Skip to content
Snippets Groups Projects
SMPStaticAnalyzer.cpp 59.8 KiB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000
//
// SMPStaticAnalyzer.cpp
//
// This plugin performs the static analyses needed for the SMP project
//   (Software Memory Protection).
//

#include <ida.hpp>
#include <idp.hpp>
#include <allins.hpp>
#include <auto.hpp>
#include <bytes.hpp>
#include <funcs.hpp>
#include <intel.hpp>
#include <loader.hpp>
#include <lines.hpp>
#include <name.hpp>
#include <ua.hpp>

#include "SMPStaticAnalyzer.h"
#include "SMPDataFlowAnalysis.h"


// Set to 1 for debugging output
#define SMP_DEBUG 1
#define SMP_DEBUG2 1   // verbose
#define SMP_DEBUG3 0   // verbose
#define SMP_DEBUG_MEM 0 // print memory operands
#define SMP_DEBUG_TYPE0 0 // Output instr info for OptType = 0

// Set to 1 when doing a binary search using SMP_DEBUG_COUNT to find
//  which function is causing a problem.
#define SMP_BINARY_DEBUG 0
#define SMP_DEBUG_COUNT 356  // How many funcs to process in problem search
int FuncsProcessed = 0;


// Define optimization categories for instructions.
int OptCategory[NN_last+1];
// Initialize the OptCategory[] array.
void InitOptCategory(void);

// Keep statistics on how many instructions we saw in each optimization
//  category, and how many optimizing annotations were emitted for
//  each category.
int OptCount[LAST_OPT_CATEGORY + 1];
int AnnotationCount[LAST_OPT_CATEGORY + 1];

static char *RegNames[R_of + 1] =
	{ "EAX", "ECX", "EDX", "EBX", "ESP", "EBP", "ESI", "EDI",
	  "R8", "R9", "R10", "R11", "R12", "R13", "R14", "R15",
	  "AL", "CL", "DL", "BL", "AH", "CH", "DH", "BH",
	  "SPL", "BPL", "SIL", "DIL", "EIP", "ES", "CS", "SS",
	  "DS", "FS", "GS", "CF", "ZF", "SF", "OF" 
	};

// The types of data objects based on their first operand flags.
static char *DataTypes[] = { "VOID", "NUMHEX", "NUMDEC", "CHAR",
		"SEG", "OFFSET", "NUMBIN", "NUMOCT", "ENUM", "FORCED", 
		"STRUCTOFFSET", "STACKVAR", "NUMFLOAT", "UNKNOWN", 
		"UNKNOWN", "UNKNOWN", 0};


void IDAP_run(int);




static int idaapi idp_callback(void *, int event_id, va_list va) {
	if (event_id == ph.auto_empty_finally) {   // IDA analysis is done
		IDAP_run(0);
		qexit(0);
	}
	return 0;
}

int IDAP_init(void) {
#if 0 // We are now calling from the SMP.idc script.
	// Skip this plugin if it was not specified by the user on the
	//  command line.
	if (get_plugin_options("SMPStaticAnalyzer") == NULL) {
		msg("IDAP_init point 2.\n");
		return PLUGIN_SKIP;
	}
#endif
	// Ensure correct working environment.
	if ((inf.filetype != f_ELF) && (inf.filetype != f_PE)) {
		error("Executable format must be PE or ELF.");
		return PLUGIN_SKIP;
	}
	if (ph.id != PLFM_386) {
		error("Processor must be x86.");
 		return PLUGIN_SKIP;
	}
	hook_to_notification_point(HT_IDP, idp_callback, NULL);
    InitOptCategory();
	InitDFACategory();
	return PLUGIN_KEEP;
} // end of IDAP_init

void IDAP_term(void) {
	unhook_from_notification_point(HT_IDP, idp_callback, NULL);
	return;
}

void IDAP_run(int arg) {

	segment_t *seg;
	char buf[MAXSTR];
	ea_t ea;
	flags_t ObjFlags;
	bool ReadOnlyFlag;
	FILE *SymsFile;
	char FuncName[MAXSTR];			
	SMPFunction *CurrFunc = NULL;
	bool FuncsDumped = false;

#if SMP_DEBUG
	msg("Beginning IDAP_run.\n");
#endif
	// Open the output file.
	SymsFile = qfopen("SMP.annot", "w");
	if (NULL == SymsFile) {
		error("FATAL: Cannot open output file SMP.annot\n");
		return;
	}

	(void) memset(OptCount, 0, sizeof(OptCount));
	(void) memset(AnnotationCount, 0, sizeof(AnnotationCount));

	// First, examine the data segments and print info about static
	//   data, such as name/address/size. Do the same for functions in
	//   code segments.
	// Loop through all segments.
	for (int SegIndex = 0; SegIndex < get_segm_qty(); ++SegIndex) {
		seg = getnseg(SegIndex);

		// We are only interested in the data segments of type
		// SEG_DATA, SEG_BSS and SEG_COMM.
		if ((seg->type == SEG_DATA) || (seg->type == SEG_BSS)
		    || (seg->type == SEG_COMM)) {
			// Loop through each of the segments we are interested in,
			//  examining all data objects (effective addresses).
			ReadOnlyFlag = ((seg->perm & SEGPERM_READ) && (!(seg->perm & SEGPERM_WRITE)));
#if SMP_DEBUG
			msg("Starting data segment of type %d\n", seg->type);
			if (ReadOnlyFlag) {
				msg("Read-only data segment.\n");
			}
#endif
			ea = seg->startEA;
			while (ea < seg->endEA) {
				ObjFlags = get_flags_novalue(ea);
				// Only process head bytes of data objects, i.e. isData().
				if (isData(ObjFlags)) {
				    // Compute the size of the data object.
					ea_t NextEA = ea;
				    do {
				       NextEA = nextaddr(NextEA);
					} while ((NextEA < seg->endEA) && (!isHead(get_flags_novalue(NextEA))));
				    size_t ObjSize = (size_t) (NextEA - ea);
					// Get the data object name using its address.
				    char *TrueName = get_true_name(BADADDR, ea, buf, sizeof(buf));
					if (NULL == TrueName) {
						qstrncpy(buf, "SMP_dummy0", 12);
					}
				    // Output the name, address, size, and type info.
					if (ReadOnlyFlag) {
						qfprintf(SymsFile, 
							"%x %d OBJECT GLOBAL %s  %s RO\n", ea, ObjSize,
				  			buf, DataTypes[get_optype_flags0(ObjFlags) >> 20]);
					}
					else {
						qfprintf(SymsFile, 
							"%x %d OBJECT GLOBAL %s  %s RW\n", ea, ObjSize,
				  			buf, DataTypes[get_optype_flags0(ObjFlags) >> 20]);
					}
					// Move on to next data object
					ea = NextEA;
				}
				else {
					ea = nextaddr(ea);
				}
			} // end while (ea < seg->endEA)
		} // end if (seg->type == SEG_DATA ...)
		else if (seg->type == SEG_CODE) {
#if SMP_DEBUG
			msg("Starting code segment.\n");
#endif
#if SMP_DEBUG2
			if (!FuncsDumped) {
				for (size_t FuncIndex = 0; FuncIndex < get_func_qty(); ++FuncIndex) {
					func_t *FuncInfo = getn_func(FuncIndex);
					get_func_name(FuncInfo->startEA, FuncName, MAXSTR-1);
					msg("FuncName dump: %s\n", FuncName);
				}
				for (size_t ChunkIndex = 0; ChunkIndex < get_fchunk_qty(); ++ChunkIndex) {
					func_t *ChunkInfo = getn_fchunk((int) ChunkIndex);
					get_func_name(ChunkInfo->startEA, FuncName, MAXSTR-1);
					if (0 == strcmp(FuncName, "fflush")) {
						msg("fflush chunk: address %x", ChunkInfo->startEA);
						if (is_func_tail(ChunkInfo))
							msg(" TAIL\n");
						else
							msg(" ENTRY\n");
					}
					else if ((0x81498f0 < ChunkInfo->startEA)
							&& (0x8149cb6 > ChunkInfo->startEA)) {
						msg("Missing fflush chunk: %s %x",
							FuncName, ChunkInfo->startEA);
						if (is_func_tail(ChunkInfo))
							msg(" TAIL\n");
						else
							msg(" ENTRY\n");
					}
				} // end for (size_t ChunkIndex = ...)
				func_t *FuncInfo = get_func(0x8149be0);
				if (NULL == FuncInfo)
					msg("No func at 0x8149be0\n");
				else {
					get_func_name(FuncInfo->startEA, FuncName, MAXSTR-1);
					msg("Func at 0x8149be0: %s\n", FuncName);
				}
				FuncsDumped = true;
			}
#endif
			for (size_t FuncIndex = 0; FuncIndex < get_func_qty(); ++FuncIndex) {
				func_t *FuncInfo = getn_func(FuncIndex);

