP_ASSIGN);
RightRT->SetLeftOperand(StackOp); // ESP + delta
RightRT->SetOperator(SMP_ADD);
RightRT->SetRightOperand(DeltaOp);
TempRT->SetRightTree(RightRT);
this->RTL.push_back(TempRT);
return;
} // end of SMPInstr::AddToStackPointer()
// Add to the stack pointer to deallocate stack space, e.g. for a pop instruction.
void SMPInstr::SubFromStackPointer(uval_t delta) {
SMPRegTransfer *TempRT = new SMPRegTransfer;
SMPRegTransfer *RightRT = new SMPRegTransfer;
op_t StackOp, DeltaOp;
StackOp.type = o_reg;
StackOp.reg = R_sp;
StackOp.addr = 0;
StackOp.hasSIB = 0;
StackOp.dtyp = dt_dword;
DeltaOp.type = o_imm;
DeltaOp.value = delta;
TempRT->SetLeftOperand(StackOp); // ESP := RightRT
TempRT->SetOperator(SMP_ASSIGN);
RightRT->SetLeftOperand(StackOp); // ESP - delta
RightRT->SetOperator(SMP_SUBTRACT);
RightRT->SetRightOperand(DeltaOp);
TempRT->SetRightTree(RightRT);
this->RTL.push_back(TempRT);
return;
} // end of SMPInstr::SubFromStackPointer()
#define SMP_FIRST_POP_FLAGS NN_popfw
#define SMP_LAST_POP_FLAGS NN_popfq
#define SMP_FIRST_POP_ALL NN_popaw
#define SMP_LAST_POP_ALL NN_popaq
// Build the RTL for a pop instruction
bool SMPInstr::BuildPopRTL(void) {
size_t OpNum, OpSize;
bool DestFound = false;
SMPRegTransfer *TempRT = NULL;
op_t StackOp, FlagsOp;
StackOp.type = o_displ;
StackOp.reg = R_sp;
StackOp.addr = 0; // [ESP+0]
StackOp.hasSIB = 0;
StackOp.dtyp = dt_dword;
FlagsOp.type = o_reg;
FlagsOp.reg = X86_FLAGS_REG;
FlagsOp.dtyp = dt_dword;
// Handle special cases first.
if ((SMP_FIRST_POP_FLAGS <= this->SMPcmd.itype) && (SMP_LAST_POP_FLAGS >= this->SMPcmd.itype)) {
TempRT = new SMPRegTransfer;
TempRT->SetLeftOperand(FlagsOp);
TempRT->SetOperator(SMP_ASSIGN);
TempRT->SetRightOperand(StackOp);
this->RTL.push_back(TempRT);
TempRT = NULL;
// Now create the stack pointer increment effect.
this->AddToStackPointer(4);
return true;
}
if ((SMP_FIRST_POP_ALL <= this->SMPcmd.itype) && (SMP_LAST_POP_ALL >= this->SMPcmd.itype)) {
// We pop off 7 registers from the 8 that were pushed on the stack.
// The pushed stack pointer is ignored. Instead, the stack pointer value is
// adjusted at the end, per the Intel instruction manuals.
