Newer
Older
//
// SMPStaticAnalyzer.cpp
//
// This plugin performs the static analyses needed for the SMP project
// (Software Memory Protection).
//
clc5q
committed
#include <list>
#include <vector>
#include <string>
#include <ida.hpp>
#include <idp.hpp>
#include <allins.hpp>
#include <auto.hpp>
#include <bytes.hpp>
#include <funcs.hpp>
#include <intel.hpp>
#include <loader.hpp>
#include <lines.hpp>
clc5q
committed
#include <nalt.hpp>
#include <name.hpp>
#include <ua.hpp>
#include "SMPStaticAnalyzer.h"
#include "SMPDataFlowAnalysis.h"
// Set to 1 for debugging output
#define SMP_DEBUG 1
clc5q
committed
#define SMP_DEBUG2 0 // verbose
#define SMP_DEBUG3 0 // verbose
#define SMP_DEBUG_MEM 0 // print memory operands
#define SMP_DEBUG_TYPE0 0 // Output instr info for OptType = 0
#define SMP_DEBUG_ORPHANS 1 // find code outside of functions
clc5q
committed
#define SMP_DEBUG_CHUNKS 0 // restructuring tail chunks, shared chunks, etc.
#define SMP_DEBUG_DATA_ONLY 0 // Find & fix data addresses in code segments
// Set to 1 when doing a binary search using SMP_DEBUG_COUNT to find
// which function is causing a problem.
#define SMP_BINARY_DEBUG 0
#define SMP_DEBUG_COUNT 356 // How many funcs to process in problem search
int FuncsProcessed = 0;
clc5q
committed
#define SMP_FIXUP_IDB 1 // Try to fix the IDA database?
#define SMP_DEBUG_FIXUP_IDB 0 // debugging output for FixupIDB chain
// Define optimization categories for instructions.
int OptCategory[NN_last+1];
// Initialize the OptCategory[] array.
void InitOptCategory(void);
// Keep statistics on how many instructions we saw in each optimization
// category, and how many optimizing annotations were emitted for
// each category.
int OptCount[LAST_OPT_CATEGORY + 1];
int AnnotationCount[LAST_OPT_CATEGORY + 1];
static char *RegNames[R_of + 1] =
{ "EAX", "ECX", "EDX", "EBX", "ESP", "EBP", "ESI", "EDI",
"R8", "R9", "R10", "R11", "R12", "R13", "R14", "R15",
"AL", "CL", "DL", "BL", "AH", "CH", "DH", "BH",
"SPL", "BPL", "SIL", "DIL", "EIP", "ES", "CS", "SS",
"DS", "FS", "GS", "CF", "ZF", "SF", "OF"
};
// The types of data objects based on their first operand flags.
static char *DataTypes[] = { "VOID", "NUMHEX", "NUMDEC", "CHAR",
"SEG", "OFFSET", "NUMBIN", "NUMOCT", "ENUM", "FORCED",
"STRUCTOFFSET", "STACKVAR", "NUMFLOAT", "UNKNOWN",
"UNKNOWN", "UNKNOWN", 0};
clc5q
committed
// Filename (not including path) of executable being analyzed.
static char RootFileName[MAXSTR];
// Code addresses identified by a disassembler, such as objdump on
// Linux. These can be used to improve the code vs. data identification
// of IDA Pro.
vector<ea_t> DisasmLocs;
// Code addresses as identified by IDA Pro, to be compared to DisasmLocs.
vector<ea_t> IDAProLocs;
// Function start and end addresses (for function entry chunks only).
// Kept here because IDA Pro 5.1 seems to have a memory overwriting
// problem when iterating through all functions in the program. An existing
// func_t *ChunkInfo data structure was getting overwritten by one of the
// function func_t data structures, causing changes of startEA and endEA among
// other things.
struct SMP_bounds_t {
ea_t startEA;
ea_t endEA;
};
vector<SMP_bounds_t> FuncBounds;
// List of functions that need to be reanalyzed after all the code fixup
// and code discovery is complete. Kept as a list of addresses; any address
// within the function is good enough to designate it.
list<ea_t> ReanalyzeList;
void IDAP_run(int);
clc5q
committed
// Functions for diagnosing and/or fixing problems in the IDA database.
void FixupIDB(void); // Driver for all other fixing functions.
void FindDataInCode(void);
void AuditTailChunkOwnership(void);
void FindOrphanedCode(segment_t *, FILE *);
clc5q
committed
void FixCodeIdentification(void);
void AuditCodeTargets(void);
ea_t FindNewFuncLimit(ea_t);
void SpecialDebugOutput(void);
clc5q
committed
void RemoveIDACodeAddr(ea_t);
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
static int idaapi idp_callback(void *, int event_id, va_list va) {
if (event_id == ph.auto_empty_finally) { // IDA analysis is done
IDAP_run(0);
qexit(0);
}
return 0;
}
int IDAP_init(void) {
#if 0 // We are now calling from the SMP.idc script.
