Skip to content
Snippets Groups Projects
SMPDataFlowAnalysis.cpp 389 KiB
Newer Older
SMPDefsFlags[NN_psrad] = false;               // Packed Shift Right Arithmetic (Dword)
SMPDefsFlags[NN_psrlw] = false;               // Packed Shift Right Logical (Word)
SMPDefsFlags[NN_psrld] = false;               // Packed Shift Right Logical (Dword)
SMPDefsFlags[NN_psrlq] = false;               // Packed Shift Right Logical (Qword)
SMPDefsFlags[NN_psubb] = false;               // Packed Subtract Byte
SMPDefsFlags[NN_psubw] = false;               // Packed Subtract Word
SMPDefsFlags[NN_psubd] = false;               // Packed Subtract Dword
SMPDefsFlags[NN_psubsb] = false;              // Packed Subtract with Saturation (Byte)
SMPDefsFlags[NN_psubsw] = false;              // Packed Subtract with Saturation (Word)
SMPDefsFlags[NN_psubusb] = false;             // Packed Subtract Unsigned with Saturation (Byte)
SMPDefsFlags[NN_psubusw] = false;             // Packed Subtract Unsigned with Saturation (Word)
SMPDefsFlags[NN_punpckhbw] = false;           // Unpack High Packed Data (Byte->Word)
SMPDefsFlags[NN_punpckhwd] = false;           // Unpack High Packed Data (Word->Dword)
SMPDefsFlags[NN_punpckhdq] = false;           // Unpack High Packed Data (Dword->Qword)
SMPDefsFlags[NN_punpcklbw] = false;           // Unpack Low Packed Data (Byte->Word)
SMPDefsFlags[NN_punpcklwd] = false;           // Unpack Low Packed Data (Word->Dword)
SMPDefsFlags[NN_punpckldq] = false;           // Unpack Low Packed Data (Dword->Qword)
SMPDefsFlags[NN_pxor] = false;                // Bitwise Logical Exclusive Or

//
//      Undocumented Deschutes processor instructions
//

SMPDefsFlags[NN_fxsave] = false;              // Fast save FP context        
SMPDefsFlags[NN_fxrstor] = false;             // Fast restore FP context     

//      Pentium II instructions

SMPDefsFlags[NN_sysexit] = false;             // Fast Transition from System Call Entry Point

//      3DNow! instructions

SMPDefsFlags[NN_pavgusb] = false;             // Packed 8-bit Unsigned Integer Averaging
SMPDefsFlags[NN_pfadd] = false;               // Packed Floating-Point Addition
SMPDefsFlags[NN_pfsub] = false;               // Packed Floating-Point Subtraction
SMPDefsFlags[NN_pfsubr] = false;              // Packed Floating-Point Reverse Subtraction
SMPDefsFlags[NN_pfacc] = false;               // Packed Floating-Point Accumulate
SMPDefsFlags[NN_pfcmpge] = false;             // Packed Floating-Point Comparison, Greater or Equal
SMPDefsFlags[NN_pfcmpgt] = false;             // Packed Floating-Point Comparison, Greater
SMPDefsFlags[NN_pfcmpeq] = false;             // Packed Floating-Point Comparison, Equal
SMPDefsFlags[NN_pfmin] = false;               // Packed Floating-Point Minimum
SMPDefsFlags[NN_pfmax] = false;               // Packed Floating-Point Maximum
SMPDefsFlags[NN_pi2fd] = false;               // Packed 32-bit Integer to Floating-Point
SMPDefsFlags[NN_pf2id] = false;               // Packed Floating-Point to 32-bit Integer
SMPDefsFlags[NN_pfrcp] = false;               // Packed Floating-Point Reciprocal Approximation
SMPDefsFlags[NN_pfrsqrt] = false;             // Packed Floating-Point Reciprocal Square Root Approximation
SMPDefsFlags[NN_pfmul] = false;               // Packed Floating-Point Multiplication
SMPDefsFlags[NN_pfrcpit1] = false;            // Packed Floating-Point Reciprocal First Iteration Step
SMPDefsFlags[NN_pfrsqit1] = false;            // Packed Floating-Point Reciprocal Square Root First Iteration Step
SMPDefsFlags[NN_pfrcpit2] = false;            // Packed Floating-Point Reciprocal Second Iteration Step
SMPDefsFlags[NN_pmulhrw] = false;             // Packed Floating-Point 16-bit Integer Multiply with rounding
SMPDefsFlags[NN_femms] = false;               // Faster entry/exit of the MMX or floating-point state
SMPDefsFlags[NN_prefetch] = false;            // Prefetch at least a 32-byte line into L1 data cache
SMPDefsFlags[NN_prefetchw] = false;           // Prefetch processor cache line into L1 data cache (mark as modified)


//      Pentium III instructions

SMPDefsFlags[NN_addps] = false;               // Packed Single-FP Add
SMPDefsFlags[NN_addss] = false;               // Scalar Single-FP Add
SMPDefsFlags[NN_andnps] = false;              // Bitwise Logical And Not for Single-FP
SMPDefsFlags[NN_andps] = false;               // Bitwise Logical And for Single-FP
SMPDefsFlags[NN_cmpps] = false;               // Packed Single-FP Compare
SMPDefsFlags[NN_cmpss] = false;               // Scalar Single-FP Compare
SMPDefsFlags[NN_cvtpi2ps] = false;            // Packed signed INT32 to Packed Single-FP conversion
SMPDefsFlags[NN_cvtps2pi] = false;            // Packed Single-FP to Packed INT32 conversion
SMPDefsFlags[NN_cvtsi2ss] = false;            // Scalar signed INT32 to Single-FP conversion
SMPDefsFlags[NN_cvtss2si] = false;            // Scalar Single-FP to signed INT32 conversion
SMPDefsFlags[NN_cvttps2pi] = false;           // Packed Single-FP to Packed INT32 conversion (truncate)
SMPDefsFlags[NN_cvttss2si] = false;           // Scalar Single-FP to signed INT32 conversion (truncate)
SMPDefsFlags[NN_divps] = false;               // Packed Single-FP Divide
SMPDefsFlags[NN_divss] = false;               // Scalar Single-FP Divide
SMPDefsFlags[NN_ldmxcsr] = false;             // Load Streaming SIMD Extensions Technology Control/Status Register
SMPDefsFlags[NN_maxps] = false;               // Packed Single-FP Maximum
SMPDefsFlags[NN_maxss] = false;               // Scalar Single-FP Maximum
SMPDefsFlags[NN_minps] = false;               // Packed Single-FP Minimum
SMPDefsFlags[NN_minss] = false;               // Scalar Single-FP Minimum
SMPDefsFlags[NN_movaps] = false;              // Move Aligned Four Packed Single-FP  
SMPDefsFlags[NN_movhlps] = false;             // Move High to Low Packed Single-FP
SMPDefsFlags[NN_movhps] = false;              // Move High Packed Single-FP
SMPDefsFlags[NN_movlhps] = false;             // Move Low to High Packed Single-FP
SMPDefsFlags[NN_movlps] = false;              // Move Low Packed Single-FP
SMPDefsFlags[NN_movmskps] = false;            // Move Mask to Register
SMPDefsFlags[NN_movss] = false;               // Move Scalar Single-FP
SMPDefsFlags[NN_movups] = false;              // Move Unaligned Four Packed Single-FP
SMPDefsFlags[NN_mulps] = false;               // Packed Single-FP Multiply
SMPDefsFlags[NN_mulss] = false;               // Scalar Single-FP Multiply
SMPDefsFlags[NN_orps] = false;                // Bitwise Logical OR for Single-FP Data
SMPDefsFlags[NN_rcpps] = false;               // Packed Single-FP Reciprocal
SMPDefsFlags[NN_rcpss] = false;               // Scalar Single-FP Reciprocal
SMPDefsFlags[NN_rsqrtps] = false;             // Packed Single-FP Square Root Reciprocal
SMPDefsFlags[NN_rsqrtss] = false;             // Scalar Single-FP Square Root Reciprocal
SMPDefsFlags[NN_shufps] = false;              // Shuffle Single-FP
SMPDefsFlags[NN_sqrtps] = false;              // Packed Single-FP Square Root
SMPDefsFlags[NN_sqrtss] = false;              // Scalar Single-FP Square Root
SMPDefsFlags[NN_stmxcsr] = false;             // Store Streaming SIMD Extensions Technology Control/Status Register 
SMPDefsFlags[NN_subps] = false;               // Packed Single-FP Subtract
SMPDefsFlags[NN_subss] = false;               // Scalar Single-FP Subtract
SMPDefsFlags[NN_unpckhps] = false;            // Unpack High Packed Single-FP Data
SMPDefsFlags[NN_unpcklps] = false;            // Unpack Low Packed Single-FP Data
SMPDefsFlags[NN_xorps] = false;               // Bitwise Logical XOR for Single-FP Data
SMPDefsFlags[NN_pavgb] = false;               // Packed Average (Byte)
SMPDefsFlags[NN_pavgw] = false;               // Packed Average (Word)
SMPDefsFlags[NN_pextrw] = false;              // Extract Word
SMPDefsFlags[NN_pinsrw] = false;              // Insert Word
SMPDefsFlags[NN_pmaxsw] = false;              // Packed Signed Integer Word Maximum
SMPDefsFlags[NN_pmaxub] = false;              // Packed Unsigned Integer Byte Maximum
SMPDefsFlags[NN_pminsw] = false;              // Packed Signed Integer Word Minimum
SMPDefsFlags[NN_pminub] = false;              // Packed Unsigned Integer Byte Minimum
SMPDefsFlags[NN_pmovmskb] = false;            // Move Byte Mask to Integer
SMPDefsFlags[NN_pmulhuw] = false;             // Packed Multiply High Unsigned
SMPDefsFlags[NN_psadbw] = false;              // Packed Sum of Absolute Differences
SMPDefsFlags[NN_pshufw] = false;              // Packed Shuffle Word
SMPDefsFlags[NN_maskmovq] = false;            // Byte Mask write  
SMPDefsFlags[NN_movntps] = false;             // Move Aligned Four Packed Single-FP Non Temporal
SMPDefsFlags[NN_movntq] = false;              // Move 64 Bits Non Temporal   
SMPDefsFlags[NN_prefetcht0] = false;          // Prefetch to all cache levels
SMPDefsFlags[NN_prefetcht1] = false;          // Prefetch to all cache levels
SMPDefsFlags[NN_prefetcht2] = false;          // Prefetch to L2 cache
SMPDefsFlags[NN_prefetchnta] = false;         // Prefetch to L1 cache
SMPDefsFlags[NN_sfence] = false;              // Store Fence

// Pentium III Pseudo instructions

SMPDefsFlags[NN_cmpeqps] = false;             // Packed Single-FP Compare EQ
SMPDefsFlags[NN_cmpltps] = false;             // Packed Single-FP Compare LT
SMPDefsFlags[NN_cmpleps] = false;             // Packed Single-FP Compare LE
SMPDefsFlags[NN_cmpunordps] = false;          // Packed Single-FP Compare UNORD
SMPDefsFlags[NN_cmpneqps] = false;            // Packed Single-FP Compare NOT EQ
SMPDefsFlags[NN_cmpnltps] = false;            // Packed Single-FP Compare NOT LT
SMPDefsFlags[NN_cmpnleps] = false;            // Packed Single-FP Compare NOT LE
SMPDefsFlags[NN_cmpordps] = false;            // Packed Single-FP Compare ORDERED
SMPDefsFlags[NN_cmpeqss] = false;             // Scalar Single-FP Compare EQ
SMPDefsFlags[NN_cmpltss] = false;             // Scalar Single-FP Compare LT
SMPDefsFlags[NN_cmpless] = false;             // Scalar Single-FP Compare LE
SMPDefsFlags[NN_cmpunordss] = false;          // Scalar Single-FP Compare UNORD
SMPDefsFlags[NN_cmpneqss] = false;            // Scalar Single-FP Compare NOT EQ
SMPDefsFlags[NN_cmpnltss] = false;            // Scalar Single-FP Compare NOT LT
SMPDefsFlags[NN_cmpnless] = false;            // Scalar Single-FP Compare NOT LE
SMPDefsFlags[NN_cmpordss] = false;            // Scalar Single-FP Compare ORDERED

