Newer
Older
5001
5002
5003
5004
5005
5006
5007
5008
5009
5010
5011
5012
5013
5014
5015
5016
5017
5018
5019
5020
5021
5022
5023
5024
5025
5026
5027
5028
5029
5030
5031
5032
5033
5034
5035
5036
5037
5038
5039
5040
5041
5042
5043
5044
5045
5046
5047
5048
5049
5050
5051
5052
5053
5054
5055
5056
5057
5058
5059
5060
5061
5062
5063
5064
5065
5066
5067
5068
5069
5070
5071
5072
5073
5074
5075
5076
5077
5078
5079
5080
5081
5082
5083
5084
5085
5086
5087
5088
5089
5090
5091
5092
5093
5094
5095
5096
5097
5098
5099
5100
5101
5102
5103
5104
5105
5106
5107
5108
5109
5110
5111
5112
5113
5114
5115
5116
5117
5118
5119
5120
5121
5122
5123
5124
5125
5126
5127
5128
5129
5130
5131
5132
5133
5134
5135
5136
5137
5138
5139
5140
5141
5142
5143
5144
5145
5146
5147
5148
5149
5150
5151
5152
5153
5154
5155
5156
5157
5158
5159
5160
5161
5162
5163
5164
5165
5166
5167
5168
5169
5170
5171
5172
5173
5174
5175
5176
5177
5178
5179
5180
5181
5182
5183
5184
5185
5186
5187
5188
5189
5190
5191
5192
5193
5194
5195
5196
5197
5198
5199
5200
5201
5202
5203
5204
5205
5206
5207
5208
5209
5210
5211
5212
5213
5214
5215
5216
5217
5218
5219
5220
5221
5222
5223
5224
5225
5226
5227
5228
5229
5230
5231
5232
5233
5234
5235
5236
5237
5238
5239
5240
5241
5242
5243
5244
5245
5246
5247
5248
5249
5250
5251
5252
5253
5254
5255
5256
5257
5258
5259
5260
5261
5262
5263
5264
5265
5266
5267
5268
5269
5270
5271
5272
5273
5274
5275
5276
5277
5278
5279
5280
5281
SMPDefsFlags[NN_psrad] = false; // Packed Shift Right Arithmetic (Dword)
SMPDefsFlags[NN_psrlw] = false; // Packed Shift Right Logical (Word)
SMPDefsFlags[NN_psrld] = false; // Packed Shift Right Logical (Dword)
SMPDefsFlags[NN_psrlq] = false; // Packed Shift Right Logical (Qword)
SMPDefsFlags[NN_psubb] = false; // Packed Subtract Byte
SMPDefsFlags[NN_psubw] = false; // Packed Subtract Word
SMPDefsFlags[NN_psubd] = false; // Packed Subtract Dword
SMPDefsFlags[NN_psubsb] = false; // Packed Subtract with Saturation (Byte)
SMPDefsFlags[NN_psubsw] = false; // Packed Subtract with Saturation (Word)
SMPDefsFlags[NN_psubusb] = false; // Packed Subtract Unsigned with Saturation (Byte)
SMPDefsFlags[NN_psubusw] = false; // Packed Subtract Unsigned with Saturation (Word)
SMPDefsFlags[NN_punpckhbw] = false; // Unpack High Packed Data (Byte->Word)
SMPDefsFlags[NN_punpckhwd] = false; // Unpack High Packed Data (Word->Dword)
SMPDefsFlags[NN_punpckhdq] = false; // Unpack High Packed Data (Dword->Qword)
SMPDefsFlags[NN_punpcklbw] = false; // Unpack Low Packed Data (Byte->Word)
SMPDefsFlags[NN_punpcklwd] = false; // Unpack Low Packed Data (Word->Dword)
SMPDefsFlags[NN_punpckldq] = false; // Unpack Low Packed Data (Dword->Qword)
SMPDefsFlags[NN_pxor] = false; // Bitwise Logical Exclusive Or
//
// Undocumented Deschutes processor instructions
//
SMPDefsFlags[NN_fxsave] = false; // Fast save FP context
SMPDefsFlags[NN_fxrstor] = false; // Fast restore FP context
// Pentium II instructions
SMPDefsFlags[NN_sysexit] = false; // Fast Transition from System Call Entry Point
// 3DNow! instructions
SMPDefsFlags[NN_pavgusb] = false; // Packed 8-bit Unsigned Integer Averaging
SMPDefsFlags[NN_pfadd] = false; // Packed Floating-Point Addition
SMPDefsFlags[NN_pfsub] = false; // Packed Floating-Point Subtraction
SMPDefsFlags[NN_pfsubr] = false; // Packed Floating-Point Reverse Subtraction
SMPDefsFlags[NN_pfacc] = false; // Packed Floating-Point Accumulate
SMPDefsFlags[NN_pfcmpge] = false; // Packed Floating-Point Comparison, Greater or Equal
SMPDefsFlags[NN_pfcmpgt] = false; // Packed Floating-Point Comparison, Greater
SMPDefsFlags[NN_pfcmpeq] = false; // Packed Floating-Point Comparison, Equal
SMPDefsFlags[NN_pfmin] = false; // Packed Floating-Point Minimum
SMPDefsFlags[NN_pfmax] = false; // Packed Floating-Point Maximum
SMPDefsFlags[NN_pi2fd] = false; // Packed 32-bit Integer to Floating-Point
SMPDefsFlags[NN_pf2id] = false; // Packed Floating-Point to 32-bit Integer
SMPDefsFlags[NN_pfrcp] = false; // Packed Floating-Point Reciprocal Approximation
SMPDefsFlags[NN_pfrsqrt] = false; // Packed Floating-Point Reciprocal Square Root Approximation
SMPDefsFlags[NN_pfmul] = false; // Packed Floating-Point Multiplication
SMPDefsFlags[NN_pfrcpit1] = false; // Packed Floating-Point Reciprocal First Iteration Step
SMPDefsFlags[NN_pfrsqit1] = false; // Packed Floating-Point Reciprocal Square Root First Iteration Step
SMPDefsFlags[NN_pfrcpit2] = false; // Packed Floating-Point Reciprocal Second Iteration Step
SMPDefsFlags[NN_pmulhrw] = false; // Packed Floating-Point 16-bit Integer Multiply with rounding
SMPDefsFlags[NN_femms] = false; // Faster entry/exit of the MMX or floating-point state
SMPDefsFlags[NN_prefetch] = false; // Prefetch at least a 32-byte line into L1 data cache
SMPDefsFlags[NN_prefetchw] = false; // Prefetch processor cache line into L1 data cache (mark as modified)
// Pentium III instructions
SMPDefsFlags[NN_addps] = false; // Packed Single-FP Add
SMPDefsFlags[NN_addss] = false; // Scalar Single-FP Add
SMPDefsFlags[NN_andnps] = false; // Bitwise Logical And Not for Single-FP
SMPDefsFlags[NN_andps] = false; // Bitwise Logical And for Single-FP
SMPDefsFlags[NN_cmpps] = false; // Packed Single-FP Compare
SMPDefsFlags[NN_cmpss] = false; // Scalar Single-FP Compare
SMPDefsFlags[NN_cvtpi2ps] = false; // Packed signed INT32 to Packed Single-FP conversion
SMPDefsFlags[NN_cvtps2pi] = false; // Packed Single-FP to Packed INT32 conversion
SMPDefsFlags[NN_cvtsi2ss] = false; // Scalar signed INT32 to Single-FP conversion
SMPDefsFlags[NN_cvtss2si] = false; // Scalar Single-FP to signed INT32 conversion
SMPDefsFlags[NN_cvttps2pi] = false; // Packed Single-FP to Packed INT32 conversion (truncate)
SMPDefsFlags[NN_cvttss2si] = false; // Scalar Single-FP to signed INT32 conversion (truncate)
SMPDefsFlags[NN_divps] = false; // Packed Single-FP Divide
SMPDefsFlags[NN_divss] = false; // Scalar Single-FP Divide
SMPDefsFlags[NN_ldmxcsr] = false; // Load Streaming SIMD Extensions Technology Control/Status Register
SMPDefsFlags[NN_maxps] = false; // Packed Single-FP Maximum
SMPDefsFlags[NN_maxss] = false; // Scalar Single-FP Maximum
SMPDefsFlags[NN_minps] = false; // Packed Single-FP Minimum
SMPDefsFlags[NN_minss] = false; // Scalar Single-FP Minimum
SMPDefsFlags[NN_movaps] = false; // Move Aligned Four Packed Single-FP
SMPDefsFlags[NN_movhlps] = false; // Move High to Low Packed Single-FP
SMPDefsFlags[NN_movhps] = false; // Move High Packed Single-FP
SMPDefsFlags[NN_movlhps] = false; // Move Low to High Packed Single-FP
SMPDefsFlags[NN_movlps] = false; // Move Low Packed Single-FP
SMPDefsFlags[NN_movmskps] = false; // Move Mask to Register
SMPDefsFlags[NN_movss] = false; // Move Scalar Single-FP
SMPDefsFlags[NN_movups] = false; // Move Unaligned Four Packed Single-FP
SMPDefsFlags[NN_mulps] = false; // Packed Single-FP Multiply
SMPDefsFlags[NN_mulss] = false; // Scalar Single-FP Multiply
SMPDefsFlags[NN_orps] = false; // Bitwise Logical OR for Single-FP Data
SMPDefsFlags[NN_rcpps] = false; // Packed Single-FP Reciprocal
SMPDefsFlags[NN_rcpss] = false; // Scalar Single-FP Reciprocal
SMPDefsFlags[NN_rsqrtps] = false; // Packed Single-FP Square Root Reciprocal
SMPDefsFlags[NN_rsqrtss] = false; // Scalar Single-FP Square Root Reciprocal
SMPDefsFlags[NN_shufps] = false; // Shuffle Single-FP
SMPDefsFlags[NN_sqrtps] = false; // Packed Single-FP Square Root
SMPDefsFlags[NN_sqrtss] = false; // Scalar Single-FP Square Root
SMPDefsFlags[NN_stmxcsr] = false; // Store Streaming SIMD Extensions Technology Control/Status Register
SMPDefsFlags[NN_subps] = false; // Packed Single-FP Subtract
SMPDefsFlags[NN_subss] = false; // Scalar Single-FP Subtract
SMPDefsFlags[NN_unpckhps] = false; // Unpack High Packed Single-FP Data
SMPDefsFlags[NN_unpcklps] = false; // Unpack Low Packed Single-FP Data
SMPDefsFlags[NN_xorps] = false; // Bitwise Logical XOR for Single-FP Data
SMPDefsFlags[NN_pavgb] = false; // Packed Average (Byte)
SMPDefsFlags[NN_pavgw] = false; // Packed Average (Word)
SMPDefsFlags[NN_pextrw] = false; // Extract Word
SMPDefsFlags[NN_pinsrw] = false; // Insert Word
SMPDefsFlags[NN_pmaxsw] = false; // Packed Signed Integer Word Maximum
SMPDefsFlags[NN_pmaxub] = false; // Packed Unsigned Integer Byte Maximum
SMPDefsFlags[NN_pminsw] = false; // Packed Signed Integer Word Minimum
SMPDefsFlags[NN_pminub] = false; // Packed Unsigned Integer Byte Minimum
SMPDefsFlags[NN_pmovmskb] = false; // Move Byte Mask to Integer
SMPDefsFlags[NN_pmulhuw] = false; // Packed Multiply High Unsigned
SMPDefsFlags[NN_psadbw] = false; // Packed Sum of Absolute Differences
SMPDefsFlags[NN_pshufw] = false; // Packed Shuffle Word
SMPDefsFlags[NN_maskmovq] = false; // Byte Mask write
SMPDefsFlags[NN_movntps] = false; // Move Aligned Four Packed Single-FP Non Temporal
SMPDefsFlags[NN_movntq] = false; // Move 64 Bits Non Temporal
SMPDefsFlags[NN_prefetcht0] = false; // Prefetch to all cache levels
SMPDefsFlags[NN_prefetcht1] = false; // Prefetch to all cache levels
SMPDefsFlags[NN_prefetcht2] = false; // Prefetch to L2 cache
SMPDefsFlags[NN_prefetchnta] = false; // Prefetch to L1 cache
SMPDefsFlags[NN_sfence] = false; // Store Fence
// Pentium III Pseudo instructions
SMPDefsFlags[NN_cmpeqps] = false; // Packed Single-FP Compare EQ
SMPDefsFlags[NN_cmpltps] = false; // Packed Single-FP Compare LT
SMPDefsFlags[NN_cmpleps] = false; // Packed Single-FP Compare LE
SMPDefsFlags[NN_cmpunordps] = false; // Packed Single-FP Compare UNORD
SMPDefsFlags[NN_cmpneqps] = false; // Packed Single-FP Compare NOT EQ
SMPDefsFlags[NN_cmpnltps] = false; // Packed Single-FP Compare NOT LT
SMPDefsFlags[NN_cmpnleps] = false; // Packed Single-FP Compare NOT LE
SMPDefsFlags[NN_cmpordps] = false; // Packed Single-FP Compare ORDERED
SMPDefsFlags[NN_cmpeqss] = false; // Scalar Single-FP Compare EQ
SMPDefsFlags[NN_cmpltss] = false; // Scalar Single-FP Compare LT
SMPDefsFlags[NN_cmpless] = false; // Scalar Single-FP Compare LE
SMPDefsFlags[NN_cmpunordss] = false; // Scalar Single-FP Compare UNORD
SMPDefsFlags[NN_cmpneqss] = false; // Scalar Single-FP Compare NOT EQ
SMPDefsFlags[NN_cmpnltss] = false; // Scalar Single-FP Compare NOT LT
SMPDefsFlags[NN_cmpnless] = false; // Scalar Single-FP Compare NOT LE
SMPDefsFlags[NN_cmpordss] = false; // Scalar Single-FP Compare ORDERED
// AMD K7 instructions
// Revisit AMD if we port to it.
