Newer
Older
6001
6002
6003
6004
6005
6006
6007
6008
6009
6010
6011
6012
6013
6014
6015
6016
6017
6018
6019
6020
6021
6022
6023
6024
6025
6026
6027
6028
6029
6030
6031
6032
6033
6034
6035
6036
6037
6038
6039
6040
6041
6042
6043
6044
6045
// Undocumented Deschutes processor instructions
//
// Pentium II instructions
// 3DNow! instructions
// Pentium III instructions
// Pentium III Pseudo instructions
// AMD K7 instructions
// Revisit AMD if we port to it.
// Undocumented FP instructions (thanks to norbert.juffa@adm.com)
// Pentium 4 instructions
// AMD syscall/sysret instructions NOTE: not AMD, found in Intel manual
// AMD64 instructions NOTE: not AMD, found in Intel manual
// New Pentium instructions (SSE3)
// Missing AMD64 instructions NOTE: also found in Intel manual
// SSE3 instructions
// SSSE3 instructions
// VMX instructions
6046
6047
6048
6049
6050
6051
6052
6053
6054
6055
6056
6057
6058
6059
6060
6061
6062
6063
6064
6065
6066
6067
6068
6069
6070
// Added with x86-64
// Geode LX 3DNow! extensions
// SSE2 pseudoinstructions
// SSSE4.1 instructions
// SSSE4.2 instructions
// AMD SSE4a instructions
// xsave/xrstor instructions
// Intel Safer Mode Extensions (SMX)
// AMD-V Virtualization ISA Extension
// VMX+ instructions
// Intel Atom instructions
// Intel AES instructions
// Carryless multiplication
// Returns modified by operand size prefixes
// RDRAND support
// new GPR instructions
SMPUsesFlags[NN_adcx] = true; // Unsigned Integer Addition of Two Operands with Carry Flag
SMPUsesFlags[NN_adox] = true; // Unsigned Integer Addition of Two Operands with Overflow Flag
// new AVX instructions
// Transactional Synchronization Extensions
// Virtual PC synthetic instructions
SMPUsesFlags[NN_last] = false;
return;
} // end InitSMPUsesFlags()
// Initialize the SMPTypeCategory[] array to define how we infer
// numeric or pointer operand types for optimizing annotations.
void InitTypeCategory(void) {
// Default category is 0, no type inference without knowing context.
(void) memset(SMPTypeCategory, 0, sizeof(SMPTypeCategory));
// Category 1 instructions will need no mmStrata instrumentation
// and are irrelevant to our type system, so we do not attempt
// to make type inferences. Many of these operate on numeric
// operands such as floating point or MMX/SSE registers. mmStrata
// assumes that such registers are always numeric, so we do not
// need annotations informing mmStrata that FP/MMX/SSE regs are numeric.
// Category 2 instructions always have a result type of 'n' (number).
// Category 3 instructions have a result type of 'n' (number)
// whenever the second source operand is an operand of type 'n'.
// NOTE: MOV is the only current example, and this will take some thought if
// other examples arise.
// Category 4 instructions have a result type identical to the 1st source operand type.
// NOTE: This is currently set for single-operand instructions such as
// INC, DEC. As a result, these are treated pretty much as if
// they were category 1 instructions, as there is no metadata update,
// even if the operand is a memory operand.
// If new instructions are added to this category that are not single
// operand and do require some updating, the category should be split.
// Category 5 instructions have a result type identical to the 1st source operand
// type whenever the 2nd source operand is an operand of type 'n' & vice versa.
// Examples are add, sub, adc, and sbb. There are subtle exceptions
// handled in the SMPInstr::EmitTypeAnnotations() method.
// Category 6 instructions always have a result type of 'p' (pointer).
// Category 7 instructions are category 2 instructions with two destinations,
// such as multiply and divide instructions that affect EDX:EAX. There are
// forms of these instructions that only have one destination, so they have
// to be distinguished via the operand info.
// Category 8 instructions implicitly write a numeric value to EDX:EAX, but
// EDX and EAX are not listed as operands. RDTSC, RDPMC, RDMSR, and other
// instructions that copy machine registers into EDX:EAX are category 8.
// Some instructions in category 8 also write to ECX.
// Category 9 instructions are floating point instructions that either
// have a memory destination (treat as category 13) or a FP reg destination
// (treat as category 1, as FP regs are always 'n' and ignored in our system).
// Category 10 instructions have 'n' results if the sources are all 'n';
// we cannot infer the type of the result if the sources are of mixed types.
// Bitwise OR and AND and LEA (load effective address) are examples.
// Category 11 instructions need to have their types and locations on the stack
// frame tracked, e.g. push and pop instructions. No direct type inference.
// Category 12 instructions are similar to category 10, except that we do not
// output 'n' annotations when all sources are 'n'; rather, the instruction can
// be simply ignored (not instrumented by mmStrata) in that case. Conditional
// exchange instructions are examples; we do or do not
// move a numeric value into a register that already has numeric metadata.
// Category 13 instructions imply that their memory destination is 'n'.
// Category 14 instructions imply that their reg or memory source operand is 'n';
// if source is not memory, they are category 1 (inferences, but no instrumentation).
// There should never be a memory destination (usual destination is fpreg or flags).
// Category 15 instructions always have 'n' source AND destination operands;
// if addressed using indirect or indexed addressing, they are a subset of category 0
// (must be instrumented by mmStrata to keep index in bounds). Memory destinations
// are common in this category.
// NOTE: The Memory Monitor SDT needs just three categories, corresponding
// to categories 0, 1, and all others. For all categories > 1, the
// annotation should tell the SDT exactly how to update its metadata.
// For example, a division instruction will write type 'n' (NUM) as
// the metadata for result registers EDX:EAX. So, the annotation should
// list 'n', EDX, EAX, and a terminator of ZZ. CWD (convert word to
// doubleword) should have a list of n EAX ZZ.
SMPTypeCategory[NN_null] = 0; // Unknown Operation
SMPTypeCategory[NN_aaa] = 2; // ASCII Adjust after Addition
SMPTypeCategory[NN_aad] = 2; // ASCII Adjust AX before Division
SMPTypeCategory[NN_aam] = 2; // ASCII Adjust AX after Multiply
SMPTypeCategory[NN_aas] = 2; // ASCII Adjust AL after Subtraction
SMPTypeCategory[NN_adc] = 5; // Add with Carry
SMPTypeCategory[NN_add] = 5; // Add
SMPTypeCategory[NN_and] = 10; // Logical AND
SMPTypeCategory[NN_arpl] = 1; // Adjust RPL Field of Selector
SMPTypeCategory[NN_bound] = 1; // Check Array Index Against Bounds
SMPTypeCategory[NN_bsf] = 2; // Bit Scan Forward
SMPTypeCategory[NN_bsr] = 2; // Bit Scan Reverse
SMPTypeCategory[NN_bt] = 10; // Bit Test
SMPTypeCategory[NN_btc] = 10; // Bit Test and Complement
SMPTypeCategory[NN_btr] = 10; // Bit Test and Reset
SMPTypeCategory[NN_bts] = 10; // Bit Test and Set
6176
6177
6178
6179
6180
6181
6182
6183
6184
6185
6186
6187
6188
6189
6190
6191
6192
6193
6194
6195
6196
6197
6198
6199
6200
6201
6202
6203
6204
6205
SMPTypeCategory[NN_call] = 1; // Call Procedure
SMPTypeCategory[NN_callfi] = 1; // Indirect Call Far Procedure
SMPTypeCategory[NN_callni] = 1; // Indirect Call Near Procedure
SMPTypeCategory[NN_cbw] = 2; // AL -> AX (with sign) ** No ops?