// AMD K7 instructions

// Revisit AMD if we port to it.
SMPDefsFlags[NN_pf2iw] = false;               // Packed Floating-Point to Integer with Sign Extend
SMPDefsFlags[NN_pfnacc] = false;              // Packed Floating-Point Negative Accumulate
SMPDefsFlags[NN_pfpnacc] = false;             // Packed Floating-Point Mixed Positive-Negative Accumulate
SMPDefsFlags[NN_pi2fw] = false;               // Packed 16-bit Integer to Floating-Point
SMPDefsFlags[NN_pswapd] = false;              // Packed Swap Double Word

// Undocumented FP instructions (thanks to norbert.juffa@adm.com)

SMPDefsFlags[NN_fstp1] = false;               // Alias of Store Real and Pop
SMPDefsFlags[NN_fxch4] = false;               // Alias of Exchange Registers
SMPDefsFlags[NN_ffreep] = false;              // Free Register and Pop
SMPDefsFlags[NN_fxch7] = false;               // Alias of Exchange Registers
SMPDefsFlags[NN_fstp8] = false;               // Alias of Store Real and Pop
SMPDefsFlags[NN_fstp9] = false;               // Alias of Store Real and Pop

// Pentium 4 instructions

SMPDefsFlags[NN_addpd] = false;               // Add Packed Double-Precision Floating-Point Values
SMPDefsFlags[NN_addsd] = false;               // Add Scalar Double-Precision Floating-Point Values
SMPDefsFlags[NN_andnpd] = false;              // Bitwise Logical AND NOT of Packed Double-Precision Floating-Point Values
SMPDefsFlags[NN_andpd] = false;               // Bitwise Logical AND of Packed Double-Precision Floating-Point Values
SMPDefsFlags[NN_clflush] = false;             // Flush Cache Line
SMPDefsFlags[NN_cmppd] = false;               // Compare Packed Double-Precision Floating-Point Values
SMPDefsFlags[NN_cmpsd] = false;               // Compare Scalar Double-Precision Floating-Point Values
SMPDefsFlags[NN_cvtdq2pd] = false;            // Convert Packed Doubleword Integers to Packed Single-Precision Floating-Point Values
SMPDefsFlags[NN_cvtdq2ps] = false;            // Convert Packed Doubleword Integers to Packed Double-Precision Floating-Point Values
SMPDefsFlags[NN_cvtpd2dq] = false;            // Convert Packed Double-Precision Floating-Point Values to Packed Doubleword Integers
SMPDefsFlags[NN_cvtpd2pi] = false;            // Convert Packed Double-Precision Floating-Point Values to Packed Doubleword Integers
SMPDefsFlags[NN_cvtpd2ps] = false;            // Convert Packed Double-Precision Floating-Point Values to Packed Single-Precision Floating-Point Values
SMPDefsFlags[NN_cvtpi2pd] = false;            // Convert Packed Doubleword Integers to Packed Double-Precision Floating-Point Values
SMPDefsFlags[NN_cvtps2dq] = false;            // Convert Packed Single-Precision Floating-Point Values to Packed Doubleword Integers
SMPDefsFlags[NN_cvtps2pd] = false;            // Convert Packed Single-Precision Floating-Point Values to Packed Double-Precision Floating-Point Values
SMPDefsFlags[NN_cvtsd2si] = false;            // Convert Scalar Double-Precision Floating-Point Value to Doubleword Integer
SMPDefsFlags[NN_cvtsd2ss] = false;            // Convert Scalar Double-Precision Floating-Point Value to Scalar Single-Precision Floating-Point Value
SMPDefsFlags[NN_cvtsi2sd] = false;            // Convert Doubleword Integer to Scalar Double-Precision Floating-Point Value
SMPDefsFlags[NN_cvtss2sd] = false;            // Convert Scalar Single-Precision Floating-Point Value to Scalar Double-Precision Floating-Point Value
SMPDefsFlags[NN_cvttpd2dq] = false;           // Convert With Truncation Packed Double-Precision Floating-Point Values to Packed Doubleword Integers
SMPDefsFlags[NN_cvttpd2pi] = false;           // Convert with Truncation Packed Double-Precision Floating-Point Values to Packed Doubleword Integers
SMPDefsFlags[NN_cvttps2dq] = false;           // Convert With Truncation Packed Single-Precision Floating-Point Values to Packed Doubleword Integers
SMPDefsFlags[NN_cvttsd2si] = false;           // Convert with Truncation Scalar Double-Precision Floating-Point Value to Doubleword Integer
SMPDefsFlags[NN_divpd] = false;               // Divide Packed Double-Precision Floating-Point Values
SMPDefsFlags[NN_divsd] = false;               // Divide Scalar Double-Precision Floating-Point Values
SMPDefsFlags[NN_lfence] = false;              // Load Fence
SMPDefsFlags[NN_maskmovdqu] = false;          // Store Selected Bytes of Double Quadword 
SMPDefsFlags[NN_maxpd] = false;               // Return Maximum Packed Double-Precision Floating-Point Values
SMPDefsFlags[NN_maxsd] = false;               // Return Maximum Scalar Double-Precision Floating-Point Value
SMPDefsFlags[NN_mfence] = false;              // Memory Fence
SMPDefsFlags[NN_minpd] = false;               // Return Minimum Packed Double-Precision Floating-Point Values
SMPDefsFlags[NN_minsd] = false;               // Return Minimum Scalar Double-Precision Floating-Point Value
SMPDefsFlags[NN_movapd] = false;              // Move Aligned Packed Double-Precision Floating-Point Values 
SMPDefsFlags[NN_movdq2q] = false;             // Move Quadword from XMM to MMX Register
SMPDefsFlags[NN_movdqa] = false;              // Move Aligned Double Quadword  
SMPDefsFlags[NN_movdqu] = false;              // Move Unaligned Double Quadword  
SMPDefsFlags[NN_movhpd] = false;              // Move High Packed Double-Precision Floating-Point Values 
SMPDefsFlags[NN_movlpd] = false;              // Move Low Packed Double-Precision Floating-Point Values 
SMPDefsFlags[NN_movmskpd] = false;            // Extract Packed Double-Precision Floating-Point Sign Mask
SMPDefsFlags[NN_movntdq] = false;             // Store Double Quadword Using Non-Temporal Hint
SMPDefsFlags[NN_movnti] = false;              // Store Doubleword Using Non-Temporal Hint
SMPDefsFlags[NN_movntpd] = false;             // Store Packed Double-Precision Floating-Point Values Using Non-Temporal Hint
SMPDefsFlags[NN_movq2dq] = false;             // Move Quadword from MMX to XMM Register
SMPDefsFlags[NN_movsd] = false;               // Move Scalar Double-Precision Floating-Point Values
SMPDefsFlags[NN_movupd] = false;              // Move Unaligned Packed Double-Precision Floating-Point Values
SMPDefsFlags[NN_mulpd] = false;               // Multiply Packed Double-Precision Floating-Point Values
SMPDefsFlags[NN_mulsd] = false;               // Multiply Scalar Double-Precision Floating-Point Values
SMPDefsFlags[NN_orpd] = false;                // Bitwise Logical OR of Double-Precision Floating-Point Values
SMPDefsFlags[NN_paddq] = false;               // Add Packed Quadword Integers
SMPDefsFlags[NN_pause] = false;               // Spin Loop Hint
SMPDefsFlags[NN_pmuludq] = false;             // Multiply Packed Unsigned Doubleword Integers
SMPDefsFlags[NN_pshufd] = false;              // Shuffle Packed Doublewords
SMPDefsFlags[NN_pshufhw] = false;             // Shuffle Packed High Words
SMPDefsFlags[NN_pshuflw] = false;             // Shuffle Packed Low Words
SMPDefsFlags[NN_pslldq] = false;              // Shift Double Quadword Left Logical
SMPDefsFlags[NN_psrldq] = false;              // Shift Double Quadword Right Logical
SMPDefsFlags[NN_psubq] = false;               // Subtract Packed Quadword Integers
SMPDefsFlags[NN_punpckhqdq] = false;          // Unpack High Data
SMPDefsFlags[NN_punpcklqdq] = false;          // Unpack Low Data
SMPDefsFlags[NN_shufpd] = false;              // Shuffle Packed Double-Precision Floating-Point Values
SMPDefsFlags[NN_sqrtpd] = false;              // Compute Square Roots of Packed Double-Precision Floating-Point Values
SMPDefsFlags[NN_sqrtsd] = false;              // Compute Square Rootof Scalar Double-Precision Floating-Point Value
SMPDefsFlags[NN_subpd] = false;               // Subtract Packed Double-Precision Floating-Point Values
SMPDefsFlags[NN_subsd] = false;               // Subtract Scalar Double-Precision Floating-Point Values
SMPDefsFlags[NN_unpckhpd] = false;            // Unpack and Interleave High Packed Double-Precision Floating-Point Values
SMPDefsFlags[NN_unpcklpd] = false;            // Unpack and Interleave Low Packed Double-Precision Floating-Point Values
SMPDefsFlags[NN_xorpd] = false;               // Bitwise Logical OR of Double-Precision Floating-Point Values


// AMD syscall/sysret instructions  NOTE: not AMD, found in Intel manual


// AMD64 instructions    NOTE: not AMD, found in Intel manual

SMPDefsFlags[NN_swapgs] = false;              // Exchange GS base with KernelGSBase MSR

// New Pentium instructions (SSE3)

SMPDefsFlags[NN_movddup] = false;             // Move One Double-FP and Duplicate
SMPDefsFlags[NN_movshdup] = false;            // Move Packed Single-FP High and Duplicate
SMPDefsFlags[NN_movsldup] = false;            // Move Packed Single-FP Low and Duplicate

// Missing AMD64 instructions  NOTE: also found in Intel manual

SMPDefsFlags[NN_movsxd] = false;              // Move with Sign-Extend Doubleword

// SSE3 instructions

SMPDefsFlags[NN_addsubpd] = false;            // Add /Sub packed DP FP numbers
SMPDefsFlags[NN_addsubps] = false;            // Add /Sub packed SP FP numbers
SMPDefsFlags[NN_haddpd] = false;              // Add horizontally packed DP FP numbers
SMPDefsFlags[NN_haddps] = false;              // Add horizontally packed SP FP numbers
SMPDefsFlags[NN_hsubpd] = false;              // Sub horizontally packed DP FP numbers
SMPDefsFlags[NN_hsubps] = false;              // Sub horizontally packed SP FP numbers
SMPDefsFlags[NN_monitor] = false;             // Set up a linear address range to be monitored by hardware
SMPDefsFlags[NN_mwait] = false;               // Wait until write-back store performed within the range specified by the MONITOR instruction
SMPDefsFlags[NN_fisttp] = false;              // Store ST in intXX (chop) and pop
SMPDefsFlags[NN_lddqu] = false;               // Load unaligned integer 128-bit

