Newer
Older
#ifdef SMP_DEBUG_FUNC
msg(" %s has shared chunks \n", this->GetFuncName());
#endif
// Figure out the stack frame and related info.
this->SetStackFrameInfo();
}
// We can finally search for stack loads now that UseFP has been fixed by
// GetStackFrameInfo(). Otherwise, we would do this in SMPInstr::Analyze(),
// but the UseFP flag is not ready that early.
list<SMPInstr>::iterator StLoadInstIter = this->Instrs.begin();
while (StLoadInstIter != this->Instrs.end()) {
StLoadInstIter->MDFindLoadFromStack(this->UseFP);
++StLoadInstIter;
}
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
// Audit the call instructions and call targets.
if ((!this->AllCallTargets.empty()) || this->UnresolvedIndirectCalls) {
bool FoundBadCallTarget = false;
vector<ea_t>::iterator CurrTarget = this->AllCallTargets.begin();
while (CurrTarget != this->AllCallTargets.end()) {
if ((this->FirstEA <= *CurrTarget) && (this->FuncInfo.endEA >= *CurrTarget)) {
// Found a call target that is within the function.
FoundBadCallTarget = true;
if (this->FirstEA == *CurrTarget) { // Direct recursion, not a pseudo-jump
this->DirectlyRecursive = true;
}
CurrTarget = this->AllCallTargets.erase(CurrTarget);
}
else {
++CurrTarget;
}
}
if (FoundBadCallTarget) {
// We have to mark the pseudo-call instructions and audit the direct and
// indirect call target vectors.
// Audit direct call targets.
CurrTarget = this->DirectCallTargets.begin();
while (CurrTarget != this->DirectCallTargets.end()) {
if ((this->FirstEA <= *CurrTarget) && (this->FuncInfo.endEA >= *CurrTarget)) {
// Found a call target that is within the function.
CurrTarget = this->DirectCallTargets.erase(CurrTarget);
}
else {
++CurrTarget;
}
}
// Audit indirect call targets.
CurrTarget = this->IndirectCallTargets.begin();
while (CurrTarget != this->IndirectCallTargets.end()) {
if ((this->FirstEA <= *CurrTarget) && (this->FuncInfo.endEA >= *CurrTarget)) {
// Found a call target that is within the function.
CurrTarget = this->IndirectCallTargets.erase(CurrTarget);
}
else {
++CurrTarget;
}
}
// Find calls used as jumps.
list<SMPInstr>::iterator InstIter = this->Instrs.begin();
while (InstIter != this->Instrs.end()) {
SMPitype InstFlow = InstIter->GetDataFlowType();
if ((CALL == InstFlow) || (INDIR_CALL == InstFlow)) {
InstIter->AnalyzeCallInst(this->FirstEA, this->FuncInfo.endEA);
}
++InstIter;
}
} // end if (FoundBadCallTarget)
}
} // end of SMPFunction::Analyze()
// For each instruction, mark the non-flags-reg DEFs as having live
// metadata (mmStrata needs to fetch and track this metadata for this
// instruction) or dead metadata (won't be used as addressing reg, won't
// be stored to memory, won't be returned to caller).
void SMPFunction::AnalyzeMetadataLiveness(void) {
bool changed;
int BaseReg;
int IndexReg;
ushort ScaleFactor;
ea_t offset;
op_t BaseOp, IndexOp, ReturnOp, DefOp, UseOp;
BaseOp.type = o_reg;
IndexOp.type = o_reg;
ReturnOp.type = o_reg;
list<SMPInstr>::iterator CurrInst;
set<DefOrUse, LessDefUse>::iterator CurrDef;
set<DefOrUse, LessDefUse>::iterator CurrUse;
set<DefOrUse, LessDefUse>::iterator NextUse;
int IterationCount = 0;
#if SMP_DEBUG_DATAFLOW
if (0 == strcmp("uw_frame_state_for", this->GetFuncName())) {
#endif
++IterationCount;
bool SafeMemDest;
if (DebugFlag) {
msg("AnalyzeMetadataLiveness iteration count: %d \n", IterationCount);
}
for (CurrInst = this->Instrs.begin(); CurrInst != this->Instrs.end(); ++CurrInst) {
SafeMemDest = false; // true for some SafeFunc instructions
// Skip the SSA marker instruction.
if (NN_fnop == CurrInst->GetCmd().itype)
continue;
if (DebugFlag) {
msg("Inst addr: %x \n", CurrInst->GetAddr());
}
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
CurrDef = CurrInst->GetFirstDef();
while (CurrDef != CurrInst->GetLastDef()) {
if (DEF_METADATA_UNANALYZED == CurrDef->GetMetadataStatus()) {
DefOp = CurrDef->GetOp();
// Handle special registers never used as address regs.
if (DefOp.is_reg(X86_FLAGS_REG)
|| ((o_trreg <= DefOp.type) && (o_xmmreg >= DefOp.type))) {
CurrDef = CurrInst->SetDefMetadata(DefOp,
DEF_METADATA_UNUSED);
changed = true;
}
else if (DefOp.is_reg(R_sp)
|| (this->UseFP && DefOp.is_reg(R_bp))) {
// Stack pointer register DEFs always have live
// metadata, but we don't need to propagate back
// through particular DEF-USE chains.