SMPTypeCategory[NN_cwde] = 2; // AX -> EAX (with sign) **
SMPTypeCategory[NN_cdqe] = 2; // EAX -> RAX (with sign) **
SMPTypeCategory[NN_clc] = 1; // Clear Carry Flag
SMPTypeCategory[NN_cld] = 1; // Clear Direction Flag
SMPTypeCategory[NN_cli] = 1; // Clear Interrupt Flag
SMPTypeCategory[NN_clts] = 1; // Clear Task-Switched Flag in CR0
SMPTypeCategory[NN_cmc] = 1; // Complement Carry Flag
SMPTypeCategory[NN_cmp] = 1; // Compare Two Operands
SMPTypeCategory[NN_cmps] = 14; // Compare Strings
SMPTypeCategory[NN_cwd] = 2; // AX -> DX:AX (with sign)
SMPTypeCategory[NN_cdq] = 2; // EAX -> EDX:EAX (with sign)
SMPTypeCategory[NN_cqo] = 2; // RAX -> RDX:RAX (with sign)
SMPTypeCategory[NN_daa] = 2; // Decimal Adjust AL after Addition
SMPTypeCategory[NN_das] = 2; // Decimal Adjust AL after Subtraction
SMPTypeCategory[NN_dec] = 4; // Decrement by 1
SMPTypeCategory[NN_div] = 7; // Unsigned Divide
SMPTypeCategory[NN_enterw] = 0; // Make Stack Frame for Procedure Parameters **
SMPTypeCategory[NN_enter] = 0; // Make Stack Frame for Procedure Parameters **
SMPTypeCategory[NN_enterd] = 0; // Make Stack Frame for Procedure Parameters **
SMPTypeCategory[NN_enterq] = 0; // Make Stack Frame for Procedure Parameters **
SMPTypeCategory[NN_hlt] = 0; // Halt
SMPTypeCategory[NN_idiv] = 7; // Signed Divide
SMPTypeCategory[NN_imul] = 7; // Signed Multiply
SMPTypeCategory[NN_in] = 0; // Input from Port **
SMPTypeCategory[NN_inc] = 4; // Increment by 1
SMPTypeCategory[NN_ins] = 2; // Input Byte(s) from Port to String **
SMPTypeCategory[NN_int] = 0; // Call to Interrupt Procedure
SMPTypeCategory[NN_into] = 0; // Call to Interrupt Procedure if Overflow Flag = 1
SMPTypeCategory[NN_int3] = 0; // Trap to Debugger
SMPTypeCategory[NN_iretw] = 0; // Interrupt Return
SMPTypeCategory[NN_iret] = 0; // Interrupt Return
SMPTypeCategory[NN_iretd] = 0; // Interrupt Return (use32)
SMPTypeCategory[NN_iretq] = 0; // Interrupt Return (use64)
SMPTypeCategory[NN_ja] = 1; // Jump if Above (CF=0 & ZF=0)
SMPTypeCategory[NN_jae] = 1; // Jump if Above or Equal (CF=0)
SMPTypeCategory[NN_jb] = 1; // Jump if Below (CF=1)
SMPTypeCategory[NN_jbe] = 1; // Jump if Below or Equal (CF=1 | ZF=1)
SMPTypeCategory[NN_jc] = 1; // Jump if Carry (CF=1)
SMPTypeCategory[NN_jcxz] = 1; // Jump if CX is 0
SMPTypeCategory[NN_jecxz] = 1; // Jump if ECX is 0
SMPTypeCategory[NN_jrcxz] = 1; // Jump if RCX is 0
SMPTypeCategory[NN_je] = 1; // Jump if Equal (ZF=1)
SMPTypeCategory[NN_jg] = 1; // Jump if Greater (ZF=0 & SF=OF)
SMPTypeCategory[NN_jge] = 1; // Jump if Greater or Equal (SF=OF)
SMPTypeCategory[NN_jl] = 1; // Jump if Less (SF!=OF)
SMPTypeCategory[NN_jle] = 1; // Jump if Less or Equal (ZF=1 | SF!=OF)
SMPTypeCategory[NN_jna] = 1; // Jump if Not Above (CF=1 | ZF=1)
SMPTypeCategory[NN_jnae] = 1; // Jump if Not Above or Equal (CF=1)
SMPTypeCategory[NN_jnb] = 1; // Jump if Not Below (CF=0)
SMPTypeCategory[NN_jnbe] = 1; // Jump if Not Below or Equal (CF=0 & ZF=0)
SMPTypeCategory[NN_jnc] = 1; // Jump if Not Carry (CF=0)
SMPTypeCategory[NN_jne] = 1; // Jump if Not Equal (ZF=0)
SMPTypeCategory[NN_jng] = 1; // Jump if Not Greater (ZF=1 | SF!=OF)
SMPTypeCategory[NN_jnge] = 1; // Jump if Not Greater or Equal (SF!=OF)
SMPTypeCategory[NN_jnl] = 1; // Jump if Not Less (SF=OF)
SMPTypeCategory[NN_jnle] = 1; // Jump if Not Less or Equal (ZF=0 & SF=OF)
SMPTypeCategory[NN_jno] = 1; // Jump if Not Overflow (OF=0)
SMPTypeCategory[NN_jnp] = 1; // Jump if Not Parity (PF=0)
SMPTypeCategory[NN_jns] = 1; // Jump if Not Sign (SF=0)
SMPTypeCategory[NN_jnz] = 1; // Jump if Not Zero (ZF=0)
SMPTypeCategory[NN_jo] = 1; // Jump if Overflow (OF=1)
SMPTypeCategory[NN_jp] = 1; // Jump if Parity (PF=1)
SMPTypeCategory[NN_jpe] = 1; // Jump if Parity Even (PF=1)
SMPTypeCategory[NN_jpo] = 1; // Jump if Parity Odd (PF=0)
SMPTypeCategory[NN_js] = 1; // Jump if Sign (SF=1)
SMPTypeCategory[NN_jz] = 1; // Jump if Zero (ZF=1)
SMPTypeCategory[NN_jmp] = 1; // Jump
SMPTypeCategory[NN_jmpfi] = 1; // Indirect Far Jump
SMPTypeCategory[NN_jmpni] = 1; // Indirect Near Jump
SMPTypeCategory[NN_jmpshort] = 1; // Jump Short (not used)
SMPTypeCategory[NN_lahf] = 2; // Load Flags into AH Register
SMPTypeCategory[NN_lar] = 2; // Load Access Rights Byte
SMPTypeCategory[NN_lea] = 10; // Load Effective Address **
6253
6254
6255
6256
6257
6258
6259
6260
6261
6262
6263
6264
6265
6266
6267
6268
6269
6270
6271
6272
6273
6274
6275
6276
6277
6278
6279
6280
6281
6282
6283
6284
6285
6286
6287
SMPTypeCategory[NN_leavew] = 0; // High Level Procedure Exit **
SMPTypeCategory[NN_leave] = 0; // High Level Procedure Exit **
SMPTypeCategory[NN_leaved] = 0; // High Level Procedure Exit **
SMPTypeCategory[NN_leaveq] = 0; // High Level Procedure Exit **
SMPTypeCategory[NN_lgdt] = 0; // Load Global Descriptor Table Register
SMPTypeCategory[NN_lidt] = 0; // Load Interrupt Descriptor Table Register
SMPTypeCategory[NN_lgs] = 6; // Load Full Pointer to GS:xx
SMPTypeCategory[NN_lss] = 6; // Load Full Pointer to SS:xx
SMPTypeCategory[NN_lds] = 6; // Load Full Pointer to DS:xx
SMPTypeCategory[NN_les] = 6; // Load Full Pointer to ES:xx
SMPTypeCategory[NN_lfs] = 6; // Load Full Pointer to FS:xx
SMPTypeCategory[NN_lldt] = 0; // Load Local Descriptor Table Register
SMPTypeCategory[NN_lmsw] = 1; // Load Machine Status Word
SMPTypeCategory[NN_lock] = 1; // Assert LOCK# Signal Prefix
SMPTypeCategory[NN_lods] = 0; // Load String
SMPTypeCategory[NN_loopw] = 1; // Loop while ECX != 0
SMPTypeCategory[NN_loop] = 1; // Loop while CX != 0
SMPTypeCategory[NN_loopd] = 1; // Loop while ECX != 0
SMPTypeCategory[NN_loopq] = 1; // Loop while RCX != 0
SMPTypeCategory[NN_loopwe] = 1; // Loop while CX != 0 and ZF=1
SMPTypeCategory[NN_loope] = 1; // Loop while rCX != 0 and ZF=1
SMPTypeCategory[NN_loopde] = 1; // Loop while ECX != 0 and ZF=1
SMPTypeCategory[NN_loopqe] = 1; // Loop while RCX != 0 and ZF=1
SMPTypeCategory[NN_loopwne] = 1; // Loop while CX != 0 and ZF=0
SMPTypeCategory[NN_loopne] = 1; // Loop while rCX != 0 and ZF=0
SMPTypeCategory[NN_loopdne] = 1; // Loop while ECX != 0 and ZF=0
SMPTypeCategory[NN_loopqne] = 1; // Loop while RCX != 0 and ZF=0
SMPTypeCategory[NN_lsl] = 6; // Load Segment Limit
SMPTypeCategory[NN_ltr] = 1; // Load Task Register
SMPTypeCategory[NN_mov] = 3; // Move Data
SMPTypeCategory[NN_movsp] = 3; // Move to/from Special Registers
SMPTypeCategory[NN_movs] = 0; // Move Byte(s) from String to String
SMPTypeCategory[NN_movsx] = 3; // Move with Sign-Extend
SMPTypeCategory[NN_movzx] = 3; // Move with Zero-Extend
SMPTypeCategory[NN_mul] = 7; // Unsigned Multiplication of AL or AX
clc5q
committed
SMPTypeCategory[NN_neg] = 2; // Two's Complement Negation !!!!****!!!! Change this when mmStrata handles NEGATEDPTR type.
