Skip to content
Snippets Groups Projects
SMPStaticAnalyzer.cpp 96.8 KiB
Newer Older
//
// SMPStaticAnalyzer.cpp
//
// This plugin performs the static analyses needed for the SMP project
//   (Software Memory Protection).
//

#include <ida.hpp>
#include <idp.hpp>
#include <allins.hpp>
#include <auto.hpp>
#include <bytes.hpp>
#include <funcs.hpp>
#include <intel.hpp>
#include <loader.hpp>
#include <lines.hpp>
#include <name.hpp>
#include <ua.hpp>

#include "SMPStaticAnalyzer.h"
#include "SMPDataFlowAnalysis.h"


// Set to 1 for debugging output
#define SMP_DEBUG 1
#define SMP_DEBUG3 0   // verbose
#define SMP_DEBUG_MEM 0 // print memory operands
#define SMP_DEBUG_TYPE0 0 // Output instr info for OptType = 0
#define SMP_DEBUG_ORPHANS 1  // find code outside of functions
#define SMP_DEBUG_CHUNKS 0 // restructuring tail chunks, shared chunks, etc.
#define SMP_DEBUG_DATA_ONLY 0  // Find & fix data addresses in code segments

// Set to 1 when doing a binary search using SMP_DEBUG_COUNT to find
//  which function is causing a problem.
#define SMP_BINARY_DEBUG 0
#define SMP_DEBUG_COUNT 356  // How many funcs to process in problem search
int FuncsProcessed = 0;

#define SMP_FIXUP_IDB 1  // Try to fix the IDA database?
#define SMP_DEBUG_FIXUP_IDB 0  // debugging output for FixupIDB chain

// Define optimization categories for instructions.
int OptCategory[NN_last+1];
// Initialize the OptCategory[] array.
void InitOptCategory(void);

// Keep statistics on how many instructions we saw in each optimization
//  category, and how many optimizing annotations were emitted for
//  each category.
int OptCount[LAST_OPT_CATEGORY + 1];
int AnnotationCount[LAST_OPT_CATEGORY + 1];

static char *RegNames[R_of + 1] =
	{ "EAX", "ECX", "EDX", "EBX", "ESP", "EBP", "ESI", "EDI",
	  "R8", "R9", "R10", "R11", "R12", "R13", "R14", "R15",
	  "AL", "CL", "DL", "BL", "AH", "CH", "DH", "BH",
	  "SPL", "BPL", "SIL", "DIL", "EIP", "ES", "CS", "SS",
	  "DS", "FS", "GS", "CF", "ZF", "SF", "OF" 
	};

// The types of data objects based on their first operand flags.
static char *DataTypes[] = { "VOID", "NUMHEX", "NUMDEC", "CHAR",
		"SEG", "OFFSET", "NUMBIN", "NUMOCT", "ENUM", "FORCED", 
		"STRUCTOFFSET", "STACKVAR", "NUMFLOAT", "UNKNOWN", 
		"UNKNOWN", "UNKNOWN", 0};

// Filename (not including path) of executable being analyzed.
static char RootFileName[MAXSTR];

// Code addresses identified by a disassembler, such as objdump on
//  Linux. These can be used to improve the code vs. data identification
//  of IDA Pro.
vector<ea_t> DisasmLocs;
// Code addresses as identified by IDA Pro, to be compared to DisasmLocs.
vector<ea_t> IDAProLocs;

// Function start and end addresses (for function entry chunks only).
//  Kept here because IDA Pro 5.1 seems to have a memory overwriting
//  problem when iterating through all functions in the program. An existing
//  func_t *ChunkInfo data structure was getting overwritten by one of the 
//  function func_t data structures, causing changes of startEA and endEA among
//  other things.
struct SMP_bounds_t {
	ea_t startEA;
	ea_t endEA;
};

vector<SMP_bounds_t> FuncBounds;

// List of functions that need to be reanalyzed after all the code fixup
//  and code discovery is complete. Kept as a list of addresses; any address
//  within the function is good enough to designate it.
list<ea_t> ReanalyzeList;


// Functions for diagnosing and/or fixing problems in the IDA database.
void FixupIDB(void);  // Driver for all other fixing functions.
void FindDataInCode(void);
void AuditTailChunkOwnership(void);
void FindOrphanedCode(segment_t *, FILE *);
void AuditCodeTargets(void);
ea_t FindNewFuncLimit(ea_t);
void SpecialDebugOutput(void);

static int idaapi idp_callback(void *, int event_id, va_list va) {
	if (event_id == ph.auto_empty_finally) {   // IDA analysis is done
		IDAP_run(0);
		qexit(0);
	}
	return 0;
}

int IDAP_init(void) {
#if 0 // We are now calling from the SMP.idc script.
	// Skip this plugin if it was not specified by the user on the
	//  command line.
	if (get_plugin_options("SMPStaticAnalyzer") == NULL) {
		msg("IDAP_init point 2.\n");
		return PLUGIN_SKIP;
	}
#endif
	// Ensure correct working environment.
	if ((inf.filetype != f_ELF) && (inf.filetype != f_PE)) {
		error("Executable format must be PE or ELF.");
		return PLUGIN_SKIP;
	}
	if (ph.id != PLFM_386) {
		error("Processor must be x86.");
 		return PLUGIN_SKIP;
	}
	hook_to_notification_point(HT_IDP, idp_callback, NULL);
    InitOptCategory();
	InitDFACategory();
	return PLUGIN_KEEP;
} // end of IDAP_init