// Skip this plugin if it was not specified by the user on the
// command line.
if (get_plugin_options("SMPStaticAnalyzer") == NULL) {
msg("IDAP_init point 2.\n");
return PLUGIN_SKIP;
}
#endif
// Ensure correct working environment.
if ((inf.filetype != f_ELF) && (inf.filetype != f_PE)) {
error("Executable format must be PE or ELF.");
return PLUGIN_SKIP;
}
if (ph.id != PLFM_386) {
error("Processor must be x86.");
return PLUGIN_SKIP;
}
hook_to_notification_point(HT_IDP, idp_callback, NULL);
InitOptCategory();
InitDFACategory();
return PLUGIN_KEEP;
} // end of IDAP_init
void IDAP_term(void) {
unhook_from_notification_point(HT_IDP, idp_callback, NULL);
return;
}
void IDAP_run(int arg) {
segment_t *seg;
char buf[MAXSTR];
ea_t ea;
flags_t ObjFlags;
bool ReadOnlyFlag;
FILE *SymsFile;
SMPFunction *CurrFunc = NULL;
bool FuncsDumped = false;
clc5q
committed
#if SMP_DEBUG2
char FuncName[MAXSTR];
#endif
#if SMP_DEBUG
msg("Beginning IDAP_run.\n");
#endif
// Open the output file.
clc5q
committed
ssize_t FileLen;
FileLen = get_root_filename(RootFileName, sizeof(RootFileName) - 1);
string SymsFileName(RootFileName);
string FileSuffix(".annot");
SymsFileName += FileSuffix;
SymsFile = qfopen(SymsFileName.c_str(), "w");
if (NULL == SymsFile) {
clc5q
committed
error("FATAL: Cannot open output file %s\n", SymsFileName.c_str());
return;
}
(void) memset(OptCount, 0, sizeof(OptCount));
(void) memset(AnnotationCount, 0, sizeof(AnnotationCount));
clc5q
committed
// Record the start and end addresses for all function entry
// chunks in the program.
FuncBounds.reserve(10 + get_func_qty());
for (size_t FuncIndex = 0; FuncIndex < get_func_qty(); ++FuncIndex) {
func_t *FuncInfo = getn_func(FuncIndex);
SMP_bounds_t temp;
temp.startEA = FuncInfo->startEA;
temp.endEA = FuncInfo->endEA;
FuncBounds.push_back(temp);
}
#if SMP_DEBUG_DATA_ONLY
FindDataInCode();
FixCodeIdentification();
qfclose(SymsFile);
return;
#endif
// Pre-audit the IDA database by seeing if the distinction
// between code and data can be improved, and if all branches
// and calls have proper code targets and code cross references.
#if SMP_FIXUP_IDB
FixupIDB();
#endif
// First, examine the data segments and print info about static
// data, such as name/address/size. Do the same for functions in
// code segments.
// Loop through all segments.
for (int SegIndex = 0; SegIndex < get_segm_qty(); ++SegIndex) {
seg = getnseg(SegIndex);
ssize_t SegNameSize = get_segm_name(seg, SegName, sizeof(SegName) - 1);
// We are only interested in the data segments of type
// SEG_DATA, SEG_BSS and SEG_COMM.
if ((seg->type == SEG_DATA) || (seg->type == SEG_BSS)
|| (seg->type == SEG_COMM)) {
// Loop through each of the segments we are interested in,
// examining all data objects (effective addresses).
ReadOnlyFlag = ((seg->perm & SEGPERM_READ) && (!(seg->perm & SEGPERM_WRITE)));
#if SMP_DEBUG
msg("Starting data segment of type %d", seg->type);
if (SegNameSize > 0)
msg(" SegName: %s\n", SegName);
else
msg("\n");
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
if (ReadOnlyFlag) {
msg("Read-only data segment.\n");
}
#endif
ea = seg->startEA;
while (ea < seg->endEA) {
ObjFlags = get_flags_novalue(ea);
// Only process head bytes of data objects, i.e. isData().
if (isData(ObjFlags)) {
// Compute the size of the data object.
ea_t NextEA = ea;
do {
NextEA = nextaddr(NextEA);
} while ((NextEA < seg->endEA) && (!isHead(get_flags_novalue(NextEA))));
size_t ObjSize = (size_t) (NextEA - ea);
// Get the data object name using its address.
char *TrueName = get_true_name(BADADDR, ea, buf, sizeof(buf));
if (NULL == TrueName) {
qstrncpy(buf, "SMP_dummy0", 12);
}
// Output the name, address, size, and type info.
if (ReadOnlyFlag) {
qfprintf(SymsFile,
"%x %d OBJECT GLOBAL %s %s RO\n", ea, ObjSize,
buf, DataTypes[get_optype_flags0(ObjFlags) >> 20]);
}
else {
qfprintf(SymsFile,
"%x %d OBJECT GLOBAL %s %s RW\n", ea, ObjSize,
buf, DataTypes[get_optype_flags0(ObjFlags) >> 20]);
}
// Move on to next data object
ea = NextEA;
}
else {
ea = nextaddr(ea);
}
} // end while (ea < seg->endEA)
} // end if (seg->type == SEG_DATA ...)