6289
6290
6291
6292
6293
6294
6295
6296
6297
6298
6299
6300
6301
6302
6303
6304
6305
6306
6307
6308
6309
6310
6311
6312
6313
6314
6315
6316
6317
6318
6319
6320
6321
6322
6323
6324
6325
6326
6327
6328
6329
6330
6331
6332
6333
6334
6335
6336
6337
6338
6339
6340
6341
6342
6343
6344
SMPTypeCategory[NN_nop] = 1; // No Operation
SMPTypeCategory[NN_not] = 2; // One's Complement Negation
SMPTypeCategory[NN_or] = 10; // Logical Inclusive OR
SMPTypeCategory[NN_out] = 0; // Output to Port
SMPTypeCategory[NN_outs] = 0; // Output Byte(s) to Port
SMPTypeCategory[NN_pop] = 11; // Pop a word from the Stack
SMPTypeCategory[NN_popaw] = 11; // Pop all General Registers
SMPTypeCategory[NN_popa] = 11; // Pop all General Registers
SMPTypeCategory[NN_popad] = 11; // Pop all General Registers (use32)
SMPTypeCategory[NN_popaq] = 11; // Pop all General Registers (use64)
SMPTypeCategory[NN_popfw] = 11; // Pop Stack into Flags Register **
SMPTypeCategory[NN_popf] = 11; // Pop Stack into Flags Register **
SMPTypeCategory[NN_popfd] = 11; // Pop Stack into Eflags Register **
SMPTypeCategory[NN_popfq] = 11; // Pop Stack into Rflags Register **
SMPTypeCategory[NN_push] = 11; // Push Operand onto the Stack
SMPTypeCategory[NN_pushaw] = 11; // Push all General Registers
SMPTypeCategory[NN_pusha] = 11; // Push all General Registers
SMPTypeCategory[NN_pushad] = 11; // Push all General Registers (use32)
SMPTypeCategory[NN_pushaq] = 11; // Push all General Registers (use64)
SMPTypeCategory[NN_pushfw] = 11; // Push Flags Register onto the Stack
SMPTypeCategory[NN_pushf] = 11; // Push Flags Register onto the Stack
SMPTypeCategory[NN_pushfd] = 11; // Push Flags Register onto the Stack (use32)
SMPTypeCategory[NN_pushfq] = 11; // Push Flags Register onto the Stack (use64)
SMPTypeCategory[NN_rcl] = 2; // Rotate Through Carry Left
SMPTypeCategory[NN_rcr] = 2; // Rotate Through Carry Right
SMPTypeCategory[NN_rol] = 2; // Rotate Left
SMPTypeCategory[NN_ror] = 2; // Rotate Right
SMPTypeCategory[NN_rep] = 0; // Repeat String Operation
SMPTypeCategory[NN_repe] = 0; // Repeat String Operation while ZF=1
SMPTypeCategory[NN_repne] = 0; // Repeat String Operation while ZF=0
SMPTypeCategory[NN_retn] = 0; // Return Near from Procedure
SMPTypeCategory[NN_retf] = 0; // Return Far from Procedure
SMPTypeCategory[NN_sahf] = 14; // Store AH into Flags Register
SMPTypeCategory[NN_sal] = 2; // Shift Arithmetic Left
SMPTypeCategory[NN_sar] = 2; // Shift Arithmetic Right
SMPTypeCategory[NN_shl] = 2; // Shift Logical Left
SMPTypeCategory[NN_shr] = 2; // Shift Logical Right
SMPTypeCategory[NN_sbb] = 5; // Integer Subtraction with Borrow
SMPTypeCategory[NN_scas] = 14; // Compare String
SMPTypeCategory[NN_seta] = 2; // Set Byte if Above (CF=0 & ZF=0)
SMPTypeCategory[NN_setae] = 2; // Set Byte if Above or Equal (CF=0)
SMPTypeCategory[NN_setb] = 2; // Set Byte if Below (CF=1)
SMPTypeCategory[NN_setbe] = 2; // Set Byte if Below or Equal (CF=1 | ZF=1)
SMPTypeCategory[NN_setc] = 2; // Set Byte if Carry (CF=1)
SMPTypeCategory[NN_sete] = 2; // Set Byte if Equal (ZF=1)
SMPTypeCategory[NN_setg] = 2; // Set Byte if Greater (ZF=0 & SF=OF)
SMPTypeCategory[NN_setge] = 2; // Set Byte if Greater or Equal (SF=OF)
SMPTypeCategory[NN_setl] = 2; // Set Byte if Less (SF!=OF)
SMPTypeCategory[NN_setle] = 2; // Set Byte if Less or Equal (ZF=1 | SF!=OF)
SMPTypeCategory[NN_setna] = 2; // Set Byte if Not Above (CF=1 | ZF=1)
SMPTypeCategory[NN_setnae] = 2; // Set Byte if Not Above or Equal (CF=1)
SMPTypeCategory[NN_setnb] = 2; // Set Byte if Not Below (CF=0)
SMPTypeCategory[NN_setnbe] = 2; // Set Byte if Not Below or Equal (CF=0 & ZF=0)
SMPTypeCategory[NN_setnc] = 2; // Set Byte if Not Carry (CF=0)
SMPTypeCategory[NN_setne] = 2; // Set Byte if Not Equal (ZF=0)
SMPTypeCategory[NN_setng] = 2; // Set Byte if Not Greater (ZF=1 | SF!=OF)
SMPTypeCategory[NN_setnge] = 2; // Set Byte if Not Greater or Equal (SF!=OF)
6346
6347
6348
6349
6350
6351
6352
6353
6354
6355
6356
6357
6358
6359
6360
6361
6362
6363
6364
6365
6366
6367
6368
6369
6370
6371
6372
6373
SMPTypeCategory[NN_setnl] = 2; // Set Byte if Not Less (SF=OF)
SMPTypeCategory[NN_setnle] = 2; // Set Byte if Not Less or Equal (ZF=0 & SF=OF)
SMPTypeCategory[NN_setno] = 2; // Set Byte if Not Overflow (OF=0)
SMPTypeCategory[NN_setnp] = 2; // Set Byte if Not Parity (PF=0)
SMPTypeCategory[NN_setns] = 2; // Set Byte if Not Sign (SF=0)
SMPTypeCategory[NN_setnz] = 2; // Set Byte if Not Zero (ZF=0)
SMPTypeCategory[NN_seto] = 2; // Set Byte if Overflow (OF=1)
SMPTypeCategory[NN_setp] = 2; // Set Byte if Parity (PF=1)
SMPTypeCategory[NN_setpe] = 2; // Set Byte if Parity Even (PF=1)
SMPTypeCategory[NN_setpo] = 2; // Set Byte if Parity Odd (PF=0)
SMPTypeCategory[NN_sets] = 2; // Set Byte if Sign (SF=1)
SMPTypeCategory[NN_setz] = 2; // Set Byte if Zero (ZF=1)
SMPTypeCategory[NN_sgdt] = 0; // Store Global Descriptor Table Register
SMPTypeCategory[NN_sidt] = 0; // Store Interrupt Descriptor Table Register
SMPTypeCategory[NN_shld] = 2; // Double Precision Shift Left
SMPTypeCategory[NN_shrd] = 2; // Double Precision Shift Right
SMPTypeCategory[NN_sldt] = 6; // Store Local Descriptor Table Register
SMPTypeCategory[NN_smsw] = 2; // Store Machine Status Word
SMPTypeCategory[NN_stc] = 1; // Set Carry Flag
SMPTypeCategory[NN_std] = 1; // Set Direction Flag
SMPTypeCategory[NN_sti] = 1; // Set Interrupt Flag
SMPTypeCategory[NN_stos] = 0; // Store String
SMPTypeCategory[NN_str] = 6; // Store Task Register
SMPTypeCategory[NN_sub] = 5; // Integer Subtraction
SMPTypeCategory[NN_test] = 1; // Logical Compare
SMPTypeCategory[NN_verr] = 1; // Verify a Segment for Reading
SMPTypeCategory[NN_verw] = 1; // Verify a Segment for Writing
SMPTypeCategory[NN_wait] = 1; // Wait until BUSY# Pin is Inactive (HIGH)
SMPTypeCategory[NN_xchg] = 12; // Exchange Register/Memory with Register
6375
6376
6377
6378
6379
6380
6381
6382
6383
6384
6385
6386
6387
6388
6389
6390
6391
6392
6393
6394
6395
6396
6397
6398
6399
6400
6401
6402
6403
SMPTypeCategory[NN_xlat] = 0; // Table Lookup Translation
SMPTypeCategory[NN_xor] = 2; // Logical Exclusive OR
//
// 486 instructions
//
SMPTypeCategory[NN_cmpxchg] = 12; // Compare and Exchange
SMPTypeCategory[NN_bswap] = 1; // Swap bytes in register
SMPTypeCategory[NN_xadd] = 12; // t<-dest; dest<-src+dest; src<-t
SMPTypeCategory[NN_invd] = 1; // Invalidate Data Cache
SMPTypeCategory[NN_wbinvd] = 1; // Invalidate Data Cache (write changes)
SMPTypeCategory[NN_invlpg] = 1; // Invalidate TLB entry
//
// Pentium instructions
//
SMPTypeCategory[NN_rdmsr] = 8; // Read Machine Status Register
SMPTypeCategory[NN_wrmsr] = 1; // Write Machine Status Register
SMPTypeCategory[NN_cpuid] = 8; // Get CPU ID
SMPTypeCategory[NN_cmpxchg8b] = 12; // Compare and Exchange Eight Bytes
SMPTypeCategory[NN_rdtsc] = 8; // Read Time Stamp Counter
SMPTypeCategory[NN_rsm] = 1; // Resume from System Management Mode
//
// Pentium Pro instructions
//
SMPTypeCategory[NN_cmova] = 0; // Move if Above (CF=0 & ZF=0)
SMPTypeCategory[NN_cmovb] = 0; // Move if Below (CF=1)
SMPTypeCategory[NN_cmovbe] = 0; // Move if Below or Equal (CF=1 | ZF=1)
SMPTypeCategory[NN_cmovg] = 0; // Move if Greater (ZF=0 & SF=OF)
SMPTypeCategory[NN_cmovge] = 0; // Move if Greater or Equal (SF=OF)
SMPTypeCategory[NN_cmovl] = 0; // Move if Less (SF!=OF)