CurrDef = CurrInst->SetDefMetadata(DefOp, DEF_METADATA_USED);
changed = true;
}
else if ((o_mem <= DefOp.type) && (o_displ >= DefOp.type)) {
// DEF is a memory operand. The addressing registers
// therefore have live metadata, and the memory metadata is live.
// EXCEPTION: If the function is Safe, then direct stack writes
// to local variables (above the outgoing args area of the frame)
// are not live metadata, and there will be no indirect local frame
// writes, by definition of "safe." So, for safe funcs, only
// the o_mem (globals) and indirect writes are live metadata.
if (this->SafeFunc && MDIsStackAccessOpnd(DefOp, this->UseFP)
&& (!this->WritesAboveLocalFrame(DefOp))
&& (!this->WritesToOutgoingArgs(DefOp))) {
++CurrDef;
SafeMemDest = true;
continue;
}
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
CurrDef = CurrInst->SetDefMetadata(DefOp, DEF_METADATA_USED);
changed = true;
MDExtractAddressFields(DefOp, BaseReg, IndexReg,
ScaleFactor, offset);
if (R_none != BaseReg) {
BaseOp.reg = MDCanonicalizeSubReg((ushort) BaseReg);
if (BaseOp.is_reg(R_sp)
|| (this->UseFP && BaseOp.is_reg(R_bp))) {
; // do nothing; DEF handled by case above
}
else {
CurrUse = CurrInst->FindUse(BaseOp);
if (CurrUse == CurrInst->GetLastUse()) {
msg("ERROR: BaseReg %d not in USE list at %x for %s\n",
BaseOp.reg, CurrInst->GetAddr(),
CurrInst->GetDisasm());
}
assert(CurrUse != CurrInst->GetLastUse());
if (this->IsGlobalName(BaseOp)) {
changed |= this->PropagateGlobalMetadata(BaseOp,
DEF_METADATA_USED, CurrUse->GetSSANum());
}
else {
changed |= CurrInst->GetBlock()->PropagateLocalMetadata(BaseOp,
DEF_METADATA_USED, CurrUse->GetSSANum());
}
}
} // end if R_none != BaseReg
if (R_none != IndexReg) {
IndexOp.reg = MDCanonicalizeSubReg((ushort) IndexReg);
if (IndexOp.is_reg(R_sp)
|| (this->UseFP && IndexOp.is_reg(R_bp))) {
; // do nothing; DEF handled by case above
}
else {
CurrUse = CurrInst->FindUse(IndexOp);
if (CurrUse == CurrInst->GetLastUse()) {
msg("ERROR: IndexReg %d not in USE list at %x for %s\n",
IndexOp.reg, CurrInst->GetAddr(),
CurrInst->GetDisasm());
}
assert(CurrUse != CurrInst->GetLastUse());
if (0 != ScaleFactor) {
; // mmStrata knows scaled reg is NUMERIC
// ... its metadata is not fetched
}
else if (this->IsGlobalName(IndexOp)) {
changed |= this->PropagateGlobalMetadata(IndexOp,
DEF_METADATA_USED, CurrUse->GetSSANum());
}
else {
changed |= CurrInst->GetBlock()->PropagateLocalMetadata(IndexOp,
DEF_METADATA_USED, CurrUse->GetSSANum());
}
}
} // end if R_none != IndexReg
} // end if X86_FLAGS_REG .. else if stack ptr ...
} // end if unanalyzed metadata usage
++CurrDef;
} // end while processing DEFs
if ((RETURN == CurrInst->GetDataFlowType())
|| (CALL == CurrInst->GetDataFlowType())
|| (INDIR_CALL == CurrInst->GetDataFlowType())) {
// The EAX and EDX registers can be returned to the caller,
// which might use their metadata. They show up as USEs
// of the return instruction. Some library functions
// pass return values in non-standard ways. e.g. through
// EBX or EDI, so we treat all return regs the same.
// For CALL instructions, values can be passed in caller-saved
// registers, unfortunately, so the metadata is live-in.
CurrUse = CurrInst->GetFirstUse();
while (CurrUse != CurrInst->GetLastUse()) {
NextUse = CurrUse;
++NextUse;
ReturnOp = CurrUse->GetOp();
if (DebugFlag) {
msg("ReturnOp: ");
PrintOperand(ReturnOp);
msg("\n");
}
if ((o_reg == ReturnOp.type) &&
(!ReturnOp.is_reg(X86_FLAGS_REG))) {
if (this->IsGlobalName(ReturnOp)) {
changed |= this->PropagateGlobalMetadata(ReturnOp,
DEF_METADATA_USED, CurrUse->GetSSANum());
}
else {
changed |= CurrInst->GetBlock()->PropagateLocalMetadata(ReturnOp,
DEF_METADATA_USED, CurrUse->GetSSANum());
}
}
CurrUse = NextUse;
} // end while all USEs
} // end if return or call
else if (CurrInst->HasDestMemoryOperand()
// Memory writes cause a lot of metadata usage.