void IDAP_term(void) {
	unhook_from_notification_point(HT_IDP, idp_callback, NULL);
	return;
}

void IDAP_run(int arg) {
	segment_t *seg;
	char buf[MAXSTR];
	ea_t ea;
	flags_t ObjFlags;
	bool ReadOnlyFlag;
	FILE *SymsFile;
	SMPFunction *CurrFunc = NULL;
	bool FuncsDumped = false;

#if SMP_DEBUG
	msg("Beginning IDAP_run.\n");
#endif
	// Open the output file.
	ssize_t FileLen;
	FileLen = get_root_filename(RootFileName, sizeof(RootFileName) - 1);
	string SymsFileName(RootFileName);
	string FileSuffix(".annot");
	SymsFileName += FileSuffix;
	SymsFile = qfopen(SymsFileName.c_str(), "w");
		error("FATAL: Cannot open output file %s\n", SymsFileName.c_str());
		return;
	}

	(void) memset(OptCount, 0, sizeof(OptCount));
	(void) memset(AnnotationCount, 0, sizeof(AnnotationCount));

	// Record the start and end addresses for all function entry
	//  chunks in the program.
	FuncBounds.reserve(10 + get_func_qty());
	for (size_t FuncIndex = 0; FuncIndex < get_func_qty(); ++FuncIndex) {
		func_t *FuncInfo = getn_func(FuncIndex);
		SMP_bounds_t temp;
		temp.startEA = FuncInfo->startEA;
		temp.endEA = FuncInfo->endEA;
		FuncBounds.push_back(temp);
	}

#if SMP_DEBUG_DATA_ONLY
	FindDataInCode();
	FixCodeIdentification();
	qfclose(SymsFile);
	return;
#endif

	// Pre-audit the IDA database by seeing if the distinction
	//  between code and data can be improved, and if all branches
	//  and calls have proper code targets and code cross references.
#if SMP_FIXUP_IDB
	FixupIDB();
#endif
	// First, examine the data segments and print info about static
	//   data, such as name/address/size. Do the same for functions in
	//   code segments.
	// Loop through all segments.
	for (int SegIndex = 0; SegIndex < get_segm_qty(); ++SegIndex) {
		char SegName[MAXSTR];
		ssize_t SegNameSize = get_segm_name(seg, SegName, sizeof(SegName) - 1);

		// We are only interested in the data segments of type
		// SEG_DATA, SEG_BSS and SEG_COMM.
		if ((seg->type == SEG_DATA) || (seg->type == SEG_BSS)
		    || (seg->type == SEG_COMM)) {
			// Loop through each of the segments we are interested in,
			//  examining all data objects (effective addresses).
			ReadOnlyFlag = ((seg->perm & SEGPERM_READ) && (!(seg->perm & SEGPERM_WRITE)));
#if SMP_DEBUG
			msg("Starting data segment of type %d", seg->type);
			if (SegNameSize > 0)
				msg(" SegName: %s\n", SegName);
			else
				msg("\n");
			if (ReadOnlyFlag) {
				msg("Read-only data segment.\n");
			}
#endif
			ea = seg->startEA;
			while (ea < seg->endEA) {
				ObjFlags = get_flags_novalue(ea);
				// Only process head bytes of data objects, i.e. isData().
				if (isData(ObjFlags)) {
				    // Compute the size of the data object.
					ea_t NextEA = ea;
				    do {
				       NextEA = nextaddr(NextEA);
					} while ((NextEA < seg->endEA) && (!isHead(get_flags_novalue(NextEA))));
				    size_t ObjSize = (size_t) (NextEA - ea);
					// Get the data object name using its address.
				    char *TrueName = get_true_name(BADADDR, ea, buf, sizeof(buf));
					if (NULL == TrueName) {
						qstrncpy(buf, "SMP_dummy0", 12);
					}
				    // Output the name, address, size, and type info.
					if (ReadOnlyFlag) {
						qfprintf(SymsFile, 
							"%x %d OBJECT GLOBAL %s  %s RO\n", ea, ObjSize,
				  			buf, DataTypes[get_optype_flags0(ObjFlags) >> 20]);
					}
					else {
						qfprintf(SymsFile, 
							"%x %d OBJECT GLOBAL %s  %s RW\n", ea, ObjSize,
				  			buf, DataTypes[get_optype_flags0(ObjFlags) >> 20]);
					}
					// Move on to next data object
					ea = NextEA;
				}
				else {
					ea = nextaddr(ea);
				}
			} // end while (ea < seg->endEA)
		} // end if (seg->type == SEG_DATA ...)
		else if (seg->type == SEG_CODE) {
#if SMP_DEBUG
			msg("Starting code segment");
			if (SegNameSize > 0)
				msg(" SegName: %s\n", SegName);
			else
				msg("\n");
#endif
#if SMP_DEBUG2
			if (!FuncsDumped) {
				for (size_t FuncIndex = 0; FuncIndex < get_func_qty(); ++FuncIndex) {
					func_t *FuncInfo = getn_func(FuncIndex);
					get_func_name(FuncInfo->startEA, FuncName, MAXSTR-1);
					msg("FuncName dump: %s\n", FuncName);
				}
				for (size_t ChunkIndex = 0; ChunkIndex < get_fchunk_qty(); ++ChunkIndex) {
					func_t *ChunkInfo = getn_fchunk((int) ChunkIndex);
					get_func_name(ChunkInfo->startEA, FuncName, MAXSTR-1);
					if (0 == strcmp(FuncName, "fflush")) {
						msg("fflush chunk: address %x", ChunkInfo->startEA);
						if (is_func_tail(ChunkInfo))
							msg(" TAIL\n");
						else
							msg(" ENTRY\n");
					}
					else if ((0x81498f0 < ChunkInfo->startEA)
							&& (0x8149cb6 > ChunkInfo->startEA)) {
						msg("Missing fflush chunk: %s %x",
							FuncName, ChunkInfo->startEA);
						if (is_func_tail(ChunkInfo))
							msg(" TAIL\n");
						else
							msg(" ENTRY\n");
					}
				} // end for (size_t ChunkIndex = ...)
				func_t *FuncInfo = get_func(0x8149be0);
				if (NULL == FuncInfo)
					msg("No func at 0x8149be0\n");
				else {
					get_func_name(FuncInfo->startEA, FuncName, MAXSTR-1);
					msg("Func at 0x8149be0: %s\n", FuncName);
				}
				FuncsDumped = true;
			}
#endif
			for (size_t FuncIndex = 0; FuncIndex < get_func_qty(); ++FuncIndex) {
				func_t *FuncInfo = getn_func(FuncIndex);