SMPDefsFlags[NN_pf2iw] = false; // Packed Floating-Point to Integer with Sign Extend
SMPDefsFlags[NN_pfnacc] = false; // Packed Floating-Point Negative Accumulate
SMPDefsFlags[NN_pfpnacc] = false; // Packed Floating-Point Mixed Positive-Negative Accumulate
SMPDefsFlags[NN_pi2fw] = false; // Packed 16-bit Integer to Floating-Point
SMPDefsFlags[NN_pswapd] = false; // Packed Swap Double Word
// Undocumented FP instructions (thanks to norbert.juffa@adm.com)
SMPDefsFlags[NN_fstp1] = false; // Alias of Store Real and Pop
SMPDefsFlags[NN_fxch4] = false; // Alias of Exchange Registers
SMPDefsFlags[NN_ffreep] = false; // Free Register and Pop
SMPDefsFlags[NN_fxch7] = false; // Alias of Exchange Registers
SMPDefsFlags[NN_fstp8] = false; // Alias of Store Real and Pop
SMPDefsFlags[NN_fstp9] = false; // Alias of Store Real and Pop
// Pentium 4 instructions
SMPDefsFlags[NN_addpd] = false; // Add Packed Double-Precision Floating-Point Values
SMPDefsFlags[NN_addsd] = false; // Add Scalar Double-Precision Floating-Point Values
SMPDefsFlags[NN_andnpd] = false; // Bitwise Logical AND NOT of Packed Double-Precision Floating-Point Values
SMPDefsFlags[NN_andpd] = false; // Bitwise Logical AND of Packed Double-Precision Floating-Point Values
SMPDefsFlags[NN_clflush] = false; // Flush Cache Line
SMPDefsFlags[NN_cmppd] = false; // Compare Packed Double-Precision Floating-Point Values
SMPDefsFlags[NN_cmpsd] = false; // Compare Scalar Double-Precision Floating-Point Values
SMPDefsFlags[NN_cvtdq2pd] = false; // Convert Packed Doubleword Integers to Packed Single-Precision Floating-Point Values
SMPDefsFlags[NN_cvtdq2ps] = false; // Convert Packed Doubleword Integers to Packed Double-Precision Floating-Point Values
SMPDefsFlags[NN_cvtpd2dq] = false; // Convert Packed Double-Precision Floating-Point Values to Packed Doubleword Integers
SMPDefsFlags[NN_cvtpd2pi] = false; // Convert Packed Double-Precision Floating-Point Values to Packed Doubleword Integers
SMPDefsFlags[NN_cvtpd2ps] = false; // Convert Packed Double-Precision Floating-Point Values to Packed Single-Precision Floating-Point Values
SMPDefsFlags[NN_cvtpi2pd] = false; // Convert Packed Doubleword Integers to Packed Double-Precision Floating-Point Values
SMPDefsFlags[NN_cvtps2dq] = false; // Convert Packed Single-Precision Floating-Point Values to Packed Doubleword Integers
SMPDefsFlags[NN_cvtps2pd] = false; // Convert Packed Single-Precision Floating-Point Values to Packed Double-Precision Floating-Point Values
SMPDefsFlags[NN_cvtsd2si] = false; // Convert Scalar Double-Precision Floating-Point Value to Doubleword Integer
SMPDefsFlags[NN_cvtsd2ss] = false; // Convert Scalar Double-Precision Floating-Point Value to Scalar Single-Precision Floating-Point Value
SMPDefsFlags[NN_cvtsi2sd] = false; // Convert Doubleword Integer to Scalar Double-Precision Floating-Point Value
SMPDefsFlags[NN_cvtss2sd] = false; // Convert Scalar Single-Precision Floating-Point Value to Scalar Double-Precision Floating-Point Value
SMPDefsFlags[NN_cvttpd2dq] = false; // Convert With Truncation Packed Double-Precision Floating-Point Values to Packed Doubleword Integers
SMPDefsFlags[NN_cvttpd2pi] = false; // Convert with Truncation Packed Double-Precision Floating-Point Values to Packed Doubleword Integers
SMPDefsFlags[NN_cvttps2dq] = false; // Convert With Truncation Packed Single-Precision Floating-Point Values to Packed Doubleword Integers
SMPDefsFlags[NN_cvttsd2si] = false; // Convert with Truncation Scalar Double-Precision Floating-Point Value to Doubleword Integer
SMPDefsFlags[NN_divpd] = false; // Divide Packed Double-Precision Floating-Point Values
SMPDefsFlags[NN_divsd] = false; // Divide Scalar Double-Precision Floating-Point Values
SMPDefsFlags[NN_lfence] = false; // Load Fence
SMPDefsFlags[NN_maskmovdqu] = false; // Store Selected Bytes of Double Quadword
SMPDefsFlags[NN_maxpd] = false; // Return Maximum Packed Double-Precision Floating-Point Values
SMPDefsFlags[NN_maxsd] = false; // Return Maximum Scalar Double-Precision Floating-Point Value
SMPDefsFlags[NN_mfence] = false; // Memory Fence
SMPDefsFlags[NN_minpd] = false; // Return Minimum Packed Double-Precision Floating-Point Values
SMPDefsFlags[NN_minsd] = false; // Return Minimum Scalar Double-Precision Floating-Point Value
SMPDefsFlags[NN_movapd] = false; // Move Aligned Packed Double-Precision Floating-Point Values
SMPDefsFlags[NN_movdq2q] = false; // Move Quadword from XMM to MMX Register
SMPDefsFlags[NN_movdqa] = false; // Move Aligned Double Quadword
SMPDefsFlags[NN_movdqu] = false; // Move Unaligned Double Quadword
SMPDefsFlags[NN_movhpd] = false; // Move High Packed Double-Precision Floating-Point Values
SMPDefsFlags[NN_movlpd] = false; // Move Low Packed Double-Precision Floating-Point Values
SMPDefsFlags[NN_movmskpd] = false; // Extract Packed Double-Precision Floating-Point Sign Mask
SMPDefsFlags[NN_movntdq] = false; // Store Double Quadword Using Non-Temporal Hint
SMPDefsFlags[NN_movnti] = false; // Store Doubleword Using Non-Temporal Hint
SMPDefsFlags[NN_movntpd] = false; // Store Packed Double-Precision Floating-Point Values Using Non-Temporal Hint
SMPDefsFlags[NN_movq2dq] = false; // Move Quadword from MMX to XMM Register
SMPDefsFlags[NN_movsd] = false; // Move Scalar Double-Precision Floating-Point Values
SMPDefsFlags[NN_movupd] = false; // Move Unaligned Packed Double-Precision Floating-Point Values
SMPDefsFlags[NN_mulpd] = false; // Multiply Packed Double-Precision Floating-Point Values
SMPDefsFlags[NN_mulsd] = false; // Multiply Scalar Double-Precision Floating-Point Values
SMPDefsFlags[NN_orpd] = false; // Bitwise Logical OR of Double-Precision Floating-Point Values
SMPDefsFlags[NN_paddq] = false; // Add Packed Quadword Integers
SMPDefsFlags[NN_pause] = false; // Spin Loop Hint
SMPDefsFlags[NN_pmuludq] = false; // Multiply Packed Unsigned Doubleword Integers
SMPDefsFlags[NN_pshufd] = false; // Shuffle Packed Doublewords
SMPDefsFlags[NN_pshufhw] = false; // Shuffle Packed High Words
SMPDefsFlags[NN_pshuflw] = false; // Shuffle Packed Low Words
SMPDefsFlags[NN_pslldq] = false; // Shift Double Quadword Left Logical
SMPDefsFlags[NN_psrldq] = false; // Shift Double Quadword Right Logical
SMPDefsFlags[NN_psubq] = false; // Subtract Packed Quadword Integers
SMPDefsFlags[NN_punpckhqdq] = false; // Unpack High Data
SMPDefsFlags[NN_punpcklqdq] = false; // Unpack Low Data
SMPDefsFlags[NN_shufpd] = false; // Shuffle Packed Double-Precision Floating-Point Values
SMPDefsFlags[NN_sqrtpd] = false; // Compute Square Roots of Packed Double-Precision Floating-Point Values
SMPDefsFlags[NN_sqrtsd] = false; // Compute Square Rootof Scalar Double-Precision Floating-Point Value
SMPDefsFlags[NN_subpd] = false; // Subtract Packed Double-Precision Floating-Point Values
SMPDefsFlags[NN_subsd] = false; // Subtract Scalar Double-Precision Floating-Point Values
SMPDefsFlags[NN_unpckhpd] = false; // Unpack and Interleave High Packed Double-Precision Floating-Point Values
SMPDefsFlags[NN_unpcklpd] = false; // Unpack and Interleave Low Packed Double-Precision Floating-Point Values
SMPDefsFlags[NN_xorpd] = false; // Bitwise Logical OR of Double-Precision Floating-Point Values
// AMD syscall/sysret instructions NOTE: not AMD, found in Intel manual
// AMD64 instructions NOTE: not AMD, found in Intel manual
SMPDefsFlags[NN_swapgs] = false; // Exchange GS base with KernelGSBase MSR
// New Pentium instructions (SSE3)
SMPDefsFlags[NN_movddup] = false; // Move One Double-FP and Duplicate
SMPDefsFlags[NN_movshdup] = false; // Move Packed Single-FP High and Duplicate
SMPDefsFlags[NN_movsldup] = false; // Move Packed Single-FP Low and Duplicate
// Missing AMD64 instructions NOTE: also found in Intel manual
SMPDefsFlags[NN_movsxd] = false; // Move with Sign-Extend Doubleword
// SSE3 instructions
SMPDefsFlags[NN_addsubpd] = false; // Add /Sub packed DP FP numbers
SMPDefsFlags[NN_addsubps] = false; // Add /Sub packed SP FP numbers
SMPDefsFlags[NN_haddpd] = false; // Add horizontally packed DP FP numbers
SMPDefsFlags[NN_haddps] = false; // Add horizontally packed SP FP numbers
SMPDefsFlags[NN_hsubpd] = false; // Sub horizontally packed DP FP numbers
SMPDefsFlags[NN_hsubps] = false; // Sub horizontally packed SP FP numbers
SMPDefsFlags[NN_monitor] = false; // Set up a linear address range to be monitored by hardware
SMPDefsFlags[NN_mwait] = false; // Wait until write-back store performed within the range specified by the MONITOR instruction
SMPDefsFlags[NN_fisttp] = false; // Store ST in intXX (chop) and pop
SMPDefsFlags[NN_lddqu] = false; // Load unaligned integer 128-bit
// SSSE3 instructions
SMPDefsFlags[NN_psignb] = false; // Packed SIGN Byte
SMPDefsFlags[NN_psignw] = false; // Packed SIGN Word
SMPDefsFlags[NN_psignd] = false; // Packed SIGN Doubleword
SMPDefsFlags[NN_pshufb] = false; // Packed Shuffle Bytes