// Addressing registers in the memory destination
// have live metadata used in bounds checking. The
// register being stored to memory could end up being
// used in some other bounds checking, unless we
// have precise memory tracking and know that it
// won't.
// We handled the addressing registers above, so we
// handle the register written to memory here.
// The same exception applies as above: If the destination
// memory operand is not a stack write, then safe functions
// do not need to track the metadata.
if (SafeMemDest) {
continue; // go to next instruction
}
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
CurrUse = CurrInst->GetFirstUse();
while (CurrUse != CurrInst->GetLastUse()) {
NextUse = CurrUse;
++NextUse;
UseOp = CurrUse->GetOp();
// NOTE: **!!** To be less conservative, we
// should propagate less for exchange category
// instructions.
if ((UseOp.type == o_reg) && (!UseOp.is_reg(R_sp))
&& (!(this->UseFP && UseOp.is_reg(R_bp)))
&& (!UseOp.is_reg(X86_FLAGS_REG))) {
if (this->IsGlobalName(UseOp)) {
changed |= this->PropagateGlobalMetadata(UseOp,
DEF_METADATA_USED, CurrUse->GetSSANum());
}
else {
changed |= CurrInst->GetBlock()->PropagateLocalMetadata(UseOp,
DEF_METADATA_USED, CurrUse->GetSSANum());
}
} // end if register
CurrUse = NextUse;
} // end while all USEs
} // end if call or return else if memdest ...
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
} // end for all instructions
} while (changed);
// All DEFs that still have status DEF_METADATA_UNANALYZED can now
// be marked as DEF_METADATA_UNUSED.
for (CurrInst = this->Instrs.begin(); CurrInst != this->Instrs.end(); ++CurrInst) {
if (NN_fnop == CurrInst->GetCmd().itype)
continue;
CurrDef = CurrInst->GetFirstDef();
while (CurrDef != CurrInst->GetLastDef()) {
if (DEF_METADATA_UNANALYZED == CurrDef->GetMetadataStatus()) {
CurrDef = CurrInst->SetDefMetadata(CurrDef->GetOp(),
DEF_METADATA_UNUSED);
assert(CurrDef != CurrInst->GetLastDef());
}
++CurrDef;
}
}
return;
} // end of SMPFunction::AnalyzeMetadataLiveness()
// Propagate the metadata Status for UseOp/SSANum to its global DEF.
// Return true if successful.
bool SMPFunction::PropagateGlobalMetadata(op_t UseOp, SMPMetadataType Status, int SSANum) {
bool changed = false;
if ((0 > SSANum) || (o_void == UseOp.type))
return false;
// Find the DEF of UseOp with SSANum.
bool FoundDef = false;
list<SMPInstr>::iterator CurrInst;
for (CurrInst = this->Instrs.begin(); CurrInst != this->Instrs.end(); ++CurrInst) {
set<DefOrUse, LessDefUse>::iterator CurrDef;
set<DefOrUse, LessDefUse>::iterator CurrUse;
CurrDef = CurrInst->FindDef(UseOp);
if (CurrDef != CurrInst->GetLastDef()) {
if (SSANum == CurrDef->GetSSANum()) {
FoundDef = true;
if (Status != CurrDef->GetMetadataStatus()) {
CurrDef = CurrInst->SetDefMetadata(UseOp, Status);
changed = (CurrDef != CurrInst->GetLastDef());
// If source operand was memory, we have two cases.
// (1) The instruction could be a load, in which
// case we should simply terminate the
// propagation, because the prior DEF of a memory
// location is always considered live metadata
// already, and we do not want to propagate liveness
// to the address regs in the USE list.
// EXCEPTION: For safe funcs, we propagate liveness
// for stack locations.
// (2) We could have an arithmetic operation such
// as reg := reg arithop memsrc. In this case, we
// still do not want to propagate through the memsrc,
// (with the same safe func EXCEPTION),
// but the register is both DEF and USE and we need
// to propagate through the register.
if (CurrInst->HasSourceMemoryOperand()) {
if (this->SafeFunc) {
op_t MemSrcOp = CurrInst->MDGetMemUseOp();
assert(o_void != MemSrcOp.type);
if (MDIsStackAccessOpnd(MemSrcOp, this->UseFP)) {
// We have a SafeFunc stack access. This is
// the EXCEPTION case where we want to
// propagate metadata liveness for a memory
// location.
CurrUse = CurrInst->FindUse(MemSrcOp);
assert(CurrUse != CurrInst->GetLastUse());
if (this->IsGlobalName(MemSrcOp)) {
changed |= this->PropagateGlobalMetadata(MemSrcOp,
Status, CurrUse->GetSSANum());
}
else {
changed |= CurrInst->GetBlock()->PropagateLocalMetadata(MemSrcOp,
Status, CurrUse->GetSSANum());
}
} // end if stack access operand
} // end if SafeFunc
if (3 == CurrInst->GetOptType()) { // move inst
clc5q
committed
break; // load address regs are not live metadata
}
else if ((5 == CurrInst->GetOptType())
|| (NN_and == CurrInst->GetCmd().itype)
|| (NN_or == CurrInst->GetCmd().itype)
|| (NN_xor == CurrInst->GetCmd().itype)) {
// add, subtract, and, or with memsrc
// Find the DEF reg in the USE list.
