Newer
Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
//
// SMPStaticAnalyzer.cpp
//
// This plugin performs the static analyses needed for the SMP project
// (Software Memory Protection).
//
#include <ida.hpp>
#include <idp.hpp>
#include <allins.hpp>
#include <auto.hpp>
#include <bytes.hpp>
#include <funcs.hpp>
#include <intel.hpp>
#include <loader.hpp>
#include <lines.hpp>
#include <name.hpp>
#include <ua.hpp>
#include "SMPStaticAnalyzer.h"
#include "SMPDataFlowAnalysis.h"
// Set to 1 for debugging output
#define SMP_DEBUG 1
#define SMP_DEBUG2 1 // verbose
#define SMP_DEBUG3 0 // verbose
#define SMP_DEBUG_MEM 0 // print memory operands
#define SMP_DEBUG_TYPE0 0 // Output instr info for OptType = 0
// Set to 1 when doing a binary search using SMP_DEBUG_COUNT to find
// which function is causing a problem.
#define SMP_BINARY_DEBUG 0
#define SMP_DEBUG_COUNT 356 // How many funcs to process in problem search
int FuncsProcessed = 0;
// Define optimization categories for instructions.
int OptCategory[NN_last+1];
// Initialize the OptCategory[] array.
void InitOptCategory(void);
// Keep statistics on how many instructions we saw in each optimization
// category, and how many optimizing annotations were emitted for
// each category.
int OptCount[LAST_OPT_CATEGORY + 1];
int AnnotationCount[LAST_OPT_CATEGORY + 1];
static char *RegNames[R_of + 1] =
{ "EAX", "ECX", "EDX", "EBX", "ESP", "EBP", "ESI", "EDI",
"R8", "R9", "R10", "R11", "R12", "R13", "R14", "R15",
"AL", "CL", "DL", "BL", "AH", "CH", "DH", "BH",
"SPL", "BPL", "SIL", "DIL", "EIP", "ES", "CS", "SS",
"DS", "FS", "GS", "CF", "ZF", "SF", "OF"
};
// The types of data objects based on their first operand flags.
static char *DataTypes[] = { "VOID", "NUMHEX", "NUMDEC", "CHAR",
"SEG", "OFFSET", "NUMBIN", "NUMOCT", "ENUM", "FORCED",
"STRUCTOFFSET", "STACKVAR", "NUMFLOAT", "UNKNOWN",
"UNKNOWN", "UNKNOWN", 0};
void IDAP_run(int);
static int idaapi idp_callback(void *, int event_id, va_list va) {
if (event_id == ph.auto_empty_finally) { // IDA analysis is done
IDAP_run(0);
qexit(0);
}
return 0;
}
int IDAP_init(void) {
#if 0 // We are now calling from the SMP.idc script.
// Skip this plugin if it was not specified by the user on the
// command line.
if (get_plugin_options("SMPStaticAnalyzer") == NULL) {
msg("IDAP_init point 2.\n");
return PLUGIN_SKIP;
}
#endif
// Ensure correct working environment.
if ((inf.filetype != f_ELF) && (inf.filetype != f_PE)) {
error("Executable format must be PE or ELF.");
return PLUGIN_SKIP;
}
if (ph.id != PLFM_386) {
error("Processor must be x86.");
return PLUGIN_SKIP;
}
hook_to_notification_point(HT_IDP, idp_callback, NULL);
InitOptCategory();
InitDFACategory();
return PLUGIN_KEEP;
} // end of IDAP_init
void IDAP_term(void) {
unhook_from_notification_point(HT_IDP, idp_callback, NULL);
return;
}
void IDAP_run(int arg) {
segment_t *seg;
char buf[MAXSTR];
ea_t ea;
flags_t ObjFlags;
bool ReadOnlyFlag;
FILE *SymsFile;
char FuncName[MAXSTR];
SMPFunction *CurrFunc = NULL;
bool FuncsDumped = false;
#if SMP_DEBUG
msg("Beginning IDAP_run.\n");
#endif
// Open the output file.