SMPDefsFlags[NN_pmulhrsw] = false; // Packed Multiply High with Round and Scale
SMPDefsFlags[NN_pmaddubsw] = false; // Multiply and Add Packed Signed and Unsigned Bytes
SMPDefsFlags[NN_phsubsw] = false; // Packed Horizontal Subtract and Saturate
SMPDefsFlags[NN_phaddsw] = false; // Packed Horizontal Add and Saturate
SMPDefsFlags[NN_phaddw] = false; // Packed Horizontal Add Word
SMPDefsFlags[NN_phaddd] = false; // Packed Horizontal Add Doubleword
SMPDefsFlags[NN_phsubw] = false; // Packed Horizontal Subtract Word
SMPDefsFlags[NN_phsubd] = false; // Packed Horizontal Subtract Doubleword
SMPDefsFlags[NN_palignr] = false; // Packed Align Right
SMPDefsFlags[NN_pabsb] = false; // Packed Absolute Value Byte
SMPDefsFlags[NN_pabsw] = false; // Packed Absolute Value Word
SMPDefsFlags[NN_pabsd] = false; // Packed Absolute Value Doubleword
// VMX instructions
SMPDefsFlags[NN_ud2] = false; // Undefined Instruction
5286
5287
5288
5289
5290
5291
5292
5293
5294
5295
5296
5297
5298
5299
5300
5301
5302
5303
5304
5305
5306
5307
5308
5309
5310
5311
5312
5313
5314
5315
5316
5317
5318
5319
5320
5321
5322
5323
5324
5325
5326
5327
5328
5329
5330
5331
5332
5333
5334
5335
5336
5337
5338
5339
5340
5341
5342
5343
5344
5345
5346
5347
5348
5349
5350
5351
5352
5353
5354
5355
5356
5357
5358
5359
5360
5361
5362
5363
5364
5365
5366
5367
5368
5369
5370
5371
5372
5373
5374
5375
5376
5377
5378
5379
5380
5381
5382
5383
5384
5385
5386
5387
5388
5389
5390
5391
5392
5393
5394
5395
5396
5397
5398
5399
5400
5401
5402
5403
5404
5405
5406
5407
5408
5409
5410
5411
5412
5413
5414
5415
// Added with x86-64
SMPDefsFlags[NN_rdtscp] = false; // Read Time-Stamp Counter and Processor ID
// Geode LX 3DNow! extensions
SMPDefsFlags[NN_pfrcpv] = false; // Reciprocal Approximation for a Pair of 32-bit Floats
SMPDefsFlags[NN_pfrsqrtv] = false; // Reciprocal Square Root Approximation for a Pair of 32-bit Floats
// SSE2 pseudoinstructions
SMPDefsFlags[NN_cmpeqpd] = false; // Packed Double-FP Compare EQ
SMPDefsFlags[NN_cmpltpd] = false; // Packed Double-FP Compare LT
SMPDefsFlags[NN_cmplepd] = false; // Packed Double-FP Compare LE
SMPDefsFlags[NN_cmpunordpd] = false; // Packed Double-FP Compare UNORD
SMPDefsFlags[NN_cmpneqpd] = false; // Packed Double-FP Compare NOT EQ
SMPDefsFlags[NN_cmpnltpd] = false; // Packed Double-FP Compare NOT LT
SMPDefsFlags[NN_cmpnlepd] = false; // Packed Double-FP Compare NOT LE
SMPDefsFlags[NN_cmpordpd] = false; // Packed Double-FP Compare ORDERED
SMPDefsFlags[NN_cmpeqsd] = false; // Scalar Double-FP Compare EQ
SMPDefsFlags[NN_cmpltsd] = false; // Scalar Double-FP Compare LT
SMPDefsFlags[NN_cmplesd] = false; // Scalar Double-FP Compare LE
SMPDefsFlags[NN_cmpunordsd] = false; // Scalar Double-FP Compare UNORD
SMPDefsFlags[NN_cmpneqsd] = false; // Scalar Double-FP Compare NOT EQ
SMPDefsFlags[NN_cmpnltsd] = false; // Scalar Double-FP Compare NOT LT
SMPDefsFlags[NN_cmpnlesd] = false; // Scalar Double-FP Compare NOT LE
SMPDefsFlags[NN_cmpordsd] = false; // Scalar Double-FP Compare ORDERED
// SSSE4.1 instructions
SMPDefsFlags[NN_blendpd] = false; // Blend Packed Double Precision Floating-Point Values
SMPDefsFlags[NN_blendps] = false; // Blend Packed Single Precision Floating-Point Values
SMPDefsFlags[NN_blendvpd] = false; // Variable Blend Packed Double Precision Floating-Point Values
SMPDefsFlags[NN_blendvps] = false; // Variable Blend Packed Single Precision Floating-Point Values
SMPDefsFlags[NN_dppd] = false; // Dot Product of Packed Double Precision Floating-Point Values
SMPDefsFlags[NN_dpps] = false; // Dot Product of Packed Single Precision Floating-Point Values
SMPDefsFlags[NN_extractps] = 2; // Extract Packed Single Precision Floating-Point Value
SMPDefsFlags[NN_insertps] = false; // Insert Packed Single Precision Floating-Point Value
SMPDefsFlags[NN_movntdqa] = false; // Load Double Quadword Non-Temporal Aligned Hint
SMPDefsFlags[NN_mpsadbw] = false; // Compute Multiple Packed Sums of Absolute Difference
SMPDefsFlags[NN_packusdw] = false; // Pack with Unsigned Saturation
SMPDefsFlags[NN_pblendvb] = false; // Variable Blend Packed Bytes
SMPDefsFlags[NN_pblendw] = false; // Blend Packed Words
SMPDefsFlags[NN_pcmpeqq] = false; // Compare Packed Qword Data for Equal
SMPDefsFlags[NN_pextrb] = false; // Extract Byte
SMPDefsFlags[NN_pextrd] = false; // Extract Dword
SMPDefsFlags[NN_pextrq] = false; // Extract Qword
SMPDefsFlags[NN_phminposuw] = false; // Packed Horizontal Word Minimum
SMPDefsFlags[NN_pinsrb] = false; // Insert Byte
SMPDefsFlags[NN_pinsrd] = false; // Insert Dword
SMPDefsFlags[NN_pinsrq] = false; // Insert Qword
SMPDefsFlags[NN_pmaxsb] = false; // Maximum of Packed Signed Byte Integers
SMPDefsFlags[NN_pmaxsd] = false; // Maximum of Packed Signed Dword Integers
SMPDefsFlags[NN_pmaxud] = false; // Maximum of Packed Unsigned Dword Integers
SMPDefsFlags[NN_pmaxuw] = false; // Maximum of Packed Word Integers
SMPDefsFlags[NN_pminsb] = false; // Minimum of Packed Signed Byte Integers
SMPDefsFlags[NN_pminsd] = false; // Minimum of Packed Signed Dword Integers
SMPDefsFlags[NN_pminud] = false; // Minimum of Packed Unsigned Dword Integers
SMPDefsFlags[NN_pminuw] = false; // Minimum of Packed Word Integers
SMPDefsFlags[NN_pmovsxbw] = false; // Packed Move with Sign Extend
SMPDefsFlags[NN_pmovsxbd] = false; // Packed Move with Sign Extend
SMPDefsFlags[NN_pmovsxbq] = false; // Packed Move with Sign Extend
SMPDefsFlags[NN_pmovsxwd] = false; // Packed Move with Sign Extend
SMPDefsFlags[NN_pmovsxwq] = false; // Packed Move with Sign Extend
SMPDefsFlags[NN_pmovsxdq] = false; // Packed Move with Sign Extend
SMPDefsFlags[NN_pmovzxbw] = false; // Packed Move with Zero Extend
SMPDefsFlags[NN_pmovzxbd] = false; // Packed Move with Zero Extend
SMPDefsFlags[NN_pmovzxbq] = false; // Packed Move with Zero Extend
SMPDefsFlags[NN_pmovzxwd] = false; // Packed Move with Zero Extend
SMPDefsFlags[NN_pmovzxwq] = false; // Packed Move with Zero Extend
SMPDefsFlags[NN_pmovzxdq] = false; // Packed Move with Zero Extend
SMPDefsFlags[NN_pmuldq] = false; // Multiply Packed Signed Dword Integers
SMPDefsFlags[NN_pmulld] = false; // Multiply Packed Signed Dword Integers and Store Low Result
SMPDefsFlags[NN_roundpd] = false; // Round Packed Double Precision Floating-Point Values
SMPDefsFlags[NN_roundps] = false; // Round Packed Single Precision Floating-Point Values
SMPDefsFlags[NN_roundsd] = false; // Round Scalar Double Precision Floating-Point Values
SMPDefsFlags[NN_roundss] = false; // Round Scalar Single Precision Floating-Point Values
// SSSE4.2 instructions
SMPDefsFlags[NN_crc32] = false; // Accumulate CRC32 Value
SMPDefsFlags[NN_pcmpgtq] = false; // Compare Packed Data for Greater Than
// AMD SSE4a instructions
SMPDefsFlags[NN_extrq] = false; // Extract Field From Register
SMPDefsFlags[NN_insertq] = false; // Insert Field
SMPDefsFlags[NN_movntsd] = false; // Move Non-Temporal Scalar Double-Precision Floating-Point
SMPDefsFlags[NN_movntss] = false; // Move Non-Temporal Scalar Single-Precision Floating-Point
// xsave/xrstor instructions
SMPDefsFlags[NN_xgetbv] = false; // Get Value of Extended Control Register
SMPDefsFlags[NN_xrstor] = false; // Restore Processor Extended States
SMPDefsFlags[NN_xsave] = false; // Save Processor Extended States
SMPDefsFlags[NN_xsetbv] = false; // Set Value of Extended Control Register
// Intel Safer Mode Extensions (SMX)
// AMD-V Virtualization ISA Extension
SMPDefsFlags[NN_invlpga] = false; // Invalidate TLB Entry in a Specified ASID
SMPDefsFlags[NN_skinit] = false; // Secure Init and Jump with Attestation
SMPDefsFlags[NN_vmexit] = false; // Stop Executing Guest, Begin Executing Host
SMPDefsFlags[NN_vmload] = false; // Load State from VMCB
SMPDefsFlags[NN_vmmcall] = false; // Call VMM
SMPDefsFlags[NN_vmrun] = false; // Run Virtual Machine
SMPDefsFlags[NN_vmsave] = false; // Save State to VMCB
// VMX+ instructions
SMPDefsFlags[NN_invept] = false; // Invalidate Translations Derived from EPT
SMPDefsFlags[NN_invvpid] = false; // Invalidate Translations Based on VPID
// Intel Atom instructions
SMPDefsFlags[NN_movbe] = false; // Move Data After Swapping Bytes
// Intel AES instructions
SMPDefsFlags[NN_aesenc] = false; // Perform One Round of an AES Encryption Flow
SMPDefsFlags[NN_aesenclast] = false; // Perform the Last Round of an AES Encryption Flow
SMPDefsFlags[NN_aesdec] = false; // Perform One Round of an AES Decryption Flow
SMPDefsFlags[NN_aesdeclast] = false; // Perform the Last Round of an AES Decryption Flow
SMPDefsFlags[NN_aesimc] = false; // Perform the AES InvMixColumn Transformation
SMPDefsFlags[NN_aeskeygenassist] = false; // AES Round Key Generation Assist
// Carryless multiplication
SMPDefsFlags[NN_pclmulqdq] = false; // Carry-Less Multiplication Quadword
5416
5417
5418
5419
5420
5421
5422
5423
5424
5425
5426
5427
5428
5429
5430
5431
5432
5433
5434
5435
5436
5437
5438
5439
5440
5441
5442
5443
5444
5445
5446
5447
5448
5449