				// If more than one SEG_CODE segment, only process 
				//  functions within the current segment. Don't know
				//  if multiple code segments are possible, but
				//  get_func_qty() is for the whole program, not just
				//  the current segment.
				if (FuncInfo->startEA < seg->startEA) {
					// Already processed this func in earlier segment.
					continue;
				}
				else if (FuncInfo->startEA >= seg->endEA) {
#if SMP_DEBUG2
						get_func_name(FuncInfo->startEA, FuncName, MAXSTR-1);
						msg("Skipping function until we reach its segment: %s\n",
							FuncName);
#endif
						break;
				}

				// Create a function object.
				if (NULL != CurrFunc){
					delete CurrFunc;
					CurrFunc = NULL;
				}
				CurrFunc = new SMPFunction(FuncInfo);
				

#if SMP_BINARY_DEBUG
				if (FuncsProcessed++ > SMP_DEBUG_COUNT) {
					get_func_name(FuncInfo->startEA, FuncName, MAXSTR-1);
					msg("Debug termination. FuncName = %s \n", FuncName);
					msg("Function startEA: %x endEA: %x \n",
						FuncInfo->startEA,
						FuncInfo->endEA);
				    break;
				}
#endif
#if SMP_BINARY_DEBUG
				if (FuncsProcessed > SMP_DEBUG_COUNT) {
					get_func_name(FuncInfo->startEA, FuncName, MAXSTR-1);
					msg("Final FuncName:  %s \n", FuncName);
					SMPBinaryDebug = true;
				}
#endif
				CurrFunc->Analyze();
				CurrFunc->EmitAnnotations(SymsFile);
				delete CurrFunc;
				CurrFunc = NULL;
			} // end for (size_t FuncIndex = 0; ...) 
		} // end else if (seg->type === SEG_CODE)
		else {
#if SMP_DEBUG
			msg("Not processing segment of type %d \n", seg->type);
#endif
		}
	} // end for (int SegIndex = 0; ... )

	for (int OptType = 0; OptType <= LAST_OPT_CATEGORY; ++OptType) {
		msg("Optimization Category Count %d:  %d Annotations: %d\n",
			OptType, OptCount[OptType], AnnotationCount[OptType]);
	}

	qfclose(SymsFile);
	return;
} // end IDAP_run()

char IDAP_comment[] = "UVa SMP/NICECAP Project";
char IDAP_help[] = "Good luck";
char IDAP_name[] = "SMPStaticAnalyzer";
char IDAP_hotkey[] = "Alt-J";

plugin_t PLUGIN = {
	IDP_INTERFACE_VERSION,
	0,
	IDAP_init,
	IDAP_term,
	IDAP_run,
	IDAP_comment,
	IDAP_help,
	IDAP_name,
	IDAP_hotkey
};



// Initialize the OptCategory[] array to define how we emit
//   optimizing annotations.
void InitOptCategory(void) {
	// Default category is 0, no optimization without knowing context.
	(void) memset(OptCategory, 0, sizeof(OptCategory));
	// Category 1 instructions never need updating of their memory
	//  metadata by the Memory Monitor SDT. Currently, this is because
	//  these instructions only have effects on registers we do not maintain
	//  metadata for, such as the EIP and the FLAGS, e.g. jumps, compares.
	// Category 2 instructions always have a result type of 'n' (number).
	// Category 3 instructions have a result type of 'n' (number)
	//  whenever the second source operand is an immediate operand of type 'n'.
	//  NOTE: MOV is only current example, and this will take some thought if 
   //   other examples arise.
	// Category 4 instructions have a result type identical to the 1st source operand type.
	//  NOTE: This is currently set for single-operand instructions such as
	//   INC, DEC. As a result, these are treated pretty much as if
	//   they were category 1 instructions, as there is no metadata update,
	//   unless the operand is a memory operand (i.e. mem or [reg]).
	//   If new instructions are added to this category that are not single
	//   operand and do require some updating, the category should be split.
	// Category 5 instructions have a result type identical to the 1st source operand
	//  type whenever the 2nd source operand is an operand of type 'n'.
	//  If the destination is memory, metadata still needs to be checked; if
	//  not, no metadata check is needed, so it becomes category 1.
	// Category 6 instructions always have a result type of 'p' (pointer).
	// Category 7 instructions are category 2 instructions with two destinations,
	//  such as multiply and divide instructions that affect EDX:EAX. There are
	//  forms of these instructions that only have one destination, so they have
	//  to be distinguished via the operand info.
   // Category 8 instructions implicitly write a numeric value to EDX:EAX, but
   //  EDX and EAX are not listed as operands. RDTSC, RDPMC, RDMSR, and other
   //  instructions that copy machine registers into EDX:EAX are category 8.
   // Category 9 instructions are floating point instructions that either
   //  have a memory destination (treat as category 0) or a FP reg destination
   //  (treat as category 1).

	// NOTE: The Memory Monitor SDT needs just three categories, corresponding
	//  to categories 0, 1, and all others. For all categories > 1, the
	//  annotation should tell the SDT exactly how to update its metadata.
	//  For example, a division instruction will write type 'n' (NUM) as
	//  the metadata for result registers EDX:EAX. So, the annotation should
	//  list 'n', EDX, EAX, and a terminator of '/'. CWD (convert word to
	//  doubleword) should have a list of 'n', EAX, '/'.