CurrUse = CurrInst->FindUse(UseOp);
assert(CurrUse != CurrInst->GetLastUse());
changed |= this->PropagateGlobalMetadata(UseOp,
Status, CurrUse->GetSSANum());
break;
}
} // end if memory source
// Now, propagate the metadata status to all the
// non-memory, non-flags-reg, non-special-reg
// (i.e. regular registers) USEs.
CurrUse = CurrInst->GetFirstUse();
while (CurrUse != CurrInst->GetLastUse()) {
op_t UseOp = CurrUse->GetOp();
// NOTE: **!!** To be less conservative, we
// should propagate less for exchange category
// instructions.
if ((UseOp.type == o_reg) && (!UseOp.is_reg(R_sp))
&& (!(this->UseFP && UseOp.is_reg(R_bp)))
&& (!UseOp.is_reg(X86_FLAGS_REG))) {
changed |= this->PropagateGlobalMetadata(UseOp,
Status, CurrUse->GetSSANum());
}
else {
changed |= CurrInst->GetBlock()->PropagateLocalMetadata(UseOp,
Status, CurrUse->GetSSANum());
}
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
}
break;
}
}
}
if (!FoundDef) {
// Check the Phi functions
list<SMPBasicBlock>::iterator CurrBlock;
for (CurrBlock = this->Blocks.begin(); CurrBlock != this->Blocks.end(); ++CurrBlock) {
set<SMPPhiFunction, LessPhi>::iterator DefPhi;
DefPhi = CurrBlock->FindPhi(UseOp);
if (DefPhi != CurrBlock->GetLastPhi()) {
if (SSANum == DefPhi->GetDefSSANum()) {
if (Status != DefPhi->GetDefMetadata()) {
DefPhi = CurrBlock->SetPhiDefMetadata(UseOp, Status);
changed = true;
// If the Phi DEF has live metadata, then the Phi
// USEs each have live metadata. Propagate.
int UseSSANum;
for (size_t index = 0; index < DefPhi->GetPhiListSize(); ++index) {
UseSSANum = DefPhi->GetUseSSANum(index);
// UseSSANum can be -1 in some cases because
// we conservatively make EAX and EDX be USEs
// of all return instructions, when the function
// might have a void return type, making it
// appear as if an uninitialized EAX or EDX
// could make it to the return block.
if (0 <= UseSSANum) {
changed |= this->PropagateGlobalMetadata(UseOp,
Status, UseSSANum);
}
}
}
FoundDef = true;
break;
}
}
} // end for all blocks
} // end if !FoundDef
if (!FoundDef) {
clc5q
committed
msg("ERROR: Could not find DEF of SSANum %d for: ", SSANum);
PrintOperand(UseOp);
msg(" in function %s\n", this->GetFuncName());
}
return changed;
} // end of SMPFunction::PropagateGlobalMetadata()
// Find consecutive DEFs of the same type and mark the second one redundant.
void SMPFunction::FindRedundantMetadata(void) {
list<SMPBasicBlock>::iterator CurrBlock;
bool changed = false;
for (CurrBlock = this->Blocks.begin(); CurrBlock != this->Blocks.end(); ++CurrBlock) {
changed |= CurrBlock->FindRedundantLocalMetadata(this->SafeFunc);
}
return;
} // end of SMPFunction::FindRedundantMetadata()
// Compute SSA form data structures across the function.
void SMPFunction::ComputeSSA(void) {
clc5q
committed
bool DumpFlag = false;
#if SMP_DEBUG_DATAFLOW
DumpFlag |= (0 == strcmp("uw_frame_state_for", this->GetFuncName()));
DebugFlag |= (0 == strcmp("uw_frame_state_for", this->GetFuncName()));
#if 1
if (DumpFlag)
this->Dump();
#endif
if (DebugFlag) msg("Computing IDoms.\n");
if (DebugFlag) msg("Computing Dom frontiers.\n");
this->ComputeDomFrontiers();
if (DebugFlag) msg("Computing global names.\n");
this->ComputeGlobalNames();
if (DebugFlag) msg("Computing blocks defined in.\n");
this->ComputeBlocksDefinedIn();
if (DebugFlag) msg("Inserting Phi functions.\n");
this->InsertPhiFunctions();
if (DebugFlag) msg("Building dominator tree.\n");
this->BuildDominatorTree();
if (DebugFlag) msg("Computing SSA renumbering.\n");
list<SMPBasicBlock>::iterator CurrBlock;
for (CurrBlock = this->Blocks.begin(); CurrBlock != this->Blocks.end(); ++CurrBlock) {
if (DumpFlag) CurrBlock->Dump();
if (DebugFlag) msg("Computing local names.\n");
CurrBlock->SetLocalNames();
if (DebugFlag) msg("Computing local SSA renumbering.\n");
CurrBlock->SSALocalRenumber();
if (DumpFlag) CurrBlock->Dump();
if (DebugFlag) msg("Computing global chains.\n");
CurrBlock->CreateGlobalChains();
#if 1
if (DebugFlag) msg("Marking dead registers.\n");
CurrBlock->MarkDeadRegs();
#endif
}
#if SMP_DEBUG_DATAFLOW
if (DumpFlag)
this->Dump();
#endif
return;
} // end of SMPFunction::ComputeSSA()
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
// Find memory writes (DEFs) with possible aliases
void SMPFunction::AliasAnalysis(void) {
// First task: Mark which memory DEFs MIGHT be aliased because an
// indirect memory write occurs somewhere in the DEF-USE chain.