SMPTypeCategory[NN_cmovle] = 0; // Move if Less or Equal (ZF=1 | SF!=OF)
SMPTypeCategory[NN_cmovnb] = 0; // Move if Not Below (CF=0)
SMPTypeCategory[NN_cmovno] = 0; // Move if Not Overflow (OF=0)
SMPTypeCategory[NN_cmovnp] = 0; // Move if Not Parity (PF=0)
SMPTypeCategory[NN_cmovns] = 0; // Move if Not Sign (SF=0)
SMPTypeCategory[NN_cmovnz] = 0; // Move if Not Zero (ZF=0)
SMPTypeCategory[NN_cmovo] = 0; // Move if Overflow (OF=1)
SMPTypeCategory[NN_cmovp] = 0; // Move if Parity (PF=1)
SMPTypeCategory[NN_cmovs] = 0; // Move if Sign (SF=1)
SMPTypeCategory[NN_cmovz] = 0; // Move if Zero (ZF=1)
6420
6421
6422
6423
6424
6425
6426
6427
6428
6429
6430
6431
6432
6433
6434
6435
6436
6437
6438
6439
6440
6441
6442
6443
6444
6445
6446
6447
6448
6449
6450
6451
6452
6453
6454
6455
6456
6457
6458
6459
6460
6461
6462
6463
6464
6465
6466
6467
6468
6469
6470
6471
6472
6473
6474
6475
6476
6477
6478
6479
6480
6481
6482
6483
6484
6485
6486
6487
6488
6489
6490
6491
6492
6493
6494
6495
6496
6497
6498
6499
6500
6501
6502
6503
6504
6505
6506
6507
6508
6509
6510
6511
6512
6513
6514
6515
6516
6517
6518
6519
6520
6521
6522
6523
6524
6525
6526
6527
6528
6529
6530
6531
6532
6533
6534
6535
6536
6537
6538
6539
6540
6541
6542
6543
6544
6545
6546
6547
6548
SMPTypeCategory[NN_fcmovb] = 1; // Floating Move if Below
SMPTypeCategory[NN_fcmove] = 1; // Floating Move if Equal
SMPTypeCategory[NN_fcmovbe] = 1; // Floating Move if Below or Equal
SMPTypeCategory[NN_fcmovu] = 1; // Floating Move if Unordered
SMPTypeCategory[NN_fcmovnb] = 1; // Floating Move if Not Below
SMPTypeCategory[NN_fcmovne] = 1; // Floating Move if Not Equal
SMPTypeCategory[NN_fcmovnbe] = 1; // Floating Move if Not Below or Equal
SMPTypeCategory[NN_fcmovnu] = 1; // Floating Move if Not Unordered
SMPTypeCategory[NN_fcomi] = 1; // FP Compare, result in EFLAGS
SMPTypeCategory[NN_fucomi] = 1; // FP Unordered Compare, result in EFLAGS
SMPTypeCategory[NN_fcomip] = 1; // FP Compare, result in EFLAGS, pop stack
SMPTypeCategory[NN_fucomip] = 1; // FP Unordered Compare, result in EFLAGS, pop stack
SMPTypeCategory[NN_rdpmc] = 8; // Read Performance Monitor Counter
//
// FPP instructions
//
SMPTypeCategory[NN_fld] = 14; // Load Real ** Infer src is 'n'
SMPTypeCategory[NN_fst] = 9; // Store Real
SMPTypeCategory[NN_fstp] = 9; // Store Real and Pop
SMPTypeCategory[NN_fxch] = 1; // Exchange Registers
SMPTypeCategory[NN_fild] = 14; // Load Integer ** Infer src is 'n'
SMPTypeCategory[NN_fist] = 13; // Store Integer
SMPTypeCategory[NN_fistp] = 13; // Store Integer and Pop
SMPTypeCategory[NN_fbld] = 1; // Load BCD
SMPTypeCategory[NN_fbstp] = 13; // Store BCD and Pop
SMPTypeCategory[NN_fadd] = 14; // Add Real
SMPTypeCategory[NN_faddp] = 14; // Add Real and Pop
SMPTypeCategory[NN_fiadd] = 14; // Add Integer
SMPTypeCategory[NN_fsub] = 14; // Subtract Real
SMPTypeCategory[NN_fsubp] = 14; // Subtract Real and Pop
SMPTypeCategory[NN_fisub] = 14; // Subtract Integer
SMPTypeCategory[NN_fsubr] = 14; // Subtract Real Reversed
SMPTypeCategory[NN_fsubrp] = 14; // Subtract Real Reversed and Pop
SMPTypeCategory[NN_fisubr] = 14; // Subtract Integer Reversed
SMPTypeCategory[NN_fmul] = 14; // Multiply Real
SMPTypeCategory[NN_fmulp] = 14; // Multiply Real and Pop
SMPTypeCategory[NN_fimul] = 14; // Multiply Integer
SMPTypeCategory[NN_fdiv] = 14; // Divide Real
SMPTypeCategory[NN_fdivp] = 14; // Divide Real and Pop
SMPTypeCategory[NN_fidiv] = 14; // Divide Integer
SMPTypeCategory[NN_fdivr] = 14; // Divide Real Reversed
SMPTypeCategory[NN_fdivrp] = 14; // Divide Real Reversed and Pop
SMPTypeCategory[NN_fidivr] = 14; // Divide Integer Reversed
SMPTypeCategory[NN_fsqrt] = 1; // Square Root
SMPTypeCategory[NN_fscale] = 1; // Scale: st(0) <- st(0) * 2^st(1)
SMPTypeCategory[NN_fprem] = 1; // Partial Remainder
SMPTypeCategory[NN_frndint] = 1; // Round to Integer
SMPTypeCategory[NN_fxtract] = 1; // Extract exponent and significand
SMPTypeCategory[NN_fabs] = 1; // Absolute value
SMPTypeCategory[NN_fchs] = 1; // Change Sign
SMPTypeCategory[NN_fcom] = 1; // Compare Real
SMPTypeCategory[NN_fcomp] = 1; // Compare Real and Pop
SMPTypeCategory[NN_fcompp] = 1; // Compare Real and Pop Twice
SMPTypeCategory[NN_ficom] = 1; // Compare Integer
SMPTypeCategory[NN_ficomp] = 1; // Compare Integer and Pop
SMPTypeCategory[NN_ftst] = 1; // Test
SMPTypeCategory[NN_fxam] = 1; // Examine
SMPTypeCategory[NN_fptan] = 1; // Partial tangent
SMPTypeCategory[NN_fpatan] = 1; // Partial arctangent
SMPTypeCategory[NN_f2xm1] = 1; // 2^x - 1
SMPTypeCategory[NN_fyl2x] = 1; // Y * lg2(X)
SMPTypeCategory[NN_fyl2xp1] = 1; // Y * lg2(X+1)
SMPTypeCategory[NN_fldz] = 1; // Load +0.0
SMPTypeCategory[NN_fld1] = 1; // Load +1.0
SMPTypeCategory[NN_fldpi] = 1; // Load PI=3.14...
SMPTypeCategory[NN_fldl2t] = 1; // Load lg2(10)
SMPTypeCategory[NN_fldl2e] = 1; // Load lg2(e)
SMPTypeCategory[NN_fldlg2] = 1; // Load lg10(2)
SMPTypeCategory[NN_fldln2] = 1; // Load ln(2)
SMPTypeCategory[NN_finit] = 1; // Initialize Processor
SMPTypeCategory[NN_fninit] = 1; // Initialize Processor (no wait)
SMPTypeCategory[NN_fsetpm] = 1; // Set Protected Mode
SMPTypeCategory[NN_fldcw] = 14; // Load Control Word
SMPTypeCategory[NN_fstcw] = 13; // Store Control Word
SMPTypeCategory[NN_fnstcw] = 13; // Store Control Word (no wait)
SMPTypeCategory[NN_fstsw] = 2; // Store Status Word to memory or AX
SMPTypeCategory[NN_fnstsw] = 2; // Store Status Word (no wait) to memory or AX
SMPTypeCategory[NN_fclex] = 1; // Clear Exceptions
SMPTypeCategory[NN_fnclex] = 1; // Clear Exceptions (no wait)
SMPTypeCategory[NN_fstenv] = 13; // Store Environment
SMPTypeCategory[NN_fnstenv] = 13; // Store Environment (no wait)
SMPTypeCategory[NN_fldenv] = 14; // Load Environment
SMPTypeCategory[NN_fsave] = 13; // Save State
SMPTypeCategory[NN_fnsave] = 13; // Save State (no wait)
SMPTypeCategory[NN_frstor] = 14; // Restore State ** infer src is 'n'
SMPTypeCategory[NN_fincstp] = 1; // Increment Stack Pointer
SMPTypeCategory[NN_fdecstp] = 1; // Decrement Stack Pointer
SMPTypeCategory[NN_ffree] = 1; // Free Register
SMPTypeCategory[NN_fnop] = 1; // No Operation
SMPTypeCategory[NN_feni] = 1; // (8087 only)
SMPTypeCategory[NN_fneni] = 1; // (no wait) (8087 only)
SMPTypeCategory[NN_fdisi] = 1; // (8087 only)
SMPTypeCategory[NN_fndisi] = 1; // (no wait) (8087 only)
//
// 80387 instructions
//
SMPTypeCategory[NN_fprem1] = 1; // Partial Remainder ( < half )
SMPTypeCategory[NN_fsincos] = 1; // t<-cos(st); st<-sin(st); push t
SMPTypeCategory[NN_fsin] = 1; // Sine
SMPTypeCategory[NN_fcos] = 1; // Cosine
SMPTypeCategory[NN_fucom] = 1; // Compare Unordered Real
SMPTypeCategory[NN_fucomp] = 1; // Compare Unordered Real and Pop
SMPTypeCategory[NN_fucompp] = 1; // Compare Unordered Real and Pop Twice
//
// Instructions added 28.02.96
//
SMPTypeCategory[NN_setalc] = 2; // Set AL to Carry Flag **
SMPTypeCategory[NN_svdc] = 0; // Save Register and Descriptor
SMPTypeCategory[NN_rsdc] = 0; // Restore Register and Descriptor
SMPTypeCategory[NN_svldt] = 0; // Save LDTR and Descriptor
SMPTypeCategory[NN_rsldt] = 0; // Restore LDTR and Descriptor
SMPTypeCategory[NN_svts] = 1; // Save TR and Descriptor
SMPTypeCategory[NN_rsts] = 1; // Restore TR and Descriptor
SMPTypeCategory[NN_icebp] = 1; // ICE Break Point
SMPTypeCategory[NN_loadall] = 0; // Load the entire CPU state from ES:EDI ???