OptCategory[NN_null] = 0;            // Unknown Operation
OptCategory[NN_aaa] = 2;                 // ASCII Adjust after Addition
OptCategory[NN_aad] = 2;                 // ASCII Adjust AX before Division
OptCategory[NN_aam] = 2;                 // ASCII Adjust AX after Multiply
OptCategory[NN_aas] = 2;                 // ASCII Adjust AL after Subtraction
OptCategory[NN_adc] = 5;                 // Add with Carry
OptCategory[NN_add] = 5;                 // Add
OptCategory[NN_and] = 0;                 // Logical AND
OptCategory[NN_arpl] = 1;                // Adjust RPL Field of Selector
OptCategory[NN_bound] = 1;               // Check Array Index Against Bounds
OptCategory[NN_bsf] = 2;                 // Bit Scan Forward
OptCategory[NN_bsr] = 2;                 // Bit Scan Reverse
OptCategory[NN_bt] = 2;                  // Bit Test
OptCategory[NN_btc] = 2;                 // Bit Test and Complement
OptCategory[NN_btr] = 2;                 // Bit Test and Reset
OptCategory[NN_bts] = 2;                 // Bit Test and Set
OptCategory[NN_call] = 1;                // Call Procedure
OptCategory[NN_callfi] = 1;              // Indirect Call Far Procedure
OptCategory[NN_callni] = 1;              // Indirect Call Near Procedure
OptCategory[NN_cbw] = 2;                 // AL -> AX (with sign)            ** No ops?
OptCategory[NN_cwde] = 2;                // AX -> EAX (with sign)           **
OptCategory[NN_cdqe] = 2;                // EAX -> RAX (with sign)          **
OptCategory[NN_clc] = 1;                 // Clear Carry Flag
OptCategory[NN_cld] = 1;                 // Clear Direction Flag
OptCategory[NN_cli] = 1;                 // Clear Interrupt Flag
OptCategory[NN_clts] = 1;                // Clear Task-Switched Flag in CR0
OptCategory[NN_cmc] = 1;                 // Complement Carry Flag
OptCategory[NN_cmp] = 1;                 // Compare Two Operands
OptCategory[NN_cmps] = 1;                // Compare Strings
OptCategory[NN_cwd] = 2;                 // AX -> DX:AX (with sign)
OptCategory[NN_cdq] = 2;                 // EAX -> EDX:EAX (with sign)
OptCategory[NN_cqo] = 2;                 // RAX -> RDX:RAX (with sign)
OptCategory[NN_daa] = 2;                 // Decimal Adjust AL after Addition
OptCategory[NN_das] = 2;                 // Decimal Adjust AL after Subtraction
OptCategory[NN_dec] = 4;                 // Decrement by 1
OptCategory[NN_div] = 7;                 // Unsigned Divide
OptCategory[NN_enterw] = 0;              // Make Stack Frame for Procedure Parameters  **
OptCategory[NN_enter] = 0;               // Make Stack Frame for Procedure Parameters  **
OptCategory[NN_enterd] = 0;              // Make Stack Frame for Procedure Parameters  **
OptCategory[NN_enterq] = 0;              // Make Stack Frame for Procedure Parameters  **
OptCategory[NN_hlt] = 0;                 // Halt
OptCategory[NN_idiv] = 7;                // Signed Divide
OptCategory[NN_imul] = 7;                // Signed Multiply
OptCategory[NN_in] = 0;                  // Input from Port                         **
OptCategory[NN_inc] = 4;                 // Increment by 1
OptCategory[NN_ins] = 2;                 // Input Byte(s) from Port to String       **
OptCategory[NN_int] = 1;                 // Call to Interrupt Procedure
OptCategory[NN_into] = 1;                // Call to Interrupt Procedure if Overflow Flag = 1
OptCategory[NN_int3] = 1;                // Trap to Debugger
OptCategory[NN_iretw] = 1;               // Interrupt Return
OptCategory[NN_iret] = 1;                // Interrupt Return
OptCategory[NN_iretd] = 1;               // Interrupt Return (use32)
OptCategory[NN_iretq] = 1;               // Interrupt Return (use64)
OptCategory[NN_ja] = 1;                  // Jump if Above (CF=0 & ZF=0)
OptCategory[NN_jae] = 1;                 // Jump if Above or Equal (CF=0)
OptCategory[NN_jb] = 1;                  // Jump if Below (CF=1)
OptCategory[NN_jbe] = 1;                 // Jump if Below or Equal (CF=1 | ZF=1)
OptCategory[NN_jc] = 1;                  // Jump if Carry (CF=1)
OptCategory[NN_jcxz] = 1;                // Jump if CX is 0
OptCategory[NN_jecxz] = 1;               // Jump if ECX is 0
OptCategory[NN_jrcxz] = 1;               // Jump if RCX is 0
OptCategory[NN_je] = 1;                  // Jump if Equal (ZF=1)
OptCategory[NN_jg] = 1;                  // Jump if Greater (ZF=0 & SF=OF)
OptCategory[NN_jge] = 1;                 // Jump if Greater or Equal (SF=OF)
OptCategory[NN_jl] = 1;                  // Jump if Less (SF!=OF)
OptCategory[NN_jle] = 1;                 // Jump if Less or Equal (ZF=1 | SF!=OF)
OptCategory[NN_jna] = 1;                 // Jump if Not Above (CF=1 | ZF=1)
OptCategory[NN_jnae] = 1;                // Jump if Not Above or Equal (CF=1)
OptCategory[NN_jnb] = 1;                 // Jump if Not Below (CF=0)
OptCategory[NN_jnbe] = 1;                // Jump if Not Below or Equal (CF=0 & ZF=0)
OptCategory[NN_jnc] = 1;                 // Jump if Not Carry (CF=0)
OptCategory[NN_jne] = 1;                 // Jump if Not Equal (ZF=0)
OptCategory[NN_jng] = 1;                 // Jump if Not Greater (ZF=1 | SF!=OF)
OptCategory[NN_jnge] = 1;                // Jump if Not Greater or Equal (ZF=1)
OptCategory[NN_jnl] = 1;                 // Jump if Not Less (SF=OF)
OptCategory[NN_jnle] = 1;                // Jump if Not Less or Equal (ZF=0 & SF=OF)
OptCategory[NN_jno] = 1;                 // Jump if Not Overflow (OF=0)
OptCategory[NN_jnp] = 1;                 // Jump if Not Parity (PF=0)
OptCategory[NN_jns] = 1;                 // Jump if Not Sign (SF=0)
OptCategory[NN_jnz] = 1;                 // Jump if Not Zero (ZF=0)
OptCategory[NN_jo] = 1;                  // Jump if Overflow (OF=1)
OptCategory[NN_jp] = 1;                  // Jump if Parity (PF=1)
OptCategory[NN_jpe] = 1;                 // Jump if Parity Even (PF=1)
OptCategory[NN_jpo] = 1;                 // Jump if Parity Odd  (PF=0)
OptCategory[NN_js] = 1;                  // Jump if Sign (SF=1)
OptCategory[NN_jz] = 1;                  // Jump if Zero (ZF=1)
OptCategory[NN_jmp] = 1;                 // Jump
OptCategory[NN_jmpfi] = 1;               // Indirect Far Jump
OptCategory[NN_jmpni] = 1;               // Indirect Near Jump
OptCategory[NN_jmpshort] = 1;            // Jump Short (not used)
OptCategory[NN_lahf] = 2;                // Load Flags into AH Register
OptCategory[NN_lar] = 2;                 // Load Access Rights Byte
OptCategory[NN_lea] = 0;                 // Load Effective Address           **
OptCategory[NN_leavew] = 0;              // High Level Procedure Exit        **
OptCategory[NN_leave] = 0;               // High Level Procedure Exit        **
OptCategory[NN_leaved] = 0;              // High Level Procedure Exit        **
OptCategory[NN_leaveq] = 0;              // High Level Procedure Exit        **
OptCategory[NN_lgdt] = 0;                // Load Global Descriptor Table Register
OptCategory[NN_lidt] = 0;                // Load Interrupt Descriptor Table Register
OptCategory[NN_lgs] = 6;                 // Load Full Pointer to GS:xx
OptCategory[NN_lss] = 6;                 // Load Full Pointer to SS:xx
OptCategory[NN_lds] = 6;                 // Load Full Pointer to DS:xx
OptCategory[NN_les] = 6;                 // Load Full Pointer to ES:xx
OptCategory[NN_lfs] = 6;                 // Load Full Pointer to FS:xx
OptCategory[NN_lldt] = 0;                // Load Local Descriptor Table Register
OptCategory[NN_lmsw] = 1;                // Load Machine Status Word
OptCategory[NN_lock] = 1;                // Assert LOCK# Signal Prefix
OptCategory[NN_lods] = 0;                // Load String
OptCategory[NN_loopw] = 1;               // Loop while ECX != 0
OptCategory[NN_loop] = 1;                // Loop while CX != 0