				// If more than one SEG_CODE segment, only process 
				//  functions within the current segment. Don't know
				//  if multiple code segments are possible, but
				//  get_func_qty() is for the whole program, not just
				//  the current segment.
				if (FuncInfo->startEA < seg->startEA) {
					// Already processed this func in earlier segment.
					continue;
				}
				else if (FuncInfo->startEA >= seg->endEA) {
#if SMP_DEBUG2
						get_func_name(FuncInfo->startEA, FuncName, MAXSTR-1);
						msg("Skipping function until we reach its segment: %s\n",
							FuncName);
#endif
						break;
				}

				// Create a function object.
				if (NULL != CurrFunc){
					delete CurrFunc;
					CurrFunc = NULL;
				}
				CurrFunc = new SMPFunction(FuncInfo);
				

#if SMP_BINARY_DEBUG
				if (FuncsProcessed++ > SMP_DEBUG_COUNT) {
					get_func_name(FuncInfo->startEA, FuncName, MAXSTR-1);
					msg("Debug termination. FuncName = %s \n", FuncName);
					msg("Function startEA: %x endEA: %x \n",
						FuncInfo->startEA,
						FuncInfo->endEA);
				    break;
				}
#endif
#if SMP_BINARY_DEBUG
				if (FuncsProcessed > SMP_DEBUG_COUNT) {
					get_func_name(FuncInfo->startEA, FuncName, MAXSTR-1);
					msg("Final FuncName:  %s \n", FuncName);
					SMPBinaryDebug = true;
				}
#endif
				CurrFunc->Analyze();
				CurrFunc->EmitAnnotations(SymsFile);
				delete CurrFunc;
				CurrFunc = NULL;
			} // end for (size_t FuncIndex = 0; ...) 
#if SMP_DEBUG_ORPHANS
			FindOrphanedCode(seg, SymsFile);
#endif
		} // end else if (seg->type === SEG_CODE)
		else {
#if SMP_DEBUG
			msg("Not processing segment of type %d SegName: %s\n",
				seg->type, SegName);
#endif
		}
	} // end for (int SegIndex = 0; ... )

	for (int OptType = 0; OptType <= LAST_OPT_CATEGORY; ++OptType) {
		msg("Optimization Category Count %d:  %d Annotations: %d\n",
			OptType, OptCount[OptType], AnnotationCount[OptType]);
	}

	qfclose(SymsFile);
	return;
} // end IDAP_run()

char IDAP_comment[] = "UVa SMP/NICECAP Project";
char IDAP_help[] = "Good luck";
char IDAP_name[] = "SMPStaticAnalyzer";
char IDAP_hotkey[] = "Alt-J";

plugin_t PLUGIN = {
	IDP_INTERFACE_VERSION,
	0,
	IDAP_init,
	IDAP_term,
	IDAP_run,
	IDAP_comment,
	IDAP_help,
	IDAP_name,
	IDAP_hotkey
};