// SSSE3 instructions

SMPDefsFlags[NN_psignb] = false;              // Packed SIGN Byte
SMPDefsFlags[NN_psignw] = false;              // Packed SIGN Word
SMPDefsFlags[NN_psignd] = false;              // Packed SIGN Doubleword
SMPDefsFlags[NN_pshufb] = false;              // Packed Shuffle Bytes
SMPDefsFlags[NN_pmulhrsw] = false;            // Packed Multiply High with Round and Scale
SMPDefsFlags[NN_pmaddubsw] = false;           // Multiply and Add Packed Signed and Unsigned Bytes
SMPDefsFlags[NN_phsubsw] = false;             // Packed Horizontal Subtract and Saturate
SMPDefsFlags[NN_phaddsw] = false;             // Packed Horizontal Add and Saturate
SMPDefsFlags[NN_phaddw] = false;              // Packed Horizontal Add Word
SMPDefsFlags[NN_phaddd] = false;              // Packed Horizontal Add Doubleword
SMPDefsFlags[NN_phsubw] = false;              // Packed Horizontal Subtract Word
SMPDefsFlags[NN_phsubd] = false;              // Packed Horizontal Subtract Doubleword
SMPDefsFlags[NN_palignr] = false;             // Packed Align Right
SMPDefsFlags[NN_pabsb] = false;               // Packed Absolute Value Byte
SMPDefsFlags[NN_pabsw] = false;               // Packed Absolute Value Word
SMPDefsFlags[NN_pabsd] = false;               // Packed Absolute Value Doubleword

// VMX instructions

#if 599 < IDA_SDK_VERSION

SMPDefsFlags[NN_ud2] = false;                 // Undefined Instruction

// Added with x86-64

SMPDefsFlags[NN_rdtscp] = false;              // Read Time-Stamp Counter and Processor ID

// Geode LX 3DNow! extensions

SMPDefsFlags[NN_pfrcpv] = false;              // Reciprocal Approximation for a Pair of 32-bit Floats
SMPDefsFlags[NN_pfrsqrtv] = false;            // Reciprocal Square Root Approximation for a Pair of 32-bit Floats

// SSE2 pseudoinstructions

SMPDefsFlags[NN_cmpeqpd] = false;             // Packed Double-FP Compare EQ
SMPDefsFlags[NN_cmpltpd] = false;             // Packed Double-FP Compare LT
SMPDefsFlags[NN_cmplepd] = false;             // Packed Double-FP Compare LE
SMPDefsFlags[NN_cmpunordpd] = false;          // Packed Double-FP Compare UNORD
SMPDefsFlags[NN_cmpneqpd] = false;            // Packed Double-FP Compare NOT EQ
SMPDefsFlags[NN_cmpnltpd] = false;            // Packed Double-FP Compare NOT LT
SMPDefsFlags[NN_cmpnlepd] = false;            // Packed Double-FP Compare NOT LE
SMPDefsFlags[NN_cmpordpd] = false;            // Packed Double-FP Compare ORDERED
SMPDefsFlags[NN_cmpeqsd] = false;             // Scalar Double-FP Compare EQ
SMPDefsFlags[NN_cmpltsd] = false;             // Scalar Double-FP Compare LT
SMPDefsFlags[NN_cmplesd] = false;             // Scalar Double-FP Compare LE
SMPDefsFlags[NN_cmpunordsd] = false;          // Scalar Double-FP Compare UNORD
SMPDefsFlags[NN_cmpneqsd] = false;            // Scalar Double-FP Compare NOT EQ
SMPDefsFlags[NN_cmpnltsd] = false;            // Scalar Double-FP Compare NOT LT
SMPDefsFlags[NN_cmpnlesd] = false;            // Scalar Double-FP Compare NOT LE
SMPDefsFlags[NN_cmpordsd] = false;            // Scalar Double-FP Compare ORDERED

// SSSE4.1 instructions

SMPDefsFlags[NN_blendpd] = false;              // Blend Packed Double Precision Floating-Point Values
SMPDefsFlags[NN_blendps] = false;              // Blend Packed Single Precision Floating-Point Values
SMPDefsFlags[NN_blendvpd] = false;             // Variable Blend Packed Double Precision Floating-Point Values
SMPDefsFlags[NN_blendvps] = false;             // Variable Blend Packed Single Precision Floating-Point Values
SMPDefsFlags[NN_dppd] = false;                 // Dot Product of Packed Double Precision Floating-Point Values
SMPDefsFlags[NN_dpps] = false;                 // Dot Product of Packed Single Precision Floating-Point Values
SMPDefsFlags[NN_extractps] = 2;            // Extract Packed Single Precision Floating-Point Value
SMPDefsFlags[NN_insertps] = false;             // Insert Packed Single Precision Floating-Point Value
SMPDefsFlags[NN_movntdqa] = false;             // Load Double Quadword Non-Temporal Aligned Hint
SMPDefsFlags[NN_mpsadbw] = false;              // Compute Multiple Packed Sums of Absolute Difference
SMPDefsFlags[NN_packusdw] = false;             // Pack with Unsigned Saturation
SMPDefsFlags[NN_pblendvb] = false;             // Variable Blend Packed Bytes
SMPDefsFlags[NN_pblendw] = false;              // Blend Packed Words
SMPDefsFlags[NN_pcmpeqq] = false;              // Compare Packed Qword Data for Equal
SMPDefsFlags[NN_pextrb] = false;               // Extract Byte
SMPDefsFlags[NN_pextrd] = false;               // Extract Dword
SMPDefsFlags[NN_pextrq] = false;               // Extract Qword
SMPDefsFlags[NN_phminposuw] = false;           // Packed Horizontal Word Minimum
SMPDefsFlags[NN_pinsrb] = false;               // Insert Byte
SMPDefsFlags[NN_pinsrd] = false;               // Insert Dword
SMPDefsFlags[NN_pinsrq] = false;               // Insert Qword
SMPDefsFlags[NN_pmaxsb] = false;               // Maximum of Packed Signed Byte Integers
SMPDefsFlags[NN_pmaxsd] = false;               // Maximum of Packed Signed Dword Integers
SMPDefsFlags[NN_pmaxud] = false;               // Maximum of Packed Unsigned Dword Integers
SMPDefsFlags[NN_pmaxuw] = false;               // Maximum of Packed Word Integers
SMPDefsFlags[NN_pminsb] = false;               // Minimum of Packed Signed Byte Integers
SMPDefsFlags[NN_pminsd] = false;               // Minimum of Packed Signed Dword Integers
SMPDefsFlags[NN_pminud] = false;               // Minimum of Packed Unsigned Dword Integers
SMPDefsFlags[NN_pminuw] = false;               // Minimum of Packed Word Integers
SMPDefsFlags[NN_pmovsxbw] = false;             // Packed Move with Sign Extend
SMPDefsFlags[NN_pmovsxbd] = false;             // Packed Move with Sign Extend
SMPDefsFlags[NN_pmovsxbq] = false;             // Packed Move with Sign Extend
SMPDefsFlags[NN_pmovsxwd] = false;             // Packed Move with Sign Extend
SMPDefsFlags[NN_pmovsxwq] = false;             // Packed Move with Sign Extend
SMPDefsFlags[NN_pmovsxdq] = false;             // Packed Move with Sign Extend
SMPDefsFlags[NN_pmovzxbw] = false;             // Packed Move with Zero Extend
SMPDefsFlags[NN_pmovzxbd] = false;             // Packed Move with Zero Extend
SMPDefsFlags[NN_pmovzxbq] = false;             // Packed Move with Zero Extend
SMPDefsFlags[NN_pmovzxwd] = false;             // Packed Move with Zero Extend
SMPDefsFlags[NN_pmovzxwq] = false;             // Packed Move with Zero Extend
SMPDefsFlags[NN_pmovzxdq] = false;             // Packed Move with Zero Extend
SMPDefsFlags[NN_pmuldq] = false;               // Multiply Packed Signed Dword Integers
SMPDefsFlags[NN_pmulld] = false;               // Multiply Packed Signed Dword Integers and Store Low Result
SMPDefsFlags[NN_roundpd] = false;              // Round Packed Double Precision Floating-Point Values
SMPDefsFlags[NN_roundps] = false;              // Round Packed Single Precision Floating-Point Values
SMPDefsFlags[NN_roundsd] = false;              // Round Scalar Double Precision Floating-Point Values
SMPDefsFlags[NN_roundss] = false;              // Round Scalar Single Precision Floating-Point Values

// SSSE4.2 instructions
SMPDefsFlags[NN_crc32] = false;                // Accumulate CRC32 Value
SMPDefsFlags[NN_pcmpgtq] = false;              // Compare Packed Data for Greater Than

// AMD SSE4a instructions

SMPDefsFlags[NN_extrq] = false;                // Extract Field From Register
SMPDefsFlags[NN_insertq] = false;              // Insert Field
SMPDefsFlags[NN_movntsd] = false;              // Move Non-Temporal Scalar Double-Precision Floating-Point
SMPDefsFlags[NN_movntss] = false;              // Move Non-Temporal Scalar Single-Precision Floating-Point

// xsave/xrstor instructions

SMPDefsFlags[NN_xgetbv] = false;               // Get Value of Extended Control Register
SMPDefsFlags[NN_xrstor] = false;               // Restore Processor Extended States
SMPDefsFlags[NN_xsave] = false;                // Save Processor Extended States
SMPDefsFlags[NN_xsetbv] = false;               // Set Value of Extended Control Register

// Intel Safer Mode Extensions (SMX)

// AMD-V Virtualization ISA Extension

SMPDefsFlags[NN_invlpga] = false;              // Invalidate TLB Entry in a Specified ASID
SMPDefsFlags[NN_skinit] = false;               // Secure Init and Jump with Attestation
SMPDefsFlags[NN_vmexit] = false;               // Stop Executing Guest, Begin Executing Host
SMPDefsFlags[NN_vmload] = false;               // Load State from VMCB
SMPDefsFlags[NN_vmmcall] = false;              // Call VMM
SMPDefsFlags[NN_vmrun] = false;                // Run Virtual Machine
SMPDefsFlags[NN_vmsave] = false;               // Save State to VMCB

// VMX+ instructions

SMPDefsFlags[NN_invept] = false;               // Invalidate Translations Derived from EPT
SMPDefsFlags[NN_invvpid] = false;              // Invalidate Translations Based on VPID

// Intel Atom instructions

SMPDefsFlags[NN_movbe] = false;                // Move Data After Swapping Bytes

// Intel AES instructions

SMPDefsFlags[NN_aesenc] = false;                // Perform One Round of an AES Encryption Flow
SMPDefsFlags[NN_aesenclast] = false;            // Perform the Last Round of an AES Encryption Flow
SMPDefsFlags[NN_aesdec] = false;                // Perform One Round of an AES Decryption Flow
SMPDefsFlags[NN_aesdeclast] = false;            // Perform the Last Round of an AES Decryption Flow
SMPDefsFlags[NN_aesimc] = false;                // Perform the AES InvMixColumn Transformation
SMPDefsFlags[NN_aeskeygenassist] = false;       // AES Round Key Generation Assist

// Carryless multiplication

SMPDefsFlags[NN_pclmulqdq] = false;            // Carry-Less Multiplication Quadword