// Memory DEF-USE chains with no possible aliasing can be subjected
// to type inference and type-based optimizing annotations, e.g. a
// register spill to memory followed by retrieval from spill memory
// followed by NUMERIC USEs should be typed as a continuous NUMERIC
// chain if there is no possibility of aliasing.
// Preparatory step: For each indirect write, mark all def-use chains
// (maintained at the basic block level) that include the indirect
// write instruction. If there are no indirect writes in the function,
// leave all DEFs marked as unaliased and exit.
if (!(this->HasIndirectWrites))
return;
list<SMPBasicBlock>::iterator CurrBlock;
for (CurrBlock = this->Blocks.begin(); CurrBlock != this->Blocks.end(); ++CurrBlock) {
list<list<SMPInstr>::iterator>::iterator CurrInst;
for (CurrInst = CurrBlock->GetFirstInstr();
CurrInst != CurrBlock->GetLastInstr();
++CurrInst) {
if ((*CurrInst)->HasIndirectMemoryWrite()) {
CurrBlock->MarkIndWriteChains((*CurrInst)->GetAddr());
// Until we get true aliasing analysis, any indirect write
// is classified as may-be-aliased.
CurrBlock->SetMaybeAliased(true);
}
} // end for all insts in block
} // end for all blocks in function
// Step one: Find only the memory DEFs to start with.
list<SMPInstr>::iterator CurrInst;
bool FoundIndWrite = false;
for (CurrInst = this->Instrs.begin(); CurrInst != this->Instrs.end(); ++CurrInst) {
if (CurrInst->HasDestMemoryOperand()) {
// Starting with the DEF instruction, traverse the control flow
// until we run into (A) the re-definition of the operand, including
// a re-definition of any of its addressing registers, or (B) an
// indirect write. Return false if condition A terminates the
// search, and true if condition B terminates the search.
this->ResetProcessedBlocks();
op_t MemDefOp = CurrInst->MDGetMemDefOp();
assert(o_void != MemDefOp.type);
set<DefOrUse, LessDefUse>::iterator CurrMemDef = CurrInst->FindDef(MemDefOp);
assert(CurrMemDef != CurrInst->GetLastDef());
int SSANum = CurrMemDef->GetSSANum();
FoundIndWrite = this->FindPossibleChainAlias(CurrInst, MemDefOp, SSANum);
if (FoundIndWrite) {
// Mark the DEF as aliased.
CurrMemDef = CurrInst->SetDefIndWrite(CurrMemDef->GetOp(), true);
break; // Don't waste time after first alias found
}
} // end if inst has dest memory operand
} // end for all instructions
return;
} // end of SMPFunction::AliasAnalysis()
// Does the DefOp DEF_USE chain have an indirect mem write starting at CurrInst?
bool SMPFunction::FindPossibleChainAlias(list<SMPInstr>::iterator CurrInst, op_t DefOp, int SSANum) {
bool DebugFlag = false;
if (0 == strcmp("sdissect", this->GetFuncName())) {
// Next line is just a good place to set a break point.
DebugFlag = true;
}
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
// Starting with the DEF instruction, traverse the control flow
// until we run into (A) the re-definition of the operand, including
// a re-definition of any of its addressing registers, or (B) an
// indirect write. Return false if condition A terminates the
// search, and true if condition B terminates the search.
SMPBasicBlock *CurrBlock = CurrInst->GetBlock();
if (!(CurrBlock->IsProcessed())) {
CurrBlock->SetProcessed(true);
}
else
return false; // block already processed
// Proceed by cases:
ea_t DefAddr = CurrInst->GetAddr();
// Case 1: Local name. Return the IndWrite flag for the local Def-Use
// chain begun by CurrInst.
if (CurrBlock->IsLocalName(DefOp)) {
return CurrBlock->GetLocalDUChainIndWrite(DefOp, SSANum);
}
// Case 2: Global name.
// Case 2A: If Def-Use chain within this block for this memory operand
// has its IndWrite flag set to true, then stop and return true.
else if (CurrBlock->GetGlobalDUChainIndWrite(DefOp, DefAddr)) {
return true;
}
// Case 2B: Else if Def-Use chain is not the last chain in this block
// for this operand, then there must be a later redefinition of the
// memory operand (with new SSA number assigned) later in this block.