406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000
// Find all code addresses in the IDA database and enter them into
//  IDAProLocs. Find all code addresses identified by the external
//  disassembler (e.g. objdump) and enter them into DisasmLocs.
void FindCodeAddresses(void) {
	// Read in code addresses as found by an external disassembler.
	ea_t CurrDisasmAddr;
	string DisasmFileName(RootFileName);
	string FileSuffix(".SMPobjdump");
	DisasmFileName += FileSuffix;
	FILE *DisasmFile = qfopen(DisasmFileName.c_str(), "r");
	if (NULL == DisasmFile) {
		error("FATAL: Cannot open input file %s\n", DisasmFileName.c_str());
		return;
	}

#define DISASM_RESERVE_SIZE  50000
	DisasmLocs.reserve(DISASM_RESERVE_SIZE);
	int ScanReturn = qfscanf(DisasmFile, "%x", &CurrDisasmAddr);
	while (1 == ScanReturn) {
		int NextChar;
		DisasmLocs.push_back(CurrDisasmAddr);
		// Swallow the rest of the input line and get the next address.
		do {
			NextChar = qfgetc(DisasmFile);
		} while ((EOF != NextChar) && ('\n' != NextChar));
		ScanReturn = qfscanf(DisasmFile, "%x", &CurrDisasmAddr);
	} // end while (1 == ScanReturn)
	if (0 >= DisasmLocs.size()) {
		msg("ERROR: No addresses read from %s\n", DisasmFileName.c_str());
		qfclose(DisasmFile);
		return;
	}
	else {
		msg("%d Disasm addresses read from %s\n", DisasmLocs.size(),
			DisasmFileName.c_str());
		qfclose(DisasmFile);
	}

	// Find all the code locs in the IDA Pro database. As we find
	//  them, store them in IDAProLocs.
	for (int SegIndex = 0; SegIndex < get_segm_qty(); ++SegIndex) {
		segment_t *seg = getnseg(SegIndex);
		if (SEG_CODE != seg->type)
			continue;

		for (ea_t addr = seg->startEA; addr < seg->endEA; addr = get_item_end(addr)) {
			flags_t InstrFlags = getFlags(addr);
			if (isHead(InstrFlags) && isCode(InstrFlags)) {
				IDAProLocs.push_back(addr);
				if ((0x806cda4 <= addr) && (0x806cf99 >= addr))
					msg("IDA code addr: %x\n", addr);
			} // end if (isHead(addr) && isCode(addr)
#if SMP_DEBUG_FIXUP_IDB
			else if ((0x806cda4 <= addr) && (0x806cf99 >= addr)) {
				if (!isHead(InstrFlags))
					msg("Weirdness: not isHead at %x\n", addr);
				if (isUnknown(InstrFlags)) {
					msg("Weirdness: isUnknown at %x\n", addr);
				}
			}
#endif
		} // end for (ea_t addr = seg->startEA; ...)
	} // end for (int SegIndex = 0; ...)
	return;
} // end FindCodeAddresses()

// Return true if addr is not a proper beginning address for an instruction.
// Return false otherwise.
// Currently, we claim that an instruction is misaligned if DisasmLocs does
//  not contain it. This function is useful for dealing with errors in IDA
//  code identification, in which a large code section is identified as data,
//  but some instructions in the middle of the "data" are identified as
//  code but IDA often starts on the wrong boundary in these cases.
bool IsCodeMisaligned(ea_t addr) {
	// Do a binary search for addr within DisasmLocs, which is sorted
	//  in ascending address order because of the way in which it was
	//  generated.
	size_t min = 0;
	size_t max = DisasmLocs.size();  // don't access DisasmLocs[max]
	size_t index = (min + max) / 2;
	
	while (addr != DisasmLocs[index]) {
		if (min >= (max - 1))
			return true;
#if 0
		msg("min: %d max: %d index: %d\n", min, max, index);
#endif
		if (addr < DisasmLocs[index])
			max = index;
		else // must be addr > DisasmLocs[index];
			min = index;
	
		index = (min + max) / 2;
	}

	return false;
} // end of IsCodeMisaligned()

void RemoveIDACodeAddr(ea_t addr) {
	// Do a binary search for addr within IDAProLocs, which is sorted
	//  in ascending address order because of the way in which it was
	//  generated. Delete the element of IDAProLocs if found.
	size_t min = 0;
	size_t max = IDAProLocs.size();  // don't access IDAProLocs[max]
	size_t index = (min + max) / 2;
	
	while (addr != IDAProLocs[index]) {
		if (min >= (max - 1))
			return;
#if 0
		msg("min: %d max: %d index: %d\n", min, max, index);
#endif
		if (addr < IDAProLocs[index])
			max = index;
		else // must be addr > IDAProLocs[index];
			min = index;
	
		index = (min + max) / 2;
	}

	// IDAProLocs[index] contains addr.
	vector<ea_t>::iterator RemovalIterator = IDAProLocs.begin();
	RemovalIterator += index;
	RemovalIterator = IDAProLocs.erase(RemovalIterator);
	return;
} // end of RemoveIDACodeAddr()

// Driver for all other fixing functions. Upon its return, the IDA
//  database (IDB file) should be fixed up as much as we can fix it.
void FixupIDB(void) {
	FindCodeAddresses();
#if SMP_DEBUG_FIXUP_IDB
	SpecialDebugOutput();
#endif
	AuditCodeTargets();
	FindDataInCode();
	AuditTailChunkOwnership();
	FixCodeIdentification();
} // end of FixupIDB()