5416 5417 5418 5419 5420 5421 5422 5423 5424 5425 5426 5427 5428 5429 5430 5431 5432 5433 5434 5435 5436 5437 5438 5439 5440 5441 5442 5443 5444 5445 5446 5447 5448 5449 5450 5451 5452 5453 5454 5455 5456 5457 5458 5459 5460 5461 5462 5463 5464 5465 5466 5467 5468 5469 5470 5471 5472 5473 5474 5475 5476 5477 5478 5479 5480 5481 5482 5483 5484 5485 5486 5487 5488 5489 5490 5491 5492 5493 5494 5495 5496 5497 5498 5499 5500 5501 5502 5503 5504 5505 5506 5507 5508 5509 5510 5511 5512 5513 5514 5515 5516 5517 5518 5519 5520 5521 5522 5523 5524 5525 5526 5527 5528 5529 5530 5531 5532 5533 5534 5535 5536 5537 5538 5539 5540 5541 5542 5543 5544 5545 5546 5547 5548 5549 5550 5551 5552 5553 5554 5555 5556 5557 5558 5559 5560 5561 5562 5563 5564 5565 5566 5567 5568 5569 5570 5571 5572 5573 5574 5575 5576 5577 5578 5579 5580 5581 5582 5583 5584 5585 5586 5587 5588 5589 5590 5591 5592 5593 5594 5595 5596 5597 5598 5599 5600 5601 5602 5603 5604 5605 5606 5607 5608 5609 5610 5611 5612 5613 5614 5615 5616 5617 5618 5619 5620 5621 5622 5623 5624 5625 5626 5627 5628 5629 5630 5631 5632 5633 5634 5635 5636 5637 5638 5639 5640 5641 5642 5643 5644 5645 5646 5647 5648 5649 5650 5651 5652 5653 5654 5655 5656 5657 5658 5659 5660 5661 5662 5663 5664 5665 5666 5667 5668 5669 5670 5671 5672 5673 5674 5675 5676 5677 5678 5679 5680 5681 5682 5683 5684 5685 5686 5687 5688 5689 5690 5691 5692 5693 5694 5695 5696 5697 5698 5699 5700 5701 5702 5703 5704 5705 5706 5707 5708 5709 5710 5711 5712 5713 5714 5715 5716 5717 5718 5719 5720 5721 5722 5723 5724 5725 5726 5727 5728 5729 5730 5731 5732 5733 5734 5735 5736 5737 5738 5739 5740 5741 5742 5743 5744 5745 5746 5747 5748 5749 5750 5751 5752 5753 5754 5755 5756 5757 5758 5759 5760 5761 5762 5763 5764 5765 5766 5767 5768 5769 5770 5771 5772 5773 5774 5775 5776 5777 5778 5779 5780 5781 5782 5783 5784 5785 5786 5787 5788 5789 5790 5791 5792 5793 5794 5795 5796 5797 5798 5799 5800 5801 5802 5803 5804 5805 5806 5807 5808 5809 5810 5811 5812 5813 5814 5815 5816 5817 5818 5819 5820 5821 5822 5823 5824 5825 5826
// Returns modified by operand size prefixes

SMPDefsFlags[NN_retnw] = false;               // Return Near from Procedure (use16)
SMPDefsFlags[NN_retnd] = false;               // Return Near from Procedure (use32)
SMPDefsFlags[NN_retnq] = false;               // Return Near from Procedure (use64)
SMPDefsFlags[NN_retfw] = false;               // Return Far from Procedure (use16)
SMPDefsFlags[NN_retfd] = false;               // Return Far from Procedure (use32)
SMPDefsFlags[NN_retfq] = false;               // Return Far from Procedure (use64)

// RDRAND support

// new GPR instructions

SMPDefsFlags[NN_mulx] = false;                 // Unsigned Multiply Without Affecting Flags
SMPDefsFlags[NN_pdep] = false;                 // Parallel Bits Deposit
SMPDefsFlags[NN_pext] = false;                 // Parallel Bits Extract
SMPDefsFlags[NN_rorx] = false;                 // Rotate Right Logical Without Affecting Flags
SMPDefsFlags[NN_sarx] = false;                 // Shift Arithmetically Right Without Affecting Flags
SMPDefsFlags[NN_shlx] = false;                 // Shift Logically Left Without Affecting Flags
SMPDefsFlags[NN_shrx] = false;                 // Shift Logically Right Without Affecting Flags

SMPDefsFlags[NN_xsaveopt] = false;             // Save Processor Extended States Optimized
SMPDefsFlags[NN_invpcid] =  false;             // Invalidate Processor Context ID
SMPDefsFlags[NN_rdseed] = false;               // Read Random Seed
SMPDefsFlags[NN_rdfsbase] = false;             // Read FS Segment Base
SMPDefsFlags[NN_rdgsbase] = false;             // Read GS Segment Base
SMPDefsFlags[NN_wrfsbase] = false;             // Write FS Segment Base
SMPDefsFlags[NN_wrgsbase] = false;             // Write GS Segment Base