5450
5451
5452
5453
5454
5455
5456
5457
5458
5459
5460
5461
5462
5463
5464
5465
5466
5467
5468
5469
5470
5471
5472
5473
5474
5475
5476
5477
5478
5479
5480
5481
5482
5483
5484
5485
5486
5487
5488
5489
5490
5491
5492
5493
5494
5495
5496
5497
5498
5499
5500
5501
5502
5503
5504
5505
5506
5507
5508
5509
5510
5511
5512
5513
5514
5515
5516
5517
5518
5519
5520
5521
5522
5523
5524
5525
5526
5527
5528
5529
5530
5531
5532
5533
5534
5535
5536
5537
5538
5539
5540
5541
5542
5543
5544
5545
5546
5547
5548
5549
5550
5551
5552
5553
5554
5555
5556
5557
5558
5559
5560
5561
5562
5563
5564
5565
5566
5567
5568
5569
5570
5571
5572
5573
5574
5575
5576
5577
5578
5579
5580
5581
5582
5583
5584
5585
5586
5587
5588
5589
5590
5591
5592
5593
5594
5595
5596
5597
5598
5599
5600
5601
5602
5603
5604
5605
5606
5607
5608
5609
5610
5611
5612
5613
5614
5615
5616
5617
5618
5619
5620
5621
5622
5623
5624
5625
5626
5627
5628
5629
5630
5631
5632
5633
5634
5635
5636
5637
5638
5639
5640
5641
5642
5643
5644
5645
5646
5647
5648
5649
5650
5651
5652
5653
5654
5655
5656
5657
5658
5659
5660
5661
5662
5663
5664
5665
5666
5667
5668
5669
5670
5671
5672
5673
5674
5675
5676
5677
5678
5679
5680
5681
5682
5683
5684
5685
5686
5687
5688
5689
5690
5691
5692
5693
5694
5695
5696
5697
5698
5699
5700
5701
5702
5703
5704
5705
5706
5707
5708
5709
5710
5711
5712
5713
5714
5715
5716
5717
5718
5719
5720
5721
5722
5723
5724
5725
5726
5727
5728
5729
5730
5731
5732
5733
5734
5735
5736
5737
5738
5739
5740
5741
5742
5743
5744
5745
5746
5747
5748
5749
5750
5751
5752
5753
5754
5755
5756
5757
5758
5759
5760
5761
5762
5763
5764
5765
5766
5767
5768
5769
5770
5771
5772
5773
5774
5775
5776
5777
5778
5779
5780
5781
5782
5783
5784
5785
5786
5787
5788
5789
5790
5791
5792
5793
5794
5795
5796
5797
5798
5799
5800
5801
5802
5803
5804
5805
5806
5807
5808
5809
5810
5811
5812
5813
5814
5815
5816
5817
5818
5819
5820
5821
5822
5823
5824
5825
5826
// Returns modified by operand size prefixes
SMPDefsFlags[NN_retnw] = false; // Return Near from Procedure (use16)
SMPDefsFlags[NN_retnd] = false; // Return Near from Procedure (use32)
SMPDefsFlags[NN_retnq] = false; // Return Near from Procedure (use64)
SMPDefsFlags[NN_retfw] = false; // Return Far from Procedure (use16)
SMPDefsFlags[NN_retfd] = false; // Return Far from Procedure (use32)
SMPDefsFlags[NN_retfq] = false; // Return Far from Procedure (use64)
// RDRAND support
// new GPR instructions
SMPDefsFlags[NN_mulx] = false; // Unsigned Multiply Without Affecting Flags
SMPDefsFlags[NN_pdep] = false; // Parallel Bits Deposit
SMPDefsFlags[NN_pext] = false; // Parallel Bits Extract
SMPDefsFlags[NN_rorx] = false; // Rotate Right Logical Without Affecting Flags
SMPDefsFlags[NN_sarx] = false; // Shift Arithmetically Right Without Affecting Flags
SMPDefsFlags[NN_shlx] = false; // Shift Logically Left Without Affecting Flags
SMPDefsFlags[NN_shrx] = false; // Shift Logically Right Without Affecting Flags
SMPDefsFlags[NN_xsaveopt] = false; // Save Processor Extended States Optimized
SMPDefsFlags[NN_invpcid] = false; // Invalidate Processor Context ID
SMPDefsFlags[NN_rdseed] = false; // Read Random Seed
SMPDefsFlags[NN_rdfsbase] = false; // Read FS Segment Base
SMPDefsFlags[NN_rdgsbase] = false; // Read GS Segment Base
SMPDefsFlags[NN_wrfsbase] = false; // Write FS Segment Base
SMPDefsFlags[NN_wrgsbase] = false; // Write GS Segment Base
// new AVX instructions
SMPDefsFlags[NN_vaddpd] = false; // Add Packed Double-Precision Floating-Point Values
SMPDefsFlags[NN_vaddps] = false; // Packed Single-FP Add
SMPDefsFlags[NN_vaddsd] = false; // Add Scalar Double-Precision Floating-Point Values
SMPDefsFlags[NN_vaddss] = false; // Scalar Single-FP Add
SMPDefsFlags[NN_vaddsubpd] = false; // Add /Sub packed DP FP numbers
SMPDefsFlags[NN_vaddsubps] = false; // Add /Sub packed SP FP numbers
SMPDefsFlags[NN_vaesdec] = false; // Perform One Round of an AES Decryption Flow
SMPDefsFlags[NN_vaesdeclast] = false; // Perform the Last Round of an AES Decryption Flow
SMPDefsFlags[NN_vaesenc] = false; // Perform One Round of an AES Encryption Flow
SMPDefsFlags[NN_vaesenclast] = false; // Perform the Last Round of an AES Encryption Flow
SMPDefsFlags[NN_vaesimc] = false; // Perform the AES InvMixColumn Transformation
SMPDefsFlags[NN_vaeskeygenassist] = false; // AES Round Key Generation Assist
SMPDefsFlags[NN_vandnpd] = false; // Bitwise Logical AND NOT of Packed Double-Precision Floating-Point Values
SMPDefsFlags[NN_vandnps] = false; // Bitwise Logical And Not for Single-FP
SMPDefsFlags[NN_vandpd] = false; // Bitwise Logical AND of Packed Double-Precision Floating-Point Values
SMPDefsFlags[NN_vandps] = false; // Bitwise Logical And for Single-FP
SMPDefsFlags[NN_vblendpd] = false; // Blend Packed Double Precision Floating-Point Values
SMPDefsFlags[NN_vblendps] = false; // Blend Packed Single Precision Floating-Point Values
SMPDefsFlags[NN_vblendvpd] = false; // Variable Blend Packed Double Precision Floating-Point Values
SMPDefsFlags[NN_vblendvps] = false; // Variable Blend Packed Single Precision Floating-Point Values
SMPDefsFlags[NN_vbroadcastf128] = false; // Broadcast 128 Bits of Floating-Point Data
SMPDefsFlags[NN_vbroadcasti128] = false; // Broadcast 128 Bits of Integer Data
SMPDefsFlags[NN_vbroadcastsd] = false; // Broadcast Double-Precision Floating-Point Element
SMPDefsFlags[NN_vbroadcastss] = false; // Broadcast Single-Precision Floating-Point Element
SMPDefsFlags[NN_vcmppd] = false; // Compare Packed Double-Precision Floating-Point Values
SMPDefsFlags[NN_vcmpps] = false; // Packed Single-FP Compare
SMPDefsFlags[NN_vcmpsd] = false; // Compare Scalar Double-Precision Floating-Point Values
SMPDefsFlags[NN_vcmpss] = false; // Scalar Single-FP Compare
SMPDefsFlags[NN_vcomisd] = false; // Compare Scalar Ordered Double-Precision Floating-Point Values and Set EFLAGS
SMPDefsFlags[NN_vcomiss] = false; // Scalar Ordered Single-FP Compare and Set EFLAGS
SMPDefsFlags[NN_vcvtdq2pd] = false; // Convert Packed Doubleword Integers to Packed Single-Precision Floating-Point Values
SMPDefsFlags[NN_vcvtdq2ps] = false; // Convert Packed Doubleword Integers to Packed Double-Precision Floating-Point Values
SMPDefsFlags[NN_vcvtpd2dq] = false; // Convert Packed Double-Precision Floating-Point Values to Packed Doubleword Integers
SMPDefsFlags[NN_vcvtpd2ps] = false; // Convert Packed Double-Precision Floating-Point Values to Packed Single-Precision Floating-Point Values
SMPDefsFlags[NN_vcvtph2ps] = false; // Convert 16-bit FP Values to Single-Precision FP Values
SMPDefsFlags[NN_vcvtps2dq] = false; // Convert Packed Single-Precision Floating-Point Values to Packed Doubleword Integers
SMPDefsFlags[NN_vcvtps2pd] = false; // Convert Packed Single-Precision Floating-Point Values to Packed Double-Precision Floating-Point Values
SMPDefsFlags[NN_vcvtps2ph] = false; // Convert Single-Precision FP value to 16-bit FP value
SMPDefsFlags[NN_vcvtsd2si] = false; // Convert Scalar Double-Precision Floating-Point Value to Doubleword Integer
SMPDefsFlags[NN_vcvtsd2ss] = false; // Convert Scalar Double-Precision Floating-Point Value to Scalar Single-Precision Floating-Point Value
SMPDefsFlags[NN_vcvtsi2sd] = false; // Convert Doubleword Integer to Scalar Double-Precision Floating-Point Value
SMPDefsFlags[NN_vcvtsi2ss] = false; // Scalar signed INT32 to Single-FP conversion
SMPDefsFlags[NN_vcvtss2sd] = false; // Convert Scalar Single-Precision Floating-Point Value to Scalar Double-Precision Floating-Point Value
SMPDefsFlags[NN_vcvtss2si] = false; // Scalar Single-FP to signed INT32 conversion
SMPDefsFlags[NN_vcvttpd2dq] = false; // Convert With Truncation Packed Double-Precision Floating-Point Values to Packed Doubleword Integers
SMPDefsFlags[NN_vcvttps2dq] = false; // Convert With Truncation Packed Single-Precision Floating-Point Values to Packed Doubleword Integers
SMPDefsFlags[NN_vcvttsd2si] = false; // Convert with Truncation Scalar Double-Precision Floating-Point Value to Doubleword Integer
SMPDefsFlags[NN_vcvttss2si] = false; // Scalar Single-FP to signed INT32 conversion (truncate)
SMPDefsFlags[NN_vdivpd] = false; // Divide Packed Double-Precision Floating-Point Values
SMPDefsFlags[NN_vdivps] = false; // Packed Single-FP Divide
SMPDefsFlags[NN_vdivsd] = false; // Divide Scalar Double-Precision Floating-Point Values
SMPDefsFlags[NN_vdivss] = false; // Scalar Single-FP Divide
SMPDefsFlags[NN_vdppd] = false; // Dot Product of Packed Double Precision Floating-Point Values
SMPDefsFlags[NN_vdpps] = false; // Dot Product of Packed Single Precision Floating-Point Values
SMPDefsFlags[NN_vextractf128] = false; // Extract Packed Floating-Point Values
SMPDefsFlags[NN_vextracti128] = false; // Extract Packed Integer Values
SMPDefsFlags[NN_vextractps] = false; // Extract Packed Floating-Point Values
SMPDefsFlags[NN_vfmadd132pd] = false; // Fused Multiply-Add of Packed Double-Precision Floating-Point Values