op_t RegOp;
RegOp.type = o_reg;
// EDI comes from [ESP+0]
RegOp.reg = R_di;
StackOp.addr = 0; // [ESP+0]
TempRT = new SMPRegTransfer;
TempRT->SetLeftOperand(RegOp);
TempRT->SetOperator(SMP_ASSIGN);
TempRT->SetRightOperand(StackOp);
this->RTL.push_back(TempRT);
TempRT = NULL;
// ESI comes from [ESP+4]
RegOp.reg = R_si;
StackOp.addr = 4; // [ESP+4]
TempRT = new SMPRegTransfer;
TempRT->SetLeftOperand(RegOp);
TempRT->SetOperator(SMP_ASSIGN);
TempRT->SetRightOperand(StackOp);
this->RTL.push_back(TempRT);
TempRT = NULL;
// EBP comes from [ESP+8]
RegOp.reg = R_bp;
StackOp.addr = 8; // [ESP+8]
TempRT = new SMPRegTransfer;
TempRT->SetLeftOperand(RegOp);
TempRT->SetOperator(SMP_ASSIGN);
TempRT->SetRightOperand(StackOp);
this->RTL.push_back(TempRT);
TempRT = NULL;
// Skip over saved ESP at [ESP+12]
// EBX comes from [ESP+16]
RegOp.reg = R_bx;
StackOp.addr = 16; // [ESP+16]
TempRT = new SMPRegTransfer;
TempRT->SetLeftOperand(RegOp);
TempRT->SetOperator(SMP_ASSIGN);
TempRT->SetRightOperand(StackOp);
this->RTL.push_back(TempRT);
TempRT = NULL;
// EDX comes from [ESP+20]
RegOp.reg = R_dx;
StackOp.addr = 20; // [ESP+20]
TempRT = new SMPRegTransfer;
TempRT->SetLeftOperand(RegOp);
TempRT->SetOperator(SMP_ASSIGN);
TempRT->SetRightOperand(StackOp);
this->RTL.push_back(TempRT);
TempRT = NULL;
// ECX comes from [ESP+24]
RegOp.reg = R_cx;
StackOp.addr = 24; // [ESP+24]
TempRT = new SMPRegTransfer;
TempRT->SetLeftOperand(RegOp);
TempRT->SetOperator(SMP_ASSIGN);
TempRT->SetRightOperand(StackOp);
this->RTL.push_back(TempRT);
TempRT = NULL;
// EAX comes from [ESP+28]
RegOp.reg = R_ax;
StackOp.addr = 28; // [ESP+28]
TempRT = new SMPRegTransfer;
TempRT->SetLeftOperand(RegOp);
TempRT->SetOperator(SMP_ASSIGN);
TempRT->SetRightOperand(StackOp);
this->RTL.push_back(TempRT);
TempRT = NULL;
// Now create the stack pointer increment effect.
this->AddToStackPointer(32);
return true;
} // end for "pop all" instructions
// If we reach this point, we have a simple POP instruction.
for (OpNum = 0; !DestFound && (OpNum < UA_MAXOP); ++OpNum) {
op_t TempOp = this->SMPcmd.Operands[OpNum];
if (this->features & DefMacros[OpNum]) { // DEF
if (MDKnownOperandType(TempOp)) {
DestFound = true;
TempRT = new SMPRegTransfer;
TempRT->SetLeftOperand(TempOp);
TempRT->SetOperator(SMP_ASSIGN);
StackOp.dtyp = TempOp.dtyp; // size of transfer
TempRT->SetRightOperand(StackOp);
this->RTL.push_back(TempRT);
// Now create the stack pointer increment effect.
OpSize = GetOpDataSize(TempOp);
this->AddToStackPointer((uval_t) OpSize);
}
}
} // end for (OpNum = 0; ...)
#if SMP_DEBUG_BUILD_RTL
if (!DestFound) {
msg("ERROR: Could not find pop operand at %x for %s\n", this->GetAddr(), this->GetDisasm());
}
#endif
return DestFound;
} // end of SMPInstr::BuildPopRTL()
#define SMP_FIRST_PUSH_FLAGS NN_pushfw
#define SMP_LAST_PUSH_FLAGS NN_pushfq
#define SMP_FIRST_PUSH_ALL NN_pushaw
#define SMP_LAST_PUSH_ALL NN_pushaq
// Build the RTL for a push instruction
bool SMPInstr::BuildPushRTL(void) {
size_t OpNum, OpSize;
bool SourceFound = false;
SMPRegTransfer *TempRT = NULL;
op_t StackOp, FlagsOp;
StackOp.type = o_displ;
StackOp.reg = R_sp;
StackOp.addr = (ea_t) -4; // [ESP-4]
StackOp.hasSIB = 0;
StackOp.dtyp = dt_dword;
FlagsOp.type = o_reg;
FlagsOp.reg = X86_FLAGS_REG;
FlagsOp.dtyp = dt_dword;
// Handle special cases first.
if ((SMP_FIRST_PUSH_FLAGS <= this->SMPcmd.itype) && (SMP_LAST_PUSH_FLAGS >= this->SMPcmd.itype)) {
TempRT = new SMPRegTransfer;
TempRT->SetRightOperand(FlagsOp);
TempRT->SetOperator(SMP_ASSIGN);
TempRT->SetLeftOperand(StackOp);
this->RTL.push_back(TempRT);
// Now create the stack pointer increment effect.