// new AVX instructions

SMPDefsFlags[NN_vaddpd] = false;               // Add Packed Double-Precision Floating-Point Values
SMPDefsFlags[NN_vaddps] = false;               // Packed Single-FP Add
SMPDefsFlags[NN_vaddsd] = false;               // Add Scalar Double-Precision Floating-Point Values
SMPDefsFlags[NN_vaddss] = false;               // Scalar Single-FP Add
SMPDefsFlags[NN_vaddsubpd] = false;            // Add /Sub packed DP FP numbers
SMPDefsFlags[NN_vaddsubps] = false;            // Add /Sub packed SP FP numbers
SMPDefsFlags[NN_vaesdec] = false;              // Perform One Round of an AES Decryption Flow
SMPDefsFlags[NN_vaesdeclast] = false;          // Perform the Last Round of an AES Decryption Flow
SMPDefsFlags[NN_vaesenc] = false;              // Perform One Round of an AES Encryption Flow
SMPDefsFlags[NN_vaesenclast] = false;          // Perform the Last Round of an AES Encryption Flow
SMPDefsFlags[NN_vaesimc] = false;              // Perform the AES InvMixColumn Transformation
SMPDefsFlags[NN_vaeskeygenassist] = false;     // AES Round Key Generation Assist
SMPDefsFlags[NN_vandnpd] = false;              // Bitwise Logical AND NOT of Packed Double-Precision Floating-Point Values
SMPDefsFlags[NN_vandnps] = false;              // Bitwise Logical And Not for Single-FP
SMPDefsFlags[NN_vandpd] = false;               // Bitwise Logical AND of Packed Double-Precision Floating-Point Values
SMPDefsFlags[NN_vandps] = false;               // Bitwise Logical And for Single-FP
SMPDefsFlags[NN_vblendpd] = false;             // Blend Packed Double Precision Floating-Point Values
SMPDefsFlags[NN_vblendps] = false;             // Blend Packed Single Precision Floating-Point Values
SMPDefsFlags[NN_vblendvpd] = false;            // Variable Blend Packed Double Precision Floating-Point Values
SMPDefsFlags[NN_vblendvps] = false;            // Variable Blend Packed Single Precision Floating-Point Values
SMPDefsFlags[NN_vbroadcastf128] = false;       // Broadcast 128 Bits of Floating-Point Data
SMPDefsFlags[NN_vbroadcasti128] = false;       // Broadcast 128 Bits of Integer Data
SMPDefsFlags[NN_vbroadcastsd] = false;         // Broadcast Double-Precision Floating-Point Element
SMPDefsFlags[NN_vbroadcastss] = false;         // Broadcast Single-Precision Floating-Point Element
SMPDefsFlags[NN_vcmppd] = false;               // Compare Packed Double-Precision Floating-Point Values
SMPDefsFlags[NN_vcmpps] = false;               // Packed Single-FP Compare
SMPDefsFlags[NN_vcmpsd] = false;               // Compare Scalar Double-Precision Floating-Point Values
SMPDefsFlags[NN_vcmpss] = false;               // Scalar Single-FP Compare
SMPDefsFlags[NN_vcomisd] = false;              // Compare Scalar Ordered Double-Precision Floating-Point Values and Set EFLAGS
SMPDefsFlags[NN_vcomiss] = false;              // Scalar Ordered Single-FP Compare and Set EFLAGS
SMPDefsFlags[NN_vcvtdq2pd] = false;            // Convert Packed Doubleword Integers to Packed Single-Precision Floating-Point Values
SMPDefsFlags[NN_vcvtdq2ps] = false;            // Convert Packed Doubleword Integers to Packed Double-Precision Floating-Point Values
SMPDefsFlags[NN_vcvtpd2dq] = false;            // Convert Packed Double-Precision Floating-Point Values to Packed Doubleword Integers
SMPDefsFlags[NN_vcvtpd2ps] = false;            // Convert Packed Double-Precision Floating-Point Values to Packed Single-Precision Floating-Point Values
SMPDefsFlags[NN_vcvtph2ps] = false;            // Convert 16-bit FP Values to Single-Precision FP Values
SMPDefsFlags[NN_vcvtps2dq] = false;            // Convert Packed Single-Precision Floating-Point Values to Packed Doubleword Integers
SMPDefsFlags[NN_vcvtps2pd] = false;            // Convert Packed Single-Precision Floating-Point Values to Packed Double-Precision Floating-Point Values
SMPDefsFlags[NN_vcvtps2ph] = false;            // Convert Single-Precision FP value to 16-bit FP value
SMPDefsFlags[NN_vcvtsd2si] = false;            // Convert Scalar Double-Precision Floating-Point Value to Doubleword Integer
SMPDefsFlags[NN_vcvtsd2ss] = false;            // Convert Scalar Double-Precision Floating-Point Value to Scalar Single-Precision Floating-Point Value
SMPDefsFlags[NN_vcvtsi2sd] = false;            // Convert Doubleword Integer to Scalar Double-Precision Floating-Point Value
SMPDefsFlags[NN_vcvtsi2ss] = false;            // Scalar signed INT32 to Single-FP conversion
SMPDefsFlags[NN_vcvtss2sd] = false;            // Convert Scalar Single-Precision Floating-Point Value to Scalar Double-Precision Floating-Point Value
SMPDefsFlags[NN_vcvtss2si] = false;            // Scalar Single-FP to signed INT32 conversion
SMPDefsFlags[NN_vcvttpd2dq] = false;           // Convert With Truncation Packed Double-Precision Floating-Point Values to Packed Doubleword Integers
SMPDefsFlags[NN_vcvttps2dq] = false;           // Convert With Truncation Packed Single-Precision Floating-Point Values to Packed Doubleword Integers
SMPDefsFlags[NN_vcvttsd2si] = false;           // Convert with Truncation Scalar Double-Precision Floating-Point Value to Doubleword Integer
SMPDefsFlags[NN_vcvttss2si] = false;           // Scalar Single-FP to signed INT32 conversion (truncate)
SMPDefsFlags[NN_vdivpd] = false;               // Divide Packed Double-Precision Floating-Point Values
SMPDefsFlags[NN_vdivps] = false;               // Packed Single-FP Divide
SMPDefsFlags[NN_vdivsd] = false;               // Divide Scalar Double-Precision Floating-Point Values
SMPDefsFlags[NN_vdivss] = false;               // Scalar Single-FP Divide
SMPDefsFlags[NN_vdppd] = false;                // Dot Product of Packed Double Precision Floating-Point Values
SMPDefsFlags[NN_vdpps] = false;                // Dot Product of Packed Single Precision Floating-Point Values
SMPDefsFlags[NN_vextractf128] = false;         // Extract Packed Floating-Point Values
SMPDefsFlags[NN_vextracti128] = false;         // Extract Packed Integer Values
SMPDefsFlags[NN_vextractps] = false;           // Extract Packed Floating-Point Values
SMPDefsFlags[NN_vfmadd132pd] = false;          // Fused Multiply-Add of Packed Double-Precision Floating-Point Values
SMPDefsFlags[NN_vfmadd132ps] = false;          // Fused Multiply-Add of Packed Single-Precision Floating-Point Values
SMPDefsFlags[NN_vfmadd132sd] = false;          // Fused Multiply-Add of Scalar Double-Precision Floating-Point Values
SMPDefsFlags[NN_vfmadd132ss] = false;          // Fused Multiply-Add of Scalar Single-Precision Floating-Point Values
SMPDefsFlags[NN_vfmadd213pd] = false;          // Fused Multiply-Add of Packed Double-Precision Floating-Point Values
SMPDefsFlags[NN_vfmadd213ps] = false;          // Fused Multiply-Add of Packed Single-Precision Floating-Point Values
SMPDefsFlags[NN_vfmadd213sd] = false;          // Fused Multiply-Add of Scalar Double-Precision Floating-Point Values
SMPDefsFlags[NN_vfmadd213ss] = false;          // Fused Multiply-Add of Scalar Single-Precision Floating-Point Values
SMPDefsFlags[NN_vfmadd231pd] = false;          // Fused Multiply-Add of Packed Double-Precision Floating-Point Values
SMPDefsFlags[NN_vfmadd231ps] = false;          // Fused Multiply-Add of Packed Single-Precision Floating-Point Values
SMPDefsFlags[NN_vfmadd231sd] = false;          // Fused Multiply-Add of Scalar Double-Precision Floating-Point Values
SMPDefsFlags[NN_vfmadd231ss] = false;          // Fused Multiply-Add of Scalar Single-Precision Floating-Point Values
SMPDefsFlags[NN_vfmaddsub132pd] = false;       // Fused Multiply-Alternating Add/Subtract of Packed Double-Precision Floating-Point Values
SMPDefsFlags[NN_vfmaddsub132ps] = false;       // Fused Multiply-Alternating Add/Subtract of Packed Single-Precision Floating-Point Values
SMPDefsFlags[NN_vfmaddsub213pd] = false;       // Fused Multiply-Alternating Add/Subtract of Packed Double-Precision Floating-Point Values
SMPDefsFlags[NN_vfmaddsub213ps] = false;       // Fused Multiply-Alternating Add/Subtract of Packed Single-Precision Floating-Point Values
SMPDefsFlags[NN_vfmaddsub231pd] = false;       // Fused Multiply-Alternating Add/Subtract of Packed Double-Precision Floating-Point Values
SMPDefsFlags[NN_vfmaddsub231ps] = false;       // Fused Multiply-Alternating Add/Subtract of Packed Single-Precision Floating-Point Values
SMPDefsFlags[NN_vfmsub132pd] = false;          // Fused Multiply-Subtract of Packed Double-Precision Floating-Point Values
SMPDefsFlags[NN_vfmsub132ps] = false;          // Fused Multiply-Subtract of Packed Single-Precision Floating-Point Values
SMPDefsFlags[NN_vfmsub132sd] = false;          // Fused Multiply-Subtract of Scalar Double-Precision Floating-Point Values
SMPDefsFlags[NN_vfmsub132ss] = false;          // Fused Multiply-Subtract of Scalar Single-Precision Floating-Point Values
SMPDefsFlags[NN_vfmsub213pd] = false;          // Fused Multiply-Subtract of Packed Double-Precision Floating-Point Values
SMPDefsFlags[NN_vfmsub213ps] = false;          // Fused Multiply-Subtract of Packed Single-Precision Floating-Point Values
SMPDefsFlags[NN_vfmsub213sd] = false;          // Fused Multiply-Subtract of Scalar Double-Precision Floating-Point Values
SMPDefsFlags[NN_vfmsub213ss] = false;          // Fused Multiply-Subtract of Scalar Single-Precision Floating-Point Values
SMPDefsFlags[NN_vfmsub231pd] = false;          // Fused Multiply-Subtract of Packed Double-Precision Floating-Point Values
SMPDefsFlags[NN_vfmsub231ps] = false;          // Fused Multiply-Subtract of Packed Single-Precision Floating-Point Values
SMPDefsFlags[NN_vfmsub231sd] = false;          // Fused Multiply-Subtract of Scalar Double-Precision Floating-Point Values
SMPDefsFlags[NN_vfmsub231ss] = false;          // Fused Multiply-Subtract of Scalar Single-Precision Floating-Point Values
SMPDefsFlags[NN_vfmsubadd132pd] = false;       // Fused Multiply-Alternating Subtract/Add of Packed Double-Precision Floating-Point Values
SMPDefsFlags[NN_vfmsubadd132ps] = false;       // Fused Multiply-Alternating Subtract/Add of Packed Single-Precision Floating-Point Values
SMPDefsFlags[NN_vfmsubadd213pd] = false;       // Fused Multiply-Alternating Subtract/Add of Packed Double-Precision Floating-Point Values
SMPDefsFlags[NN_vfmsubadd213ps] = false;       // Fused Multiply-Alternating Subtract/Add of Packed Single-Precision Floating-Point Values
SMPDefsFlags[NN_vfmsubadd231pd] = false;       // Fused Multiply-Alternating Subtract/Add of Packed Double-Precision Floating-Point Values
SMPDefsFlags[NN_vfmsubadd231ps] = false;       // Fused Multiply-Alternating Subtract/Add of Packed Single-Precision Floating-Point Values
SMPDefsFlags[NN_vfnmadd132pd] = false;         // Fused Negative Multiply-Add of Packed Double-Precision Floating-Point Values
SMPDefsFlags[NN_vfnmadd132ps] = false;         // Fused Negative Multiply-Add of Packed Single-Precision Floating-Point Values
SMPDefsFlags[NN_vfnmadd132sd] = false;         // Fused Negative Multiply-Add of Scalar Double-Precision Floating-Point Values
SMPDefsFlags[NN_vfnmadd132ss] = false;         // Fused Negative Multiply-Add of Scalar Single-Precision Floating-Point Values
SMPDefsFlags[NN_vfnmadd213pd] = false;         // Fused Negative Multiply-Add of Packed Double-Precision Floating-Point Values
SMPDefsFlags[NN_vfnmadd213ps] = false;         // Fused Negative Multiply-Add of Packed Single-Precision Floating-Point Values
SMPDefsFlags[NN_vfnmadd213sd] = false;         // Fused Negative Multiply-Add of Scalar Double-Precision Floating-Point Values
SMPDefsFlags[NN_vfnmadd213ss] = false;         // Fused Negative Multiply-Add of Scalar Single-Precision Floating-Point Values
SMPDefsFlags[NN_vfnmadd231pd] = false;         // Fused Negative Multiply-Add of Packed Double-Precision Floating-Point Values
SMPDefsFlags[NN_vfnmadd231ps] = false;         // Fused Negative Multiply-Add of Packed Single-Precision Floating-Point Values
SMPDefsFlags[NN_vfnmadd231sd] = false;         // Fused Negative Multiply-Add of Scalar Double-Precision Floating-Point Values
SMPDefsFlags[NN_vfnmadd231ss] = false;         // Fused Negative Multiply-Add of Scalar Single-Precision Floating-Point Values
SMPDefsFlags[NN_vfnmsub132pd] = false;         // Fused Negative Multiply-Subtract of Packed Double-Precision Floating-Point Values
SMPDefsFlags[NN_vfnmsub132ps] = false;         // Fused Negative Multiply-Subtract of Packed Single-Precision Floating-Point Values
SMPDefsFlags[NN_vfnmsub132sd] = false;         // Fused Negative Multiply-Subtract of Scalar Double-Precision Floating-Point Values
SMPDefsFlags[NN_vfnmsub132ss] = false;         // Fused Negative Multiply-Subtract of Scalar Single-Precision Floating-Point Values
SMPDefsFlags[NN_vfnmsub213pd] = false;         // Fused Negative Multiply-Subtract of Packed Double-Precision Floating-Point Values
SMPDefsFlags[NN_vfnmsub213ps] = false;         // Fused Negative Multiply-Subtract of Packed Single-Precision Floating-Point Values
SMPDefsFlags[NN_vfnmsub213sd] = false;         // Fused Negative Multiply-Subtract of Scalar Double-Precision Floating-Point Values
SMPDefsFlags[NN_vfnmsub213ss] = false;         // Fused Negative Multiply-Subtract of Scalar Single-Precision Floating-Point Values
SMPDefsFlags[NN_vfnmsub231pd] = false;         // Fused Negative Multiply-Subtract of Packed Double-Precision Floating-Point Values
SMPDefsFlags[NN_vfnmsub231ps] = false;         // Fused Negative Multiply-Subtract of Packed Single-Precision Floating-Point Values
SMPDefsFlags[NN_vfnmsub231sd] = false;         // Fused Negative Multiply-Subtract of Scalar Double-Precision Floating-Point Values
SMPDefsFlags[NN_vfnmsub231ss] = false;         // Fused Negative Multiply-Subtract of Scalar Single-Precision Floating-Point Values
SMPDefsFlags[NN_vgatherdps] = false;           // Gather Packed SP FP Values Using Signed Dword Indices
SMPDefsFlags[NN_vgatherdpd] = false;           // Gather Packed DP FP Values Using Signed Dword Indices
SMPDefsFlags[NN_vgatherqps] = false;           // Gather Packed SP FP Values Using Signed Qword Indices
SMPDefsFlags[NN_vgatherqpd] = false;           // Gather Packed DP FP Values Using Signed Qword Indices
SMPDefsFlags[NN_vhaddpd] = false;              // Add horizontally packed DP FP numbers
SMPDefsFlags[NN_vhaddps] = false;              // Add horizontally packed SP FP numbers
SMPDefsFlags[NN_vhsubpd] = false;              // Sub horizontally packed DP FP numbers
SMPDefsFlags[NN_vhsubps] = false;              // Sub horizontally packed SP FP numbers
SMPDefsFlags[NN_vinsertf128] = false;          // Insert Packed Floating-Point Values
SMPDefsFlags[NN_vinserti128] = false;          // Insert Packed Integer Values
SMPDefsFlags[NN_vinsertps] = false;            // Insert Packed Single Precision Floating-Point Value
SMPDefsFlags[NN_vlddqu] = false;               // Load Unaligned Packed Integer Values
SMPDefsFlags[NN_vldmxcsr] = false;             // Load Streaming SIMD Extensions Technology Control/Status Register
SMPDefsFlags[NN_vmaskmovdqu] = false;          // Store Selected Bytes of Double Quadword with NT Hint
SMPDefsFlags[NN_vmaskmovpd] = false;           // Conditionally Load Packed Double-Precision Floating-Point Values
SMPDefsFlags[NN_vmaskmovps] = false;           // Conditionally Load Packed Single-Precision Floating-Point Values
SMPDefsFlags[NN_vmaxpd] = false;               // Return Maximum Packed Double-Precision Floating-Point Values
SMPDefsFlags[NN_vmaxps] = false;               // Packed Single-FP Maximum
SMPDefsFlags[NN_vmaxsd] = false;               // Return Maximum Scalar Double-Precision Floating-Point Value
SMPDefsFlags[NN_vmaxss] = false;               // Scalar Single-FP Maximum
SMPDefsFlags[NN_vminpd] = false;               // Return Minimum Packed Double-Precision Floating-Point Values
SMPDefsFlags[NN_vminps] = false;               // Packed Single-FP Minimum
SMPDefsFlags[NN_vminsd] = false;               // Return Minimum Scalar Double-Precision Floating-Point Value
SMPDefsFlags[NN_vminss] = false;               // Scalar Single-FP Minimum
SMPDefsFlags[NN_vmovapd] = false;              // Move Aligned Packed Double-Precision Floating-Point Values
SMPDefsFlags[NN_vmovaps] = false;              // Move Aligned Four Packed Single-FP
SMPDefsFlags[NN_vmovd] = false;                // Move 32 bits
SMPDefsFlags[NN_vmovddup] = false;             // Move One Double-FP and Duplicate
SMPDefsFlags[NN_vmovdqa] = false;              // Move Aligned Double Quadword
SMPDefsFlags[NN_vmovdqu] = false;              // Move Unaligned Double Quadword
SMPDefsFlags[NN_vmovhlps] = false;             // Move High to Low Packed Single-FP
SMPDefsFlags[NN_vmovhpd] = false;              // Move High Packed Double-Precision Floating-Point Values
SMPDefsFlags[NN_vmovhps] = false;              // Move High Packed Single-FP
SMPDefsFlags[NN_vmovlhps] = false;             // Move Low to High Packed Single-FP