SMPDefsFlags[NN_vfmadd132ps] = false; // Fused Multiply-Add of Packed Single-Precision Floating-Point Values
SMPDefsFlags[NN_vfmadd132sd] = false; // Fused Multiply-Add of Scalar Double-Precision Floating-Point Values
SMPDefsFlags[NN_vfmadd132ss] = false; // Fused Multiply-Add of Scalar Single-Precision Floating-Point Values
SMPDefsFlags[NN_vfmadd213pd] = false; // Fused Multiply-Add of Packed Double-Precision Floating-Point Values
SMPDefsFlags[NN_vfmadd213ps] = false; // Fused Multiply-Add of Packed Single-Precision Floating-Point Values
SMPDefsFlags[NN_vfmadd213sd] = false; // Fused Multiply-Add of Scalar Double-Precision Floating-Point Values
SMPDefsFlags[NN_vfmadd213ss] = false; // Fused Multiply-Add of Scalar Single-Precision Floating-Point Values
SMPDefsFlags[NN_vfmadd231pd] = false; // Fused Multiply-Add of Packed Double-Precision Floating-Point Values
SMPDefsFlags[NN_vfmadd231ps] = false; // Fused Multiply-Add of Packed Single-Precision Floating-Point Values
SMPDefsFlags[NN_vfmadd231sd] = false; // Fused Multiply-Add of Scalar Double-Precision Floating-Point Values
SMPDefsFlags[NN_vfmadd231ss] = false; // Fused Multiply-Add of Scalar Single-Precision Floating-Point Values
SMPDefsFlags[NN_vfmaddsub132pd] = false; // Fused Multiply-Alternating Add/Subtract of Packed Double-Precision Floating-Point Values
SMPDefsFlags[NN_vfmaddsub132ps] = false; // Fused Multiply-Alternating Add/Subtract of Packed Single-Precision Floating-Point Values
SMPDefsFlags[NN_vfmaddsub213pd] = false; // Fused Multiply-Alternating Add/Subtract of Packed Double-Precision Floating-Point Values
SMPDefsFlags[NN_vfmaddsub213ps] = false; // Fused Multiply-Alternating Add/Subtract of Packed Single-Precision Floating-Point Values
SMPDefsFlags[NN_vfmaddsub231pd] = false; // Fused Multiply-Alternating Add/Subtract of Packed Double-Precision Floating-Point Values
SMPDefsFlags[NN_vfmaddsub231ps] = false; // Fused Multiply-Alternating Add/Subtract of Packed Single-Precision Floating-Point Values
SMPDefsFlags[NN_vfmsub132pd] = false; // Fused Multiply-Subtract of Packed Double-Precision Floating-Point Values
SMPDefsFlags[NN_vfmsub132ps] = false; // Fused Multiply-Subtract of Packed Single-Precision Floating-Point Values
SMPDefsFlags[NN_vfmsub132sd] = false; // Fused Multiply-Subtract of Scalar Double-Precision Floating-Point Values
SMPDefsFlags[NN_vfmsub132ss] = false; // Fused Multiply-Subtract of Scalar Single-Precision Floating-Point Values
SMPDefsFlags[NN_vfmsub213pd] = false; // Fused Multiply-Subtract of Packed Double-Precision Floating-Point Values
SMPDefsFlags[NN_vfmsub213ps] = false; // Fused Multiply-Subtract of Packed Single-Precision Floating-Point Values
SMPDefsFlags[NN_vfmsub213sd] = false; // Fused Multiply-Subtract of Scalar Double-Precision Floating-Point Values
SMPDefsFlags[NN_vfmsub213ss] = false; // Fused Multiply-Subtract of Scalar Single-Precision Floating-Point Values
SMPDefsFlags[NN_vfmsub231pd] = false; // Fused Multiply-Subtract of Packed Double-Precision Floating-Point Values
SMPDefsFlags[NN_vfmsub231ps] = false; // Fused Multiply-Subtract of Packed Single-Precision Floating-Point Values
SMPDefsFlags[NN_vfmsub231sd] = false; // Fused Multiply-Subtract of Scalar Double-Precision Floating-Point Values
SMPDefsFlags[NN_vfmsub231ss] = false; // Fused Multiply-Subtract of Scalar Single-Precision Floating-Point Values
SMPDefsFlags[NN_vfmsubadd132pd] = false; // Fused Multiply-Alternating Subtract/Add of Packed Double-Precision Floating-Point Values
SMPDefsFlags[NN_vfmsubadd132ps] = false; // Fused Multiply-Alternating Subtract/Add of Packed Single-Precision Floating-Point Values
SMPDefsFlags[NN_vfmsubadd213pd] = false; // Fused Multiply-Alternating Subtract/Add of Packed Double-Precision Floating-Point Values
SMPDefsFlags[NN_vfmsubadd213ps] = false; // Fused Multiply-Alternating Subtract/Add of Packed Single-Precision Floating-Point Values
SMPDefsFlags[NN_vfmsubadd231pd] = false; // Fused Multiply-Alternating Subtract/Add of Packed Double-Precision Floating-Point Values
SMPDefsFlags[NN_vfmsubadd231ps] = false; // Fused Multiply-Alternating Subtract/Add of Packed Single-Precision Floating-Point Values
SMPDefsFlags[NN_vfnmadd132pd] = false; // Fused Negative Multiply-Add of Packed Double-Precision Floating-Point Values
SMPDefsFlags[NN_vfnmadd132ps] = false; // Fused Negative Multiply-Add of Packed Single-Precision Floating-Point Values
SMPDefsFlags[NN_vfnmadd132sd] = false; // Fused Negative Multiply-Add of Scalar Double-Precision Floating-Point Values
SMPDefsFlags[NN_vfnmadd132ss] = false; // Fused Negative Multiply-Add of Scalar Single-Precision Floating-Point Values
SMPDefsFlags[NN_vfnmadd213pd] = false; // Fused Negative Multiply-Add of Packed Double-Precision Floating-Point Values
SMPDefsFlags[NN_vfnmadd213ps] = false; // Fused Negative Multiply-Add of Packed Single-Precision Floating-Point Values
SMPDefsFlags[NN_vfnmadd213sd] = false; // Fused Negative Multiply-Add of Scalar Double-Precision Floating-Point Values
SMPDefsFlags[NN_vfnmadd213ss] = false; // Fused Negative Multiply-Add of Scalar Single-Precision Floating-Point Values
SMPDefsFlags[NN_vfnmadd231pd] = false; // Fused Negative Multiply-Add of Packed Double-Precision Floating-Point Values
SMPDefsFlags[NN_vfnmadd231ps] = false; // Fused Negative Multiply-Add of Packed Single-Precision Floating-Point Values
SMPDefsFlags[NN_vfnmadd231sd] = false; // Fused Negative Multiply-Add of Scalar Double-Precision Floating-Point Values
SMPDefsFlags[NN_vfnmadd231ss] = false; // Fused Negative Multiply-Add of Scalar Single-Precision Floating-Point Values
SMPDefsFlags[NN_vfnmsub132pd] = false; // Fused Negative Multiply-Subtract of Packed Double-Precision Floating-Point Values
SMPDefsFlags[NN_vfnmsub132ps] = false; // Fused Negative Multiply-Subtract of Packed Single-Precision Floating-Point Values
SMPDefsFlags[NN_vfnmsub132sd] = false; // Fused Negative Multiply-Subtract of Scalar Double-Precision Floating-Point Values
SMPDefsFlags[NN_vfnmsub132ss] = false; // Fused Negative Multiply-Subtract of Scalar Single-Precision Floating-Point Values
SMPDefsFlags[NN_vfnmsub213pd] = false; // Fused Negative Multiply-Subtract of Packed Double-Precision Floating-Point Values
SMPDefsFlags[NN_vfnmsub213ps] = false; // Fused Negative Multiply-Subtract of Packed Single-Precision Floating-Point Values
SMPDefsFlags[NN_vfnmsub213sd] = false; // Fused Negative Multiply-Subtract of Scalar Double-Precision Floating-Point Values
SMPDefsFlags[NN_vfnmsub213ss] = false; // Fused Negative Multiply-Subtract of Scalar Single-Precision Floating-Point Values
SMPDefsFlags[NN_vfnmsub231pd] = false; // Fused Negative Multiply-Subtract of Packed Double-Precision Floating-Point Values
SMPDefsFlags[NN_vfnmsub231ps] = false; // Fused Negative Multiply-Subtract of Packed Single-Precision Floating-Point Values
SMPDefsFlags[NN_vfnmsub231sd] = false; // Fused Negative Multiply-Subtract of Scalar Double-Precision Floating-Point Values
SMPDefsFlags[NN_vfnmsub231ss] = false; // Fused Negative Multiply-Subtract of Scalar Single-Precision Floating-Point Values
SMPDefsFlags[NN_vgatherdps] = false; // Gather Packed SP FP Values Using Signed Dword Indices
SMPDefsFlags[NN_vgatherdpd] = false; // Gather Packed DP FP Values Using Signed Dword Indices
SMPDefsFlags[NN_vgatherqps] = false; // Gather Packed SP FP Values Using Signed Qword Indices
SMPDefsFlags[NN_vgatherqpd] = false; // Gather Packed DP FP Values Using Signed Qword Indices
SMPDefsFlags[NN_vhaddpd] = false; // Add horizontally packed DP FP numbers
SMPDefsFlags[NN_vhaddps] = false; // Add horizontally packed SP FP numbers
SMPDefsFlags[NN_vhsubpd] = false; // Sub horizontally packed DP FP numbers
SMPDefsFlags[NN_vhsubps] = false; // Sub horizontally packed SP FP numbers
SMPDefsFlags[NN_vinsertf128] = false; // Insert Packed Floating-Point Values
SMPDefsFlags[NN_vinserti128] = false; // Insert Packed Integer Values
SMPDefsFlags[NN_vinsertps] = false; // Insert Packed Single Precision Floating-Point Value
SMPDefsFlags[NN_vlddqu] = false; // Load Unaligned Packed Integer Values
SMPDefsFlags[NN_vldmxcsr] = false; // Load Streaming SIMD Extensions Technology Control/Status Register
SMPDefsFlags[NN_vmaskmovdqu] = false; // Store Selected Bytes of Double Quadword with NT Hint
SMPDefsFlags[NN_vmaskmovpd] = false; // Conditionally Load Packed Double-Precision Floating-Point Values
SMPDefsFlags[NN_vmaskmovps] = false; // Conditionally Load Packed Single-Precision Floating-Point Values
SMPDefsFlags[NN_vmaxpd] = false; // Return Maximum Packed Double-Precision Floating-Point Values
SMPDefsFlags[NN_vmaxps] = false; // Packed Single-FP Maximum
SMPDefsFlags[NN_vmaxsd] = false; // Return Maximum Scalar Double-Precision Floating-Point Value
SMPDefsFlags[NN_vmaxss] = false; // Scalar Single-FP Maximum
SMPDefsFlags[NN_vminpd] = false; // Return Minimum Packed Double-Precision Floating-Point Values