//
// MMX instructions
//
SMPTypeCategory[NN_emms] = 1; // Empty MMX state
SMPTypeCategory[NN_movd] = 15; // Move 32 bits
SMPTypeCategory[NN_movq] = 15; // Move 64 bits
6549
6550
6551
6552
6553
6554
6555
6556
6557
6558
6559
6560
6561
6562
6563
6564
6565
6566
6567
6568
6569
6570
6571
6572
6573
6574
6575
6576
6577
6578
6579
6580
6581
6582
6583
6584
6585
6586
6587
6588
6589
6590
6591
6592
SMPTypeCategory[NN_packsswb] = 14; // Pack with Signed Saturation (Word->Byte)
SMPTypeCategory[NN_packssdw] = 14; // Pack with Signed Saturation (Dword->Word)
SMPTypeCategory[NN_packuswb] = 14; // Pack with Unsigned Saturation (Word->Byte)
SMPTypeCategory[NN_paddb] = 14; // Packed Add Byte
SMPTypeCategory[NN_paddw] = 14; // Packed Add Word
SMPTypeCategory[NN_paddd] = 14; // Packed Add Dword
SMPTypeCategory[NN_paddsb] = 14; // Packed Add with Saturation (Byte)
SMPTypeCategory[NN_paddsw] = 14; // Packed Add with Saturation (Word)
SMPTypeCategory[NN_paddusb] = 14; // Packed Add Unsigned with Saturation (Byte)
SMPTypeCategory[NN_paddusw] = 14; // Packed Add Unsigned with Saturation (Word)
SMPTypeCategory[NN_pand] = 14; // Bitwise Logical And
SMPTypeCategory[NN_pandn] = 14; // Bitwise Logical And Not
SMPTypeCategory[NN_pcmpeqb] = 14; // Packed Compare for Equal (Byte)
SMPTypeCategory[NN_pcmpeqw] = 14; // Packed Compare for Equal (Word)
SMPTypeCategory[NN_pcmpeqd] = 14; // Packed Compare for Equal (Dword)
SMPTypeCategory[NN_pcmpgtb] = 14; // Packed Compare for Greater Than (Byte)
SMPTypeCategory[NN_pcmpgtw] = 14; // Packed Compare for Greater Than (Word)
SMPTypeCategory[NN_pcmpgtd] = 14; // Packed Compare for Greater Than (Dword)
SMPTypeCategory[NN_pmaddwd] = 14; // Packed Multiply and Add
SMPTypeCategory[NN_pmulhw] = 14; // Packed Multiply High
SMPTypeCategory[NN_pmullw] = 14; // Packed Multiply Low
SMPTypeCategory[NN_por] = 14; // Bitwise Logical Or
SMPTypeCategory[NN_psllw] = 14; // Packed Shift Left Logical (Word)
SMPTypeCategory[NN_pslld] = 14; // Packed Shift Left Logical (Dword)
SMPTypeCategory[NN_psllq] = 14; // Packed Shift Left Logical (Qword)
SMPTypeCategory[NN_psraw] = 14; // Packed Shift Right Arithmetic (Word)
SMPTypeCategory[NN_psrad] = 14; // Packed Shift Right Arithmetic (Dword)
SMPTypeCategory[NN_psrlw] = 14; // Packed Shift Right Logical (Word)
SMPTypeCategory[NN_psrld] = 14; // Packed Shift Right Logical (Dword)
SMPTypeCategory[NN_psrlq] = 14; // Packed Shift Right Logical (Qword)
SMPTypeCategory[NN_psubb] = 14; // Packed Subtract Byte
SMPTypeCategory[NN_psubw] = 14; // Packed Subtract Word
SMPTypeCategory[NN_psubd] = 14; // Packed Subtract Dword
SMPTypeCategory[NN_psubsb] = 14; // Packed Subtract with Saturation (Byte)
SMPTypeCategory[NN_psubsw] = 14; // Packed Subtract with Saturation (Word)
SMPTypeCategory[NN_psubusb] = 14; // Packed Subtract Unsigned with Saturation (Byte)
SMPTypeCategory[NN_psubusw] = 14; // Packed Subtract Unsigned with Saturation (Word)
SMPTypeCategory[NN_punpckhbw] = 14; // Unpack High Packed Data (Byte->Word)
SMPTypeCategory[NN_punpckhwd] = 14; // Unpack High Packed Data (Word->Dword)
SMPTypeCategory[NN_punpckhdq] = 14; // Unpack High Packed Data (Dword->Qword)
SMPTypeCategory[NN_punpcklbw] = 14; // Unpack Low Packed Data (Byte->Word)
SMPTypeCategory[NN_punpcklwd] = 14; // Unpack Low Packed Data (Word->Dword)
SMPTypeCategory[NN_punpckldq] = 14; // Unpack Low Packed Data (Dword->Qword)
SMPTypeCategory[NN_pxor] = 14; // Bitwise Logical Exclusive Or
//
// Undocumented Deschutes processor instructions
//
SMPTypeCategory[NN_fxsave] = 1; // Fast save FP context ** to where?
SMPTypeCategory[NN_fxrstor] = 1; // Fast restore FP context ** from where?
// Pentium II instructions
SMPTypeCategory[NN_sysenter] = 1; // Fast Transition to System Call Entry Point
SMPTypeCategory[NN_sysexit] = 1; // Fast Transition from System Call Entry Point
// 3DNow! instructions
SMPTypeCategory[NN_pavgusb] = 14; // Packed 8-bit Unsigned Integer Averaging
SMPTypeCategory[NN_pfadd] = 14; // Packed Floating-Point Addition
SMPTypeCategory[NN_pfsub] = 14; // Packed Floating-Point Subtraction
SMPTypeCategory[NN_pfsubr] = 14; // Packed Floating-Point Reverse Subtraction
SMPTypeCategory[NN_pfacc] = 14; // Packed Floating-Point Accumulate
SMPTypeCategory[NN_pfcmpge] = 14; // Packed Floating-Point Comparison, Greater or Equal
SMPTypeCategory[NN_pfcmpgt] = 14; // Packed Floating-Point Comparison, Greater
SMPTypeCategory[NN_pfcmpeq] = 14; // Packed Floating-Point Comparison, Equal
SMPTypeCategory[NN_pfmin] = 14; // Packed Floating-Point Minimum
SMPTypeCategory[NN_pfmax] = 14; // Packed Floating-Point Maximum
SMPTypeCategory[NN_pi2fd] = 14; // Packed 32-bit Integer to Floating-Point
SMPTypeCategory[NN_pf2id] = 14; // Packed Floating-Point to 32-bit Integer
SMPTypeCategory[NN_pfrcp] = 14; // Packed Floating-Point Reciprocal Approximation
SMPTypeCategory[NN_pfrsqrt] = 14; // Packed Floating-Point Reciprocal Square Root Approximation
SMPTypeCategory[NN_pfmul] = 14; // Packed Floating-Point Multiplication
SMPTypeCategory[NN_pfrcpit1] = 14; // Packed Floating-Point Reciprocal First Iteration Step
SMPTypeCategory[NN_pfrsqit1] = 14; // Packed Floating-Point Reciprocal Square Root First Iteration Step
SMPTypeCategory[NN_pfrcpit2] = 14; // Packed Floating-Point Reciprocal Second Iteration Step
SMPTypeCategory[NN_pmulhrw] = 14; // Packed Floating-Point 16-bit Integer Multiply with rounding
SMPTypeCategory[NN_femms] = 1; // Faster entry/exit of the MMX or floating-point state
SMPTypeCategory[NN_prefetch] = 1; // Prefetch at least a 32-byte line into L1 data cache
SMPTypeCategory[NN_prefetchw] = 1; // Prefetch processor cache line into L1 data cache (mark as modified)
// Pentium III instructions
SMPTypeCategory[NN_addps] = 14; // Packed Single-FP Add
SMPTypeCategory[NN_addss] = 14; // Scalar Single-FP Add
SMPTypeCategory[NN_andnps] = 14; // Bitwise Logical And Not for Single-FP
SMPTypeCategory[NN_andps] = 14; // Bitwise Logical And for Single-FP
SMPTypeCategory[NN_cmpps] = 14; // Packed Single-FP Compare
SMPTypeCategory[NN_cmpss] = 14; // Scalar Single-FP Compare
SMPTypeCategory[NN_comiss] = 14; // Scalar Ordered Single-FP Compare and Set EFLAGS
SMPTypeCategory[NN_cvtpi2ps] = 14; // Packed signed INT32 to Packed Single-FP conversion
SMPTypeCategory[NN_cvtps2pi] = 14; // Packed Single-FP to Packed INT32 conversion
SMPTypeCategory[NN_cvtsi2ss] = 14; // Scalar signed INT32 to Single-FP conversion
SMPTypeCategory[NN_cvtss2si] = 14; // Scalar Single-FP to signed INT32 conversion
SMPTypeCategory[NN_cvttps2pi] = 14; // Packed Single-FP to Packed INT32 conversion (truncate)
SMPTypeCategory[NN_cvttss2si] = 14; // Scalar Single-FP to signed INT32 conversion (truncate)
SMPTypeCategory[NN_divps] = 14; // Packed Single-FP Divide
SMPTypeCategory[NN_divss] = 14; // Scalar Single-FP Divide
SMPTypeCategory[NN_ldmxcsr] = 14; // Load Streaming SIMD Extensions Technology Control/Status Register
SMPTypeCategory[NN_maxps] = 14; // Packed Single-FP Maximum
SMPTypeCategory[NN_maxss] = 14; // Scalar Single-FP Maximum
SMPTypeCategory[NN_minps] = 14; // Packed Single-FP Minimum
SMPTypeCategory[NN_minss] = 14; // Scalar Single-FP Minimum
SMPTypeCategory[NN_movaps] = 15; // Move Aligned Four Packed Single-FP ** infer memsrc 'n'?