SMPDefsFlags[NN_vmovlpd] = false;              // Move Low Packed Double-Precision Floating-Point Values
SMPDefsFlags[NN_vmovlps] = false;              // Move Low Packed Single-FP
SMPDefsFlags[NN_vmovmskpd] = false;            // Extract Packed Double-Precision Floating-Point Sign Mask
SMPDefsFlags[NN_vmovmskps] = false;            // Move Mask to Register
SMPDefsFlags[NN_vmovntdq] = false;             // Store Double Quadword Using Non-Temporal Hint
SMPDefsFlags[NN_vmovntdqa] = false;            // Load Double Quadword Non-Temporal Aligned Hint
SMPDefsFlags[NN_vmovntpd] = false;             // Store Packed Double-Precision Floating-Point Values Using Non-Temporal Hint
SMPDefsFlags[NN_vmovntps] = false;             // Move Aligned Four Packed Single-FP Non Temporal
SMPDefsFlags[NN_vmovntsd] = false;             // Move Non-Temporal Scalar Double-Precision Floating-Point
SMPDefsFlags[NN_vmovntss] = false;             // Move Non-Temporal Scalar Single-Precision Floating-Point
SMPDefsFlags[NN_vmovq] = false;                // Move 64 bits
SMPDefsFlags[NN_vmovsd] = false;               // Move Scalar Double-Precision Floating-Point Values
SMPDefsFlags[NN_vmovshdup] = false;            // Move Packed Single-FP High and Duplicate
SMPDefsFlags[NN_vmovsldup] = false;            // Move Packed Single-FP Low and Duplicate
SMPDefsFlags[NN_vmovss] = false;               // Move Scalar Single-FP
SMPDefsFlags[NN_vmovupd] = false;              // Move Unaligned Packed Double-Precision Floating-Point Values
SMPDefsFlags[NN_vmovups] = false;              // Move Unaligned Four Packed Single-FP
SMPDefsFlags[NN_vmpsadbw] = false;             // Compute Multiple Packed Sums of Absolute Difference
SMPDefsFlags[NN_vmulpd] = false;               // Multiply Packed Double-Precision Floating-Point Values
SMPDefsFlags[NN_vmulps] = false;               // Packed Single-FP Multiply
SMPDefsFlags[NN_vmulsd] = false;               // Multiply Scalar Double-Precision Floating-Point Values
SMPDefsFlags[NN_vmulss] = false;               // Scalar Single-FP Multiply
SMPDefsFlags[NN_vorpd] = false;                // Bitwise Logical OR of Double-Precision Floating-Point Values
SMPDefsFlags[NN_vorps] = false;                // Bitwise Logical OR for Single-FP Data
SMPDefsFlags[NN_vpabsb] = false;               // Packed Absolute Value Byte
SMPDefsFlags[NN_vpabsd] = false;               // Packed Absolute Value Doubleword
SMPDefsFlags[NN_vpabsw] = false;               // Packed Absolute Value Word
SMPDefsFlags[NN_vpackssdw] = false;            // Pack with Signed Saturation (Dword->Word)
SMPDefsFlags[NN_vpacksswb] = false;            // Pack with Signed Saturation (Word->Byte)
SMPDefsFlags[NN_vpackusdw] = false;            // Pack with Unsigned Saturation
SMPDefsFlags[NN_vpackuswb] = false;            // Pack with Unsigned Saturation (Word->Byte)
SMPDefsFlags[NN_vpaddb] = false;               // Packed Add Byte
SMPDefsFlags[NN_vpaddd] = false;               // Packed Add Dword
SMPDefsFlags[NN_vpaddq] = false;               // Add Packed Quadword Integers
SMPDefsFlags[NN_vpaddsb] = false;              // Packed Add with Saturation (Byte)
SMPDefsFlags[NN_vpaddsw] = false;              // Packed Add with Saturation (Word)
SMPDefsFlags[NN_vpaddusb] = false;             // Packed Add Unsigned with Saturation (Byte)
SMPDefsFlags[NN_vpaddusw] = false;             // Packed Add Unsigned with Saturation (Word)
SMPDefsFlags[NN_vpaddw] = false;               // Packed Add Word
SMPDefsFlags[NN_vpalignr] = false;             // Packed Align Right
SMPDefsFlags[NN_vpand] = false;                // Bitwise Logical And
SMPDefsFlags[NN_vpandn] = false;               // Bitwise Logical And Not
SMPDefsFlags[NN_vpavgb] = false;               // Packed Average (Byte)
SMPDefsFlags[NN_vpavgw] = false;               // Packed Average (Word)
SMPDefsFlags[NN_vpblendd] = false;             // Blend Packed Dwords
SMPDefsFlags[NN_vpblendvb] = false;            // Variable Blend Packed Bytes
SMPDefsFlags[NN_vpblendw] = false;             // Blend Packed Words
SMPDefsFlags[NN_vpbroadcastb] = false;         // Broadcast a Byte Integer
SMPDefsFlags[NN_vpbroadcastd] = false;         // Broadcast a Dword Integer
SMPDefsFlags[NN_vpbroadcastq] = false;         // Broadcast a Qword Integer
SMPDefsFlags[NN_vpbroadcastw] = false;         // Broadcast a Word Integer
SMPDefsFlags[NN_vpclmulqdq] = false;           // Carry-Less Multiplication Quadword
SMPDefsFlags[NN_vpcmpeqb] = false;             // Packed Compare for Equal (Byte)
SMPDefsFlags[NN_vpcmpeqd] = false;             // Packed Compare for Equal (Dword)
SMPDefsFlags[NN_vpcmpeqq] = false;             // Compare Packed Qword Data for Equal
SMPDefsFlags[NN_vpcmpeqw] = false;             // Packed Compare for Equal (Word)
SMPDefsFlags[NN_vpcmpestri] = false;           // Packed Compare Explicit Length Strings, Return Index
SMPDefsFlags[NN_vpcmpestrm] = false;           // Packed Compare Explicit Length Strings, Return Mask
SMPDefsFlags[NN_vpcmpgtb] = false;             // Packed Compare for Greater Than (Byte)
SMPDefsFlags[NN_vpcmpgtd] = false;             // Packed Compare for Greater Than (Dword)
SMPDefsFlags[NN_vpcmpgtq] = false;             // Compare Packed Data for Greater Than
SMPDefsFlags[NN_vpcmpgtw] = false;             // Packed Compare for Greater Than (Word)
SMPDefsFlags[NN_vpcmpistri] = false;           // Packed Compare Implicit Length Strings, Return Index
SMPDefsFlags[NN_vpcmpistrm] = false;           // Packed Compare Implicit Length Strings, Return Mask
SMPDefsFlags[NN_vperm2f128] = false;           // Permute Floating-Point Values
SMPDefsFlags[NN_vperm2i128] = false;           // Permute Integer Values
SMPDefsFlags[NN_vpermd] = false;               // Full Doublewords Element Permutation
SMPDefsFlags[NN_vpermilpd] = false;            // Permute Double-Precision Floating-Point Values
SMPDefsFlags[NN_vpermilps] = false;            // Permute Single-Precision Floating-Point Values
SMPDefsFlags[NN_vpermpd] = false;              // Permute Double-Precision Floating-Point Elements
SMPDefsFlags[NN_vpermps] = false;              // Permute Single-Precision Floating-Point Elements
SMPDefsFlags[NN_vpermq] = false;               // Qwords Element Permutation
SMPDefsFlags[NN_vpextrb] = false;              // Extract Byte
SMPDefsFlags[NN_vpextrd] = false;              // Extract Dword
SMPDefsFlags[NN_vpextrq] = false;              // Extract Qword
SMPDefsFlags[NN_vpextrw] = false;              // Extract Word
SMPDefsFlags[NN_vpgatherdd] = false;           // Gather Packed Dword Values Using Signed Dword Indices
SMPDefsFlags[NN_vpgatherdq] = false;           // Gather Packed Qword Values Using Signed Dword Indices
SMPDefsFlags[NN_vpgatherqd] = false;           // Gather Packed Dword Values Using Signed Qword Indices
SMPDefsFlags[NN_vpgatherqq] = false;           // Gather Packed Qword Values Using Signed Qword Indices
SMPDefsFlags[NN_vphaddd] = false;              // Packed Horizontal Add Doubleword
SMPDefsFlags[NN_vphaddsw] = false;          // Packed Horizontal Add and Saturate
SMPDefsFlags[NN_vphaddw] = false;           // Packed Horizontal Add Word
SMPDefsFlags[NN_vphminposuw] = false;       // Packed Horizontal Word Minimum
SMPDefsFlags[NN_vphsubd] = false;           // Packed Horizontal Subtract Doubleword
SMPDefsFlags[NN_vphsubsw] = false;          // Packed Horizontal Subtract and Saturate
SMPDefsFlags[NN_vphsubw] = false;           // Packed Horizontal Subtract Word
SMPDefsFlags[NN_vpinsrb] = false;           // Insert Byte
SMPDefsFlags[NN_vpinsrd] = false;           // Insert Dword
SMPDefsFlags[NN_vpinsrq] = false;           // Insert Qword
SMPDefsFlags[NN_vpinsrw] = false;           // Insert Word
SMPDefsFlags[NN_vpmaddubsw] = false;        // Multiply and Add Packed Signed and Unsigned Bytes
SMPDefsFlags[NN_vpmaddwd] = false;          // Packed Multiply and Add
SMPDefsFlags[NN_vpmaskmovd] = false;        // Conditionally Store Dword Values Using Mask
SMPDefsFlags[NN_vpmaskmovq] = false;        // Conditionally Store Qword Values Using Mask
SMPDefsFlags[NN_vpmaxsb] = false;           // Maximum of Packed Signed Byte Integers
SMPDefsFlags[NN_vpmaxsd] = false;           // Maximum of Packed Signed Dword Integers
SMPDefsFlags[NN_vpmaxsw] = false;           // Packed Signed Integer Word Maximum
SMPDefsFlags[NN_vpmaxub] = false;           // Packed Unsigned Integer Byte Maximum
SMPDefsFlags[NN_vpmaxud] = false;           // Maximum of Packed Unsigned Dword Integers
SMPDefsFlags[NN_vpmaxuw] = false;           // Maximum of Packed Word Integers
SMPDefsFlags[NN_vpminsb] = false;           // Minimum of Packed Signed Byte Integers
SMPDefsFlags[NN_vpminsd] = false;           // Minimum of Packed Signed Dword Integers
SMPDefsFlags[NN_vpminsw] = false;           // Packed Signed Integer Word Minimum
SMPDefsFlags[NN_vpminub] = false;           // Packed Unsigned Integer Byte Minimum
SMPDefsFlags[NN_vpminud] = false;           // Minimum of Packed Unsigned Dword Integers
SMPDefsFlags[NN_vpminuw] = false;           // Minimum of Packed Word Integers
SMPDefsFlags[NN_vpmovmskb] = false;         // Move Byte Mask to Integer
SMPDefsFlags[NN_vpmovsxbd] = false;         // Packed Move with Sign Extend
SMPDefsFlags[NN_vpmovsxbq] = false;         // Packed Move with Sign Extend
SMPDefsFlags[NN_vpmovsxbw] = false;         // Packed Move with Sign Extend
SMPDefsFlags[NN_vpmovsxdq] = false;         // Packed Move with Sign Extend
SMPDefsFlags[NN_vpmovsxwd] = false;         // Packed Move with Sign Extend
SMPDefsFlags[NN_vpmovsxwq] = false;         // Packed Move with Sign Extend
SMPDefsFlags[NN_vpmovzxbd] = false;         // Packed Move with Zero Extend
SMPDefsFlags[NN_vpmovzxbq] = false;         // Packed Move with Zero Extend
SMPDefsFlags[NN_vpmovzxbw] = false;         // Packed Move with Zero Extend
SMPDefsFlags[NN_vpmovzxdq] = false;         // Packed Move with Zero Extend
SMPDefsFlags[NN_vpmovzxwd] = false;         // Packed Move with Zero Extend
SMPDefsFlags[NN_vpmovzxwq] = false;         // Packed Move with Zero Extend
SMPDefsFlags[NN_vpmuldq] = false;           // Multiply Packed Signed Dword Integers
SMPDefsFlags[NN_vpmulhrsw] = false;         // Packed Multiply High with Round and Scale
SMPDefsFlags[NN_vpmulhuw] = false;          // Packed Multiply High Unsigned
SMPDefsFlags[NN_vpmulhw] = false;           // Packed Multiply High
SMPDefsFlags[NN_vpmulld] = false;           // Multiply Packed Signed Dword Integers and Store Low Result
SMPDefsFlags[NN_vpmullw] = false;           // Packed Multiply Low
SMPDefsFlags[NN_vpmuludq] = false;          // Multiply Packed Unsigned Doubleword Integers
SMPDefsFlags[NN_vpor] = false;              // Bitwise Logical Or
SMPDefsFlags[NN_vpsadbw] = false;           // Packed Sum of Absolute Differences
SMPDefsFlags[NN_vpshufb] = false;           // Packed Shuffle Bytes
SMPDefsFlags[NN_vpshufd] = false;           // Shuffle Packed Doublewords
SMPDefsFlags[NN_vpshufhw] = false;          // Shuffle Packed High Words
SMPDefsFlags[NN_vpshuflw] = false;          // Shuffle Packed Low Words
SMPDefsFlags[NN_vpsignb] = false;           // Packed SIGN Byte
SMPDefsFlags[NN_vpsignd] = false;           // Packed SIGN Doubleword
SMPDefsFlags[NN_vpsignw] = false;           // Packed SIGN Word
SMPDefsFlags[NN_vpslld] = false;            // Packed Shift Left Logical (Dword)
SMPDefsFlags[NN_vpslldq] = false;           // Shift Double Quadword Left Logical
SMPDefsFlags[NN_vpsllq] = false;            // Packed Shift Left Logical (Qword)
SMPDefsFlags[NN_vpsllvd] = false;           // Variable Bit Shift Left Logical (Dword)
SMPDefsFlags[NN_vpsllvq] = false;           // Variable Bit Shift Left Logical (Qword)
SMPDefsFlags[NN_vpsllw] = false;            // Packed Shift Left Logical (Word)
SMPDefsFlags[NN_vpsrad] = false;            // Packed Shift Right Arithmetic (Dword)
SMPDefsFlags[NN_vpsravd] = false;           // Variable Bit Shift Right Arithmetic
SMPDefsFlags[NN_vpsraw] = false;            // Packed Shift Right Arithmetic (Word)
SMPDefsFlags[NN_vpsrld] = false;            // Packed Shift Right Logical (Dword)
SMPDefsFlags[NN_vpsrldq] = false;           // Shift Double Quadword Right Logical (Qword)
SMPDefsFlags[NN_vpsrlq] = false;            // Packed Shift Right Logical (Qword)
SMPDefsFlags[NN_vpsrlvd] = false;           // Variable Bit Shift Right Logical (Dword)
SMPDefsFlags[NN_vpsrlvq] = false;           // Variable Bit Shift Right Logical (Qword)
SMPDefsFlags[NN_vpsrlw] = false;            // Packed Shift Right Logical (Word)
SMPDefsFlags[NN_vpsubb] = false;            // Packed Subtract Byte
SMPDefsFlags[NN_vpsubd] = false;            // Packed Subtract Dword
SMPDefsFlags[NN_vpsubq] = false;            // Subtract Packed Quadword Integers
SMPDefsFlags[NN_vpsubsb] = false;           // Packed Subtract with Saturation (Byte)
SMPDefsFlags[NN_vpsubsw] = false;           // Packed Subtract with Saturation (Word)
SMPDefsFlags[NN_vpsubusb] = false;          // Packed Subtract Unsigned with Saturation (Byte)
SMPDefsFlags[NN_vpsubusw] = false;          // Packed Subtract Unsigned with Saturation (Word)
SMPDefsFlags[NN_vpsubw] = false;            // Packed Subtract Word
SMPDefsFlags[NN_vptest] = false;            // Logical Compare
SMPDefsFlags[NN_vpunpckhbw] = false;        // Unpack High Packed Data (Byte->Word)
SMPDefsFlags[NN_vpunpckhdq] = false;        // Unpack High Packed Data (Dword->Qword)
SMPDefsFlags[NN_vpunpckhqdq] = false;       // Unpack High Packed Data (Qword->Xmmword)
SMPDefsFlags[NN_vpunpckhwd] = false;        // Unpack High Packed Data (Word->Dword)
SMPDefsFlags[NN_vpunpcklbw] = false;        // Unpack Low Packed Data (Byte->Word)
SMPDefsFlags[NN_vpunpckldq] = false;        // Unpack Low Packed Data (Dword->Qword)
SMPDefsFlags[NN_vpunpcklqdq] = false;       // Unpack Low Packed Data (Qword->Xmmword)
SMPDefsFlags[NN_vpunpcklwd] = false;        // Unpack Low Packed Data (Word->Dword)
SMPDefsFlags[NN_vpxor] = false;             // Bitwise Logical Exclusive Or
SMPDefsFlags[NN_vrcpps] = false;            // Packed Single-FP Reciprocal
SMPDefsFlags[NN_vrcpss] = false;            // Scalar Single-FP Reciprocal
SMPDefsFlags[NN_vroundpd] = false;          // Round Packed Double Precision Floating-Point Values
SMPDefsFlags[NN_vroundps] = false;          // Round Packed Single Precision Floating-Point Values
SMPDefsFlags[NN_vroundsd] = false;          // Round Scalar Double Precision Floating-Point Values
SMPDefsFlags[NN_vroundss] = false;          // Round Scalar Single Precision Floating-Point Values
SMPDefsFlags[NN_vrsqrtps] = false;          // Packed Single-FP Square Root Reciprocal
SMPDefsFlags[NN_vrsqrtss] = false;          // Scalar Single-FP Square Root Reciprocal
SMPDefsFlags[NN_vshufpd] = false;           // Shuffle Packed Double-Precision Floating-Point Values
SMPDefsFlags[NN_vshufps] = false;           // Shuffle Single-FP
SMPDefsFlags[NN_vsqrtpd] = false;           // Compute Square Roots of Packed Double-Precision Floating-Point Values
SMPDefsFlags[NN_vsqrtps] = false;           // Packed Single-FP Square Root
SMPDefsFlags[NN_vsqrtsd] = false;           // Compute Square Rootof Scalar Double-Precision Floating-Point Value
SMPDefsFlags[NN_vsqrtss] = false;           // Scalar Single-FP Square Root
SMPDefsFlags[NN_vstmxcsr] = false;          // Store Streaming SIMD Extensions Technology Control/Status Register
SMPDefsFlags[NN_vsubpd] = false;            // Subtract Packed Double-Precision Floating-Point Values
SMPDefsFlags[NN_vsubps] = false;            // Packed Single-FP Subtract
SMPDefsFlags[NN_vsubsd] = false;            // Subtract Scalar Double-Precision Floating-Point Values
SMPDefsFlags[NN_vsubss] = false;            // Scalar Single-FP Subtract
SMPDefsFlags[NN_vtestpd] = false;           // Packed Double-Precision Floating-Point Bit Test
SMPDefsFlags[NN_vtestps] = false;           // Packed Single-Precision Floating-Point Bit Test
SMPDefsFlags[NN_vucomisd] = false;          // Unordered Compare Scalar Ordered Double-Precision Floating-Point Values and Set EFLAGS
SMPDefsFlags[NN_vucomiss] = false;          // Scalar Unordered Single-FP Compare and Set EFLAGS
SMPDefsFlags[NN_vunpckhpd] = false;         // Unpack and Interleave High Packed Double-Precision Floating-Point Values
SMPDefsFlags[NN_vunpckhps] = false;         // Unpack High Packed Single-FP Data
SMPDefsFlags[NN_vunpcklpd] = false;         // Unpack and Interleave Low Packed Double-Precision Floating-Point Values
SMPDefsFlags[NN_vunpcklps] = false;         // Unpack Low Packed Single-FP Data
SMPDefsFlags[NN_vxorpd] = false;            // Bitwise Logical OR of Double-Precision Floating-Point Values
SMPDefsFlags[NN_vxorps] = false;            // Bitwise Logical XOR for Single-FP Data
SMPDefsFlags[NN_vzeroall] = false;          // Zero All YMM Registers
SMPDefsFlags[NN_vzeroupper] = false;        // Zero Upper Bits of YMM Registers