// Because we did not fall into case 2A, we know there is no IndWrite
// within the current memory operand's chain, so we return false.
else if (CurrBlock->IsLastGlobalChain(DefOp, DefAddr)) {
return false;
}
// Case 2C: Else if current memory operand is NOT LiveOut, even though
// this is the last def-use chain in the block, then there is no more
// traversing of the control flow graph to be done. The chain has ended
// without encountering an IndWrite, so return false.
else if (!(CurrBlock->IsLiveOut(DefOp))) {
return false;
}
// Case 2D: We have passed all previous checks, so we must have a memory
// operand that reaches the end of the block without encountering an
// IndWrite and is LiveOut. Its may-alias status will be determined by
// following the control flow graph for all successor blocks and examining
// the def-use chains in those blocks.
list<list<SMPBasicBlock>::iterator>::iterator SuccBlock;
SuccBlock = CurrBlock->GetFirstSucc();
bool FoundAliasedWrite = false;
FoundAliasedWrite = this->FindChainAliasHelper((*SuccBlock), DefOp);
++SuccBlock;
} while (!FoundAliasedWrite && (SuccBlock != CurrBlock->GetLastSucc()));
return FoundAliasedWrite;
} // end of SMPFunction::FindPossibleChainAlias()
// recursive helper for global DU-chains that traverse CFG
bool SMPFunction::FindChainAliasHelper(list<SMPBasicBlock>::iterator CurrBlock, op_t DefOp) {
bool DebugFlag = false;
if (0 == strcmp("mem2chunk_check", this->GetFuncName())) {
// Next line is just a good place to set a break point.
DebugFlag = true;
}
if (!(CurrBlock->IsProcessed())) {
CurrBlock->SetProcessed(true);
}
else
return false; // block already processed
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
// The LVA sets can be used to decide whether it is possible that
// the incoming DU chain overlaps a may-alias write. We can express
// the decision making in a truth table:
//
// Case # LiveIn? Killed? AliasedWrite in block? Action to take
// ------- ------- ------- ---------------------- --------------
// 1 N N N return false
// 2 N N Y return false
// 3 N Y N return false
// 4 N Y Y return false
// 5 Y N N recurse into successors
// 6 Y N Y return true
// 7 Y Y N return false
// 8 Y Y Y check location of aliased write
//
// In the last case, if there is an aliased write before the
// incoming DEF is killed and after it is used, then the
// incoming DU chain overlaps an aliased write, otherwise
// it does not.
// If not LiveIn, incoming DU chain does not run through this block
// at all, so return false.
if (!(CurrBlock->IsLiveIn(DefOp)))
return false; // cases 1-4
bool killed = CurrBlock->IsVarKill(DefOp);
bool BlockHasAliasedWrite = CurrBlock->MaybeAliasedWrite();
if (BlockHasAliasedWrite) {
// If DefOp is LiveIn and is not killed, then any aliased
// write in the block overlaps the incoming DU chain.
if (!killed) {
return true; // case 6
}
// If DefOp is LiveIn and is killed, then the location
// of the aliased write is the determining factor.
else {
// Incoming global DU chains get a new global DU chain
// built within the block with a pseudo-DefAddr of
// one byte before the first address of the block.
ea_t PseudoDefAddr = CurrBlock->GetFirstAddr() - 1;
return CurrBlock->GetGlobalDUChainIndWrite(DefOp, PseudoDefAddr); // case 8
}
else {
// If killed, no aliased write, then cannot overlap an aliased write.
if (killed)
return false; // case 7
else {
// Need to recurse into all successors, because we passed through
// the block without seeing an aliased write and without killing
// the DefOp.
list<list<SMPBasicBlock>::iterator>::iterator SuccBlock;
SuccBlock = CurrBlock->GetFirstSucc();
bool FoundAliasedWrite = false;
while (!FoundAliasedWrite && (SuccBlock != CurrBlock->GetLastSucc())) {
FoundAliasedWrite = this->FindChainAliasHelper((*SuccBlock), DefOp);
++SuccBlock;
};
if (DebugFlag) {
msg("FindChainAliasHelper is returning %d\n", FoundAliasedWrite);
}
return FoundAliasedWrite;
}
assert(false); // statement should be unreachable
return false;
} // end of SMPFunction::FindChainAliasHelper()
// Link basic blocks to their predecessors and successors, and build the map
// of instruction addresses to basic blocks.
void SMPFunction::SetLinks(void) {
list<SMPBasicBlock>::iterator CurrBlock;
#if SMP_DEBUG_DATAFLOW_VERBOSE
msg("SetLinks called for %s\n", this->GetFuncName());
#endif
// First, set up the map of instructions to basic blocks.
for (CurrBlock = this->Blocks.begin(); CurrBlock != this->Blocks.end(); ++CurrBlock) {
list<list<SMPInstr>::iterator>::iterator CurrInst;
for (CurrInst = CurrBlock->GetFirstInstr();
CurrInst != CurrBlock->GetLastInstr();
++CurrInst) {
pair<ea_t, list<SMPBasicBlock>::iterator> MapItem((*CurrInst)->GetAddr(),CurrBlock);
InstBlockMap.insert(MapItem);
}
}
#if SMP_DEBUG_DATAFLOW_VERBOSE
msg("SetLinks finished mapping: %s\n", this->GetFuncName());
#endif
// Next, set successors of each basic block, also setting up the predecessors in the
// process.
for (CurrBlock = this->Blocks.begin(); CurrBlock != this->Blocks.end(); ++CurrBlock) {
list<SMPInstr>::iterator CurrInst = *(--(CurrBlock->GetLastInstr()));
clc5q
committed
bool CondTailCall = false;
if (CurrBlock->HasReturn()) {
if (!(CurrInst->IsCondTailCall())) {
// We either have a return instruction or an unconditional
// tail call instruction. We don't want to link to the
// tail call target, and there is no link for a return
continue;
}
else {
// We have a conditional tail call. We don't want to
// link to the tail call target, but we do want fall
// through to the next instruction.