SMPTypeCategory[NN_movhlps] = 15; // Move High to Low Packed Single-FP
SMPTypeCategory[NN_movhps] = 15; // Move High Packed Single-FP
SMPTypeCategory[NN_movlhps] = 15; // Move Low to High Packed Single-FP
SMPTypeCategory[NN_movlps] = 15; // Move Low Packed Single-FP
SMPTypeCategory[NN_movmskps] = 15; // Move Mask to Register
SMPTypeCategory[NN_movss] = 15; // Move Scalar Single-FP
SMPTypeCategory[NN_movups] = 15; // Move Unaligned Four Packed Single-FP
SMPTypeCategory[NN_mulps] = 14; // Packed Single-FP Multiply
SMPTypeCategory[NN_mulss] = 14; // Scalar Single-FP Multiply
SMPTypeCategory[NN_orps] = 14; // Bitwise Logical OR for Single-FP Data
SMPTypeCategory[NN_rcpps] = 14; // Packed Single-FP Reciprocal
SMPTypeCategory[NN_rcpss] = 14; // Scalar Single-FP Reciprocal
SMPTypeCategory[NN_rsqrtps] = 14; // Packed Single-FP Square Root Reciprocal
SMPTypeCategory[NN_rsqrtss] = 14; // Scalar Single-FP Square Root Reciprocal
SMPTypeCategory[NN_shufps] = 14; // Shuffle Single-FP
SMPTypeCategory[NN_sqrtps] = 14; // Packed Single-FP Square Root
SMPTypeCategory[NN_sqrtss] = 14; // Scalar Single-FP Square Root
SMPTypeCategory[NN_stmxcsr] = 15; // Store Streaming SIMD Extensions Technology Control/Status Register ** Infer dest is 'n'
SMPTypeCategory[NN_subps] = 14; // Packed Single-FP Subtract
SMPTypeCategory[NN_subss] = 14; // Scalar Single-FP Subtract
SMPTypeCategory[NN_ucomiss] = 14; // Scalar Unordered Single-FP Compare and Set EFLAGS
SMPTypeCategory[NN_unpckhps] = 14; // Unpack High Packed Single-FP Data
SMPTypeCategory[NN_unpcklps] = 14; // Unpack Low Packed Single-FP Data
SMPTypeCategory[NN_xorps] = 14; // Bitwise Logical XOR for Single-FP Data
SMPTypeCategory[NN_pavgb] = 14; // Packed Average (Byte)
SMPTypeCategory[NN_pavgw] = 14; // Packed Average (Word)
SMPTypeCategory[NN_pextrw] = 15; // Extract Word
SMPTypeCategory[NN_pinsrw] = 14; // Insert Word
SMPTypeCategory[NN_pmaxsw] = 14; // Packed Signed Integer Word Maximum
SMPTypeCategory[NN_pmaxub] = 14; // Packed Unsigned Integer Byte Maximum
SMPTypeCategory[NN_pminsw] = 14; // Packed Signed Integer Word Minimum
SMPTypeCategory[NN_pminub] = 14; // Packed Unsigned Integer Byte Minimum
SMPTypeCategory[NN_pmovmskb] = 2; // Move Byte Mask to Integer
SMPTypeCategory[NN_pmulhuw] = 14; // Packed Multiply High Unsigned
SMPTypeCategory[NN_psadbw] = 14; // Packed Sum of Absolute Differences
SMPTypeCategory[NN_pshufw] = 14; // Packed Shuffle Word
SMPTypeCategory[NN_maskmovq] = 15; // Byte Mask write ** Infer dest is 'n'
SMPTypeCategory[NN_movntps] = 13; // Move Aligned Four Packed Single-FP Non Temporal * infer dest is 'n'
SMPTypeCategory[NN_movntq] = 13; // Move 64 Bits Non Temporal ** Infer dest is 'n'
SMPTypeCategory[NN_prefetcht0] = 1; // Prefetch to all cache levels
SMPTypeCategory[NN_prefetcht1] = 1; // Prefetch to all cache levels
SMPTypeCategory[NN_prefetcht2] = 1; // Prefetch to L2 cache
SMPTypeCategory[NN_prefetchnta] = 1; // Prefetch to L1 cache
SMPTypeCategory[NN_sfence] = 1; // Store Fence
// Pentium III Pseudo instructions
SMPTypeCategory[NN_cmpeqps] = 14; // Packed Single-FP Compare EQ
SMPTypeCategory[NN_cmpltps] = 14; // Packed Single-FP Compare LT
SMPTypeCategory[NN_cmpleps] = 14; // Packed Single-FP Compare LE
SMPTypeCategory[NN_cmpunordps] = 14; // Packed Single-FP Compare UNORD
SMPTypeCategory[NN_cmpneqps] = 14; // Packed Single-FP Compare NOT EQ
SMPTypeCategory[NN_cmpnltps] = 14; // Packed Single-FP Compare NOT LT
SMPTypeCategory[NN_cmpnleps] = 14; // Packed Single-FP Compare NOT LE
SMPTypeCategory[NN_cmpordps] = 14; // Packed Single-FP Compare ORDERED
SMPTypeCategory[NN_cmpeqss] = 14; // Scalar Single-FP Compare EQ
SMPTypeCategory[NN_cmpltss] = 14; // Scalar Single-FP Compare LT
SMPTypeCategory[NN_cmpless] = 14; // Scalar Single-FP Compare LE
SMPTypeCategory[NN_cmpunordss] = 14; // Scalar Single-FP Compare UNORD
SMPTypeCategory[NN_cmpneqss] = 14; // Scalar Single-FP Compare NOT EQ
SMPTypeCategory[NN_cmpnltss] = 14; // Scalar Single-FP Compare NOT LT
SMPTypeCategory[NN_cmpnless] = 14; // Scalar Single-FP Compare NOT LE
SMPTypeCategory[NN_cmpordss] = 14; // Scalar Single-FP Compare ORDERED
6718
6719
6720
6721
6722
6723
6724
6725
6726
6727
6728
6729
6730
6731
6732
6733
6734
6735
6736
6737
6738
6739
6740
6741
// AMD K7 instructions
// Revisit AMD if we port to it.
SMPTypeCategory[NN_pf2iw] = 15; // Packed Floating-Point to Integer with Sign Extend
SMPTypeCategory[NN_pfnacc] = 15; // Packed Floating-Point Negative Accumulate
SMPTypeCategory[NN_pfpnacc] = 15; // Packed Floating-Point Mixed Positive-Negative Accumulate
SMPTypeCategory[NN_pi2fw] = 15; // Packed 16-bit Integer to Floating-Point
SMPTypeCategory[NN_pswapd] = 15; // Packed Swap Double Word
// Undocumented FP instructions (thanks to norbert.juffa@adm.com)
SMPTypeCategory[NN_fstp1] = 9; // Alias of Store Real and Pop
SMPTypeCategory[NN_fcom2] = 1; // Alias of Compare Real
SMPTypeCategory[NN_fcomp3] = 1; // Alias of Compare Real and Pop
SMPTypeCategory[NN_fxch4] = 1; // Alias of Exchange Registers
SMPTypeCategory[NN_fcomp5] = 1; // Alias of Compare Real and Pop
SMPTypeCategory[NN_ffreep] = 1; // Free Register and Pop
SMPTypeCategory[NN_fxch7] = 1; // Alias of Exchange Registers
SMPTypeCategory[NN_fstp8] = 9; // Alias of Store Real and Pop
SMPTypeCategory[NN_fstp9] = 9; // Alias of Store Real and Pop
// Pentium 4 instructions
SMPTypeCategory[NN_addpd] = 14; // Add Packed Double-Precision Floating-Point Values
SMPTypeCategory[NN_addsd] = 14; // Add Scalar Double-Precision Floating-Point Values
SMPTypeCategory[NN_andnpd] = 14; // Bitwise Logical AND NOT of Packed Double-Precision Floating-Point Values
SMPTypeCategory[NN_andpd] = 14; // Bitwise Logical AND of Packed Double-Precision Floating-Point Values
SMPTypeCategory[NN_clflush] = 1; // Flush Cache Line
6747
6748
6749
6750
6751
6752
6753
6754
6755
6756
6757
6758
6759
6760
6761
6762
6763
6764
6765
6766
6767
SMPTypeCategory[NN_cmppd] = 14; // Compare Packed Double-Precision Floating-Point Values
SMPTypeCategory[NN_cmpsd] = 14; // Compare Scalar Double-Precision Floating-Point Values
SMPTypeCategory[NN_comisd] = 14; // Compare Scalar Ordered Double-Precision Floating-Point Values and Set EFLAGS
SMPTypeCategory[NN_cvtdq2pd] = 14; // Convert Packed Doubleword Integers to Packed Single-Precision Floating-Point Values
SMPTypeCategory[NN_cvtdq2ps] = 14; // Convert Packed Doubleword Integers to Packed Double-Precision Floating-Point Values
SMPTypeCategory[NN_cvtpd2dq] = 14; // Convert Packed Double-Precision Floating-Point Values to Packed Doubleword Integers
SMPTypeCategory[NN_cvtpd2pi] = 14; // Convert Packed Double-Precision Floating-Point Values to Packed Doubleword Integers
SMPTypeCategory[NN_cvtpd2ps] = 14; // Convert Packed Double-Precision Floating-Point Values to Packed Single-Precision Floating-Point Values
SMPTypeCategory[NN_cvtpi2pd] = 14; // Convert Packed Doubleword Integers to Packed Double-Precision Floating-Point Values
SMPTypeCategory[NN_cvtps2dq] = 14; // Convert Packed Single-Precision Floating-Point Values to Packed Doubleword Integers
SMPTypeCategory[NN_cvtps2pd] = 14; // Convert Packed Single-Precision Floating-Point Values to Packed Double-Precision Floating-Point Values
SMPTypeCategory[NN_cvtsd2si] = 14; // Convert Scalar Double-Precision Floating-Point Value to Doubleword Integer
SMPTypeCategory[NN_cvtsd2ss] = 14; // Convert Scalar Double-Precision Floating-Point Value to Scalar Single-Precision Floating-Point Value
SMPTypeCategory[NN_cvtsi2sd] = 14; // Convert Doubleword Integer to Scalar Double-Precision Floating-Point Value
SMPTypeCategory[NN_cvtss2sd] = 14; // Convert Scalar Single-Precision Floating-Point Value to Scalar Double-Precision Floating-Point Value
SMPTypeCategory[NN_cvttpd2dq] = 14; // Convert With Truncation Packed Double-Precision Floating-Point Values to Packed Doubleword Integers