// Transactional Synchronization Extensions

SMPDefsFlags[NN_xabort] = false;               // Transaction Abort
SMPDefsFlags[NN_xbegin] = false;               // Transaction Begin
SMPDefsFlags[NN_xend] = false;                 // Transaction End
SMPDefsFlags[NN_xtest] = false;                // Test If In Transactional Execution

// Virtual PC synthetic instructions

SMPDefsFlags[NN_vmgetinfo] = false;            // Virtual PC - Get VM Information
SMPDefsFlags[NN_vmsetinfo] = false;            // Virtual PC - Set VM Information
SMPDefsFlags[NN_vmdxdsbl] = false;             // Virtual PC - Disable Direct Execution
SMPDefsFlags[NN_vmdxenbl] = false;             // Virtual PC - Enable Direct Execution
SMPDefsFlags[NN_vmcpuid] = false;              // Virtual PC - Virtualized CPU Information
SMPDefsFlags[NN_vmhlt] = false;                // Virtual PC - Halt
SMPDefsFlags[NN_vmsplaf] = false;              // Virtual PC - Spin Lock Acquisition Failed
SMPDefsFlags[NN_vmpushfd] = false;             // Virtual PC - Push virtualized flags register
SMPDefsFlags[NN_vmpopfd] = false;              // Virtual PC - Pop virtualized flags register
SMPDefsFlags[NN_vmcli] = false;                // Virtual PC - Clear Interrupt Flag
SMPDefsFlags[NN_vmsti] = false;                // Virtual PC - Set Interrupt Flag
SMPDefsFlags[NN_vmiretd] = false;              // Virtual PC - Return From Interrupt
SMPDefsFlags[NN_vmsgdt] = false;               // Virtual PC - Store Global Descriptor Table
SMPDefsFlags[NN_vmsidt] = false;               // Virtual PC - Store Interrupt Descriptor Table
SMPDefsFlags[NN_vmsldt] = false;               // Virtual PC - Store Local Descriptor Table
SMPDefsFlags[NN_vmstr] = false;                // Virtual PC - Store Task Register
SMPDefsFlags[NN_vmsdte] = false;               // Virtual PC - Store to Descriptor Table Entry
SMPDefsFlags[NN_vpcext] = false;               // Virtual PC - ISA extension

#endif // 599 < IDA_SDK_VERSION

SMPDefsFlags[NN_last] = false;

  return;

} // end InitSMPDefsFlags()

// Initialize the SMPUsesFlags[] array to define how we emit
//   optimizing annotations.
void InitSMPUsesFlags(void) {
	// Default value is false. Few instructions use the flags.
	(void) memset(SMPUsesFlags, false, sizeof(SMPUsesFlags));