CondTailCall = true;
}
}
// Last instruction in block; set successors
bool CallFlag = (CALL == CurrInst->GetDataFlowType());
bool IndirCallFlag = (INDIR_CALL == CurrInst->GetDataFlowType());
clc5q
committed
bool TailCallFlag = CondTailCall && CurrInst->IsCondTailCall();
bool IndirJumpFlag = (INDIR_JUMP == CurrInst->GetDataFlowType());
bool LinkedToTarget = false;
for (bool ok = CurrXrefs.first_from(CurrInst->GetAddr(), XREF_ALL);
ok;
ok = CurrXrefs.next_from()) {
if ((CurrXrefs.to != 0) && (CurrXrefs.iscode)) {
// Found a code target, with its address in CurrXrefs.to
if ((CallFlag || IndirCallFlag || TailCallFlag)
clc5q
committed
&& (CurrXrefs.to != (CurrInst->GetAddr() + CurrInst->GetCmd().size))) {
// A call instruction will have two targets: the fall through to the
// next instruction, and the called function. We want to link to the
// fall-through instruction, but not to the called function.
// Some blocks end with a call just because the fall-through instruction
// is a jump target from elsewhere.
continue;
}
map<ea_t, list<SMPBasicBlock>::iterator>::iterator MapEntry;
MapEntry = this->InstBlockMap.find(CurrXrefs.to);
if (MapEntry == this->InstBlockMap.end()) {
msg("WARNING: addr %x not found in map for %s\n", CurrXrefs.to,
this->GetFuncName());
msg(" Referenced from %s\n", CurrInst->GetDisasm());
}
else {
list<SMPBasicBlock>::iterator Target = MapEntry->second;
// Make target block a successor of current block.
CurrBlock->LinkToSucc(Target);
// Make current block a predecessor of target block.
Target->LinkToPred(CurrBlock);
LinkedToTarget = true;
#if SMP_USE_SWITCH_TABLE_INFO
if (IndirJumpFlag) {
msg("Switch table link: jump at %x target at %x\n",
CurrInst->GetAddr(), CurrXrefs.to);
}
}
} // end for all xrefs
if (IndirJumpFlag && (!LinkedToTarget)) {
this->UnresolvedIndirectJumps = true;
msg("WARNING: Unresolved indirect jump at %x\n", CurrInst->GetAddr());
}
else if (IndirCallFlag && (!LinkedToTarget)) {
this->UnresolvedIndirectCalls = true;
msg("WARNING: Unresolved indirect call at %x\n", CurrInst->GetAddr());
} // end for all blocks
// If we have any blocks that are all no-ops and have no predecessors, remove those
// blocks. They are dead and make the CFG no longer a lattice. Any blocks that have
// no predecessors but are not all no-ops should also be removed with a different
// log message.
// NOTE: Prior to construction of hell nodes in functions with unresolved indirect jumps,
// we cannot conclude that a block with no predecessors is unreachable. Also, the block
// order might be such that removal of a block makes an already processed block
// unreachable, so we have to iterate until there are no more changes.
// NOTE: An odd new gcc recursion optimization uses indirect calls within the function, so
// they can behave like indirect jumps.
#if SMP_USE_SWITCH_TABLE_INFO
if (!(this->HasUnresolvedIndirectJumps() || this->HasUnresolvedIndirectCalls())) {
if (!(this->HasIndirectJumps() || this->HasIndirectCalls())) {
bool changed;
bool NoPredecessors;
bool OnlyPredIsItself;
list<list<SMPBasicBlock>::iterator>::iterator CurrPred;
do {
changed = false;
CurrBlock = this->Blocks.begin();
++CurrBlock; // don't delete the top block, no matter what.
while (CurrBlock != this->Blocks.end()) {
OnlyPredIsItself = false;
CurrPred = CurrBlock->GetFirstPred();
NoPredecessors = (CurrPred == CurrBlock->GetLastPred());
if (!NoPredecessors) {
if ((*CurrPred)->GetFirstAddr() == CurrBlock->GetFirstAddr()) { // self-recursion
++CurrPred; // any more preds besides itself?
OnlyPredIsItself = (CurrPred == CurrBlock->GetLastPred());
// Only predecessor was the self-recursion if no more preds
}
}
if (NoPredecessors || OnlyPredIsItself) {
if (CurrBlock->AllNops())
msg("Removing all nops block at %x\n", CurrBlock->GetFirstAddr());
else
msg("Removing block with no predecessors at %x\n", CurrBlock->GetFirstAddr());
// Remove this block from the predecessors list of its successors.
list<list<SMPBasicBlock>::iterator>::iterator SuccIter;
ea_t TempAddr = CurrBlock->GetFirstAddr();
for (SuccIter = CurrBlock->GetFirstSucc(); SuccIter != CurrBlock->GetLastSucc(); ++SuccIter) {
(*SuccIter)->ErasePred(TempAddr);
}
// Remove the unreachable instructions from the function inst list.
list<list<SMPInstr>::iterator>::iterator InstIter;
for (InstIter = CurrBlock->GetFirstInstr(); InstIter != CurrBlock->GetLastInstr(); ++InstIter) {
list<SMPInstr>::iterator DummyIter = this->Instrs.erase(*InstIter);
}
// Finally, remove the block from the blocks list.