OptCategory[NN_loopd] = 1;               // Loop while ECX != 0
OptCategory[NN_loopq] = 1;               // Loop while RCX != 0
OptCategory[NN_loopwe] = 1;              // Loop while CX != 0 and ZF=1
OptCategory[NN_loope] = 1;               // Loop while rCX != 0 and ZF=1
OptCategory[NN_loopde] = 1;              // Loop while ECX != 0 and ZF=1
OptCategory[NN_loopqe] = 1;              // Loop while RCX != 0 and ZF=1
OptCategory[NN_loopwne] = 1;             // Loop while CX != 0 and ZF=0
OptCategory[NN_loopne] = 1;              // Loop while rCX != 0 and ZF=0
OptCategory[NN_loopdne] = 1;             // Loop while ECX != 0 and ZF=0
OptCategory[NN_loopqne] = 1;             // Loop while RCX != 0 and ZF=0
OptCategory[NN_lsl] = 6;                 // Load Segment Limit
OptCategory[NN_ltr] = 1;                 // Load Task Register
OptCategory[NN_mov] = 3;                 // Move Data
OptCategory[NN_movsp] = 3;               // Move to/from Special Registers
OptCategory[NN_movs] = 0;                // Move Byte(s) from String to String
OptCategory[NN_movsx] = 3;               // Move with Sign-Extend
OptCategory[NN_movzx] = 3;               // Move with Zero-Extend
OptCategory[NN_mul] = 7;                 // Unsigned Multiplication of AL or AX
OptCategory[NN_neg] = 2;                 // Two's Complement Negation
OptCategory[NN_nop] = 1;                 // No Operation
OptCategory[NN_not] = 2;                 // One's Complement Negation
OptCategory[NN_or] = 0;                  // Logical Inclusive OR
OptCategory[NN_out] = 0;                 // Output to Port
OptCategory[NN_outs] = 0;                // Output Byte(s) to Port
OptCategory[NN_pop] = 0;                 // Pop a word from the Stack
OptCategory[NN_popaw] = 0;               // Pop all General Registers
OptCategory[NN_popa] = 0;                // Pop all General Registers
OptCategory[NN_popad] = 0;               // Pop all General Registers (use32)
OptCategory[NN_popaq] = 0;               // Pop all General Registers (use64)
OptCategory[NN_popfw] = 1;               // Pop Stack into Flags Register         **
OptCategory[NN_popf] = 1;                // Pop Stack into Flags Register         **
OptCategory[NN_popfd] = 1;               // Pop Stack into Eflags Register        **
OptCategory[NN_popfq] = 1;               // Pop Stack into Rflags Register        **
OptCategory[NN_push] = 0;                // Push Operand onto the Stack
OptCategory[NN_pushaw] = 0;              // Push all General Registers
OptCategory[NN_pusha] = 0;               // Push all General Registers
OptCategory[NN_pushad] = 0;              // Push all General Registers (use32)
OptCategory[NN_pushaq] = 0;              // Push all General Registers (use64)
OptCategory[NN_pushfw] = 0;              // Push Flags Register onto the Stack
OptCategory[NN_pushf] = 0;               // Push Flags Register onto the Stack
OptCategory[NN_pushfd] = 0;              // Push Flags Register onto the Stack (use32)
OptCategory[NN_pushfq] = 0;              // Push Flags Register onto the Stack (use64)
OptCategory[NN_rcl] = 2;                 // Rotate Through Carry Left
OptCategory[NN_rcr] = 2;                 // Rotate Through Carry Right
OptCategory[NN_rol] = 2;                 // Rotate Left
OptCategory[NN_ror] = 2;                 // Rotate Right
OptCategory[NN_rep] = 0;                 // Repeat String Operation
OptCategory[NN_repe] = 0;                // Repeat String Operation while ZF=1
OptCategory[NN_repne] = 0;               // Repeat String Operation while ZF=0
OptCategory[NN_retn] = 0;                // Return Near from Procedure
OptCategory[NN_retf] = 0;                // Return Far from Procedure
OptCategory[NN_sahf] = 1;                // Store AH into Flags Register
OptCategory[NN_sal] = 2;                 // Shift Arithmetic Left
OptCategory[NN_sar] = 2;                 // Shift Arithmetic Right
OptCategory[NN_shl] = 2;                 // Shift Logical Left
OptCategory[NN_shr] = 2;                 // Shift Logical Right
OptCategory[NN_sbb] = 5;                 // Integer Subtraction with Borrow
OptCategory[NN_scas] = 1;                // Compare String
OptCategory[NN_seta] = 2;                // Set Byte if Above (CF=0 & ZF=0)
OptCategory[NN_setae] = 2;               // Set Byte if Above or Equal (CF=0)
OptCategory[NN_setb] = 2;                // Set Byte if Below (CF=1)
OptCategory[NN_setbe] = 2;               // Set Byte if Below or Equal (CF=1 | ZF=1)
OptCategory[NN_setc] = 2;                // Set Byte if Carry (CF=1)
OptCategory[NN_sete] = 2;                // Set Byte if Equal (ZF=1)
OptCategory[NN_setg] = 2;                // Set Byte if Greater (ZF=0 & SF=OF)
OptCategory[NN_setge] = 2;               // Set Byte if Greater or Equal (SF=OF)
OptCategory[NN_setl] = 2;                // Set Byte if Less (SF!=OF)
OptCategory[NN_setle] = 2;               // Set Byte if Less or Equal (ZF=1 | SF!=OF)
OptCategory[NN_setna] = 2;               // Set Byte if Not Above (CF=1 | ZF=1)
OptCategory[NN_setnae] = 2;              // Set Byte if Not Above or Equal (CF=1)
OptCategory[NN_setnb] = 2;               // Set Byte if Not Below (CF=0)
OptCategory[NN_setnbe] = 2;              // Set Byte if Not Below or Equal (CF=0 & ZF=0)
OptCategory[NN_setnc] = 2;               // Set Byte if Not Carry (CF=0)
OptCategory[NN_setne] = 2;               // Set Byte if Not Equal (ZF=0)
OptCategory[NN_setng] = 2;               // Set Byte if Not Greater (ZF=1 | SF!=OF)
OptCategory[NN_setnge] = 2;              // Set Byte if Not Greater or Equal (ZF=1)
OptCategory[NN_setnl] = 2;               // Set Byte if Not Less (SF=OF)
OptCategory[NN_setnle] = 2;              // Set Byte if Not Less or Equal (ZF=0 & SF=OF)
OptCategory[NN_setno] = 2;               // Set Byte if Not Overflow (OF=0)
OptCategory[NN_setnp] = 2;               // Set Byte if Not Parity (PF=0)
OptCategory[NN_setns] = 2;               // Set Byte if Not Sign (SF=0)
OptCategory[NN_setnz] = 2;               // Set Byte if Not Zero (ZF=0)
OptCategory[NN_seto] = 2;                // Set Byte if Overflow (OF=1)
OptCategory[NN_setp] = 2;                // Set Byte if Parity (PF=1)
OptCategory[NN_setpe] = 2;               // Set Byte if Parity Even (PF=1)
OptCategory[NN_setpo] = 2;               // Set Byte if Parity Odd  (PF=0)
OptCategory[NN_sets] = 2;                // Set Byte if Sign (SF=1)
OptCategory[NN_setz] = 2;                // Set Byte if Zero (ZF=1)
OptCategory[NN_sgdt] = 0;                // Store Global Descriptor Table Register
OptCategory[NN_sidt] = 0;                // Store Interrupt Descriptor Table Register
OptCategory[NN_shld] = 2;                // Double Precision Shift Left
OptCategory[NN_shrd] = 2;                // Double Precision Shift Right
OptCategory[NN_sldt] = 6;                // Store Local Descriptor Table Register
OptCategory[NN_smsw] = 2;                // Store Machine Status Word
OptCategory[NN_stc] = 1;                 // Set Carry Flag
OptCategory[NN_std] = 1;                 // Set Direction Flag
OptCategory[NN_sti] = 1;                 // Set Interrupt Flag
OptCategory[NN_stos] = 0;                // Store String
OptCategory[NN_str] = 6;                 // Store Task Register
OptCategory[NN_sub] = 5;                 // Integer Subtraction
OptCategory[NN_test] = 1;                // Logical Compare
OptCategory[NN_verr] = 1;                // Verify a Segment for Reading
OptCategory[NN_verw] = 1;                // Verify a Segment for Writing
OptCategory[NN_wait] = 1;                // Wait until BUSY# Pin is Inactive (HIGH)
OptCategory[NN_xchg] = 0;                // Exchange Register/Memory with Register
OptCategory[NN_xlat] = 0;                // Table Lookup Translation
OptCategory[NN_xor] = 2;                 // Logical Exclusive OR