SMPUsesFlags[NN_null] = true;            // Unknown Operation
SMPUsesFlags[NN_aaa] = true;                 // ASCII adjust after addition
SMPUsesFlags[NN_aas] = true;				 // ASCII adjust after subtraction
SMPUsesFlags[NN_adc] = true;                 // Add with Carry
SMPUsesFlags[NN_cmps] = true;                // Compare Strings (uses DF direction flag)
SMPUsesFlags[NN_daa] = true;                 // Decimal Adjust AL after Addition
SMPUsesFlags[NN_das] = true;                 // Decimal Adjust AL after Subtraction
SMPUsesFlags[NN_ins] = true;                 // Input Byte(s) from Port to String        
SMPUsesFlags[NN_into] = true;                // Call to Interrupt Procedure if Overflow Flag = 1
SMPUsesFlags[NN_ja] = true;                  // Jump if Above (CF=0 & ZF=0)
SMPUsesFlags[NN_jae] = true;                 // Jump if Above or Equal (CF=0)
SMPUsesFlags[NN_jb] = true;                  // Jump if Below (CF=1)
SMPUsesFlags[NN_jbe] = true;                 // Jump if Below or Equal (CF=1 | ZF=1)
SMPUsesFlags[NN_jc] = true;                  // Jump if Carry (CF=1)
SMPUsesFlags[NN_jcxz] = true;                // Jump if CX is 0
SMPUsesFlags[NN_jecxz] = true;               // Jump if ECX is 0
SMPUsesFlags[NN_jrcxz] = true;               // Jump if RCX is 0
SMPUsesFlags[NN_je] = true;                  // Jump if Equal (ZF=1)
SMPUsesFlags[NN_jg] = true;                  // Jump if Greater (ZF=0 & SF=OF)
SMPUsesFlags[NN_jge] = true;                 // Jump if Greater or Equal (SF=OF)
SMPUsesFlags[NN_jl] = true;                  // Jump if Less (SF!=OF)
SMPUsesFlags[NN_jle] = true;                 // Jump if Less or Equal (ZF=1 | SF!=OF)
SMPUsesFlags[NN_jna] = true;                 // Jump if Not Above (CF=1 | ZF=1)
SMPUsesFlags[NN_jnae] = true;                // Jump if Not Above or Equal (CF=1)
SMPUsesFlags[NN_jnb] = true;                 // Jump if Not Below (CF=0)
SMPUsesFlags[NN_jnbe] = true;                // Jump if Not Below or Equal (CF=0 & ZF=0)
SMPUsesFlags[NN_jnc] = true;                 // Jump if Not Carry (CF=0)
SMPUsesFlags[NN_jne] = true;                 // Jump if Not Equal (ZF=0)
SMPUsesFlags[NN_jng] = true;                 // Jump if Not Greater (ZF=1 | SF!=OF)
clc5q's avatar
clc5q committed
SMPUsesFlags[NN_jnge] = true;                // Jump if Not Greater or Equal (SF!=OF)
SMPUsesFlags[NN_jnl] = true;                 // Jump if Not Less (SF=OF)
SMPUsesFlags[NN_jnle] = true;                // Jump if Not Less or Equal (ZF=0 & SF=OF)
SMPUsesFlags[NN_jno] = true;                 // Jump if Not Overflow (OF=0)
SMPUsesFlags[NN_jnp] = true;                 // Jump if Not Parity (PF=0)
SMPUsesFlags[NN_jns] = true;                 // Jump if Not Sign (SF=0)
SMPUsesFlags[NN_jnz] = true;                 // Jump if Not Zero (ZF=0)
SMPUsesFlags[NN_jo] = true;                  // Jump if Overflow (OF=1)
SMPUsesFlags[NN_jp] = true;                  // Jump if Parity (PF=1)
SMPUsesFlags[NN_jpe] = true;                 // Jump if Parity Even (PF=1)
SMPUsesFlags[NN_jpo] = true;                 // Jump if Parity Odd  (PF=0)
SMPUsesFlags[NN_js] = true;                  // Jump if Sign (SF=1)
SMPUsesFlags[NN_jz] = true;                  // Jump if Zero (ZF=1)
SMPUsesFlags[NN_lahf] = true;                // Load Flags into AH Register
SMPUsesFlags[NN_lods] = true;                // Load String
SMPUsesFlags[NN_loopwe] = true;              // Loop while CX != 0 and ZF=1
SMPUsesFlags[NN_loope] = true;               // Loop while rCX != 0 and ZF=1
SMPUsesFlags[NN_loopde] = true;              // Loop while ECX != 0 and ZF=1
SMPUsesFlags[NN_loopqe] = true;              // Loop while RCX != 0 and ZF=1
SMPUsesFlags[NN_loopwne] = true;             // Loop while CX != 0 and ZF=0
SMPUsesFlags[NN_loopne] = true;              // Loop while rCX != 0 and ZF=0
SMPUsesFlags[NN_loopdne] = true;             // Loop while ECX != 0 and ZF=0
SMPUsesFlags[NN_loopqne] = true;             // Loop while RCX != 0 and ZF=0
SMPUsesFlags[NN_movs] = true;  		         // Move String (uses flags if REP prefix)
SMPUsesFlags[NN_outs] = true;                // Output Byte(s) to Port
SMPUsesFlags[NN_pushfw] = true;              // Push Flags Register onto the Stack
SMPUsesFlags[NN_pushf] = true;               // Push Flags Register onto the Stack
SMPUsesFlags[NN_pushfd] = true;              // Push Flags Register onto the Stack (use32)
SMPUsesFlags[NN_pushfq] = true;              // Push Flags Register onto the Stack (use64)
SMPUsesFlags[NN_rcl] = true;                 // Rotate Through Carry Left
SMPUsesFlags[NN_rcr] = true;                 // Rotate Through Carry Right
SMPUsesFlags[NN_repe] = true;                // Repeat String Operation while ZF=1
SMPUsesFlags[NN_repne] = true;               // Repeat String Operation while ZF=0
SMPUsesFlags[NN_sbb] = true;                 // Integer Subtraction with Borrow
SMPUsesFlags[NN_scas] = true;                // Compare String (uses DF direction flag)
SMPUsesFlags[NN_seta] = true;                // Set Byte if Above (CF=0 & ZF=0)
SMPUsesFlags[NN_setae] = true;               // Set Byte if Above or Equal (CF=0)
SMPUsesFlags[NN_setb] = true;                // Set Byte if Below (CF=1)
SMPUsesFlags[NN_setbe] = true;               // Set Byte if Below or Equal (CF=1 | ZF=1)
SMPUsesFlags[NN_setc] = true;                // Set Byte if Carry (CF=1)
SMPUsesFlags[NN_sete] = true;                // Set Byte if Equal (ZF=1)
SMPUsesFlags[NN_setg] = true;                // Set Byte if Greater (ZF=0 & SF=OF)
SMPUsesFlags[NN_setge] = true;               // Set Byte if Greater or Equal (SF=OF)
SMPUsesFlags[NN_setl] = true;                // Set Byte if Less (SF!=OF)
SMPUsesFlags[NN_setle] = true;               // Set Byte if Less or Equal (ZF=1 | SF!=OF)
SMPUsesFlags[NN_setna] = true;               // Set Byte if Not Above (CF=1 | ZF=1)
SMPUsesFlags[NN_setnae] = true;              // Set Byte if Not Above or Equal (CF=1)
SMPUsesFlags[NN_setnb] = true;               // Set Byte if Not Below (CF=0)
SMPUsesFlags[NN_setnbe] = true;              // Set Byte if Not Below or Equal (CF=0 & ZF=0)
SMPUsesFlags[NN_setnc] = true;               // Set Byte if Not Carry (CF=0)
SMPUsesFlags[NN_setne] = true;               // Set Byte if Not Equal (ZF=0)
SMPUsesFlags[NN_setng] = true;               // Set Byte if Not Greater (ZF=1 | SF!=OF)
clc5q's avatar
clc5q committed
SMPUsesFlags[NN_setnge] = true;              // Set Byte if Not Greater or Equal (SF!=OF)
SMPUsesFlags[NN_setnl] = true;               // Set Byte if Not Less (SF=OF)
SMPUsesFlags[NN_setnle] = true;              // Set Byte if Not Less or Equal (ZF=0 & SF=OF)
SMPUsesFlags[NN_setno] = true;               // Set Byte if Not Overflow (OF=0)
SMPUsesFlags[NN_setnp] = true;               // Set Byte if Not Parity (PF=0)
SMPUsesFlags[NN_setns] = true;               // Set Byte if Not Sign (SF=0)
SMPUsesFlags[NN_setnz] = true;               // Set Byte if Not Zero (ZF=0)
SMPUsesFlags[NN_seto] = true;                // Set Byte if Overflow (OF=1)
SMPUsesFlags[NN_setp] = true;                // Set Byte if Parity (PF=1)
SMPUsesFlags[NN_setpe] = true;               // Set Byte if Parity Even (PF=1)
SMPUsesFlags[NN_setpo] = true;               // Set Byte if Parity Odd  (PF=0)
SMPUsesFlags[NN_sets] = true;                // Set Byte if Sign (SF=1)
SMPUsesFlags[NN_setz] = true;                // Set Byte if Zero (ZF=1)
SMPUsesFlags[NN_stos] = true;                // Store String

//
//      486 instructions
//

//
//      Pentium instructions
//

SMPUsesFlags[NN_cpuid] = true;               // Get CPU ID
SMPUsesFlags[NN_cmpxchg8b] = true;           // Compare and Exchange Eight Bytes

//
//      Pentium Pro instructions
//

SMPUsesFlags[NN_cmova] = true;               // Move if Above (CF=0 & ZF=0)
SMPUsesFlags[NN_cmovb] = true;               // Move if Below (CF=1)
SMPUsesFlags[NN_cmovbe] = true;              // Move if Below or Equal (CF=1 | ZF=1)
SMPUsesFlags[NN_cmovg] = true;               // Move if Greater (ZF=0 & SF=OF)
SMPUsesFlags[NN_cmovge] = true;              // Move if Greater or Equal (SF=OF)
SMPUsesFlags[NN_cmovl] = true;               // Move if Less (SF!=OF)
SMPUsesFlags[NN_cmovle] = true;              // Move if Less or Equal (ZF=1 | SF!=OF)
SMPUsesFlags[NN_cmovnb] = true;              // Move if Not Below (CF=0)
SMPUsesFlags[NN_cmovno] = true;              // Move if Not Overflow (OF=0)
SMPUsesFlags[NN_cmovnp] = true;              // Move if Not Parity (PF=0)
SMPUsesFlags[NN_cmovns] = true;              // Move if Not Sign (SF=0)
SMPUsesFlags[NN_cmovnz] = true;              // Move if Not Zero (ZF=0)
SMPUsesFlags[NN_cmovo] = true;               // Move if Overflow (OF=1)
SMPUsesFlags[NN_cmovp] = true;               // Move if Parity (PF=1)
SMPUsesFlags[NN_cmovs] = true;               // Move if Sign (SF=1)
SMPUsesFlags[NN_cmovz] = true;               // Move if Zero (ZF=1)
SMPUsesFlags[NN_fcmovb] = true;              // Floating Move if Below          
SMPUsesFlags[NN_fcmove] = true;              // Floating Move if Equal          
SMPUsesFlags[NN_fcmovbe] = true;             // Floating Move if Below or Equal 
SMPUsesFlags[NN_fcmovu] = true;              // Floating Move if Unordered      
SMPUsesFlags[NN_fcmovnb] = true;             // Floating Move if Not Below      
SMPUsesFlags[NN_fcmovne] = true;             // Floating Move if Not Equal      
SMPUsesFlags[NN_fcmovnbe] = true;            // Floating Move if Not Below or Equal
SMPUsesFlags[NN_fcmovnu] = true;             // Floating Move if Not Unordered     

//
//


//
//      80387 instructions
//


//
//      Instructions added 28.02.96
//

SMPUsesFlags[NN_setalc] = true;              // Set AL to Carry Flag      

//
//      MMX instructions
//


//