this->SubFromStackPointer(4);
return true;
}
if ((SMP_FIRST_PUSH_ALL <= this->SMPcmd.itype) && (SMP_LAST_PUSH_ALL >= this->SMPcmd.itype)) {
op_t RegOp;
RegOp.type = o_reg;
// EDI goes to [ESP-32]
RegOp.reg = R_di;
StackOp.addr = (ea_t) -32; // [ESP-32]
TempRT = new SMPRegTransfer;
TempRT->SetRightOperand(RegOp);
TempRT->SetOperator(SMP_ASSIGN);
TempRT->SetLeftOperand(StackOp);
this->RTL.push_back(TempRT);
TempRT = NULL;
// ESI goes to [ESP-28]
RegOp.reg = R_si;
StackOp.addr = (ea_t) -28; // [ESP-28]
TempRT = new SMPRegTransfer;
TempRT->SetRightOperand(RegOp);
TempRT->SetOperator(SMP_ASSIGN);
TempRT->SetLeftOperand(StackOp);
this->RTL.push_back(TempRT);
TempRT = NULL;
// EBP goes to [ESP-24]
RegOp.reg = R_bp;
StackOp.addr = (ea_t) -24; // [ESP-24]
TempRT = new SMPRegTransfer;
TempRT->SetRightOperand(RegOp);
TempRT->SetOperator(SMP_ASSIGN);
TempRT->SetLeftOperand(StackOp);
this->RTL.push_back(TempRT);
TempRT = NULL;
// ESP goes to [ESP-20]
RegOp.reg = R_sp;
StackOp.addr = (ea_t) -20; // [ESP-20]
TempRT = new SMPRegTransfer;
TempRT->SetRightOperand(RegOp);
TempRT->SetOperator(SMP_ASSIGN);
TempRT->SetLeftOperand(StackOp);
this->RTL.push_back(TempRT);
TempRT = NULL;
// EBX goes to [ESP-16]
RegOp.reg = R_bx;
StackOp.addr = (ea_t) -16; // [ESP-16]
TempRT = new SMPRegTransfer;
TempRT->SetRightOperand(RegOp);
TempRT->SetOperator(SMP_ASSIGN);
TempRT->SetLeftOperand(StackOp);
this->RTL.push_back(TempRT);
TempRT = NULL;
// EDX goes to [ESP-12]
RegOp.reg = R_dx;
StackOp.addr = (ea_t) -12; // [ESP-12]
TempRT = new SMPRegTransfer;
TempRT->SetRightOperand(RegOp);
TempRT->SetOperator(SMP_ASSIGN);
TempRT->SetLeftOperand(StackOp);
this->RTL.push_back(TempRT);
TempRT = NULL;
// ECX goes to [ESP-8]
RegOp.reg = R_cx;
StackOp.addr = (ea_t) -8; // [ESP-8]
TempRT = new SMPRegTransfer;
TempRT->SetRightOperand(RegOp);
TempRT->SetOperator(SMP_ASSIGN);
TempRT->SetLeftOperand(StackOp);
this->RTL.push_back(TempRT);
TempRT = NULL;
// EAX goes to [ESP-4]
RegOp.reg = R_ax;
StackOp.addr = (ea_t) -4; // [ESP-4]
TempRT = new SMPRegTransfer;
TempRT->SetRightOperand(RegOp);
TempRT->SetOperator(SMP_ASSIGN);
TempRT->SetLeftOperand(StackOp);
this->RTL.push_back(TempRT);
TempRT = NULL;
// Now create the stack pointer increment effect.
this->SubFromStackPointer(32);
return true;
} // end for "pop all" instructions
// If we reach this point, we have a simple PUSH instruction.
for (OpNum = 0; !SourceFound && (OpNum < UA_MAXOP); ++OpNum) {
op_t TempOp = this->SMPcmd.Operands[OpNum];
if (this->features & UseMacros[OpNum]) { // USE
if (MDKnownOperandType(TempOp)) {
SourceFound = true;
OpSize = GetOpDataSize(TempOp);
TempRT = new SMPRegTransfer;
TempRT->SetRightOperand(TempOp);
TempRT->SetOperator(SMP_ASSIGN);
StackOp.dtyp = TempOp.dtyp; // size of transfer
StackOp.addr = (ea_t) (-((signed int) OpSize));
TempRT->SetLeftOperand(StackOp);
this->RTL.push_back(TempRT);
TempRT = NULL;
// Now create the stack pointer increment effect.
this->SubFromStackPointer((uval_t) OpSize);
#if 0
this->RTL.Dump();
#endif
}
}
} // end for (OpNum = 0; ...)