else if (seg->type == SEG_CODE) {
#if SMP_DEBUG
msg("Starting code segment");
if (SegNameSize > 0)
msg(" SegName: %s\n", SegName);
else
msg("\n");
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
#endif
#if SMP_DEBUG2
if (!FuncsDumped) {
for (size_t FuncIndex = 0; FuncIndex < get_func_qty(); ++FuncIndex) {
func_t *FuncInfo = getn_func(FuncIndex);
get_func_name(FuncInfo->startEA, FuncName, MAXSTR-1);
msg("FuncName dump: %s\n", FuncName);
}
for (size_t ChunkIndex = 0; ChunkIndex < get_fchunk_qty(); ++ChunkIndex) {
func_t *ChunkInfo = getn_fchunk((int) ChunkIndex);
get_func_name(ChunkInfo->startEA, FuncName, MAXSTR-1);
if (0 == strcmp(FuncName, "fflush")) {
msg("fflush chunk: address %x", ChunkInfo->startEA);
if (is_func_tail(ChunkInfo))
msg(" TAIL\n");
else
msg(" ENTRY\n");
}
else if ((0x81498f0 < ChunkInfo->startEA)
&& (0x8149cb6 > ChunkInfo->startEA)) {
msg("Missing fflush chunk: %s %x",
FuncName, ChunkInfo->startEA);
if (is_func_tail(ChunkInfo))
msg(" TAIL\n");
else
msg(" ENTRY\n");
}
} // end for (size_t ChunkIndex = ...)
func_t *FuncInfo = get_func(0x8149be0);
if (NULL == FuncInfo)
msg("No func at 0x8149be0\n");
else {
get_func_name(FuncInfo->startEA, FuncName, MAXSTR-1);
msg("Func at 0x8149be0: %s\n", FuncName);
}
FuncsDumped = true;
}
#endif
for (size_t FuncIndex = 0; FuncIndex < get_func_qty(); ++FuncIndex) {
func_t *FuncInfo = getn_func(FuncIndex);
// If more than one SEG_CODE segment, only process
// functions within the current segment. Don't know
// if multiple code segments are possible, but
// get_func_qty() is for the whole program, not just
// the current segment.
if (FuncInfo->startEA < seg->startEA) {
// Already processed this func in earlier segment.
continue;
}
else if (FuncInfo->startEA >= seg->endEA) {
#if SMP_DEBUG2
get_func_name(FuncInfo->startEA, FuncName, MAXSTR-1);
msg("Skipping function until we reach its segment: %s\n",
FuncName);
#endif
break;
}
// Create a function object.
if (NULL != CurrFunc){
delete CurrFunc;
CurrFunc = NULL;
}
CurrFunc = new SMPFunction(FuncInfo);
#if SMP_BINARY_DEBUG
if (FuncsProcessed++ > SMP_DEBUG_COUNT) {
get_func_name(FuncInfo->startEA, FuncName, MAXSTR-1);
msg("Debug termination. FuncName = %s \n", FuncName);
msg("Function startEA: %x endEA: %x \n",
FuncInfo->startEA,
FuncInfo->endEA);
break;
}
#endif
#if SMP_BINARY_DEBUG
if (FuncsProcessed > SMP_DEBUG_COUNT) {
get_func_name(FuncInfo->startEA, FuncName, MAXSTR-1);
msg("Final FuncName: %s \n", FuncName);
SMPBinaryDebug = true;
}
#endif
CurrFunc->Analyze();
CurrFunc->EmitAnnotations(SymsFile);
delete CurrFunc;
CurrFunc = NULL;
} // end for (size_t FuncIndex = 0; ...)
clc5q
committed
#if SMP_DEBUG_ORPHANS
FindOrphanedCode(seg, SymsFile);
#endif
clc5q
committed
} // end else if (seg->type === SEG_CODE)
else {
#if SMP_DEBUG
msg("Not processing segment of type %d SegName: %s\n",
seg->type, SegName);
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
#endif
}
} // end for (int SegIndex = 0; ... )
for (int OptType = 0; OptType <= LAST_OPT_CATEGORY; ++OptType) {
msg("Optimization Category Count %d: %d Annotations: %d\n",
OptType, OptCount[OptType], AnnotationCount[OptType]);
}
qfclose(SymsFile);
return;
} // end IDAP_run()
char IDAP_comment[] = "UVa SMP/NICECAP Project";
char IDAP_help[] = "Good luck";
char IDAP_name[] = "SMPStaticAnalyzer";
char IDAP_hotkey[] = "Alt-J";
plugin_t PLUGIN = {
IDP_INTERFACE_VERSION,
0,
IDAP_init,
IDAP_term,
IDAP_run,
IDAP_comment,
IDAP_help,
IDAP_name,
IDAP_hotkey
};
clc5q
committed
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
// Find all code addresses in the IDA database and enter them into
// IDAProLocs. Find all code addresses identified by the external
// disassembler (e.g. objdump) and enter them into DisasmLocs.