// Find and print all data head addresses in code segments. 
// If an isolated code instruction is found in the midst of a run
//  of data bytes and has no code xrefs jumping to it, it is not
//  reachable as code and is undoubtedly a mixup by IDA. Possibly
//  the whole data region will be converted to code later, in which
//  case the isolated code is not necessarily properly aligned and
//  parsed at its present address, so we are glad to convert it into
//  data anyway so that FindDataToConvert() will succeed on it later.
// Data to code conversion, and isolated code detection, are inhibited
//  by IDA identifying several consecutive instructions in the midst
//  of a data region, with the code addresses not agreeing with the
//  external disassembler's code addresses. We will convert these
//  misaligned instructions to data as we detect them. We will also
//  convert unexplored bytes (isUnknown(flags) == true) into data if
//  they are in the midst of a data sequence.
#define MIN_DATARUN_LEN 24  // #bytes on either side of "isolated" code
void FindDataInCode(void) {
	size_t DataRunLen = 0; // How many data bytes in a row have we seen?
	bool IsolatedCodeTrigger = false; // Have seen data, then isolated code
									// Now looking for data
	ea_t IsolatedCodeAddr;
	int IsolatedCodeLen;
	int InstrLen;

	for (int SegIndex = 0; SegIndex < get_segm_qty(); ++SegIndex) {
		char SegName[MAXSTR];
		segment_t *seg = getnseg(SegIndex);
		ssize_t SegNameSize = get_segm_name(seg, SegName, sizeof(SegName) - 1);
		if (SEG_CODE != seg->type)
			continue;
#if SMP_DEBUG_FIXUP_IDB
		msg("Non-code addresses for code segment %s from %x to %x\n",
			SegName, seg->startEA, seg->endEA);
#endif
		for (ea_t addr = seg->startEA; addr < seg->endEA; addr = get_item_end(addr)) {
			flags_t AddrFlags = getFlags(addr);
			if (isHead(AddrFlags)) {
				if (isData(AddrFlags)) {
					DataRunLen += get_item_size(addr);
#if SMP_DEBUG_FIXUP_IDB
					msg("Data: %x\n", addr);
#endif
					if (MIN_DATARUN_LEN <= DataRunLen) {
						if (IsolatedCodeTrigger) {
							// Saw data, then one isolated code, then data
							do_unknown_range(IsolatedCodeAddr, IsolatedCodeLen, DOUNK_SIMPLE);
							RemoveIDACodeAddr(IsolatedCodeAddr);
							if (do_data_ex(IsolatedCodeAddr, byteflag(),
								IsolatedCodeLen, BADNODE)) {
									msg("Converted isolated code to data: %x\n",
										IsolatedCodeAddr);
							}
							else {
								msg("Failed to convert isolated code to data: %x len: %x\n",
									IsolatedCodeAddr, IsolatedCodeLen);
							}
							IsolatedCodeTrigger = false;
						} // end if (IsolatedCodeTrigger)
					} // end if (MIN_DATARUN_LEN <= DataRunLen)
				} // end if (isData(AddrFlags)
				else if (isUnknown(AddrFlags)) {
					// Just in case; unknown usually means not head or tail
					// If in a data run, convert to data.
					InstrLen = get_item_size(addr);
					msg("Unknown: %x len: %x\n", addr, InstrLen);
					if (0 < DataRunLen) {
						if (do_data_ex(addr, byteflag(), InstrLen, BADNODE)) {
							msg("Converted unknown to data at %x len: %x\n", addr, InstrLen);
							DataRunLen += InstrLen;
						}
						else {
							msg("Failed to convert unknown to data at %x len: %x\n", addr, InstrLen);
							DataRunLen = 0;
							IsolatedCodeTrigger = false;
						}
					}
				}
				else if (isCode(AddrFlags)) {  // must be true
					if (MIN_DATARUN_LEN <= DataRunLen) {
						msg("DataRunLen: %d at %x\n", DataRunLen, addr);
						InstrLen = ua_ana0(addr);
#if SMP_DEBUG_FIXUP_IDB
						msg("Calling IsCodeMisaligned: len %d\n", InstrLen);
#endif
						if (IsCodeMisaligned(addr)) {
#if SMP_DEBUG_FIXUP_IDB
							msg("Code was misaligned.\n");
#endif
							do_unknown_range(addr, InstrLen, DOUNK_SIMPLE);
							RemoveIDACodeAddr(addr);
							if (do_data_ex(addr, byteflag(), InstrLen, BADNODE)) {
								msg("Converted misaligned code to data at %x : len: %x\n",
									addr, InstrLen);
								// Step back so data gets processed.
								DataRunLen += get_item_size(addr);
								continue; // skip reset of DataRunLen
							}
							else {
								msg("Misaligned code left as unknown at %x : len: %x\n",
									addr, InstrLen);
								IsolatedCodeTrigger = false;
							}
						} // end if (IsCodeMisaligned() ...)
						else if (!hasRef(AddrFlags)) {
							// No references at all --> isolated code.
							IsolatedCodeTrigger = true;
							IsolatedCodeAddr = addr;
							IsolatedCodeLen = InstrLen;
						}
						else {
							xrefblk_t xb;
							bool ok = xb.first_to(IsolatedCodeAddr, XREF_ALL);
							if (!ok) {
								// No code xrefs to this target addr.
								IsolatedCodeTrigger = true;
								IsolatedCodeAddr = addr;
								IsolatedCodeLen = InstrLen;
							}
						}
					} // end if (MIN_DATARUN_LEN <= DataRunLen)
					else if (IsolatedCodeTrigger) {
						// Two instructions in a row does not fit the pattern.
						IsolatedCodeTrigger = false;
					}
					DataRunLen = 0;
				} // end if (isData) ... else if (isUnknown) ... else isCode
			} // end if (isHead)
			else if (isUnknown(AddrFlags)) {
				// If in a data run, convert to data.
				InstrLen = get_item_size(addr);
				msg("Unknown: %x len: %x\n", addr, InstrLen);
				if (0 < DataRunLen) {
					if (do_data_ex(addr, byteflag(), InstrLen, BADNODE)) {
						msg("Converted unknown to data at %x len: %x\n", addr, InstrLen);
						DataRunLen += InstrLen;
					}
					else {
						msg("Failed to convert unknown to data at %x len: %x\n", addr, InstrLen);
						DataRunLen = 0;
						IsolatedCodeTrigger = false;
					}
				}
			}
		} // end for (ea_t addr =  seg->startEA; ...)
	} // end for (int SegIndex = 0; ...)
	return;
} // end of FindDataInCode()