SymsFile = qfopen("SMP.annot", "w");
if (NULL == SymsFile) {
error("FATAL: Cannot open output file SMP.annot\n");
return;
}
(void) memset(OptCount, 0, sizeof(OptCount));
(void) memset(AnnotationCount, 0, sizeof(AnnotationCount));
// First, examine the data segments and print info about static
// data, such as name/address/size. Do the same for functions in
// code segments.
// Loop through all segments.
for (int SegIndex = 0; SegIndex < get_segm_qty(); ++SegIndex) {
seg = getnseg(SegIndex);
// We are only interested in the data segments of type
// SEG_DATA, SEG_BSS and SEG_COMM.
if ((seg->type == SEG_DATA) || (seg->type == SEG_BSS)
|| (seg->type == SEG_COMM)) {
// Loop through each of the segments we are interested in,
// examining all data objects (effective addresses).
ReadOnlyFlag = ((seg->perm & SEGPERM_READ) && (!(seg->perm & SEGPERM_WRITE)));
#if SMP_DEBUG
msg("Starting data segment of type %d\n", seg->type);
if (ReadOnlyFlag) {
msg("Read-only data segment.\n");
}
#endif
ea = seg->startEA;
while (ea < seg->endEA) {
ObjFlags = get_flags_novalue(ea);
// Only process head bytes of data objects, i.e. isData().
if (isData(ObjFlags)) {
// Compute the size of the data object.
ea_t NextEA = ea;
do {
NextEA = nextaddr(NextEA);
} while ((NextEA < seg->endEA) && (!isHead(get_flags_novalue(NextEA))));
size_t ObjSize = (size_t) (NextEA - ea);
// Get the data object name using its address.
char *TrueName = get_true_name(BADADDR, ea, buf, sizeof(buf));
if (NULL == TrueName) {
qstrncpy(buf, "SMP_dummy0", 12);
}
// Output the name, address, size, and type info.
if (ReadOnlyFlag) {
qfprintf(SymsFile,
"%x %d OBJECT GLOBAL %s %s RO\n", ea, ObjSize,
buf, DataTypes[get_optype_flags0(ObjFlags) >> 20]);
}
else {
qfprintf(SymsFile,
"%x %d OBJECT GLOBAL %s %s RW\n", ea, ObjSize,
buf, DataTypes[get_optype_flags0(ObjFlags) >> 20]);
}
// Move on to next data object
ea = NextEA;
}
else {
ea = nextaddr(ea);
}
} // end while (ea < seg->endEA)
} // end if (seg->type == SEG_DATA ...)
else if (seg->type == SEG_CODE) {
#if SMP_DEBUG
msg("Starting code segment.\n");
#endif
#if SMP_DEBUG2
if (!FuncsDumped) {
for (size_t FuncIndex = 0; FuncIndex < get_func_qty(); ++FuncIndex) {
func_t *FuncInfo = getn_func(FuncIndex);
get_func_name(FuncInfo->startEA, FuncName, MAXSTR-1);
msg("FuncName dump: %s\n", FuncName);
}
for (size_t ChunkIndex = 0; ChunkIndex < get_fchunk_qty(); ++ChunkIndex) {
func_t *ChunkInfo = getn_fchunk((int) ChunkIndex);
get_func_name(ChunkInfo->startEA, FuncName, MAXSTR-1);
if (0 == strcmp(FuncName, "fflush")) {
msg("fflush chunk: address %x", ChunkInfo->startEA);
if (is_func_tail(ChunkInfo))
msg(" TAIL\n");
else
msg(" ENTRY\n");
}
else if ((0x81498f0 < ChunkInfo->startEA)
&& (0x8149cb6 > ChunkInfo->startEA)) {
msg("Missing fflush chunk: %s %x",
FuncName, ChunkInfo->startEA);
if (is_func_tail(ChunkInfo))
msg(" TAIL\n");
else
msg(" ENTRY\n");
}
} // end for (size_t ChunkIndex = ...)