SMPTypeCategory[NN_cvttpd2pi] = 14; // Convert with Truncation Packed Double-Precision Floating-Point Values to Packed Doubleword Integers
SMPTypeCategory[NN_cvttps2dq] = 14; // Convert With Truncation Packed Single-Precision Floating-Point Values to Packed Doubleword Integers
SMPTypeCategory[NN_cvttsd2si] = 14; // Convert with Truncation Scalar Double-Precision Floating-Point Value to Doubleword Integer
SMPTypeCategory[NN_divpd] = 14; // Divide Packed Double-Precision Floating-Point Values
SMPTypeCategory[NN_divsd] = 14; // Divide Scalar Double-Precision Floating-Point Values
SMPTypeCategory[NN_lfence] = 1; // Load Fence
SMPTypeCategory[NN_maskmovdqu] = 13; // Store Selected Bytes of Double Quadword ** Infer dest is 'n'
SMPTypeCategory[NN_maxpd] = 14; // Return Maximum Packed Double-Precision Floating-Point Values
SMPTypeCategory[NN_maxsd] = 14; // Return Maximum Scalar Double-Precision Floating-Point Value
SMPTypeCategory[NN_mfence] = 1; // Memory Fence
SMPTypeCategory[NN_minpd] = 14; // Return Minimum Packed Double-Precision Floating-Point Values
SMPTypeCategory[NN_minsd] = 14; // Return Minimum Scalar Double-Precision Floating-Point Value
SMPTypeCategory[NN_movapd] = 15; // Move Aligned Packed Double-Precision Floating-Point Values ** Infer dest is 'n'
SMPTypeCategory[NN_movdq2q] = 15; // Move Quadword from XMM to MMX Register
SMPTypeCategory[NN_movdqa] = 15; // Move Aligned Double Quadword ** Infer dest is 'n'
SMPTypeCategory[NN_movdqu] = 15; // Move Unaligned Double Quadword ** Infer dest is 'n'
SMPTypeCategory[NN_movhpd] = 15; // Move High Packed Double-Precision Floating-Point Values ** Infer dest is 'n'
SMPTypeCategory[NN_movlpd] = 15; // Move Low Packed Double-Precision Floating-Point Values ** Infer dest is 'n'
SMPTypeCategory[NN_movmskpd] = 15; // Extract Packed Double-Precision Floating-Point Sign Mask
SMPTypeCategory[NN_movntdq] = 13; // Store Double Quadword Using Non-Temporal Hint
SMPTypeCategory[NN_movnti] = 13; // Store Doubleword Using Non-Temporal Hint
SMPTypeCategory[NN_movntpd] = 13; // Store Packed Double-Precision Floating-Point Values Using Non-Temporal Hint
SMPTypeCategory[NN_movq2dq] = 1; // Move Quadword from MMX to XMM Register
SMPTypeCategory[NN_movsd] = 15; // Move Scalar Double-Precision Floating-Point Values
SMPTypeCategory[NN_movupd] = 15; // Move Unaligned Packed Double-Precision Floating-Point Values
SMPTypeCategory[NN_mulpd] = 14; // Multiply Packed Double-Precision Floating-Point Values
SMPTypeCategory[NN_mulsd] = 14; // Multiply Scalar Double-Precision Floating-Point Values
SMPTypeCategory[NN_orpd] = 14; // Bitwise Logical OR of Double-Precision Floating-Point Values
SMPTypeCategory[NN_paddq] = 14; // Add Packed Quadword Integers
SMPTypeCategory[NN_pause] = 1; // Spin Loop Hint
SMPTypeCategory[NN_pmuludq] = 14; // Multiply Packed Unsigned Doubleword Integers
SMPTypeCategory[NN_pshufd] = 14; // Shuffle Packed Doublewords
SMPTypeCategory[NN_pshufhw] = 14; // Shuffle Packed High Words
SMPTypeCategory[NN_pshuflw] = 14; // Shuffle Packed Low Words
SMPTypeCategory[NN_pslldq] = 14; // Shift Double Quadword Left Logical
SMPTypeCategory[NN_psrldq] = 14; // Shift Double Quadword Right Logical
SMPTypeCategory[NN_psubq] = 14; // Subtract Packed Quadword Integers
SMPTypeCategory[NN_punpckhqdq] = 14; // Unpack High Data
SMPTypeCategory[NN_punpcklqdq] = 14; // Unpack Low Data
SMPTypeCategory[NN_shufpd] = 14; // Shuffle Packed Double-Precision Floating-Point Values
SMPTypeCategory[NN_sqrtpd] = 1; // Compute Square Roots of Packed Double-Precision Floating-Point Values
SMPTypeCategory[NN_sqrtsd] = 14; // Compute Square Rootof Scalar Double-Precision Floating-Point Value
SMPTypeCategory[NN_subpd] = 14; // Subtract Packed Double-Precision Floating-Point Values
SMPTypeCategory[NN_subsd] = 14; // Subtract Scalar Double-Precision Floating-Point Values
SMPTypeCategory[NN_ucomisd] = 14; // Unordered Compare Scalar Ordered Double-Precision Floating-Point Values and Set EFLAGS
SMPTypeCategory[NN_unpckhpd] = 14; // Unpack and Interleave High Packed Double-Precision Floating-Point Values
SMPTypeCategory[NN_unpcklpd] = 14; // Unpack and Interleave Low Packed Double-Precision Floating-Point Values
SMPTypeCategory[NN_xorpd] = 14; // Bitwise Logical OR of Double-Precision Floating-Point Values
// AMD syscall/sysret instructions NOTE: not AMD, found in Intel manual
SMPTypeCategory[NN_syscall] = 1; // Low latency system call
SMPTypeCategory[NN_sysret] = 1; // Return from system call
// AMD64 instructions NOTE: not AMD, found in Intel manual
SMPTypeCategory[NN_swapgs] = 1; // Exchange GS base with KernelGSBase MSR
// New Pentium instructions (SSE3)
SMPTypeCategory[NN_movddup] = 14; // Move One Double-FP and Duplicate
SMPTypeCategory[NN_movshdup] = 14; // Move Packed Single-FP High and Duplicate
SMPTypeCategory[NN_movsldup] = 14; // Move Packed Single-FP Low and Duplicate
// Missing AMD64 instructions NOTE: also found in Intel manual
SMPTypeCategory[NN_movsxd] = 2; // Move with Sign-Extend Doubleword
SMPTypeCategory[NN_cmpxchg16b] = 0; // Compare and Exchange 16 Bytes
// SSE3 instructions
SMPTypeCategory[NN_addsubpd] = 14; // Add /Sub packed DP FP numbers
SMPTypeCategory[NN_addsubps] = 14; // Add /Sub packed SP FP numbers
SMPTypeCategory[NN_haddpd] = 14; // Add horizontally packed DP FP numbers
SMPTypeCategory[NN_haddps] = 14; // Add horizontally packed SP FP numbers
SMPTypeCategory[NN_hsubpd] = 14; // Sub horizontally packed DP FP numbers
SMPTypeCategory[NN_hsubps] = 14; // Sub horizontally packed SP FP numbers
SMPTypeCategory[NN_monitor] = 1; // Set up a linear address range to be monitored by hardware
SMPTypeCategory[NN_mwait] = 1; // Wait until write-back store performed within the range specified by the MONITOR instruction
SMPTypeCategory[NN_fisttp] = 13; // Store ST in intXX (chop) and pop
SMPTypeCategory[NN_lddqu] = 14; // Load unaligned integer 128-bit
// SSSE3 instructions
SMPTypeCategory[NN_psignb] = 14; // Packed SIGN Byte
SMPTypeCategory[NN_psignw] = 14; // Packed SIGN Word
SMPTypeCategory[NN_psignd] = 14; // Packed SIGN Doubleword
SMPTypeCategory[NN_pshufb] = 14; // Packed Shuffle Bytes
SMPTypeCategory[NN_pmulhrsw] = 14; // Packed Multiply High with Round and Scale
SMPTypeCategory[NN_pmaddubsw] = 14; // Multiply and Add Packed Signed and Unsigned Bytes
SMPTypeCategory[NN_phsubsw] = 14; // Packed Horizontal Subtract and Saturate
SMPTypeCategory[NN_phaddsw] = 14; // Packed Horizontal Add and Saturate
SMPTypeCategory[NN_phaddw] = 14; // Packed Horizontal Add Word
SMPTypeCategory[NN_phaddd] = 14; // Packed Horizontal Add Doubleword
SMPTypeCategory[NN_phsubw] = 14; // Packed Horizontal Subtract Word
SMPTypeCategory[NN_phsubd] = 14; // Packed Horizontal Subtract Doubleword
SMPTypeCategory[NN_palignr] = 15; // Packed Align Right
SMPTypeCategory[NN_pabsb] = 14; // Packed Absolute Value Byte
SMPTypeCategory[NN_pabsw] = 14; // Packed Absolute Value Word
SMPTypeCategory[NN_pabsd] = 14; // Packed Absolute Value Doubleword
// VMX instructions
SMPTypeCategory[NN_vmcall] = 1; // Call to VM Monitor
SMPTypeCategory[NN_vmclear] = 0; // Clear Virtual Machine Control Structure
SMPTypeCategory[NN_vmlaunch] = 1; // Launch Virtual Machine
SMPTypeCategory[NN_vmresume] = 1; // Resume Virtual Machine
SMPTypeCategory[NN_vmptrld] = 6; // Load Pointer to Virtual Machine Control Structure
SMPTypeCategory[NN_vmptrst] = 0; // Store Pointer to Virtual Machine Control Structure
SMPTypeCategory[NN_vmread] = 0; // Read Field from Virtual Machine Control Structure
SMPTypeCategory[NN_vmwrite] = 0; // Write Field from Virtual Machine Control Structure
SMPTypeCategory[NN_vmxoff] = 1; // Leave VMX Operation
SMPTypeCategory[NN_vmxon] = 1; // Enter VMX Operation
6878
6879
6880
6881
6882
6883
6884
6885
6886
6887
6888
6889
6890
6891
6892