// The choices that IDA makes for deciding which parent function of a
//  TAIL chunk is the primary owner of the tail can be counterintuitive.
//  A function entry can both fall into and jump to a tail chunk that
//  is contiguous with it, yet the "owner" might be a function that is
//  far below it in the executable address space. This function will
//  change the ownership to a more sensible arrangement.
void AuditTailChunkOwnership(void) {
	char FuncName[MAXSTR];
	// Iterate through all chunks in the program.
	for (size_t ChunkIndex = 0; ChunkIndex < get_fchunk_qty(); ++ChunkIndex) {
		func_t *ChunkInfo = getn_fchunk((int) ChunkIndex);
		if (is_func_tail(ChunkInfo)) {
			// For each TAIL chunk, find all the parent chunks. Find the last
			//  parent chunk with an address less than the TAIL chunk address.
			ea_t BestCandidate = 0;
			func_parent_iterator_t FuncParent(ChunkInfo);
#if SMP_DEBUG_CHUNKS
			msg("Tail chunk: %x ", ChunkInfo->startEA);
#endif
			for (bool ok = FuncParent.first(); ok; ok = FuncParent.next()) {
				ea_t parent = FuncParent.parent();
#if SMP_DEBUG_CHUNKS
				msg(" parent: %x ", parent);
#endif
				if ((parent > BestCandidate) && (parent < ChunkInfo->startEA))
					BestCandidate = parent;
			}
#if SMP_DEBUG_CHUNKS
			msg("\n");
#endif
			//  Make the best parent chunk the owner of the TAIL chunk if it is
			//  not already the owner.
			if (ChunkInfo->owner != BestCandidate) {
				if (0 < BestCandidate) {
					if (set_tail_owner(ChunkInfo, BestCandidate)) {
						func_t *FuncInfo = get_func(BestCandidate);
						msg("Set %x as new owner of tail %x\n",
							BestCandidate, ChunkInfo->startEA);
						// Reanalyze the parent function (and all its
						//  tail chunks) now that the structure has changed.
						reanalyze_function(FuncInfo);
					}
					else {
						msg("set_tail_owner failed for tail %x and parent %x\n",
							ChunkInfo->startEA, BestCandidate);
					}
				}
				else {
					func_t *FuncInfo = get_func(ChunkInfo->owner);
					get_func_name(FuncInfo->startEA, FuncName, sizeof(FuncName) - 1);
#if SMP_DEBUG_CHUNKS
					msg("No good parent candidate before tail at %x\n",
						ChunkInfo->startEA);
					msg("Current parent is %x: %s\n", FuncInfo->startEA, FuncName);
#endif
					// Find out if a function entry chunk that comes before the
					//  tail is a better candidate for the owner (i.e. it falls
					//  through to the tail, or jumps to it).
					BestCandidate = 0;
#if SMP_DEBUG_CHUNKS
					msg("Finding parent func candidates for %x:", ChunkInfo->startEA);
#endif
					SMP_bounds_t CurrFunc;
					for (size_t FuncIndex = 0; FuncIndex < FuncBounds.size(); ++FuncIndex) {
						CurrFunc = FuncBounds[FuncIndex];
						if ((CurrFunc.startEA < ChunkInfo->startEA)
							&& (CurrFunc.startEA > BestCandidate)) {
							BestCandidate = CurrFunc.startEA;
#if SMP_DEBUG_CHUNKS
							msg(" candidate: %x tail: %x", BestCandidate,
								ChunkInfo->startEA);
#endif
						}
						else {
#if SMP_DEBUG_CHUNKS
							msg(" not a candidate: %x tail: %x best: %x\n",
								CurrFunc.startEA, ChunkInfo->startEA, BestCandidate);
#endif
							break;
						}
					} // end for (size_t FuncIndex = 0; ...)
					if (0 >= BestCandidate) { // highly unlikely
						msg("No good func entry parent candidate.\n");
					}
					else {
						FuncInfo = get_func(BestCandidate);
						get_func_name(FuncInfo->startEA, FuncName, sizeof(FuncName) - 1);
#if SMP_DEBUG_CHUNKS
						msg("Best func entry parent candidate: %s at %x",
							FuncName, BestCandidate);
						if (FuncInfo->endEA == ChunkInfo->startEA)
							msg(" Function endEA == tail chunk startEA");
						msg("\n");
#endif
					}
				}
			} // end if (ChunkInfo->owner != BestCandidate)
#if SMP_DEBUG_CHUNKS
			else {
				msg("Already best parent for %x is %x\n", ChunkInfo->startEA,
					ChunkInfo->owner);
			}
#endif
		} // end if (is_func_tail(ChunkInfo))
	} // end for (size_t ChunkIndex = 0; ...)