//
//      486 instructions
//

OptCategory[NN_cmpxchg] = 0;             // Compare and Exchange
OptCategory[NN_bswap] = 1;               // Swap bytes in register
OptCategory[NN_xadd] = 0;                // t<-dest; dest<-src+dest; src<-t
OptCategory[NN_invd] = 1;                // Invalidate Data Cache
OptCategory[NN_wbinvd] = 1;              // Invalidate Data Cache (write changes)
OptCategory[NN_invlpg] = 1;              // Invalidate TLB entry

//
//      Pentium instructions
//

OptCategory[NN_rdmsr] = 8;               // Read Machine Status Register
OptCategory[NN_wrmsr] = 1;               // Write Machine Status Register
OptCategory[NN_cpuid] = 8;               // Get CPU ID
OptCategory[NN_cmpxchg8b] = 0;           // Compare and Exchange Eight Bytes
OptCategory[NN_rdtsc] = 8;               // Read Time Stamp Counter
OptCategory[NN_rsm] = 1;                 // Resume from System Management Mode

//
//      Pentium Pro instructions
//

OptCategory[NN_cmova] = 0;               // Move if Above (CF=0 & ZF=0)
OptCategory[NN_cmovb] = 0;               // Move if Below (CF=1)
OptCategory[NN_cmovbe] = 0;              // Move if Below or Equal (CF=1 | ZF=1)
OptCategory[NN_cmovg] = 0;               // Move if Greater (ZF=0 & SF=OF)
OptCategory[NN_cmovge] = 0;              // Move if Greater or Equal (SF=OF)
OptCategory[NN_cmovl] = 0;               // Move if Less (SF!=OF)
OptCategory[NN_cmovle] = 0;              // Move if Less or Equal (ZF=1 | SF!=OF)
OptCategory[NN_cmovnb] = 0;              // Move if Not Below (CF=0)
OptCategory[NN_cmovno] = 0;              // Move if Not Overflow (OF=0)
OptCategory[NN_cmovnp] = 0;              // Move if Not Parity (PF=0)
OptCategory[NN_cmovns] = 0;              // Move if Not Sign (SF=0)
OptCategory[NN_cmovnz] = 0;              // Move if Not Zero (ZF=0)
OptCategory[NN_cmovo] = 0;               // Move if Overflow (OF=1)
OptCategory[NN_cmovp] = 0;               // Move if Parity (PF=1)
OptCategory[NN_cmovs] = 0;               // Move if Sign (SF=1)
OptCategory[NN_cmovz] = 0;               // Move if Zero (ZF=1)
OptCategory[NN_fcmovb] = 1;              // Floating Move if Below          
OptCategory[NN_fcmove] = 1;              // Floating Move if Equal          
OptCategory[NN_fcmovbe] = 1;             // Floating Move if Below or Equal 
OptCategory[NN_fcmovu] = 1;              // Floating Move if Unordered      
OptCategory[NN_fcmovnb] = 1;             // Floating Move if Not Below      
OptCategory[NN_fcmovne] = 1;             // Floating Move if Not Equal      
OptCategory[NN_fcmovnbe] = 1;            // Floating Move if Not Below or Equal
OptCategory[NN_fcmovnu] = 1;             // Floating Move if Not Unordered     
OptCategory[NN_fcomi] = 1;               // FP Compare, result in EFLAGS
OptCategory[NN_fucomi] = 1;              // FP Unordered Compare, result in EFLAGS
OptCategory[NN_fcomip] = 1;              // FP Compare, result in EFLAGS, pop stack
OptCategory[NN_fucomip] = 1;             // FP Unordered Compare, result in EFLAGS, pop stack
OptCategory[NN_rdpmc] = 8;               // Read Performance Monitor Counter

//
//      FPP instructuions
//

OptCategory[NN_fld] = 1;                 // Load Real             ** Infer src is 'n'
OptCategory[NN_fst] = 9;                 // Store Real            
OptCategory[NN_fstp] = 9;                // Store Real and Pop   
OptCategory[NN_fxch] = 1;                // Exchange Registers
OptCategory[NN_fild] = 1;                // Load Integer          ** Infer src is 'n'
OptCategory[NN_fist] = 0;                // Store Integer
OptCategory[NN_fistp] = 0;               // Store Integer and Pop
OptCategory[NN_fbld] = 1;                // Load BCD
OptCategory[NN_fbstp] = 1;               // Store BCD and Pop
OptCategory[NN_fadd] = 1;                // Add Real
OptCategory[NN_faddp] = 1;               // Add Real and Pop
OptCategory[NN_fiadd] = 1;               // Add Integer
OptCategory[NN_fsub] = 1;                // Subtract Real
OptCategory[NN_fsubp] = 1;               // Subtract Real and Pop
OptCategory[NN_fisub] = 1;               // Subtract Integer
OptCategory[NN_fsubr] = 1;               // Subtract Real Reversed
OptCategory[NN_fsubrp] = 1;              // Subtract Real Reversed and Pop
OptCategory[NN_fisubr] = 1;              // Subtract Integer Reversed
OptCategory[NN_fmul] = 1;                // Multiply Real
OptCategory[NN_fmulp] = 1;               // Multiply Real and Pop
OptCategory[NN_fimul] = 1;               // Multiply Integer
OptCategory[NN_fdiv] = 1;                // Divide Real
OptCategory[NN_fdivp] = 1;               // Divide Real and Pop
OptCategory[NN_fidiv] = 1;               // Divide Integer
OptCategory[NN_fdivr] = 1;               // Divide Real Reversed
OptCategory[NN_fdivrp] = 1;              // Divide Real Reversed and Pop
OptCategory[NN_fidivr] = 1;              // Divide Integer Reversed
OptCategory[NN_fsqrt] = 1;               // Square Root
OptCategory[NN_fscale] = 1;              // Scale:  st(0) <- st(0) * 2^st(1)
OptCategory[NN_fprem] = 1;               // Partial Remainder
OptCategory[NN_frndint] = 1;             // Round to Integer
OptCategory[NN_fxtract] = 1;             // Extract exponent and significand
OptCategory[NN_fabs] = 1;                // Absolute value
OptCategory[NN_fchs] = 1;                // Change Sign
OptCategory[NN_fcom] = 1;                // Compare Real
OptCategory[NN_fcomp] = 1;               // Compare Real and Pop
OptCategory[NN_fcompp] = 1;              // Compare Real and Pop Twice
OptCategory[NN_ficom] = 1;               // Compare Integer
OptCategory[NN_ficomp] = 1;              // Compare Integer and Pop
OptCategory[NN_ftst] = 1;                // Test
OptCategory[NN_fxam] = 1;                // Examine
OptCategory[NN_fptan] = 1;               // Partial tangent
OptCategory[NN_fpatan] = 1;              // Partial arctangent
OptCategory[NN_f2xm1] = 1;               // 2^x - 1
OptCategory[NN_fyl2x] = 1;               // Y * lg2(X)
OptCategory[NN_fyl2xp1] = 1;             // Y * lg2(X+1)
OptCategory[NN_fldz] = 1;                // Load +0.0
OptCategory[NN_fld1] = 1;                // Load +1.0
OptCategory[NN_fldpi] = 1;               // Load PI=3.14...
OptCategory[NN_fldl2t] = 1;              // Load lg2(10)
OptCategory[NN_fldl2e] = 1;              // Load lg2(e)
OptCategory[NN_fldlg2] = 1;              // Load lg10(2)
OptCategory[NN_fldln2] = 1;              // Load ln(2)
OptCategory[NN_finit] = 1;               // Initialize Processor
OptCategory[NN_fninit] = 1;              // Initialize Processor (no wait)
OptCategory[NN_fsetpm] = 1;              // Set Protected Mode
OptCategory[NN_fldcw] = 1;               // Load Control Word
OptCategory[NN_fstcw] = 0;               // Store Control Word
OptCategory[NN_fnstcw] = 0;              // Store Control Word (no wait)
OptCategory[NN_fstsw] = 2;               // Store Status Word to memory or AX
OptCategory[NN_fnstsw] = 2;              // Store Status Word (no wait) to memory or AX
OptCategory[NN_fclex] = 1;               // Clear Exceptions
OptCategory[NN_fnclex] = 1;              // Clear Exceptions (no wait)
OptCategory[NN_fstenv] = 0;              // Store Environment
OptCategory[NN_fnstenv] = 0;             // Store Environment (no wait)
OptCategory[NN_fldenv] = 1;              // Load Environment
OptCategory[NN_fsave] = 0;               // Save State
OptCategory[NN_fnsave] = 0;              // Save State (no wait)
OptCategory[NN_frstor] = 1;              // Restore State    **  infer src is 'n'
OptCategory[NN_fincstp] = 1;             // Increment Stack Pointer
OptCategory[NN_fdecstp] = 1;             // Decrement Stack Pointer
OptCategory[NN_ffree] = 1;               // Free Register
OptCategory[NN_fnop] = 1;                // No Operation
OptCategory[NN_feni] = 1;                // (8087 only)
OptCategory[NN_fneni] = 1;               // (no wait) (8087 only)
OptCategory[NN_fdisi] = 1;               // (8087 only)
OptCategory[NN_fndisi] = 1;              // (no wait) (8087 only)