void FindCodeAddresses(void) {
// Read in code addresses as found by an external disassembler.
ea_t CurrDisasmAddr;
string DisasmFileName(RootFileName);
string FileSuffix(".SMPobjdump");
DisasmFileName += FileSuffix;
FILE *DisasmFile = qfopen(DisasmFileName.c_str(), "r");
if (NULL == DisasmFile) {
error("FATAL: Cannot open input file %s\n", DisasmFileName.c_str());
return;
}
#define DISASM_RESERVE_SIZE 50000
DisasmLocs.reserve(DISASM_RESERVE_SIZE);
int ScanReturn = qfscanf(DisasmFile, "%x", &CurrDisasmAddr);
while (1 == ScanReturn) {
int NextChar;
DisasmLocs.push_back(CurrDisasmAddr);
// Swallow the rest of the input line and get the next address.
do {
NextChar = qfgetc(DisasmFile);
} while ((EOF != NextChar) && ('\n' != NextChar));
ScanReturn = qfscanf(DisasmFile, "%x", &CurrDisasmAddr);
} // end while (1 == ScanReturn)
if (0 >= DisasmLocs.size()) {
msg("ERROR: No addresses read from %s\n", DisasmFileName.c_str());
qfclose(DisasmFile);
return;
}
else {
msg("%d Disasm addresses read from %s\n", DisasmLocs.size(),
DisasmFileName.c_str());
qfclose(DisasmFile);
}
// Find all the code locs in the IDA Pro database. As we find
// them, store them in IDAProLocs.
for (int SegIndex = 0; SegIndex < get_segm_qty(); ++SegIndex) {
segment_t *seg = getnseg(SegIndex);
if (SEG_CODE != seg->type)
continue;
for (ea_t addr = seg->startEA; addr < seg->endEA; addr = get_item_end(addr)) {
flags_t InstrFlags = getFlags(addr);
if (isHead(InstrFlags) && isCode(InstrFlags)) {
IDAProLocs.push_back(addr);
if ((0x806cda4 <= addr) && (0x806cf99 >= addr))
msg("IDA code addr: %x\n", addr);
} // end if (isHead(addr) && isCode(addr)
#if SMP_DEBUG_FIXUP_IDB
else if ((0x806cda4 <= addr) && (0x806cf99 >= addr)) {
if (!isHead(InstrFlags))
msg("Weirdness: not isHead at %x\n", addr);
if (isUnknown(InstrFlags)) {
msg("Weirdness: isUnknown at %x\n", addr);
}
}
#endif
} // end for (ea_t addr = seg->startEA; ...)
} // end for (int SegIndex = 0; ...)
return;
} // end FindCodeAddresses()
// Return true if addr is not a proper beginning address for an instruction.
// Return false otherwise.
// Currently, we claim that an instruction is misaligned if DisasmLocs does
// not contain it. This function is useful for dealing with errors in IDA
// code identification, in which a large code section is identified as data,
// but some instructions in the middle of the "data" are identified as
// code but IDA often starts on the wrong boundary in these cases.
bool IsCodeMisaligned(ea_t addr) {
// Do a binary search for addr within DisasmLocs, which is sorted
// in ascending address order because of the way in which it was
// generated.
size_t min = 0;
size_t max = DisasmLocs.size(); // don't access DisasmLocs[max]
size_t index = (min + max) / 2;
while (addr != DisasmLocs[index]) {
if (min >= (max - 1))
return true;
#if 0
msg("min: %d max: %d index: %d\n", min, max, index);
#endif
if (addr < DisasmLocs[index])
max = index;
else // must be addr > DisasmLocs[index];
min = index;
index = (min + max) / 2;
}
return false;
} // end of IsCodeMisaligned()
void RemoveIDACodeAddr(ea_t addr) {
// Do a binary search for addr within IDAProLocs, which is sorted
// in ascending address order because of the way in which it was
// generated. Delete the element of IDAProLocs if found.
size_t min = 0;
size_t max = IDAProLocs.size(); // don't access IDAProLocs[max]
size_t index = (min + max) / 2;
while (addr != IDAProLocs[index]) {
if (min >= (max - 1))
return;
#if 0
msg("min: %d max: %d index: %d\n", min, max, index);
#endif
if (addr < IDAProLocs[index])
max = index;
else // must be addr > IDAProLocs[index];
min = index;
index = (min + max) / 2;
}
// IDAProLocs[index] contains addr.
vector<ea_t>::iterator RemovalIterator = IDAProLocs.begin();
RemovalIterator += index;
RemovalIterator = IDAProLocs.erase(RemovalIterator);
return;
} // end of RemoveIDACodeAddr()
// Driver for all other fixing functions. Upon its return, the IDA
// database (IDB file) should be fixed up as much as we can fix it.
void FixupIDB(void) {
FindCodeAddresses();
#if SMP_DEBUG_FIXUP_IDB
SpecialDebugOutput();
#endif
AuditCodeTargets();
FindDataInCode();
AuditTailChunkOwnership();
FixCodeIdentification();
} // end of FixupIDB()
// Find and print all data head addresses in code segments.