	return;
} // end of AuditTailChunkOwnership()

// If the addresses signified from DisasmIndex to IDAProIndex are
//  all considered data and do NOT follow a return instruction,
//  return false and update AreaSize to reflect the area to be
//  converted.
// Return value: true -> skip to IDAProIndex; false -> convert AreaSize bytes.
bool FindDataToConvert(size_t IDAProIndex, size_t DisasmIndex, int &AreaSize) {
	ea_t PrevIDAAddr;
	ea_t NextIDAAddr;
	size_t ShadowDisasmIndex = DisasmIndex - 1;
	ea_t DisasmAddr = DisasmLocs[ShadowDisasmIndex];
	bool CannotConvert = false;  // return value
	bool DebugAddress = false;
#if SMP_DEBUG_FIXUP_IDB
	DebugAddress = (DisasmAddr == 0x806c19a);
#endif

	if (DebugAddress) {
		msg("IDAProIndex: %d DisasmIndex: %d\n", IDAProIndex, DisasmIndex);
		msg("IDA locs size %d Disasm locs size %d\n", IDAProLocs.size(),
			DisasmLocs.size());
	}
	if (IDAProIndex >= IDAProLocs.size()) {
		// Have already processed the last IDA address.
		if (DebugAddress) msg(" Already done with IDAProLocs.\n");
		return true;
	}
	else if (DisasmIndex >= DisasmLocs.size()) {
		// Strange. Last Disasm address is only one to convert, and
		//  IDA still has addresses after that?
		if (DebugAddress) msg(" Already done with DisasmLocs.\n");
		return true;
	}
	else if (IDAProIndex < 2) {
		// We have Disasm addrs before the very first IDA addr. We
		//  don't trust this boundary case.
		if (DebugAddress) msg(" Boundary case with IDAProLocs.\n");
		return true;
	}
	NextIDAAddr = IDAProLocs[IDAProIndex - 1];
	PrevIDAAddr = IDAProLocs[IDAProIndex - 2];
	if (DebugAddress) msg(" PrevIDAAddr: %x NextIDAAddr: %x\n", PrevIDAAddr, NextIDAAddr);

	// See if previous IDA address was a return.
	flags_t PrevFlags = getFlags(PrevIDAAddr);
	if (!isCode(PrevFlags) || !isHead(PrevFlags)) {
		msg("PrevIDAAddr %x not isCode or not isHead.\n", PrevIDAAddr);
		return true;
	}
	SMPInstr PrevInstr(PrevIDAAddr);
	PrevInstr.Analyze();
	if (DebugAddress) msg("Finished PrevInstr.Analyze()\n");
	if (PrevInstr.MDIsReturnInstr()) {
		// Right after a return come no-ops and 2-byte no-ops
		//  that are just for alignment. IDA does not seem to be
		//  happy when we convert all those to code.
		if (DebugAddress) msg(" Data followed a return instruction.\n");
		return true;
	}
	// Now, see if the area from DisasmAddr to NextIDAAddr is all data
	//  according to IDA.
	while (DisasmAddr < NextIDAAddr) {
		flags_t DataFlags = getFlags(DisasmAddr);
		if (isTail(DataFlags)) {
			if (DebugAddress) msg(" tail byte: %x\n", DisasmAddr);
			DisasmAddr = get_item_end(DisasmAddr);
		}
		else if (isData(DataFlags)) {
			if (DebugAddress) msg(" data byte: %x\n", DisasmAddr);
			DisasmAddr = get_item_end(DisasmAddr);
		}
		else if (isCode(DataFlags)) {
			// How could this ever happen?
			if (DebugAddress) msg(" isCode: %x\n", DisasmAddr);
			return true;
		}
		else { // must be isUnknown()
			// Very conservative here; only want to convert when the whole
			//  region is data, because that is a symptom of IDA missing
			//  a piece of code within a function (usually a piece of code
			//  that is only reachable via an indirect jump).
			if (DebugAddress) msg(" Not isData: %x\n", DisasmAddr);
			return true;
		}
		if (DebugAddress) msg(" new DisasmAddr: %x\n", DisasmAddr);
	} // end while (DisasmAddr < NextIDAAddr)
	if (DebugAddress) msg(" loop exit CannotConvert: %d\n", CannotConvert);
	if (!CannotConvert) {
		// Success.
		DisasmAddr = DisasmLocs[ShadowDisasmIndex];
		AreaSize = NextIDAAddr - DisasmAddr;
		if (DebugAddress) { 
			msg(" Success! AreaSize: %x Old index: %d new index: %d\n",
				AreaSize, ShadowDisasmIndex, DisasmIndex);
			msg(" exiting FindDataToConvert()\n");
			msg("\n");
		}
	} // end if (!CannotConvert)
	return CannotConvert;
} // end of FindDataToConvert()