func_t *FuncInfo = get_func(0x8149be0);
if (NULL == FuncInfo)
msg("No func at 0x8149be0\n");
else {
get_func_name(FuncInfo->startEA, FuncName, MAXSTR-1);
msg("Func at 0x8149be0: %s\n", FuncName);
}
FuncsDumped = true;
}
#endif
for (size_t FuncIndex = 0; FuncIndex < get_func_qty(); ++FuncIndex) {
func_t *FuncInfo = getn_func(FuncIndex);
// If more than one SEG_CODE segment, only process
// functions within the current segment. Don't know
// if multiple code segments are possible, but
// get_func_qty() is for the whole program, not just
// the current segment.
if (FuncInfo->startEA < seg->startEA) {
// Already processed this func in earlier segment.
continue;
}
else if (FuncInfo->startEA >= seg->endEA) {
#if SMP_DEBUG2
get_func_name(FuncInfo->startEA, FuncName, MAXSTR-1);
msg("Skipping function until we reach its segment: %s\n",
FuncName);
#endif
break;
}
// Create a function object.
if (NULL != CurrFunc){
delete CurrFunc;
CurrFunc = NULL;
}
CurrFunc = new SMPFunction(FuncInfo);
#if SMP_BINARY_DEBUG
if (FuncsProcessed++ > SMP_DEBUG_COUNT) {
get_func_name(FuncInfo->startEA, FuncName, MAXSTR-1);
msg("Debug termination. FuncName = %s \n", FuncName);
msg("Function startEA: %x endEA: %x \n",
FuncInfo->startEA,
FuncInfo->endEA);
break;
}
#endif
#if SMP_BINARY_DEBUG
if (FuncsProcessed > SMP_DEBUG_COUNT) {
get_func_name(FuncInfo->startEA, FuncName, MAXSTR-1);
msg("Final FuncName: %s \n", FuncName);
SMPBinaryDebug = true;
}
#endif
CurrFunc->Analyze();
CurrFunc->EmitAnnotations(SymsFile);
delete CurrFunc;
CurrFunc = NULL;
} // end for (size_t FuncIndex = 0; ...)
} // end else if (seg->type === SEG_CODE)
else {
#if SMP_DEBUG
msg("Not processing segment of type %d \n", seg->type);
#endif
}
} // end for (int SegIndex = 0; ... )
for (int OptType = 0; OptType <= LAST_OPT_CATEGORY; ++OptType) {
msg("Optimization Category Count %d: %d Annotations: %d\n",
OptType, OptCount[OptType], AnnotationCount[OptType]);
}
qfclose(SymsFile);
return;
} // end IDAP_run()
char IDAP_comment[] = "UVa SMP/NICECAP Project";
char IDAP_help[] = "Good luck";
char IDAP_name[] = "SMPStaticAnalyzer";
char IDAP_hotkey[] = "Alt-J";
plugin_t PLUGIN = {
IDP_INTERFACE_VERSION,
0,
IDAP_init,
IDAP_term,
IDAP_run,
IDAP_comment,
IDAP_help,
IDAP_name,
IDAP_hotkey
};
// Initialize the OptCategory[] array to define how we emit
// optimizing annotations.
void InitOptCategory(void) {
// Default category is 0, no optimization without knowing context.
(void) memset(OptCategory, 0, sizeof(OptCategory));
// Category 1 instructions never need updating of their memory
// metadata by the Memory Monitor SDT. Currently, this is because
// these instructions only have effects on registers we do not maintain
// metadata for, such as the EIP and the FLAGS, e.g. jumps, compares.
// Category 2 instructions always have a result type of 'n' (number).
// Category 3 instructions have a result type of 'n' (number)
// whenever the second source operand is an immediate operand of type 'n'.
// NOTE: MOV is only current example, and this will take some thought if
// other examples arise.
// Category 4 instructions have a result type identical to the 1st source operand type.
// NOTE: This is currently set for single-operand instructions such as
// INC, DEC. As a result, these are treated pretty much as if
// they were category 1 instructions, as there is no metadata update,
// unless the operand is a memory operand (i.e. mem or [reg]).
// If new instructions are added to this category that are not single
// operand and do require some updating, the category should be split.
// Category 5 instructions have a result type identical to the 1st source operand
// type whenever the 2nd source operand is an operand of type 'n'.