#if SMP_DEBUG_BUILD_RTL
if (!SourceFound) {
msg("ERROR: Could not find push operand at %x for %s\n", this->GetAddr(), this->GetDisasm());
}
#endif
return SourceFound;
} // end of SMPInstr::BuildPushRTL()
// Build RTL trees from the SMPcmd info.
bool SMPInstr::BuildRTL(void) {
op_t FlagsOp;
FlagsOp.type = o_reg;
FlagsOp.reg = X86_FLAGS_REG;
SMPRegTransfer *NopRT = NULL; // no-op register transfer
// We don't want to explicitly represent the various no-ops except as NULL operations.
// E.g. mov esi,esi should not generate DEF and USE of esi, because esi does not change.
if (this->MDIsNop()) {
NopRT = new SMPRegTransfer;
NopRT->SetOperator(SMP_NULL_OPERATOR);
this->RTL.push_back(NopRT);
NopRT = NULL;
return true;
}
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
switch (this->SMPcmd.itype) {
case NN_aaa: // ASCII Adjust after Addition
case NN_aad: // ASCII Adjust AX before Division
case NN_aam: // ASCII Adjust AX after Multiply
case NN_aas: // ASCII Adjust AL after Subtraction
return this->BuildUnaryRTL(SMP_UNARY_NUMERIC_OPERATION);
case NN_adc: // Add with Carry
return this->BuildBinaryPlusFlagsRTL(SMP_ADD_CARRY);
case NN_add: // Add
return this->BuildBinaryRTL(SMP_ADD);
case NN_and: // Logical AND
return this->BuildBinaryRTL(SMP_BITWISE_AND);
case NN_arpl: // Adjust RPL Field of Selector
case NN_bound: // Check Array Index Against Bounds
return false;
break;
case NN_bsf: // Bit Scan Forward
case NN_bsr: // Bit Scan Reverse
return this->BuildUnary2OpndRTL(SMP_UNARY_NUMERIC_OPERATION);
case NN_bt: // Bit Test
return this->BuildFlagsDestBinaryRTL(SMP_BINARY_NUMERIC_OPERATION);
case NN_btc: // Bit Test and Complement
case NN_btr: // Bit Test and Reset
case NN_bts: // Bit Test and Set
// Has effects on both the carry flag and the first operand
this->RTL.ExtraKills.push_back(FlagsOp);
return this->BuildBinaryRTL(SMP_BINARY_NUMERIC_OPERATION);
case NN_call: // Call Procedure
case NN_callfi: // Indirect Call Far Procedure
case NN_callni: // Indirect Call Near Procedure
return this->BuildCallRTL();
case NN_cbw: // AL -> AX (with sign)
case NN_cwde: // AX -> EAX (with sign)
case NN_cdqe: // EAX -> RAX (with sign)
return this->BuildUnaryRTL(SMP_SIGN_EXTEND);
case NN_clc: // Clear Carry Flag
case NN_cld: // Clear Direction Flag
return this->BuildUnaryRTL(SMP_UNARY_NUMERIC_OPERATION);
case NN_cli: // Clear Interrupt Flag
case NN_clts: // Clear Task-Switched Flag in CR0
// We don't track the interrupt flag or the special registers,
// so we can just consider these to be no-ops.