CurrBlock = this->Blocks.erase(CurrBlock);
this->BlockCount -= 1;
changed = true;
}
else
++CurrBlock;
} // end while all blocks after the first one
} while (changed);
} // end if not indirect jumps
return;
} // end of SMPFunction::SetLinks()
// Number all basic blocks in reverse postorder (RPO) and set RPOBlocks vector to
// access them.
void SMPFunction::RPONumberBlocks(void) {
#if SMP_DEBUG_DATAFLOW
clc5q
committed
bool DebugFlag = false;
DebugFlag = (0 == strcmp("uw_frame_state_for", this->GetFuncName()));
if (DebugFlag) msg("Entered RPONumberBlocks\n");
#endif
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
int CurrNum = 0;
list<list<SMPBasicBlock>::iterator> WorkList;
// Number the first block with 0.
list<SMPBasicBlock>::iterator CurrBlock = this->Blocks.begin();
#if 0
if (this->RPOBlocks.capacity() <= (size_t) this->BlockCount) {
msg("Reserving %d RPOBlocks old value: %d\n", 2+this->BlockCount, this->RPOBlocks.capacity());
this->RPOBlocks.reserve(2 + this->BlockCount);
this->RPOBlocks.assign(2 + this->BlockCount, this->Blocks.end());
}
#endif
CurrBlock->SetNumber(CurrNum);
this->RPOBlocks.push_back(CurrBlock);
++CurrNum;
// Push the first block's successors onto the work list.
list<list<SMPBasicBlock>::iterator>::iterator CurrSucc = CurrBlock->GetFirstSucc();
while (CurrSucc != CurrBlock->GetLastSucc()) {
WorkList.push_back(*CurrSucc);
++CurrSucc;
}
// Use the WorkList to iterate through all blocks in the function
list<list<SMPBasicBlock>::iterator>::iterator CurrListItem = WorkList.begin();
bool change;
while (!WorkList.empty()) {
change = false;
while (CurrListItem != WorkList.end()) {
if ((*CurrListItem)->GetNumber() != SMP_BLOCKNUM_UNINIT) {
// Duplicates get pushed onto the WorkList because a block
// can be the successor of multiple other blocks. If it is
// already numbered, it is a duplicate and can be removed
// from the list.
CurrListItem = WorkList.erase(CurrListItem);
change = true;
continue;
}
if ((*CurrListItem)->AllPredecessorsNumbered()) {
// Ready to be numbered.
(*CurrListItem)->SetNumber(CurrNum);
#if 0
msg("Set RPO number %d\n", CurrNum);
if (DebugFlag && (7 == CurrNum))
this->Dump();
#endif
this->RPOBlocks.push_back(*CurrListItem);
++CurrNum;
change = true;
// Push its unnumbered successors onto the work list.
CurrSucc = (*CurrListItem)->GetFirstSucc();
while (CurrSucc != (*CurrListItem)->GetLastSucc()) {
if ((*CurrSucc)->GetNumber() == SMP_BLOCKNUM_UNINIT)
WorkList.push_back(*CurrSucc);
++CurrSucc;
}
CurrListItem = WorkList.erase(CurrListItem);
}
else {
++CurrListItem;
}
} // end while (CurrListItem != WorkList.end())
if (change) {
// Reset CurrListItem to beginning of work list for next iteration.
CurrListItem = WorkList.begin();
}
else {
// Loops can cause us to not be able to find a WorkList item that has
// all predecessors numbered. Take the WorkList item with the lowest address
// and number it so we can proceed.
CurrListItem = WorkList.begin();
ea_t LowAddr = (*CurrListItem)->GetFirstAddr();
list<list<SMPBasicBlock>::iterator>::iterator SaveItem = CurrListItem;
++CurrListItem;
while (CurrListItem != WorkList.end()) {
if (LowAddr > (*CurrListItem)->GetFirstAddr()) {
SaveItem = CurrListItem;
LowAddr = (*CurrListItem)->GetFirstAddr();
}
++CurrListItem;
}
// SaveItem should now be numbered.
(*SaveItem)->SetNumber(CurrNum);
#if SMP_DEBUG_DATAFLOW
msg("Picked LowAddr %x and set RPO number %d\n", LowAddr, CurrNum);
this->RPOBlocks.push_back(*SaveItem);
++CurrNum;
// Push its unnumbered successors onto the work list.
CurrSucc = (*SaveItem)->GetFirstSucc();
while (CurrSucc != (*SaveItem)->GetLastSucc()) {
if ((*CurrSucc)->GetNumber() == SMP_BLOCKNUM_UNINIT)
WorkList.push_back(*CurrSucc);
++CurrSucc;