// If an isolated code instruction is found in the midst of a run
// of data bytes and has no code xrefs jumping to it, it is not
// reachable as code and is undoubtedly a mixup by IDA. Possibly
// the whole data region will be converted to code later, in which
// case the isolated code is not necessarily properly aligned and
// parsed at its present address, so we are glad to convert it into
// data anyway so that FindDataToConvert() will succeed on it later.
// Data to code conversion, and isolated code detection, are inhibited
// by IDA identifying several consecutive instructions in the midst
// of a data region, with the code addresses not agreeing with the
// external disassembler's code addresses. We will convert these
// misaligned instructions to data as we detect them. We will also
// convert unexplored bytes (isUnknown(flags) == true) into data if
// they are in the midst of a data sequence.
#define MIN_DATARUN_LEN 24 // #bytes on either side of "isolated" code
void FindDataInCode(void) {
size_t DataRunLen = 0; // How many data bytes in a row have we seen?
bool IsolatedCodeTrigger = false; // Have seen data, then isolated code
// Now looking for data
ea_t IsolatedCodeAddr;
int IsolatedCodeLen;
int InstrLen;
for (int SegIndex = 0; SegIndex < get_segm_qty(); ++SegIndex) {
char SegName[MAXSTR];
segment_t *seg = getnseg(SegIndex);
ssize_t SegNameSize = get_segm_name(seg, SegName, sizeof(SegName) - 1);
if (SEG_CODE != seg->type)
continue;
#if SMP_DEBUG_FIXUP_IDB
msg("Non-code addresses for code segment %s from %x to %x\n",
SegName, seg->startEA, seg->endEA);
#endif
for (ea_t addr = seg->startEA; addr < seg->endEA; addr = get_item_end(addr)) {
flags_t AddrFlags = getFlags(addr);
if (isHead(AddrFlags)) {
if (isData(AddrFlags)) {
DataRunLen += get_item_size(addr);
#if SMP_DEBUG_FIXUP_IDB
msg("Data: %x\n", addr);
#endif
if (MIN_DATARUN_LEN <= DataRunLen) {
if (IsolatedCodeTrigger) {
// Saw data, then one isolated code, then data
do_unknown_range(IsolatedCodeAddr, IsolatedCodeLen, DOUNK_SIMPLE);
RemoveIDACodeAddr(IsolatedCodeAddr);
if (do_data_ex(IsolatedCodeAddr, byteflag(),
IsolatedCodeLen, BADNODE)) {
msg("Converted isolated code to data: %x\n",
IsolatedCodeAddr);
}
else {
msg("Failed to convert isolated code to data: %x len: %x\n",
IsolatedCodeAddr, IsolatedCodeLen);
}
IsolatedCodeTrigger = false;
} // end if (IsolatedCodeTrigger)
} // end if (MIN_DATARUN_LEN <= DataRunLen)
} // end if (isData(AddrFlags)
else if (isUnknown(AddrFlags)) {
// Just in case; unknown usually means not head or tail
// If in a data run, convert to data.
InstrLen = get_item_size(addr);
msg("Unknown: %x len: %x\n", addr, InstrLen);
if (0 < DataRunLen) {
if (do_data_ex(addr, byteflag(), InstrLen, BADNODE)) {
msg("Converted unknown to data at %x len: %x\n", addr, InstrLen);
DataRunLen += InstrLen;
}
else {
msg("Failed to convert unknown to data at %x len: %x\n", addr, InstrLen);
DataRunLen = 0;
IsolatedCodeTrigger = false;
}
}
}
else if (isCode(AddrFlags)) { // must be true
if (MIN_DATARUN_LEN <= DataRunLen) {
msg("DataRunLen: %d at %x\n", DataRunLen, addr);
InstrLen = ua_ana0(addr);
#if SMP_DEBUG_FIXUP_IDB
msg("Calling IsCodeMisaligned: len %d\n", InstrLen);
#endif
if (IsCodeMisaligned(addr)) {
#if SMP_DEBUG_FIXUP_IDB
msg("Code was misaligned.\n");
#endif
do_unknown_range(addr, InstrLen, DOUNK_SIMPLE);
RemoveIDACodeAddr(addr);
if (do_data_ex(addr, byteflag(), InstrLen, BADNODE)) {
msg("Converted misaligned code to data at %x : len: %x\n",
addr, InstrLen);
// Step back so data gets processed.