//
//      80387 instructions
//

OptCategory[NN_fprem1] = 1;              // Partial Remainder ( < half )
OptCategory[NN_fsincos] = 1;             // t<-cos(st); st<-sin(st); push t
OptCategory[NN_fsin] = 1;                // Sine
OptCategory[NN_fcos] = 1;                // Cosine
OptCategory[NN_fucom] = 1;               // Compare Unordered Real
OptCategory[NN_fucomp] = 1;              // Compare Unordered Real and Pop
OptCategory[NN_fucompp] = 1;             // Compare Unordered Real and Pop Twice

//
//      Instructions added 28.02.96
//

OptCategory[NN_setalc] = 2;              // Set AL to Carry Flag     **
OptCategory[NN_svdc] = 0;                // Save Register and Descriptor
OptCategory[NN_rsdc] = 0;                // Restore Register and Descriptor
OptCategory[NN_svldt] = 0;               // Save LDTR and Descriptor
OptCategory[NN_rsldt] = 0;               // Restore LDTR and Descriptor
OptCategory[NN_svts] = 1;                // Save TR and Descriptor
OptCategory[NN_rsts] = 1;                // Restore TR and Descriptor
OptCategory[NN_icebp] = 1;               // ICE Break Point
OptCategory[NN_loadall] = 0;             // Load the entire CPU state from ES:EDI

//
//      MMX instructions
//

OptCategory[NN_emms] = 1;                // Empty MMX state
OptCategory[NN_movd] = 9;                // Move 32 bits
OptCategory[NN_movq] = 9;                // Move 64 bits
OptCategory[NN_packsswb] = 1;            // Pack with Signed Saturation (Word->Byte)
OptCategory[NN_packssdw] = 1;            // Pack with Signed Saturation (Dword->Word)
OptCategory[NN_packuswb] = 1;            // Pack with Unsigned Saturation (Word->Byte)
OptCategory[NN_paddb] = 1;               // Packed Add Byte
OptCategory[NN_paddw] = 1;               // Packed Add Word
OptCategory[NN_paddd] = 1;               // Packed Add Dword
OptCategory[NN_paddsb] = 1;              // Packed Add with Saturation (Byte)
OptCategory[NN_paddsw] = 1;              // Packed Add with Saturation (Word)
OptCategory[NN_paddusb] = 1;             // Packed Add Unsigned with Saturation (Byte)
OptCategory[NN_paddusw] = 1;             // Packed Add Unsigned with Saturation (Word)
OptCategory[NN_pand] = 1;                // Bitwise Logical And
OptCategory[NN_pandn] = 1;               // Bitwise Logical And Not
OptCategory[NN_pcmpeqb] = 1;             // Packed Compare for Equal (Byte)
OptCategory[NN_pcmpeqw] = 1;             // Packed Compare for Equal (Word)
OptCategory[NN_pcmpeqd] = 1;             // Packed Compare for Equal (Dword)
OptCategory[NN_pcmpgtb] = 1;             // Packed Compare for Greater Than (Byte)
OptCategory[NN_pcmpgtw] = 1;             // Packed Compare for Greater Than (Word)
OptCategory[NN_pcmpgtd] = 1;             // Packed Compare for Greater Than (Dword)
OptCategory[NN_pmaddwd] = 1;             // Packed Multiply and Add
OptCategory[NN_pmulhw] = 1;              // Packed Multiply High
OptCategory[NN_pmullw] = 1;              // Packed Multiply Low
OptCategory[NN_por] = 1;                 // Bitwise Logical Or
OptCategory[NN_psllw] = 1;               // Packed Shift Left Logical (Word)
OptCategory[NN_pslld] = 1;               // Packed Shift Left Logical (Dword)
OptCategory[NN_psllq] = 1;               // Packed Shift Left Logical (Qword)
OptCategory[NN_psraw] = 1;               // Packed Shift Right Arithmetic (Word)
OptCategory[NN_psrad] = 1;               // Packed Shift Right Arithmetic (Dword)
OptCategory[NN_psrlw] = 1;               // Packed Shift Right Logical (Word)
OptCategory[NN_psrld] = 1;               // Packed Shift Right Logical (Dword)
OptCategory[NN_psrlq] = 1;               // Packed Shift Right Logical (Qword)
OptCategory[NN_psubb] = 1;               // Packed Subtract Byte
OptCategory[NN_psubw] = 1;               // Packed Subtract Word
OptCategory[NN_psubd] = 1;               // Packed Subtract Dword
OptCategory[NN_psubsb] = 1;              // Packed Subtract with Saturation (Byte)
OptCategory[NN_psubsw] = 1;              // Packed Subtract with Saturation (Word)
OptCategory[NN_psubusb] = 1;             // Packed Subtract Unsigned with Saturation (Byte)
OptCategory[NN_psubusw] = 1;             // Packed Subtract Unsigned with Saturation (Word)
OptCategory[NN_punpckhbw] = 1;           // Unpack High Packed Data (Byte->Word)
OptCategory[NN_punpckhwd] = 1;           // Unpack High Packed Data (Word->Dword)
OptCategory[NN_punpckhdq] = 1;           // Unpack High Packed Data (Dword->Qword)
OptCategory[NN_punpcklbw] = 1;           // Unpack Low Packed Data (Byte->Word)
OptCategory[NN_punpcklwd] = 1;           // Unpack Low Packed Data (Word->Dword)
OptCategory[NN_punpckldq] = 1;           // Unpack Low Packed Data (Dword->Qword)
OptCategory[NN_pxor] = 1;                // Bitwise Logical Exclusive Or

//
//      Undocumented Deschutes processor instructions
//

OptCategory[NN_fxsave] = 1;              // Fast save FP context            ** to where?
OptCategory[NN_fxrstor] = 1;             // Fast restore FP context         ** from where?

//      Pentium II instructions

OptCategory[NN_sysenter] = 1;            // Fast Transition to System Call Entry Point
OptCategory[NN_sysexit] = 1;             // Fast Transition from System Call Entry Point

//      3DNow! instructions

OptCategory[NN_pavgusb] = 1;             // Packed 8-bit Unsigned Integer Averaging
OptCategory[NN_pfadd] = 1;               // Packed Floating-Point Addition
OptCategory[NN_pfsub] = 1;               // Packed Floating-Point Subtraction
OptCategory[NN_pfsubr] = 1;              // Packed Floating-Point Reverse Subtraction
OptCategory[NN_pfacc] = 1;               // Packed Floating-Point Accumulate
OptCategory[NN_pfcmpge] = 1;             // Packed Floating-Point Comparison, Greater or Equal
OptCategory[NN_pfcmpgt] = 1;             // Packed Floating-Point Comparison, Greater
OptCategory[NN_pfcmpeq] = 1;             // Packed Floating-Point Comparison, Equal
OptCategory[NN_pfmin] = 1;               // Packed Floating-Point Minimum
OptCategory[NN_pfmax] = 1;               // Packed Floating-Point Maximum
OptCategory[NN_pi2fd] = 1;               // Packed 32-bit Integer to Floating-Point
OptCategory[NN_pf2id] = 1;               // Packed Floating-Point to 32-bit Integer
OptCategory[NN_pfrcp] = 1;               // Packed Floating-Point Reciprocal Approximation
OptCategory[NN_pfrsqrt] = 1;             // Packed Floating-Point Reciprocal Square Root Approximation
OptCategory[NN_pfmul] = 1;               // Packed Floating-Point Multiplication
OptCategory[NN_pfrcpit1] = 1;            // Packed Floating-Point Reciprocal First Iteration Step
OptCategory[NN_pfrsqit1] = 1;            // Packed Floating-Point Reciprocal Square Root First Iteration Step
OptCategory[NN_pfrcpit2] = 1;            // Packed Floating-Point Reciprocal Second Iteration Step
OptCategory[NN_pmulhrw] = 1;             // Packed Floating-Point 16-bit Integer Multiply with rounding
OptCategory[NN_femms] = 1;               // Faster entry/exit of the MMX or floating-point state
OptCategory[NN_prefetch] = 1;            // Prefetch at least a 32-byte line into L1 data cache
OptCategory[NN_prefetchw] = 1;           // Prefetch processor cache line into L1 data cache (mark as modified)