SMPDefsFlags[NN_vminps] = false; // Packed Single-FP Minimum
SMPDefsFlags[NN_vminsd] = false; // Return Minimum Scalar Double-Precision Floating-Point Value
SMPDefsFlags[NN_vminss] = false; // Scalar Single-FP Minimum
SMPDefsFlags[NN_vmovapd] = false; // Move Aligned Packed Double-Precision Floating-Point Values
SMPDefsFlags[NN_vmovaps] = false; // Move Aligned Four Packed Single-FP
SMPDefsFlags[NN_vmovd] = false; // Move 32 bits
SMPDefsFlags[NN_vmovddup] = false; // Move One Double-FP and Duplicate
SMPDefsFlags[NN_vmovdqa] = false; // Move Aligned Double Quadword
SMPDefsFlags[NN_vmovdqu] = false; // Move Unaligned Double Quadword
SMPDefsFlags[NN_vmovhlps] = false; // Move High to Low Packed Single-FP
SMPDefsFlags[NN_vmovhpd] = false; // Move High Packed Double-Precision Floating-Point Values
SMPDefsFlags[NN_vmovhps] = false; // Move High Packed Single-FP
SMPDefsFlags[NN_vmovlhps] = false; // Move Low to High Packed Single-FP
SMPDefsFlags[NN_vmovlpd] = false; // Move Low Packed Double-Precision Floating-Point Values
SMPDefsFlags[NN_vmovlps] = false; // Move Low Packed Single-FP
SMPDefsFlags[NN_vmovmskpd] = false; // Extract Packed Double-Precision Floating-Point Sign Mask
SMPDefsFlags[NN_vmovmskps] = false; // Move Mask to Register
SMPDefsFlags[NN_vmovntdq] = false; // Store Double Quadword Using Non-Temporal Hint
SMPDefsFlags[NN_vmovntdqa] = false; // Load Double Quadword Non-Temporal Aligned Hint
SMPDefsFlags[NN_vmovntpd] = false; // Store Packed Double-Precision Floating-Point Values Using Non-Temporal Hint
SMPDefsFlags[NN_vmovntps] = false; // Move Aligned Four Packed Single-FP Non Temporal
SMPDefsFlags[NN_vmovntsd] = false; // Move Non-Temporal Scalar Double-Precision Floating-Point
SMPDefsFlags[NN_vmovntss] = false; // Move Non-Temporal Scalar Single-Precision Floating-Point
SMPDefsFlags[NN_vmovq] = false; // Move 64 bits
SMPDefsFlags[NN_vmovsd] = false; // Move Scalar Double-Precision Floating-Point Values
SMPDefsFlags[NN_vmovshdup] = false; // Move Packed Single-FP High and Duplicate
SMPDefsFlags[NN_vmovsldup] = false; // Move Packed Single-FP Low and Duplicate
SMPDefsFlags[NN_vmovss] = false; // Move Scalar Single-FP
SMPDefsFlags[NN_vmovupd] = false; // Move Unaligned Packed Double-Precision Floating-Point Values
SMPDefsFlags[NN_vmovups] = false; // Move Unaligned Four Packed Single-FP
SMPDefsFlags[NN_vmpsadbw] = false; // Compute Multiple Packed Sums of Absolute Difference
SMPDefsFlags[NN_vmulpd] = false; // Multiply Packed Double-Precision Floating-Point Values
SMPDefsFlags[NN_vmulps] = false; // Packed Single-FP Multiply
SMPDefsFlags[NN_vmulsd] = false; // Multiply Scalar Double-Precision Floating-Point Values
SMPDefsFlags[NN_vmulss] = false; // Scalar Single-FP Multiply
SMPDefsFlags[NN_vorpd] = false; // Bitwise Logical OR of Double-Precision Floating-Point Values
SMPDefsFlags[NN_vorps] = false; // Bitwise Logical OR for Single-FP Data
SMPDefsFlags[NN_vpabsb] = false; // Packed Absolute Value Byte
SMPDefsFlags[NN_vpabsd] = false; // Packed Absolute Value Doubleword
SMPDefsFlags[NN_vpabsw] = false; // Packed Absolute Value Word
SMPDefsFlags[NN_vpackssdw] = false; // Pack with Signed Saturation (Dword->Word)
SMPDefsFlags[NN_vpacksswb] = false; // Pack with Signed Saturation (Word->Byte)
SMPDefsFlags[NN_vpackusdw] = false; // Pack with Unsigned Saturation
SMPDefsFlags[NN_vpackuswb] = false; // Pack with Unsigned Saturation (Word->Byte)
SMPDefsFlags[NN_vpaddb] = false; // Packed Add Byte
SMPDefsFlags[NN_vpaddd] = false; // Packed Add Dword
SMPDefsFlags[NN_vpaddq] = false; // Add Packed Quadword Integers
SMPDefsFlags[NN_vpaddsb] = false; // Packed Add with Saturation (Byte)
SMPDefsFlags[NN_vpaddsw] = false; // Packed Add with Saturation (Word)
SMPDefsFlags[NN_vpaddusb] = false; // Packed Add Unsigned with Saturation (Byte)
SMPDefsFlags[NN_vpaddusw] = false; // Packed Add Unsigned with Saturation (Word)
SMPDefsFlags[NN_vpaddw] = false; // Packed Add Word
SMPDefsFlags[NN_vpalignr] = false; // Packed Align Right
SMPDefsFlags[NN_vpand] = false; // Bitwise Logical And
SMPDefsFlags[NN_vpandn] = false; // Bitwise Logical And Not
SMPDefsFlags[NN_vpavgb] = false; // Packed Average (Byte)
SMPDefsFlags[NN_vpavgw] = false; // Packed Average (Word)
SMPDefsFlags[NN_vpblendd] = false; // Blend Packed Dwords
SMPDefsFlags[NN_vpblendvb] = false; // Variable Blend Packed Bytes
SMPDefsFlags[NN_vpblendw] = false; // Blend Packed Words
SMPDefsFlags[NN_vpbroadcastb] = false; // Broadcast a Byte Integer
SMPDefsFlags[NN_vpbroadcastd] = false; // Broadcast a Dword Integer
SMPDefsFlags[NN_vpbroadcastq] = false; // Broadcast a Qword Integer
SMPDefsFlags[NN_vpbroadcastw] = false; // Broadcast a Word Integer
SMPDefsFlags[NN_vpclmulqdq] = false; // Carry-Less Multiplication Quadword
SMPDefsFlags[NN_vpcmpeqb] = false; // Packed Compare for Equal (Byte)
SMPDefsFlags[NN_vpcmpeqd] = false; // Packed Compare for Equal (Dword)
SMPDefsFlags[NN_vpcmpeqq] = false; // Compare Packed Qword Data for Equal
SMPDefsFlags[NN_vpcmpeqw] = false; // Packed Compare for Equal (Word)
SMPDefsFlags[NN_vpcmpestri] = false; // Packed Compare Explicit Length Strings, Return Index
SMPDefsFlags[NN_vpcmpestrm] = false; // Packed Compare Explicit Length Strings, Return Mask
SMPDefsFlags[NN_vpcmpgtb] = false; // Packed Compare for Greater Than (Byte)
SMPDefsFlags[NN_vpcmpgtd] = false; // Packed Compare for Greater Than (Dword)
SMPDefsFlags[NN_vpcmpgtq] = false; // Compare Packed Data for Greater Than
SMPDefsFlags[NN_vpcmpgtw] = false; // Packed Compare for Greater Than (Word)
SMPDefsFlags[NN_vpcmpistri] = false; // Packed Compare Implicit Length Strings, Return Index
SMPDefsFlags[NN_vpcmpistrm] = false; // Packed Compare Implicit Length Strings, Return Mask
SMPDefsFlags[NN_vperm2f128] = false; // Permute Floating-Point Values
SMPDefsFlags[NN_vperm2i128] = false; // Permute Integer Values
SMPDefsFlags[NN_vpermd] = false; // Full Doublewords Element Permutation
SMPDefsFlags[NN_vpermilpd] = false; // Permute Double-Precision Floating-Point Values
SMPDefsFlags[NN_vpermilps] = false; // Permute Single-Precision Floating-Point Values
SMPDefsFlags[NN_vpermpd] = false; // Permute Double-Precision Floating-Point Elements
SMPDefsFlags[NN_vpermps] = false; // Permute Single-Precision Floating-Point Elements
SMPDefsFlags[NN_vpermq] = false; // Qwords Element Permutation
SMPDefsFlags[NN_vpextrb] = false; // Extract Byte
SMPDefsFlags[NN_vpextrd] = false; // Extract Dword
SMPDefsFlags[NN_vpextrq] = false; // Extract Qword
SMPDefsFlags[NN_vpextrw] = false; // Extract Word
SMPDefsFlags[NN_vpgatherdd] = false; // Gather Packed Dword Values Using Signed Dword Indices
SMPDefsFlags[NN_vpgatherdq] = false; // Gather Packed Qword Values Using Signed Dword Indices
SMPDefsFlags[NN_vpgatherqd] = false; // Gather Packed Dword Values Using Signed Qword Indices
SMPDefsFlags[NN_vpgatherqq] = false; // Gather Packed Qword Values Using Signed Qword Indices
SMPDefsFlags[NN_vphaddd] = false; // Packed Horizontal Add Doubleword
SMPDefsFlags[NN_vphaddsw] = false; // Packed Horizontal Add and Saturate
SMPDefsFlags[NN_vphaddw] = false; // Packed Horizontal Add Word
SMPDefsFlags[NN_vphminposuw] = false; // Packed Horizontal Word Minimum
SMPDefsFlags[NN_vphsubd] = false; // Packed Horizontal Subtract Doubleword
SMPDefsFlags[NN_vphsubsw] = false; // Packed Horizontal Subtract and Saturate
SMPDefsFlags[NN_vphsubw] = false; // Packed Horizontal Subtract Word
SMPDefsFlags[NN_vpinsrb] = false; // Insert Byte
SMPDefsFlags[NN_vpinsrd] = false; // Insert Dword
SMPDefsFlags[NN_vpinsrq] = false; // Insert Qword
SMPDefsFlags[NN_vpinsrw] = false; // Insert Word
SMPDefsFlags[NN_vpmaddubsw] = false; // Multiply and Add Packed Signed and Unsigned Bytes
SMPDefsFlags[NN_vpmaddwd] = false; // Packed Multiply and Add
SMPDefsFlags[NN_vpmaskmovd] = false; // Conditionally Store Dword Values Using Mask
SMPDefsFlags[NN_vpmaskmovq] = false; // Conditionally Store Qword Values Using Mask
SMPDefsFlags[NN_vpmaxsb] = false; // Maximum of Packed Signed Byte Integers
SMPDefsFlags[NN_vpmaxsd] = false; // Maximum of Packed Signed Dword Integers
SMPDefsFlags[NN_vpmaxsw] = false; // Packed Signed Integer Word Maximum
SMPDefsFlags[NN_vpmaxub] = false; // Packed Unsigned Integer Byte Maximum
SMPDefsFlags[NN_vpmaxud] = false; // Maximum of Packed Unsigned Dword Integers
SMPDefsFlags[NN_vpmaxuw] = false; // Maximum of Packed Word Integers
SMPDefsFlags[NN_vpminsb] = false; // Minimum of Packed Signed Byte Integers
SMPDefsFlags[NN_vpminsd] = false; // Minimum of Packed Signed Dword Integers
SMPDefsFlags[NN_vpminsw] = false; // Packed Signed Integer Word Minimum
SMPDefsFlags[NN_vpminub] = false; // Packed Unsigned Integer Byte Minimum
SMPDefsFlags[NN_vpminud] = false; // Minimum of Packed Unsigned Dword Integers
SMPDefsFlags[NN_vpminuw] = false; // Minimum of Packed Word Integers