DataRunLen += get_item_size(addr);
continue; // skip reset of DataRunLen
}
else {
msg("Misaligned code left as unknown at %x : len: %x\n",
addr, InstrLen);
IsolatedCodeTrigger = false;
}
} // end if (IsCodeMisaligned() ...)
else if (!hasRef(AddrFlags)) {
// No references at all --> isolated code.
IsolatedCodeTrigger = true;
IsolatedCodeAddr = addr;
IsolatedCodeLen = InstrLen;
}
else {
xrefblk_t xb;
bool ok = xb.first_to(IsolatedCodeAddr, XREF_ALL);
if (!ok) {
// No code xrefs to this target addr.
IsolatedCodeTrigger = true;
IsolatedCodeAddr = addr;
IsolatedCodeLen = InstrLen;
}
}
} // end if (MIN_DATARUN_LEN <= DataRunLen)
else if (IsolatedCodeTrigger) {
// Two instructions in a row does not fit the pattern.
IsolatedCodeTrigger = false;
}
DataRunLen = 0;
} // end if (isData) ... else if (isUnknown) ... else isCode
} // end if (isHead)
else if (isUnknown(AddrFlags)) {
// If in a data run, convert to data.
InstrLen = get_item_size(addr);
msg("Unknown: %x len: %x\n", addr, InstrLen);
if (0 < DataRunLen) {
if (do_data_ex(addr, byteflag(), InstrLen, BADNODE)) {
msg("Converted unknown to data at %x len: %x\n", addr, InstrLen);
DataRunLen += InstrLen;
}
else {
msg("Failed to convert unknown to data at %x len: %x\n", addr, InstrLen);
DataRunLen = 0;
IsolatedCodeTrigger = false;
}
}
}
} // end for (ea_t addr = seg->startEA; ...)
} // end for (int SegIndex = 0; ...)
return;
} // end of FindDataInCode()
// The choices that IDA makes for deciding which parent function of a
// TAIL chunk is the primary owner of the tail can be counterintuitive.
// A function entry can both fall into and jump to a tail chunk that
// is contiguous with it, yet the "owner" might be a function that is
// far below it in the executable address space. This function will
// change the ownership to a more sensible arrangement.
void AuditTailChunkOwnership(void) {
char FuncName[MAXSTR];
// Iterate through all chunks in the program.
for (size_t ChunkIndex = 0; ChunkIndex < get_fchunk_qty(); ++ChunkIndex) {
func_t *ChunkInfo = getn_fchunk((int) ChunkIndex);
if (is_func_tail(ChunkInfo)) {
// For each TAIL chunk, find all the parent chunks. Find the last
// parent chunk with an address less than the TAIL chunk address.
ea_t BestCandidate = 0;
func_parent_iterator_t FuncParent(ChunkInfo);
#if SMP_DEBUG_CHUNKS
msg("Tail chunk: %x ", ChunkInfo->startEA);
#endif
for (bool ok = FuncParent.first(); ok; ok = FuncParent.next()) {
ea_t parent = FuncParent.parent();
#if SMP_DEBUG_CHUNKS
msg(" parent: %x ", parent);
#endif
if ((parent > BestCandidate) && (parent < ChunkInfo->startEA))
BestCandidate = parent;
}
#if SMP_DEBUG_CHUNKS
msg("\n");
#endif
// Make the best parent chunk the owner of the TAIL chunk if it is
// not already the owner.
if (ChunkInfo->owner != BestCandidate) {
if (0 < BestCandidate) {
if (set_tail_owner(ChunkInfo, BestCandidate)) {
func_t *FuncInfo = get_func(BestCandidate);
msg("Set %x as new owner of tail %x\n",
BestCandidate, ChunkInfo->startEA);
// Reanalyze the parent function (and all its
// tail chunks) now that the structure has changed.
reanalyze_function(FuncInfo);
}
else {
msg("set_tail_owner failed for tail %x and parent %x\n",
ChunkInfo->startEA, BestCandidate);
}
}
else {
func_t *FuncInfo = get_func(ChunkInfo->owner);
get_func_name(FuncInfo->startEA, FuncName, sizeof(FuncName) - 1);
#if SMP_DEBUG_CHUNKS
msg("No good parent candidate before tail at %x\n",
ChunkInfo->startEA);
msg("Current parent is %x: %s\n", FuncInfo->startEA, FuncName);
#endif
// Find out if a function entry chunk that comes before the
// tail is a better candidate for the owner (i.e. it falls
// through to the tail, or jumps to it).