//      Pentium III instructions

OptCategory[NN_addps] = 1;               // Packed Single-FP Add
OptCategory[NN_addss] = 1;               // Scalar Single-FP Add
OptCategory[NN_andnps] = 1;              // Bitwise Logical And Not for Single-FP
OptCategory[NN_andps] = 1;               // Bitwise Logical And for Single-FP
OptCategory[NN_cmpps] = 1;               // Packed Single-FP Compare
OptCategory[NN_cmpss] = 1;               // Scalar Single-FP Compare
OptCategory[NN_comiss] = 1;              // Scalar Ordered Single-FP Compare and Set EFLAGS
OptCategory[NN_cvtpi2ps] = 1;            // Packed signed INT32 to Packed Single-FP conversion
OptCategory[NN_cvtps2pi] = 1;            // Packed Single-FP to Packed INT32 conversion
OptCategory[NN_cvtsi2ss] = 1;            // Scalar signed INT32 to Single-FP conversion
OptCategory[NN_cvtss2si] = 2;            // Scalar Single-FP to signed INT32 conversion
OptCategory[NN_cvttps2pi] = 1;           // Packed Single-FP to Packed INT32 conversion (truncate)
OptCategory[NN_cvttss2si] = 2;           // Scalar Single-FP to signed INT32 conversion (truncate)
OptCategory[NN_divps] = 1;               // Packed Single-FP Divide
OptCategory[NN_divss] = 1;               // Scalar Single-FP Divide
OptCategory[NN_ldmxcsr] = 1;             // Load Streaming SIMD Extensions Technology Control/Status Register
OptCategory[NN_maxps] = 1;               // Packed Single-FP Maximum
OptCategory[NN_maxss] = 1;               // Scalar Single-FP Maximum
OptCategory[NN_minps] = 1;               // Packed Single-FP Minimum
OptCategory[NN_minss] = 1;               // Scalar Single-FP Minimum
OptCategory[NN_movaps] = 9;              // Move Aligned Four Packed Single-FP  ** infer memsrc 'n'?
OptCategory[NN_movhlps] = 1;             // Move High to Low Packed Single-FP
OptCategory[NN_movhps] = 1;              // Move High Packed Single-FP
OptCategory[NN_movlhps] = 1;             // Move Low to High Packed Single-FP
OptCategory[NN_movlps] = 1;              // Move Low Packed Single-FP
OptCategory[NN_movmskps] = 1;            // Move Mask to Register
OptCategory[NN_movss] = 9;               // Move Scalar Single-FP
OptCategory[NN_movups] = 9;              // Move Unaligned Four Packed Single-FP
OptCategory[NN_mulps] = 1;               // Packed Single-FP Multiply
OptCategory[NN_mulss] = 1;               // Scalar Single-FP Multiply
OptCategory[NN_orps] = 1;                // Bitwise Logical OR for Single-FP Data
OptCategory[NN_rcpps] = 1;               // Packed Single-FP Reciprocal
OptCategory[NN_rcpss] = 1;               // Scalar Single-FP Reciprocal
OptCategory[NN_rsqrtps] = 1;             // Packed Single-FP Square Root Reciprocal
OptCategory[NN_rsqrtss] = 1;             // Scalar Single-FP Square Root Reciprocal
OptCategory[NN_shufps] = 1;              // Shuffle Single-FP
OptCategory[NN_sqrtps] = 1;              // Packed Single-FP Square Root
OptCategory[NN_sqrtss] = 1;              // Scalar Single-FP Square Root
OptCategory[NN_stmxcsr] = 0;             // Store Streaming SIMD Extensions Technology Control/Status Register    ** Infer dest is 'n'
OptCategory[NN_subps] = 1;               // Packed Single-FP Subtract
OptCategory[NN_subss] = 1;               // Scalar Single-FP Subtract
OptCategory[NN_ucomiss] = 1;             // Scalar Unordered Single-FP Compare and Set EFLAGS
OptCategory[NN_unpckhps] = 1;            // Unpack High Packed Single-FP Data
OptCategory[NN_unpcklps] = 1;            // Unpack Low Packed Single-FP Data
OptCategory[NN_xorps] = 1;               // Bitwise Logical XOR for Single-FP Data
OptCategory[NN_pavgb] = 1;               // Packed Average (Byte)
OptCategory[NN_pavgw] = 1;               // Packed Average (Word)
OptCategory[NN_pextrw] = 2;              // Extract Word
OptCategory[NN_pinsrw] = 1;              // Insert Word
OptCategory[NN_pmaxsw] = 1;              // Packed Signed Integer Word Maximum
OptCategory[NN_pmaxub] = 1;              // Packed Unsigned Integer Byte Maximum
OptCategory[NN_pminsw] = 1;              // Packed Signed Integer Word Minimum
OptCategory[NN_pminub] = 1;              // Packed Unsigned Integer Byte Minimum
OptCategory[NN_pmovmskb] = 1;            // Move Byte Mask to Integer
OptCategory[NN_pmulhuw] = 1;             // Packed Multiply High Unsigned
OptCategory[NN_psadbw] = 1;              // Packed Sum of Absolute Differences
OptCategory[NN_pshufw] = 1;              // Packed Shuffle Word
OptCategory[NN_maskmovq] = 0;            // Byte Mask write   ** Infer dest is 'n'
OptCategory[NN_movntps] = 0;             // Move Aligned Four Packed Single-FP Non Temporal  * infer dest is 'n'
OptCategory[NN_movntq] = 0;              // Move 64 Bits Non Temporal    ** Infer dest is 'n'
OptCategory[NN_prefetcht0] = 1;          // Prefetch to all cache levels
OptCategory[NN_prefetcht1] = 1;          // Prefetch to all cache levels
OptCategory[NN_prefetcht2] = 1;          // Prefetch to L2 cache
OptCategory[NN_prefetchnta] = 1;         // Prefetch to L1 cache
OptCategory[NN_sfence] = 1;              // Store Fence

// Pentium III Pseudo instructions

OptCategory[NN_cmpeqps] = 1;             // Packed Single-FP Compare EQ
OptCategory[NN_cmpltps] = 1;             // Packed Single-FP Compare LT
OptCategory[NN_cmpleps] = 1;             // Packed Single-FP Compare LE
OptCategory[NN_cmpunordps] = 1;          // Packed Single-FP Compare UNORD
OptCategory[NN_cmpneqps] = 1;            // Packed Single-FP Compare NOT EQ
OptCategory[NN_cmpnltps] = 1;            // Packed Single-FP Compare NOT LT
OptCategory[NN_cmpnleps] = 1;            // Packed Single-FP Compare NOT LE
OptCategory[NN_cmpordps] = 1;            // Packed Single-FP Compare ORDERED
OptCategory[NN_cmpeqss] = 1;             // Scalar Single-FP Compare EQ
OptCategory[NN_cmpltss] = 1;             // Scalar Single-FP Compare LT
OptCategory[NN_cmpless] = 1;             // Scalar Single-FP Compare LE
OptCategory[NN_cmpunordss] = 1;          // Scalar Single-FP Compare UNORD
OptCategory[NN_cmpneqss] = 1;            // Scalar Single-FP Compare NOT EQ
OptCategory[NN_cmpnltss] = 1;            // Scalar Single-FP Compare NOT LT
OptCategory[NN_cmpnless] = 1;            // Scalar Single-FP Compare NOT LE
OptCategory[NN_cmpordss] = 1;            // Scalar Single-FP Compare ORDERED