SMPDefsFlags[NN_vpmovmskb] = false; // Move Byte Mask to Integer
SMPDefsFlags[NN_vpmovsxbd] = false; // Packed Move with Sign Extend
SMPDefsFlags[NN_vpmovsxbq] = false; // Packed Move with Sign Extend
SMPDefsFlags[NN_vpmovsxbw] = false; // Packed Move with Sign Extend
SMPDefsFlags[NN_vpmovsxdq] = false; // Packed Move with Sign Extend
SMPDefsFlags[NN_vpmovsxwd] = false; // Packed Move with Sign Extend
SMPDefsFlags[NN_vpmovsxwq] = false; // Packed Move with Sign Extend
SMPDefsFlags[NN_vpmovzxbd] = false; // Packed Move with Zero Extend
SMPDefsFlags[NN_vpmovzxbq] = false; // Packed Move with Zero Extend
SMPDefsFlags[NN_vpmovzxbw] = false; // Packed Move with Zero Extend
SMPDefsFlags[NN_vpmovzxdq] = false; // Packed Move with Zero Extend
SMPDefsFlags[NN_vpmovzxwd] = false; // Packed Move with Zero Extend
SMPDefsFlags[NN_vpmovzxwq] = false; // Packed Move with Zero Extend
SMPDefsFlags[NN_vpmuldq] = false; // Multiply Packed Signed Dword Integers
SMPDefsFlags[NN_vpmulhrsw] = false; // Packed Multiply High with Round and Scale
SMPDefsFlags[NN_vpmulhuw] = false; // Packed Multiply High Unsigned
SMPDefsFlags[NN_vpmulhw] = false; // Packed Multiply High
SMPDefsFlags[NN_vpmulld] = false; // Multiply Packed Signed Dword Integers and Store Low Result
SMPDefsFlags[NN_vpmullw] = false; // Packed Multiply Low
SMPDefsFlags[NN_vpmuludq] = false; // Multiply Packed Unsigned Doubleword Integers
SMPDefsFlags[NN_vpor] = false; // Bitwise Logical Or
SMPDefsFlags[NN_vpsadbw] = false; // Packed Sum of Absolute Differences
SMPDefsFlags[NN_vpshufb] = false; // Packed Shuffle Bytes
SMPDefsFlags[NN_vpshufd] = false; // Shuffle Packed Doublewords
SMPDefsFlags[NN_vpshufhw] = false; // Shuffle Packed High Words
SMPDefsFlags[NN_vpshuflw] = false; // Shuffle Packed Low Words
SMPDefsFlags[NN_vpsignb] = false; // Packed SIGN Byte
SMPDefsFlags[NN_vpsignd] = false; // Packed SIGN Doubleword
SMPDefsFlags[NN_vpsignw] = false; // Packed SIGN Word
SMPDefsFlags[NN_vpslld] = false; // Packed Shift Left Logical (Dword)
SMPDefsFlags[NN_vpslldq] = false; // Shift Double Quadword Left Logical
SMPDefsFlags[NN_vpsllq] = false; // Packed Shift Left Logical (Qword)
SMPDefsFlags[NN_vpsllvd] = false; // Variable Bit Shift Left Logical (Dword)
SMPDefsFlags[NN_vpsllvq] = false; // Variable Bit Shift Left Logical (Qword)
SMPDefsFlags[NN_vpsllw] = false; // Packed Shift Left Logical (Word)
SMPDefsFlags[NN_vpsrad] = false; // Packed Shift Right Arithmetic (Dword)
SMPDefsFlags[NN_vpsravd] = false; // Variable Bit Shift Right Arithmetic
SMPDefsFlags[NN_vpsraw] = false; // Packed Shift Right Arithmetic (Word)
SMPDefsFlags[NN_vpsrld] = false; // Packed Shift Right Logical (Dword)
SMPDefsFlags[NN_vpsrldq] = false; // Shift Double Quadword Right Logical (Qword)
SMPDefsFlags[NN_vpsrlq] = false; // Packed Shift Right Logical (Qword)
SMPDefsFlags[NN_vpsrlvd] = false; // Variable Bit Shift Right Logical (Dword)
SMPDefsFlags[NN_vpsrlvq] = false; // Variable Bit Shift Right Logical (Qword)
SMPDefsFlags[NN_vpsrlw] = false; // Packed Shift Right Logical (Word)
SMPDefsFlags[NN_vpsubb] = false; // Packed Subtract Byte
SMPDefsFlags[NN_vpsubd] = false; // Packed Subtract Dword
SMPDefsFlags[NN_vpsubq] = false; // Subtract Packed Quadword Integers
SMPDefsFlags[NN_vpsubsb] = false; // Packed Subtract with Saturation (Byte)
SMPDefsFlags[NN_vpsubsw] = false; // Packed Subtract with Saturation (Word)
SMPDefsFlags[NN_vpsubusb] = false; // Packed Subtract Unsigned with Saturation (Byte)
SMPDefsFlags[NN_vpsubusw] = false; // Packed Subtract Unsigned with Saturation (Word)
SMPDefsFlags[NN_vpsubw] = false; // Packed Subtract Word
SMPDefsFlags[NN_vptest] = false; // Logical Compare
SMPDefsFlags[NN_vpunpckhbw] = false; // Unpack High Packed Data (Byte->Word)
SMPDefsFlags[NN_vpunpckhdq] = false; // Unpack High Packed Data (Dword->Qword)
SMPDefsFlags[NN_vpunpckhqdq] = false; // Unpack High Packed Data (Qword->Xmmword)
SMPDefsFlags[NN_vpunpckhwd] = false; // Unpack High Packed Data (Word->Dword)
SMPDefsFlags[NN_vpunpcklbw] = false; // Unpack Low Packed Data (Byte->Word)
SMPDefsFlags[NN_vpunpckldq] = false; // Unpack Low Packed Data (Dword->Qword)
SMPDefsFlags[NN_vpunpcklqdq] = false; // Unpack Low Packed Data (Qword->Xmmword)
SMPDefsFlags[NN_vpunpcklwd] = false; // Unpack Low Packed Data (Word->Dword)
SMPDefsFlags[NN_vpxor] = false; // Bitwise Logical Exclusive Or
SMPDefsFlags[NN_vrcpps] = false; // Packed Single-FP Reciprocal
SMPDefsFlags[NN_vrcpss] = false; // Scalar Single-FP Reciprocal
SMPDefsFlags[NN_vroundpd] = false; // Round Packed Double Precision Floating-Point Values
SMPDefsFlags[NN_vroundps] = false; // Round Packed Single Precision Floating-Point Values
SMPDefsFlags[NN_vroundsd] = false; // Round Scalar Double Precision Floating-Point Values
SMPDefsFlags[NN_vroundss] = false; // Round Scalar Single Precision Floating-Point Values
SMPDefsFlags[NN_vrsqrtps] = false; // Packed Single-FP Square Root Reciprocal
SMPDefsFlags[NN_vrsqrtss] = false; // Scalar Single-FP Square Root Reciprocal
SMPDefsFlags[NN_vshufpd] = false; // Shuffle Packed Double-Precision Floating-Point Values
SMPDefsFlags[NN_vshufps] = false; // Shuffle Single-FP
SMPDefsFlags[NN_vsqrtpd] = false; // Compute Square Roots of Packed Double-Precision Floating-Point Values
SMPDefsFlags[NN_vsqrtps] = false; // Packed Single-FP Square Root
SMPDefsFlags[NN_vsqrtsd] = false; // Compute Square Rootof Scalar Double-Precision Floating-Point Value
SMPDefsFlags[NN_vsqrtss] = false; // Scalar Single-FP Square Root
SMPDefsFlags[NN_vstmxcsr] = false; // Store Streaming SIMD Extensions Technology Control/Status Register
SMPDefsFlags[NN_vsubpd] = false; // Subtract Packed Double-Precision Floating-Point Values
SMPDefsFlags[NN_vsubps] = false; // Packed Single-FP Subtract
SMPDefsFlags[NN_vsubsd] = false; // Subtract Scalar Double-Precision Floating-Point Values
SMPDefsFlags[NN_vsubss] = false; // Scalar Single-FP Subtract
SMPDefsFlags[NN_vtestpd] = false; // Packed Double-Precision Floating-Point Bit Test
SMPDefsFlags[NN_vtestps] = false; // Packed Single-Precision Floating-Point Bit Test
SMPDefsFlags[NN_vucomisd] = false; // Unordered Compare Scalar Ordered Double-Precision Floating-Point Values and Set EFLAGS
SMPDefsFlags[NN_vucomiss] = false; // Scalar Unordered Single-FP Compare and Set EFLAGS
SMPDefsFlags[NN_vunpckhpd] = false; // Unpack and Interleave High Packed Double-Precision Floating-Point Values
SMPDefsFlags[NN_vunpckhps] = false; // Unpack High Packed Single-FP Data
SMPDefsFlags[NN_vunpcklpd] = false; // Unpack and Interleave Low Packed Double-Precision Floating-Point Values
SMPDefsFlags[NN_vunpcklps] = false; // Unpack Low Packed Single-FP Data
SMPDefsFlags[NN_vxorpd] = false; // Bitwise Logical OR of Double-Precision Floating-Point Values
SMPDefsFlags[NN_vxorps] = false; // Bitwise Logical XOR for Single-FP Data
SMPDefsFlags[NN_vzeroall] = false; // Zero All YMM Registers
SMPDefsFlags[NN_vzeroupper] = false; // Zero Upper Bits of YMM Registers
// Transactional Synchronization Extensions
SMPDefsFlags[NN_xabort] = false; // Transaction Abort
SMPDefsFlags[NN_xbegin] = false; // Transaction Begin
SMPDefsFlags[NN_xend] = false; // Transaction End
SMPDefsFlags[NN_xtest] = false; // Test If In Transactional Execution
// Virtual PC synthetic instructions
SMPDefsFlags[NN_vmgetinfo] = false; // Virtual PC - Get VM Information
SMPDefsFlags[NN_vmsetinfo] = false; // Virtual PC - Set VM Information
SMPDefsFlags[NN_vmdxdsbl] = false; // Virtual PC - Disable Direct Execution
SMPDefsFlags[NN_vmdxenbl] = false; // Virtual PC - Enable Direct Execution
SMPDefsFlags[NN_vmcpuid] = false; // Virtual PC - Virtualized CPU Information
SMPDefsFlags[NN_vmhlt] = false; // Virtual PC - Halt
SMPDefsFlags[NN_vmsplaf] = false; // Virtual PC - Spin Lock Acquisition Failed
SMPDefsFlags[NN_vmpushfd] = false; // Virtual PC - Push virtualized flags register
SMPDefsFlags[NN_vmpopfd] = false; // Virtual PC - Pop virtualized flags register
SMPDefsFlags[NN_vmcli] = false; // Virtual PC - Clear Interrupt Flag
SMPDefsFlags[NN_vmsti] = false; // Virtual PC - Set Interrupt Flag
SMPDefsFlags[NN_vmiretd] = false; // Virtual PC - Return From Interrupt
SMPDefsFlags[NN_vmsgdt] = false; // Virtual PC - Store Global Descriptor Table
SMPDefsFlags[NN_vmsidt] = false; // Virtual PC - Store Interrupt Descriptor Table
SMPDefsFlags[NN_vmsldt] = false; // Virtual PC - Store Local Descriptor Table
SMPDefsFlags[NN_vmstr] = false; // Virtual PC - Store Task Register
SMPDefsFlags[NN_vmsdte] = false; // Virtual PC - Store to Descriptor Table Entry
SMPDefsFlags[NN_vpcext] = false; // Virtual PC - ISA extension
SMPDefsFlags[NN_last] = false;
return;
} // end InitSMPDefsFlags()
// Initialize the SMPUsesFlags[] array to define how we emit
// optimizing annotations.
void InitSMPUsesFlags(void) {
// Default value is false. Few instructions use the flags.