BestCandidate = 0;
#if SMP_DEBUG_CHUNKS
msg("Finding parent func candidates for %x:", ChunkInfo->startEA);
#endif
SMP_bounds_t CurrFunc;
for (size_t FuncIndex = 0; FuncIndex < FuncBounds.size(); ++FuncIndex) {
CurrFunc = FuncBounds[FuncIndex];
if ((CurrFunc.startEA < ChunkInfo->startEA)
&& (CurrFunc.startEA > BestCandidate)) {
BestCandidate = CurrFunc.startEA;
#if SMP_DEBUG_CHUNKS
msg(" candidate: %x tail: %x", BestCandidate,
ChunkInfo->startEA);
#endif
}
else {
#if SMP_DEBUG_CHUNKS
msg(" not a candidate: %x tail: %x best: %x\n",
CurrFunc.startEA, ChunkInfo->startEA, BestCandidate);
#endif
break;
}
} // end for (size_t FuncIndex = 0; ...)
if (0 >= BestCandidate) { // highly unlikely
msg("No good func entry parent candidate.\n");
}
else {
FuncInfo = get_func(BestCandidate);
get_func_name(FuncInfo->startEA, FuncName, sizeof(FuncName) - 1);
#if SMP_DEBUG_CHUNKS
msg("Best func entry parent candidate: %s at %x",
FuncName, BestCandidate);
if (FuncInfo->endEA == ChunkInfo->startEA)
msg(" Function endEA == tail chunk startEA");
msg("\n");
#endif
}
}
} // end if (ChunkInfo->owner != BestCandidate)
#if SMP_DEBUG_CHUNKS
else {
msg("Already best parent for %x is %x\n", ChunkInfo->startEA,
ChunkInfo->owner);
}
#endif
} // end if (is_func_tail(ChunkInfo))
} // end for (size_t ChunkIndex = 0; ...)
return;
} // end of AuditTailChunkOwnership()
// If the addresses signified from DisasmIndex to IDAProIndex are
// all considered data and do NOT follow a return instruction,
// return false and update AreaSize to reflect the area to be
// converted.
// Return value: true -> skip to IDAProIndex; false -> convert AreaSize bytes.
bool FindDataToConvert(size_t IDAProIndex, size_t DisasmIndex, int &AreaSize) {
ea_t PrevIDAAddr;
ea_t NextIDAAddr;
size_t ShadowDisasmIndex = DisasmIndex - 1;
ea_t DisasmAddr = DisasmLocs[ShadowDisasmIndex];
bool CannotConvert = false; // return value
bool DebugAddress = false;
#if SMP_DEBUG_FIXUP_IDB
DebugAddress = (DisasmAddr == 0x806c19a);
#endif
if (DebugAddress) {
msg("IDAProIndex: %d DisasmIndex: %d\n", IDAProIndex, DisasmIndex);
msg("IDA locs size %d Disasm locs size %d\n", IDAProLocs.size(),
DisasmLocs.size());
}
if (IDAProIndex >= IDAProLocs.size()) {
// Have already processed the last IDA address.
if (DebugAddress) msg(" Already done with IDAProLocs.\n");
return true;
}
else if (DisasmIndex >= DisasmLocs.size()) {
// Strange. Last Disasm address is only one to convert, and
// IDA still has addresses after that?
if (DebugAddress) msg(" Already done with DisasmLocs.\n");
return true;
}
else if (IDAProIndex < 2) {
// We have Disasm addrs before the very first IDA addr. We
// don't trust this boundary case.
if (DebugAddress) msg(" Boundary case with IDAProLocs.\n");
return true;
}
NextIDAAddr = IDAProLocs[IDAProIndex - 1];
PrevIDAAddr = IDAProLocs[IDAProIndex - 2];
if (DebugAddress) msg(" PrevIDAAddr: %x NextIDAAddr: %x\n", PrevIDAAddr, NextIDAAddr);
// See if previous IDA address was a return.
flags_t PrevFlags = getFlags(PrevIDAAddr);
if (!isCode(PrevFlags) || !isHead(PrevFlags)) {
msg("PrevIDAAddr %x not isCode or not isHead.\n", PrevIDAAddr);
return true;
}
SMPInstr PrevInstr(PrevIDAAddr);
PrevInstr.Analyze();
if (DebugAddress) msg("Finished PrevInstr.Analyze()\n");
if (PrevInstr.MDIsReturnInstr()) {
// Right after a return come no-ops and 2-byte no-ops
// that are just for alignment. IDA does not seem to be
// happy when we convert all those to code.
if (DebugAddress) msg(" Data followed a return instruction.\n");
return true;
}
// Now, see if the area from DisasmAddr to NextIDAAddr is all data
// according to IDA.
while (DisasmAddr < NextIDAAddr) {
flags_t DataFlags = getFlags(DisasmAddr);
if (isTail(DataFlags)) {
if (DebugAddress) msg(" tail byte: %x\n", DisasmAddr);
DisasmAddr = get_item_end(DisasmAddr);
}
else if (isData(DataFlags)) {
if (DebugAddress) msg(" data byte: %x\n", DisasmAddr);
DisasmAddr = get_item_end(DisasmAddr);
}
else if (isCode(DataFlags)) {
// How could this ever happen?
if (DebugAddress) msg(" isCode: %x\n", DisasmAddr);
return true;
}
else { // must be isUnknown()
// Very conservative here; only want to convert when the whole
// region is data, because that is a symptom of IDA missing
// a piece of code within a function (usually a piece of code
// that is only reachable via an indirect jump).
if (DebugAddress) msg(" Not isData: %x\n", DisasmAddr);
return true;
}
if (DebugAddress) msg(" new DisasmAddr: %x\n", DisasmAddr);
} // end while (DisasmAddr < NextIDAAddr)
if (DebugAddress) msg(" loop exit CannotConvert: %d\n", CannotConvert);
if (!CannotConvert) {
// Success.