6893
6894
6895
6896
6897
6898
6899
6900
6901
6902
6903
6904
6905
6906
6907
6908
6909
6910
6911
6912
6913
6914
6915
6916
6917
#if 599 < IDA_SDK_VERSION
SMPTypeCategory[NN_ud2] = 1; // Undefined Instruction
// Added with x86-64
SMPTypeCategory[NN_rdtscp] = 8; // Read Time-Stamp Counter and Processor ID
// Geode LX 3DNow! extensions
SMPTypeCategory[NN_pfrcpv] = 1; // Reciprocal Approximation for a Pair of 32-bit Floats
SMPTypeCategory[NN_pfrsqrtv] = 1; // Reciprocal Square Root Approximation for a Pair of 32-bit Floats
// SSE2 pseudoinstructions
SMPTypeCategory[NN_cmpeqpd] = 1; // Packed Double-FP Compare EQ
SMPTypeCategory[NN_cmpltpd] = 1; // Packed Double-FP Compare LT
SMPTypeCategory[NN_cmplepd] = 1; // Packed Double-FP Compare LE
SMPTypeCategory[NN_cmpunordpd] = 1; // Packed Double-FP Compare UNORD
SMPTypeCategory[NN_cmpneqpd] = 1; // Packed Double-FP Compare NOT EQ
SMPTypeCategory[NN_cmpnltpd] = 1; // Packed Double-FP Compare NOT LT
SMPTypeCategory[NN_cmpnlepd] = 1; // Packed Double-FP Compare NOT LE
SMPTypeCategory[NN_cmpordpd] = 1; // Packed Double-FP Compare ORDERED
SMPTypeCategory[NN_cmpeqsd] = 1; // Scalar Double-FP Compare EQ
SMPTypeCategory[NN_cmpltsd] = 1; // Scalar Double-FP Compare LT
SMPTypeCategory[NN_cmplesd] = 1; // Scalar Double-FP Compare LE
SMPTypeCategory[NN_cmpunordsd] = 1; // Scalar Double-FP Compare UNORD
SMPTypeCategory[NN_cmpneqsd] = 1; // Scalar Double-FP Compare NOT EQ
SMPTypeCategory[NN_cmpnltsd] = 1; // Scalar Double-FP Compare NOT LT
SMPTypeCategory[NN_cmpnlesd] = 1; // Scalar Double-FP Compare NOT LE
SMPTypeCategory[NN_cmpordsd] = 1; // Scalar Double-FP Compare ORDERED
// SSSE4.1 instructions
SMPTypeCategory[NN_blendpd] = 14; // Blend Packed Double Precision Floating-Point Values
SMPTypeCategory[NN_blendps] = 14; // Blend Packed Single Precision Floating-Point Values
SMPTypeCategory[NN_blendvpd] = 14; // Variable Blend Packed Double Precision Floating-Point Values
SMPTypeCategory[NN_blendvps] = 14; // Variable Blend Packed Single Precision Floating-Point Values
SMPTypeCategory[NN_dppd] = 14; // Dot Product of Packed Double Precision Floating-Point Values
SMPTypeCategory[NN_dpps] = 14; // Dot Product of Packed Single Precision Floating-Point Values
SMPTypeCategory[NN_extractps] = 15; // Extract Packed Single Precision Floating-Point Value
6919
6920
6921
6922
6923
6924
6925
6926
6927
6928
6929
6930
6931
6932
6933
6934
6935
6936
6937
6938
6939
6940
6941
6942
6943
6944
6945
6946
6947
6948
6949
6950
6951
6952
6953
6954
6955
6956
6957
6958
6959
6960
6961
6962
6963
6964
6965
6966
6967
6968
6969
6970
6971
SMPTypeCategory[NN_insertps] = 14; // Insert Packed Single Precision Floating-Point Value
SMPTypeCategory[NN_movntdqa] = 0; // Load Double Quadword Non-Temporal Aligned Hint
SMPTypeCategory[NN_mpsadbw] = 1; // Compute Multiple Packed Sums of Absolute Difference
SMPTypeCategory[NN_packusdw] = 14; // Pack with Unsigned Saturation
SMPTypeCategory[NN_pblendvb] = 14; // Variable Blend Packed Bytes
SMPTypeCategory[NN_pblendw] = 14; // Blend Packed Words
SMPTypeCategory[NN_pcmpeqq] = 14; // Compare Packed Qword Data for Equal
SMPTypeCategory[NN_pextrb] = 15; // Extract Byte
SMPTypeCategory[NN_pextrd] = 15; // Extract Dword
SMPTypeCategory[NN_pextrq] = 15; // Extract Qword
SMPTypeCategory[NN_phminposuw] = 14; // Packed Horizontal Word Minimum
SMPTypeCategory[NN_pinsrb] = 14; // Insert Byte !!! Could this be used as a generic move???
SMPTypeCategory[NN_pinsrd] = 14; // Insert Dword !!! Could this be used as a generic move???
SMPTypeCategory[NN_pinsrq] = 14; // Insert Qword !!! Could this be used as a generic move???
SMPTypeCategory[NN_pmaxsb] = 14; // Maximum of Packed Signed Byte Integers
SMPTypeCategory[NN_pmaxsd] = 14; // Maximum of Packed Signed Dword Integers
SMPTypeCategory[NN_pmaxud] = 14; // Maximum of Packed Unsigned Dword Integers
SMPTypeCategory[NN_pmaxuw] = 14; // Maximum of Packed Word Integers
SMPTypeCategory[NN_pminsb] = 14; // Minimum of Packed Signed Byte Integers
SMPTypeCategory[NN_pminsd] = 14; // Minimum of Packed Signed Dword Integers
SMPTypeCategory[NN_pminud] = 14; // Minimum of Packed Unsigned Dword Integers
SMPTypeCategory[NN_pminuw] = 14; // Minimum of Packed Word Integers
SMPTypeCategory[NN_pmovsxbw] = 14; // Packed Move with Sign Extend
SMPTypeCategory[NN_pmovsxbd] = 14; // Packed Move with Sign Extend
SMPTypeCategory[NN_pmovsxbq] = 14; // Packed Move with Sign Extend
SMPTypeCategory[NN_pmovsxwd] = 14; // Packed Move with Sign Extend
SMPTypeCategory[NN_pmovsxwq] = 14; // Packed Move with Sign Extend
SMPTypeCategory[NN_pmovsxdq] = 14; // Packed Move with Sign Extend
SMPTypeCategory[NN_pmovzxbw] = 14; // Packed Move with Zero Extend
SMPTypeCategory[NN_pmovzxbd] = 14; // Packed Move with Zero Extend
SMPTypeCategory[NN_pmovzxbq] = 14; // Packed Move with Zero Extend
SMPTypeCategory[NN_pmovzxwd] = 14; // Packed Move with Zero Extend
SMPTypeCategory[NN_pmovzxwq] = 14; // Packed Move with Zero Extend
SMPTypeCategory[NN_pmovzxdq] = 14; // Packed Move with Zero Extend
SMPTypeCategory[NN_pmuldq] = 14; // Multiply Packed Signed Dword Integers
SMPTypeCategory[NN_pmulld] = 14; // Multiply Packed Signed Dword Integers and Store Low Result
SMPTypeCategory[NN_ptest] = 1; // Logical Compare
SMPTypeCategory[NN_roundpd] = 14; // Round Packed Double Precision Floating-Point Values
SMPTypeCategory[NN_roundps] = 14; // Round Packed Single Precision Floating-Point Values
SMPTypeCategory[NN_roundsd] = 14; // Round Scalar Double Precision Floating-Point Values
SMPTypeCategory[NN_roundss] = 14; // Round Scalar Single Precision Floating-Point Values
// SSSE4.2 instructions
SMPTypeCategory[NN_crc32] = 14; // Accumulate CRC32 Value
SMPTypeCategory[NN_pcmpestri] = 2; // Packed Compare Explicit Length Strings, Return Index
SMPTypeCategory[NN_pcmpestrm] = 2; // Packed Compare Explicit Length Strings, Return Mask
SMPTypeCategory[NN_pcmpistri] = 2; // Packed Compare Implicit Length Strings, Return Index
SMPTypeCategory[NN_pcmpistrm] = 2; // Packed Compare Implicit Length Strings, Return Mask
SMPTypeCategory[NN_pcmpgtq] = 14; // Compare Packed Data for Greater Than
SMPTypeCategory[NN_popcnt] = 2; // Return the Count of Number of Bits Set to 1
// AMD SSE4a instructions
SMPTypeCategory[NN_extrq] = 1; // Extract Field From Register
SMPTypeCategory[NN_insertq] = 1; // Insert Field
6974
6975
6976
6977
6978
6979
6980
6981
6982
6983
6984
6985
6986
6987
6988
6989
6990
6991
6992
6993
6994
6995
6996
6997
6998
6999
7000
SMPTypeCategory[NN_movntsd] = 13; // Move Non-Temporal Scalar Double-Precision Floating-Point !!! Could this be used as a generic move???
SMPTypeCategory[NN_movntss] = 13; // Move Non-Temporal Scalar Single-Precision Floating-Point !!! Could this be used as a generic move???
SMPTypeCategory[NN_lzcnt] = 2; // Leading Zero Count
// xsave/xrstor instructions
SMPTypeCategory[NN_xgetbv] = 8; // Get Value of Extended Control Register
SMPTypeCategory[NN_xrstor] = 0; // Restore Processor Extended States
SMPTypeCategory[NN_xsave] = 1; // Save Processor Extended States
SMPTypeCategory[NN_xsetbv] = 1; // Set Value of Extended Control Register
// Intel Safer Mode Extensions (SMX)
SMPTypeCategory[NN_getsec] = 1; // Safer Mode Extensions (SMX) Instruction
// AMD-V Virtualization ISA Extension
SMPTypeCategory[NN_clgi] = 0; // Clear Global Interrupt Flag
SMPTypeCategory[NN_invlpga] = 1; // Invalidate TLB Entry in a Specified ASID
SMPTypeCategory[NN_skinit] = 1; // Secure Init and Jump with Attestation
SMPTypeCategory[NN_stgi] = 0; // Set Global Interrupt Flag
SMPTypeCategory[NN_vmexit] = 1; // Stop Executing Guest, Begin Executing Host
SMPTypeCategory[NN_vmload] = 0; // Load State from VMCB
SMPTypeCategory[NN_vmmcall] = 1; // Call VMM
SMPTypeCategory[NN_vmrun] = 1; // Run Virtual Machine
SMPTypeCategory[NN_vmsave] = 0; // Save State to VMCB