// AMD K7 instructions

// Revisit AMD if we port to it.
OptCategory[NN_pf2iw] = 0;               // Packed Floating-Point to Integer with Sign Extend
OptCategory[NN_pfnacc] = 0;              // Packed Floating-Point Negative Accumulate
OptCategory[NN_pfpnacc] = 0;             // Packed Floating-Point Mixed Positive-Negative Accumulate
OptCategory[NN_pi2fw] = 0;               // Packed 16-bit Integer to Floating-Point
OptCategory[NN_pswapd] = 0;              // Packed Swap Double Word

// Undocumented FP instructions (thanks to norbert.juffa@adm.com)

OptCategory[NN_fstp1] = 9;               // Alias of Store Real and Pop
OptCategory[NN_fcom2] = 1;               // Alias of Compare Real
OptCategory[NN_fcomp3] = 1;              // Alias of Compare Real and Pop
OptCategory[NN_fxch4] = 1;               // Alias of Exchange Registers
OptCategory[NN_fcomp5] = 1;              // Alias of Compare Real and Pop
OptCategory[NN_ffreep] = 1;              // Free Register and Pop
OptCategory[NN_fxch7] = 1;               // Alias of Exchange Registers
OptCategory[NN_fstp8] = 9;               // Alias of Store Real and Pop
OptCategory[NN_fstp9] = 9;               // Alias of Store Real and Pop

// Pentium 4 instructions

OptCategory[NN_addpd] = 1;               // Add Packed Double-Precision Floating-Point Values
OptCategory[NN_addsd] = 1;               // Add Scalar Double-Precision Floating-Point Values
OptCategory[NN_andnpd] = 1;              // Bitwise Logical AND NOT of Packed Double-Precision Floating-Point Values
OptCategory[NN_andpd] = 1;               // Bitwise Logical AND of Packed Double-Precision Floating-Point Values
OptCategory[NN_clflush] = 1;             // Flush Cache Line
OptCategory[NN_cmppd] = 1;               // Compare Packed Double-Precision Floating-Point Values
OptCategory[NN_cmpsd] = 1;               // Compare Scalar Double-Precision Floating-Point Values
OptCategory[NN_comisd] = 1;              // Compare Scalar Ordered Double-Precision Floating-Point Values and Set EFLAGS
OptCategory[NN_cvtdq2pd] = 1;            // Convert Packed Doubleword Integers to Packed Single-Precision Floating-Point Values
OptCategory[NN_cvtdq2ps] = 1;            // Convert Packed Doubleword Integers to Packed Double-Precision Floating-Point Values
OptCategory[NN_cvtpd2dq] = 1;            // Convert Packed Double-Precision Floating-Point Values to Packed Doubleword Integers
OptCategory[NN_cvtpd2pi] = 1;            // Convert Packed Double-Precision Floating-Point Values to Packed Doubleword Integers
OptCategory[NN_cvtpd2ps] = 1;            // Convert Packed Double-Precision Floating-Point Values to Packed Single-Precision Floating-Point Values
OptCategory[NN_cvtpi2pd] = 1;            // Convert Packed Doubleword Integers to Packed Double-Precision Floating-Point Values
OptCategory[NN_cvtps2dq] = 1;            // Convert Packed Single-Precision Floating-Point Values to Packed Doubleword Integers
OptCategory[NN_cvtps2pd] = 1;            // Convert Packed Single-Precision Floating-Point Values to Packed Double-Precision Floating-Point Values
OptCategory[NN_cvtsd2si] = 2;            // Convert Scalar Double-Precision Floating-Point Value to Doubleword Integer
OptCategory[NN_cvtsd2ss] = 1;            // Convert Scalar Double-Precision Floating-Point Value to Scalar Single-Precision Floating-Point Value
OptCategory[NN_cvtsi2sd] = 1;            // Convert Doubleword Integer to Scalar Double-Precision Floating-Point Value
OptCategory[NN_cvtss2sd] = 1;            // Convert Scalar Single-Precision Floating-Point Value to Scalar Double-Precision Floating-Point Value
OptCategory[NN_cvttpd2dq] = 1;           // Convert With Truncation Packed Double-Precision Floating-Point Values to Packed Doubleword Integers
OptCategory[NN_cvttpd2pi] = 1;           // Convert with Truncation Packed Double-Precision Floating-Point Values to Packed Doubleword Integers
OptCategory[NN_cvttps2dq] = 1;           // Convert With Truncation Packed Single-Precision Floating-Point Values to Packed Doubleword Integers
OptCategory[NN_cvttsd2si] = 2;           // Convert with Truncation Scalar Double-Precision Floating-Point Value to Doubleword Integer
OptCategory[NN_divpd] = 1;               // Divide Packed Double-Precision Floating-Point Values
OptCategory[NN_divsd] = 1;               // Divide Scalar Double-Precision Floating-Point Values
OptCategory[NN_lfence] = 1;              // Load Fence
OptCategory[NN_maskmovdqu] = 0;          // Store Selected Bytes of Double Quadword  ** Infer dest is 'n'
OptCategory[NN_maxpd] = 1;               // Return Maximum Packed Double-Precision Floating-Point Values
OptCategory[NN_maxsd] = 1;               // Return Maximum Scalar Double-Precision Floating-Point Value
OptCategory[NN_mfence] = 1;              // Memory Fence
OptCategory[NN_minpd] = 1;               // Return Minimum Packed Double-Precision Floating-Point Values
OptCategory[NN_minsd] = 1;               // Return Minimum Scalar Double-Precision Floating-Point Value
OptCategory[NN_movapd] = 9;              // Move Aligned Packed Double-Precision Floating-Point Values  ** Infer dest is 'n'
OptCategory[NN_movdq2q] = 1;             // Move Quadword from XMM to MMX Register
OptCategory[NN_movdqa] = 9;              // Move Aligned Double Quadword  ** Infer dest is 'n'
OptCategory[NN_movdqu] = 9;              // Move Unaligned Double Quadword  ** Infer dest is 'n'
OptCategory[NN_movhpd] = 9;              // Move High Packed Double-Precision Floating-Point Values  ** Infer dest is 'n'
OptCategory[NN_movlpd] = 9;              // Move Low Packed Double-Precision Floating-Point Values  ** Infer dest is 'n'
OptCategory[NN_movmskpd] = 2;            // Extract Packed Double-Precision Floating-Point Sign Mask
OptCategory[NN_movntdq] = 0;             // Store Double Quadword Using Non-Temporal Hint
OptCategory[NN_movnti] = 0;              // Store Doubleword Using Non-Temporal Hint
OptCategory[NN_movntpd] = 0;             // Store Packed Double-Precision Floating-Point Values Using Non-Temporal Hint
OptCategory[NN_movq2dq] = 1;             // Move Quadword from MMX to XMM Register
OptCategory[NN_movsd] = 9;               // Move Scalar Double-Precision Floating-Point Values
OptCategory[NN_movupd] = 9;              // Move Unaligned Packed Double-Precision Floating-Point Values
OptCategory[NN_mulpd] = 1;               // Multiply Packed Double-Precision Floating-Point Values
OptCategory[NN_mulsd] = 1;               // Multiply Scalar Double-Precision Floating-Point Values
OptCategory[NN_orpd] = 1;                // Bitwise Logical OR of Double-Precision Floating-Point Values
OptCategory[NN_paddq] = 1;               // Add Packed Quadword Integers
OptCategory[NN_pause] = 1;               // Spin Loop Hint
OptCategory[NN_pmuludq] = 1;             // Multiply Packed Unsigned Doubleword Integers
OptCategory[NN_pshufd] = 1;              // Shuffle Packed Doublewords
OptCategory[NN_pshufhw] = 1;             // Shuffle Packed High Words
OptCategory[NN_pshuflw] = 1;             // Shuffle Packed Low Words
OptCategory[NN_pslldq] = 1;              // Shift Double Quadword Left Logical
OptCategory[NN_psrldq] = 1;              // Shift Double Quadword Right Logical
OptCategory[NN_psubq] = 1;               // Subtract Packed Quadword Integers
OptCategory[NN_punpckhqdq] = 1;          // Unpack High Data
OptCategory[NN_punpcklqdq] = 1;          // Unpack Low Data