DisasmAddr = DisasmLocs[ShadowDisasmIndex];
AreaSize = NextIDAAddr - DisasmAddr;
if (DebugAddress) {
msg(" Success! AreaSize: %x Old index: %d new index: %d\n",
AreaSize, ShadowDisasmIndex, DisasmIndex);
msg(" exiting FindDataToConvert()\n");
msg("\n");
}
} // end if (!CannotConvert)
return CannotConvert;
} // end of FindDataToConvert()
// Does a converted code region look like a function prologue? If so,
// we should not include it in the previous function.
bool IsFunctionPrologue(ea_t StartAddr, ea_t EndAddr) {
return false; // **!!** TODO
} // end of IsFunctionPrologue()
// Patch program bytes that could not be converted from
// data to code, if it can be determined that the bytes represent code
// that IDA has a hard time with.
// Currently limited to finding "call near ptr 0" instructions, which
// often are found in optimized glibc code because gcc was able to
// determine that a function pointer was zero and did constant propagation,
// but unfortunately was not able to determine that the code was unreachable.
// IDA will not succeed in ua_code() for "call 0", but there is no danger
// of a working program ever executing this code. Replacing the call with
// no-ops permits us to continue converting a contiguous range of data to
// code, and permits IDA to reanalyze the function later.
// Returns true if program bytes were patched.
bool MDPatchUnconvertedBytes(ea_t CurrDisasmAddr) {
flags_t AddrFlags = getFlags(CurrDisasmAddr);
if (isData(AddrFlags) || isTail(AddrFlags)) {
// Bytes should have been converted to unknown already.
msg("Cannot patch data bytes or tail bytes at %x\n", CurrDisasmAddr);
return false;
}
SMPInstr PatchInstr(CurrDisasmAddr);
PatchInstr.Analyze();
int InstrLen = PatchInstr.GetCmd().size;
if (0 >= InstrLen) {
msg("ua_ana0() failed on patch location %x\n", CurrDisasmAddr);
return false;
}
else {
if (PatchInstr.GetCmd().itype != NN_call) {
msg("Cannot patch non-call instruction at %x\n", CurrDisasmAddr);
return false;
}
PatchInstr.PrintOperands();
op_t CallDest = PatchInstr.GetUse(0);
if ((o_near != CallDest.type) || (0 != CallDest.addr)) {
msg("Cannot patch call unless it is call near ptr 0 at %x",
CurrDisasmAddr);
return false;
}
ea_t PatchAddr = CurrDisasmAddr;
for (int i = 0; i < InstrLen; ++i) {
bool ok = patch_byte(PatchAddr, 0x90); // x86 no-op
if (!ok) {
msg("patch_byte() failed at %x\n", PatchAddr);
return false;
}
++PatchAddr;
}
msg("Patched %d bytes successfully at %x\n", InstrLen, CurrDisasmAddr);
InstrLen = ua_code(CurrDisasmAddr);
if (0 >= InstrLen) {
msg(" ... but ua_code() still failed!\n");
return false;
}
} // end if (0 >= InstrLen) ... else ...
return true;
} // end of MDPatchUnconvertedBytes()
// Create lists of code addresses identified by IDA Pro (in IDAProLocs)
// and an external disassembler (in DisasmLocs). Compare the lists and
// try to convert addresses to code that are found in DisasmLocs but
// not in IDAProLocs. Emit warnings when IDAProLocs has a code address
// not found in DisasmLocs.
void FixCodeIdentification(void) {
size_t DisasmIndex = 0;
ea_t CurrDisasmAddr = DisasmLocs[DisasmIndex++];
size_t IDAProIndex = 0;
ea_t CurrAddr = IDAProLocs[IDAProIndex++];
while (DisasmIndex <= DisasmLocs.size()) {
// If the current address is less than the current
// external disasm address, we have the rare case in
// which IDA Pro has identified an address as code
// but the external disasm has not. Emit a warning
// message and go on to the next IDA address.
if (CurrAddr < CurrDisasmAddr) {
SMPInstr TempInstr(CurrAddr);
TempInstr.Analyze();
msg("Address %x is code in IDB but not in external disassembler: %s\n",
CurrAddr, TempInstr.GetDisasm());
if (IDAProIndex < IDAProLocs.size())
CurrAddr = IDAProLocs[IDAProIndex++];
else {
// Last IDA addr; might still process Disasm addrs
// after loop exit.
break;
}
}
else if (CurrAddr == CurrDisasmAddr) {
// If equal, no problem, we are moving through the
// code addresses in lockstep. Grab the next address
// from each source.