// Does a converted code region look like a function prologue? If so,
//  we should not include it in the previous function.
bool IsFunctionPrologue(ea_t StartAddr, ea_t EndAddr) {
	return false;  // **!!** TODO 
} // end of IsFunctionPrologue()

// Patch program bytes that could not be converted from
//  data to code, if it can be determined that the bytes represent code
//  that IDA has a hard time with.
// Currently limited to finding "call near ptr 0" instructions, which
//  often are found in optimized glibc code because gcc was able to
//  determine that a function pointer was zero and did constant propagation,
//  but unfortunately was not able to determine that the code was unreachable.
//  IDA will not succeed in ua_code() for "call 0", but there is no danger
//  of a working program ever executing this code. Replacing the call with
//  no-ops permits us to continue converting a contiguous range of data to
//  code, and permits IDA to reanalyze the function later.
// Returns true if program bytes were patched.
bool MDPatchUnconvertedBytes(ea_t CurrDisasmAddr) {
	flags_t AddrFlags = getFlags(CurrDisasmAddr);
	if (isData(AddrFlags) || isTail(AddrFlags)) {
		// Bytes should have been converted to unknown already.
		msg("Cannot patch data bytes or tail bytes at %x\n", CurrDisasmAddr);
		return false;
	}
	SMPInstr PatchInstr(CurrDisasmAddr);
	PatchInstr.Analyze();
	int InstrLen = PatchInstr.GetCmd().size;
	if (0 >= InstrLen) {
		msg("ua_ana0() failed on patch location %x\n", CurrDisasmAddr);
		return false;
	}
	else {
		if (PatchInstr.GetCmd().itype != NN_call) {
			msg("Cannot patch non-call instruction at %x\n", CurrDisasmAddr);
			return false;
		}
		PatchInstr.PrintOperands();
		op_t CallDest = PatchInstr.GetUse(0);
		if ((o_near != CallDest.type) || (0 != CallDest.addr)) {
			msg("Cannot patch call unless it is call near ptr 0 at %x",
				CurrDisasmAddr);
			return false;
		}
		ea_t PatchAddr = CurrDisasmAddr;
		for (int i = 0; i < InstrLen; ++i) {
			bool ok = patch_byte(PatchAddr, 0x90);  // x86 no-op
			if (!ok) {
				msg("patch_byte() failed at %x\n", PatchAddr);
				return false;
			}
			++PatchAddr;
		}
		msg("Patched %d bytes successfully at %x\n", InstrLen, CurrDisasmAddr);
		InstrLen = ua_code(CurrDisasmAddr);
		if (0 >= InstrLen) {
			msg(" ... but ua_code() still failed!\n");
			return false;
		}
	} // end if (0 >= InstrLen) ... else ...
	return true;
} // end of MDPatchUnconvertedBytes()

// Create lists of code addresses identified by IDA Pro (in IDAProLocs)
//  and an external disassembler (in DisasmLocs). Compare the lists and
//  try to convert addresses to code that are found in DisasmLocs but
//  not in IDAProLocs. Emit warnings when IDAProLocs has a code address
//  not found in DisasmLocs.
void FixCodeIdentification(void) {
	size_t DisasmIndex = 0;
	ea_t CurrDisasmAddr = DisasmLocs[DisasmIndex++];
	size_t IDAProIndex = 0;
	ea_t CurrAddr = IDAProLocs[IDAProIndex++];

	while (DisasmIndex <= DisasmLocs.size()) {
		// If the current address is less than the current
		//  external disasm address, we have the rare case in
		//  which IDA Pro has identified an address as code
		//  but the external disasm has not. Emit a warning
		//  message and go on to the next IDA address.
		if (CurrAddr < CurrDisasmAddr) {
			SMPInstr TempInstr(CurrAddr);
			TempInstr.Analyze();
			msg("Address %x is code in IDB but not in external disassembler: %s\n",
				CurrAddr, TempInstr.GetDisasm());
			if (IDAProIndex < IDAProLocs.size())
				CurrAddr = IDAProLocs[IDAProIndex++];
			else {
				// Last IDA addr; might still process Disasm addrs
				//  after loop exit.
				break;
			}
		}
		else if (CurrAddr == CurrDisasmAddr) {
			// If equal, no problem, we are moving through the
			//  code addresses in lockstep. Grab the next address
			//  from each source.