(void) memset(SMPUsesFlags, false, sizeof(SMPUsesFlags));
SMPUsesFlags[NN_null] = true; // Unknown Operation
clc5q
committed
SMPUsesFlags[NN_aaa] = true; // ASCII adjust after addition
SMPUsesFlags[NN_aas] = true; // ASCII adjust after subtraction
SMPUsesFlags[NN_adc] = true; // Add with Carry
SMPUsesFlags[NN_cmps] = true; // Compare Strings (uses DF direction flag)
SMPUsesFlags[NN_daa] = true; // Decimal Adjust AL after Addition
SMPUsesFlags[NN_das] = true; // Decimal Adjust AL after Subtraction
SMPUsesFlags[NN_ins] = true; // Input Byte(s) from Port to String
5849
5850
5851
5852
5853
5854
5855
5856
5857
5858
5859
5860
5861
5862
5863
5864
5865
5866
5867
5868
5869
SMPUsesFlags[NN_into] = true; // Call to Interrupt Procedure if Overflow Flag = 1
SMPUsesFlags[NN_ja] = true; // Jump if Above (CF=0 & ZF=0)
SMPUsesFlags[NN_jae] = true; // Jump if Above or Equal (CF=0)
SMPUsesFlags[NN_jb] = true; // Jump if Below (CF=1)
SMPUsesFlags[NN_jbe] = true; // Jump if Below or Equal (CF=1 | ZF=1)
SMPUsesFlags[NN_jc] = true; // Jump if Carry (CF=1)
SMPUsesFlags[NN_jcxz] = true; // Jump if CX is 0
SMPUsesFlags[NN_jecxz] = true; // Jump if ECX is 0
SMPUsesFlags[NN_jrcxz] = true; // Jump if RCX is 0
SMPUsesFlags[NN_je] = true; // Jump if Equal (ZF=1)
SMPUsesFlags[NN_jg] = true; // Jump if Greater (ZF=0 & SF=OF)
SMPUsesFlags[NN_jge] = true; // Jump if Greater or Equal (SF=OF)
SMPUsesFlags[NN_jl] = true; // Jump if Less (SF!=OF)
SMPUsesFlags[NN_jle] = true; // Jump if Less or Equal (ZF=1 | SF!=OF)
SMPUsesFlags[NN_jna] = true; // Jump if Not Above (CF=1 | ZF=1)
SMPUsesFlags[NN_jnae] = true; // Jump if Not Above or Equal (CF=1)
SMPUsesFlags[NN_jnb] = true; // Jump if Not Below (CF=0)
SMPUsesFlags[NN_jnbe] = true; // Jump if Not Below or Equal (CF=0 & ZF=0)
SMPUsesFlags[NN_jnc] = true; // Jump if Not Carry (CF=0)
SMPUsesFlags[NN_jne] = true; // Jump if Not Equal (ZF=0)
SMPUsesFlags[NN_jng] = true; // Jump if Not Greater (ZF=1 | SF!=OF)
SMPUsesFlags[NN_jnge] = true; // Jump if Not Greater or Equal (SF!=OF)
SMPUsesFlags[NN_jnl] = true; // Jump if Not Less (SF=OF)
SMPUsesFlags[NN_jnle] = true; // Jump if Not Less or Equal (ZF=0 & SF=OF)
SMPUsesFlags[NN_jno] = true; // Jump if Not Overflow (OF=0)
SMPUsesFlags[NN_jnp] = true; // Jump if Not Parity (PF=0)
SMPUsesFlags[NN_jns] = true; // Jump if Not Sign (SF=0)
SMPUsesFlags[NN_jnz] = true; // Jump if Not Zero (ZF=0)
SMPUsesFlags[NN_jo] = true; // Jump if Overflow (OF=1)
SMPUsesFlags[NN_jp] = true; // Jump if Parity (PF=1)
SMPUsesFlags[NN_jpe] = true; // Jump if Parity Even (PF=1)
SMPUsesFlags[NN_jpo] = true; // Jump if Parity Odd (PF=0)
SMPUsesFlags[NN_js] = true; // Jump if Sign (SF=1)
SMPUsesFlags[NN_jz] = true; // Jump if Zero (ZF=1)
SMPUsesFlags[NN_lahf] = true; // Load Flags into AH Register
SMPUsesFlags[NN_lods] = true; // Load String
SMPUsesFlags[NN_loopwe] = true; // Loop while CX != 0 and ZF=1
SMPUsesFlags[NN_loope] = true; // Loop while rCX != 0 and ZF=1
SMPUsesFlags[NN_loopde] = true; // Loop while ECX != 0 and ZF=1
SMPUsesFlags[NN_loopqe] = true; // Loop while RCX != 0 and ZF=1
SMPUsesFlags[NN_loopwne] = true; // Loop while CX != 0 and ZF=0
SMPUsesFlags[NN_loopne] = true; // Loop while rCX != 0 and ZF=0
SMPUsesFlags[NN_loopdne] = true; // Loop while ECX != 0 and ZF=0
SMPUsesFlags[NN_loopqne] = true; // Loop while RCX != 0 and ZF=0
SMPUsesFlags[NN_movs] = true; // Move String (uses flags if REP prefix)
SMPUsesFlags[NN_outs] = true; // Output Byte(s) to Port
SMPUsesFlags[NN_pushfw] = true; // Push Flags Register onto the Stack
SMPUsesFlags[NN_pushf] = true; // Push Flags Register onto the Stack
SMPUsesFlags[NN_pushfd] = true; // Push Flags Register onto the Stack (use32)
SMPUsesFlags[NN_pushfq] = true; // Push Flags Register onto the Stack (use64)
SMPUsesFlags[NN_rcl] = true; // Rotate Through Carry Left
SMPUsesFlags[NN_rcr] = true; // Rotate Through Carry Right
SMPUsesFlags[NN_repe] = true; // Repeat String Operation while ZF=1
SMPUsesFlags[NN_repne] = true; // Repeat String Operation while ZF=0
SMPUsesFlags[NN_sbb] = true; // Integer Subtraction with Borrow
SMPUsesFlags[NN_scas] = true; // Compare String (uses DF direction flag)
SMPUsesFlags[NN_seta] = true; // Set Byte if Above (CF=0 & ZF=0)
SMPUsesFlags[NN_setae] = true; // Set Byte if Above or Equal (CF=0)
SMPUsesFlags[NN_setb] = true; // Set Byte if Below (CF=1)
SMPUsesFlags[NN_setbe] = true; // Set Byte if Below or Equal (CF=1 | ZF=1)
SMPUsesFlags[NN_setc] = true; // Set Byte if Carry (CF=1)
SMPUsesFlags[NN_sete] = true; // Set Byte if Equal (ZF=1)
SMPUsesFlags[NN_setg] = true; // Set Byte if Greater (ZF=0 & SF=OF)
SMPUsesFlags[NN_setge] = true; // Set Byte if Greater or Equal (SF=OF)
SMPUsesFlags[NN_setl] = true; // Set Byte if Less (SF!=OF)
SMPUsesFlags[NN_setle] = true; // Set Byte if Less or Equal (ZF=1 | SF!=OF)
SMPUsesFlags[NN_setna] = true; // Set Byte if Not Above (CF=1 | ZF=1)
SMPUsesFlags[NN_setnae] = true; // Set Byte if Not Above or Equal (CF=1)
SMPUsesFlags[NN_setnb] = true; // Set Byte if Not Below (CF=0)
SMPUsesFlags[NN_setnbe] = true; // Set Byte if Not Below or Equal (CF=0 & ZF=0)
SMPUsesFlags[NN_setnc] = true; // Set Byte if Not Carry (CF=0)
SMPUsesFlags[NN_setne] = true; // Set Byte if Not Equal (ZF=0)
SMPUsesFlags[NN_setng] = true; // Set Byte if Not Greater (ZF=1 | SF!=OF)
SMPUsesFlags[NN_setnge] = true; // Set Byte if Not Greater or Equal (SF!=OF)
5923
5924
5925
5926
5927
5928
5929
5930
5931
5932
5933
5934
5935
5936
5937
5938
5939
5940
5941
5942
5943
5944
SMPUsesFlags[NN_setnl] = true; // Set Byte if Not Less (SF=OF)
SMPUsesFlags[NN_setnle] = true; // Set Byte if Not Less or Equal (ZF=0 & SF=OF)
SMPUsesFlags[NN_setno] = true; // Set Byte if Not Overflow (OF=0)
SMPUsesFlags[NN_setnp] = true; // Set Byte if Not Parity (PF=0)
SMPUsesFlags[NN_setns] = true; // Set Byte if Not Sign (SF=0)
SMPUsesFlags[NN_setnz] = true; // Set Byte if Not Zero (ZF=0)
SMPUsesFlags[NN_seto] = true; // Set Byte if Overflow (OF=1)
SMPUsesFlags[NN_setp] = true; // Set Byte if Parity (PF=1)
SMPUsesFlags[NN_setpe] = true; // Set Byte if Parity Even (PF=1)
SMPUsesFlags[NN_setpo] = true; // Set Byte if Parity Odd (PF=0)
SMPUsesFlags[NN_sets] = true; // Set Byte if Sign (SF=1)
SMPUsesFlags[NN_setz] = true; // Set Byte if Zero (ZF=1)
SMPUsesFlags[NN_stos] = true; // Store String
//
// 486 instructions
//
//
// Pentium instructions
//
clc5q
committed
#if 0
SMPUsesFlags[NN_cpuid] = true; // Get CPU ID
SMPUsesFlags[NN_cmpxchg8b] = true; // Compare and Exchange Eight Bytes
clc5q
committed
#endif
5949
5950
5951
5952
5953
5954
5955
5956
5957
5958
5959
5960
5961
5962
5963
5964
5965
5966
5967
5968
5969
5970
5971
5972
5973
5974
5975
5976
5977
5978
5979
//
// Pentium Pro instructions
//
SMPUsesFlags[NN_cmova] = true; // Move if Above (CF=0 & ZF=0)
SMPUsesFlags[NN_cmovb] = true; // Move if Below (CF=1)
SMPUsesFlags[NN_cmovbe] = true; // Move if Below or Equal (CF=1 | ZF=1)
SMPUsesFlags[NN_cmovg] = true; // Move if Greater (ZF=0 & SF=OF)
SMPUsesFlags[NN_cmovge] = true; // Move if Greater or Equal (SF=OF)
SMPUsesFlags[NN_cmovl] = true; // Move if Less (SF!=OF)
SMPUsesFlags[NN_cmovle] = true; // Move if Less or Equal (ZF=1 | SF!=OF)
SMPUsesFlags[NN_cmovnb] = true; // Move if Not Below (CF=0)
SMPUsesFlags[NN_cmovno] = true; // Move if Not Overflow (OF=0)
SMPUsesFlags[NN_cmovnp] = true; // Move if Not Parity (PF=0)
SMPUsesFlags[NN_cmovns] = true; // Move if Not Sign (SF=0)
SMPUsesFlags[NN_cmovnz] = true; // Move if Not Zero (ZF=0)
SMPUsesFlags[NN_cmovo] = true; // Move if Overflow (OF=1)
SMPUsesFlags[NN_cmovp] = true; // Move if Parity (PF=1)
SMPUsesFlags[NN_cmovs] = true; // Move if Sign (SF=1)
SMPUsesFlags[NN_cmovz] = true; // Move if Zero (ZF=1)
SMPUsesFlags[NN_fcmovb] = true; // Floating Move if Below
SMPUsesFlags[NN_fcmove] = true; // Floating Move if Equal
SMPUsesFlags[NN_fcmovbe] = true; // Floating Move if Below or Equal
SMPUsesFlags[NN_fcmovu] = true; // Floating Move if Unordered
SMPUsesFlags[NN_fcmovnb] = true; // Floating Move if Not Below
SMPUsesFlags[NN_fcmovne] = true; // Floating Move if Not Equal
SMPUsesFlags[NN_fcmovnbe] = true; // Floating Move if Not Below or Equal
SMPUsesFlags[NN_fcmovnu] = true; // Floating Move if Not Unordered
//
clc5q
committed
// FPP instructions
//
//
// 80387 instructions
//
//
// Instructions added 28.02.96
//
SMPUsesFlags[NN_setalc] = true; // Set AL to Carry Flag
//
// MMX instructions
//
//