NopRT = new SMPRegTransfer;
NopRT->SetOperator(SMP_NULL_OPERATOR);
this->RTL.push_back(NopRT);
NopRT = NULL;
return true;
case NN_cmc: // Complement Carry Flag
return this->BuildUnaryRTL(SMP_UNARY_NUMERIC_OPERATION);
case NN_cmp: // Compare Two Operands
return this->BuildFlagsDestBinaryRTL(SMP_S_COMPARE);
case NN_cmps: // Compare Strings
return this->BuildFlagsDestBinaryRTL(SMP_U_COMPARE);
case NN_cwd: // AX -> DX:AX (with sign)
case NN_cdq: // EAX -> EDX:EAX (with sign)
case NN_cqo: // RAX -> RDX:RAX (with sign)
return this->BuildUnary2OpndRTL(SMP_SIGN_EXTEND);
case NN_daa: // Decimal Adjust AL after Addition
case NN_das: // Decimal Adjust AL after Subtraction
return this->BuildUnaryRTL(SMP_UNARY_NUMERIC_OPERATION);
case NN_dec: // Decrement by 1
return this->BuildUnaryRTL(SMP_DECREMENT);
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
case NN_div: // Unsigned Divide
return this->BuildMultiplyDivideRTL(SMP_U_DIVIDE);
case NN_enterw: // Make Stack Frame for Procedure Parameters
case NN_enter: // Make Stack Frame for Procedure Parameters
case NN_enterd: // Make Stack Frame for Procedure Parameters
case NN_enterq: // Make Stack Frame for Procedure Parameters
return this->BuildEnterRTL();
case NN_hlt: // Halt
// Treat as a no-op
NopRT = new SMPRegTransfer;
NopRT->SetOperator(SMP_NULL_OPERATOR);
this->RTL.push_back(NopRT);
NopRT = NULL;
return true;
case NN_idiv: // Signed Divide
return this->BuildMultiplyDivideRTL(SMP_S_DIVIDE);
case NN_imul: // Signed Multiply
return this->BuildMultiplyDivideRTL(SMP_S_MULTIPLY);
case NN_in: // Input from Port
return this->BuildUnary2OpndRTL(SMP_INPUT);
case NN_inc: // Increment by 1
return this->BuildUnaryRTL(SMP_INCREMENT);
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
case NN_ins: // Input Byte(s) from Port to String
return false;
break;
case NN_int: // Call to Interrupt Procedure
case NN_into: // Call to Interrupt Procedure if Overflow Flag = 1
case NN_int3: // Trap to Debugger
return this->BuildCallRTL();
case NN_iretw: // Interrupt Return
case NN_iret: // Interrupt Return
case NN_iretd: // Interrupt Return (use32)
case NN_iretq: // Interrupt Return (use64)
return this->BuildReturnRTL();
case NN_ja: // Jump if Above (CF=0 & ZF=0)
case NN_jae: // Jump if Above or Equal (CF=0)
case NN_jb: // Jump if Below (CF=1)
case NN_jbe: // Jump if Below or Equal (CF=1 | ZF=1)
case NN_jc: // Jump if Carry (CF=1)
return this->BuildJumpRTL(SMP_BINARY_NUMERIC_OPERATION);
case NN_jcxz: // Jump if CX is 0
case NN_jecxz: // Jump if ECX is 0
case NN_jrcxz: // Jump if RCX is 0
return this->BuildJumpRTL(SMP_EQUAL); // special case in BuildJumpRTL()
case NN_je: // Jump if Equal (ZF=1)
return this->BuildJumpRTL(SMP_EQUAL);
case NN_jg: // Jump if Greater (ZF=0 & SF=OF)
return this->BuildJumpRTL(SMP_GREATER_THAN);
case NN_jge: // Jump if Greater or Equal (SF=OF)
return this->BuildJumpRTL(SMP_GREATER_EQUAL);
case NN_jl: // Jump if Less (SF!=OF)
return this->BuildJumpRTL(SMP_LESS_THAN);
case NN_jle: // Jump if Less or Equal (ZF=1 | SF!=OF)
return this->BuildJumpRTL(SMP_LESS_EQUAL);
case NN_jna: // Jump if Not Above (CF=1 | ZF=1)
case NN_jnae: // Jump if Not Above or Equal (CF=1)
case NN_jnb: // Jump if Not Below (CF=0)
case NN_jnbe: // Jump if Not Below or Equal (CF=0 & ZF=0) a.k.a. ja
case NN_jnc: // Jump if Not Carry (CF=0)
return this->BuildJumpRTL(SMP_BINARY_NUMERIC_OPERATION);
case NN_jne: // Jump if Not Equal (ZF=0)
return this->BuildJumpRTL(SMP_NOT_EQUAL);
case NN_jng: // Jump if Not Greater (ZF=1 | SF!=OF) a.k.a. jle
return this->BuildJumpRTL(SMP_LESS_EQUAL);
case NN_jnge: // Jump if Not Greater or Equal (SF != OF) **
return this->BuildJumpRTL(SMP_LESS_THAN);
case NN_jnl: // Jump if Not Less (SF=OF) a.k.a. jge
return this->BuildJumpRTL(SMP_GREATER_EQUAL);
case NN_jnle: // Jump if Not Less or Equal (ZF=0 & SF=OF) a.k.a. jg
return this->BuildJumpRTL(SMP_GREATER_THAN);
case NN_jno: // Jump if Not Overflow (OF=0)
case NN_jnp: // Jump if Not Parity (PF=0)
case NN_jns: // Jump if Not Sign (SF=0)
return this->BuildJumpRTL(SMP_BINARY_NUMERIC_OPERATION);
case NN_jnz: // Jump if Not Zero (ZF=0) a.k.a. jne
return this->BuildJumpRTL(SMP_NOT_EQUAL);
case NN_jo: // Jump if Overflow (OF=1)
case NN_jp: // Jump if Parity (PF=1)
case NN_jpe: // Jump if Parity Even (PF=1)
case NN_jpo: // Jump if Parity Odd (PF=0)
case NN_js: // Jump if Sign (SF=1)
return this->BuildJumpRTL(SMP_BINARY_NUMERIC_OPERATION);
case NN_jz: // Jump if Zero (ZF=1)
return this->BuildJumpRTL(SMP_EQUAL);
case NN_jmp: // Jump
case NN_jmpfi: // Indirect Far Jump
case NN_jmpni: // Indirect Near Jump
case NN_jmpshort: // Jump Short (not used)
return this->BuildJumpRTL(SMP_NULL_OPERATOR);
case NN_lahf: // Load Flags into AH Register
return this->BuildMoveRTL(SMP_NULL_OPERATOR);
case NN_lar: // Load Access Right Byte
return false;
break;
case NN_lea: // Load Effective Address
return this->BuildUnary2OpndRTL(SMP_ADDRESS_OF);
case NN_leavew: // High Level Procedure Exit
case NN_leave: // High Level Procedure Exit
case NN_leaved: // High Level Procedure Exit
case NN_leaveq: // High Level Procedure Exit
return this->BuildLeaveRTL();
case NN_lgdt: // Load Global Descriptor Table Register
case NN_lidt: // Load Interrupt Descriptor Table Register
case NN_lgs: // Load Full Pointer to GS:xx
case NN_lss: // Load Full Pointer to SS:xx
case NN_lds: // Load Full Pointer to DS:xx
case NN_les: // Load Full Pointer to ES:xx
case NN_lfs: // Load Full Pointer to FS:xx
case NN_lldt: // Load Local Descriptor Table Register
case NN_lmsw: // Load Machine Status Word
case NN_lock: // Assert LOCK# Signal Prefix
case NN_lods: // Load String
return false;
break;
case NN_loopw: // Loop while ECX != 0
case NN_loop: // Loop while CX != 0
case NN_loopd: // Loop while ECX != 0
case NN_loopq: // Loop while RCX != 0
case NN_loopwe: // Loop while CX != 0 and ZF=1
case NN_loope: // Loop while rCX != 0 and ZF=1
case NN_loopde: // Loop while ECX != 0 and ZF=1
case NN_loopqe: // Loop while RCX != 0 and ZF=1
case NN_loopwne: // Loop while CX != 0 and ZF=0
case NN_loopne: // Loop while rCX != 0 and ZF=0
case NN_loopdne: // Loop while ECX != 0 and ZF=0
case NN_loopqne: // Loop while RCX != 0 and ZF=0
return false;
break;
case NN_lsl: // Load Segment Limit
case NN_ltr: // Load Task Register
return false;
break;
case NN_mov: // Move Data
case NN_movsp: // Move to/from Special Registers
case NN_movs: // Move Byte(s) from String to String
return this->BuildMoveRTL(SMP_NULL_OPERATOR);
case NN_movsx: // Move with Sign-Extend
return this->BuildUnary2OpndRTL(SMP_SIGN_EXTEND);
case NN_movzx: // Move with Zero-Extend
return this->BuildUnary2OpndRTL(SMP_ZERO_EXTEND);