// If the destination is memory, metadata still needs to be checked; if
// not, no metadata check is needed, so it becomes category 1.
// Category 6 instructions always have a result type of 'p' (pointer).
// Category 7 instructions are category 2 instructions with two destinations,
// such as multiply and divide instructions that affect EDX:EAX. There are
// forms of these instructions that only have one destination, so they have
// to be distinguished via the operand info.
// Category 8 instructions implicitly write a numeric value to EDX:EAX, but
// EDX and EAX are not listed as operands. RDTSC, RDPMC, RDMSR, and other
// instructions that copy machine registers into EDX:EAX are category 8.
// Category 9 instructions are floating point instructions that either
// have a memory destination (treat as category 0) or a FP reg destination
// (treat as category 1).
// NOTE: The Memory Monitor SDT needs just three categories, corresponding
// to categories 0, 1, and all others. For all categories > 1, the
// annotation should tell the SDT exactly how to update its metadata.
// For example, a division instruction will write type 'n' (NUM) as
// the metadata for result registers EDX:EAX. So, the annotation should
// list 'n', EDX, EAX, and a terminator of '/'. CWD (convert word to
// doubleword) should have a list of 'n', EAX, '/'.
OptCategory[NN_null] = 0; // Unknown Operation
OptCategory[NN_aaa] = 2; // ASCII Adjust after Addition
OptCategory[NN_aad] = 2; // ASCII Adjust AX before Division
OptCategory[NN_aam] = 2; // ASCII Adjust AX after Multiply
OptCategory[NN_aas] = 2; // ASCII Adjust AL after Subtraction
OptCategory[NN_adc] = 5; // Add with Carry
OptCategory[NN_add] = 5; // Add
OptCategory[NN_and] = 0; // Logical AND
OptCategory[NN_arpl] = 1; // Adjust RPL Field of Selector
OptCategory[NN_bound] = 1; // Check Array Index Against Bounds
OptCategory[NN_bsf] = 2; // Bit Scan Forward
OptCategory[NN_bsr] = 2; // Bit Scan Reverse
OptCategory[NN_bt] = 2; // Bit Test
OptCategory[NN_btc] = 2; // Bit Test and Complement
OptCategory[NN_btr] = 2; // Bit Test and Reset
OptCategory[NN_bts] = 2; // Bit Test and Set
OptCategory[NN_call] = 1; // Call Procedure
OptCategory[NN_callfi] = 1; // Indirect Call Far Procedure
OptCategory[NN_callni] = 1; // Indirect Call Near Procedure
OptCategory[NN_cbw] = 2; // AL -> AX (with sign) ** No ops?
OptCategory[NN_cwde] = 2; // AX -> EAX (with sign) **
OptCategory[NN_cdqe] = 2; // EAX -> RAX (with sign) **
OptCategory[NN_clc] = 1; // Clear Carry Flag
OptCategory[NN_cld] = 1; // Clear Direction Flag
OptCategory[NN_cli] = 1; // Clear Interrupt Flag
OptCategory[NN_clts] = 1; // Clear Task-Switched Flag in CR0
OptCategory[NN_cmc] = 1; // Complement Carry Flag
OptCategory[NN_cmp] = 1; // Compare Two Operands
OptCategory[NN_cmps] = 1; // Compare Strings
OptCategory[NN_cwd] = 2; // AX -> DX:AX (with sign)
OptCategory[NN_cdq] = 2; // EAX -> EDX:EAX (with sign)
OptCategory[NN_cqo] = 2; // RAX -> RDX:RAX (with sign)
OptCategory[NN_daa] = 2; // Decimal Adjust AL after Addition
OptCategory[NN_das] = 2; // Decimal Adjust AL after Subtraction
OptCategory[NN_dec] = 4; // Decrement by 1
OptCategory[NN_div] = 7; // Unsigned Divide
OptCategory[NN_enterw] = 0; // Make Stack Frame for Procedure Parameters **
OptCategory[NN_enter] = 0; // Make Stack Frame for Procedure Parameters **
OptCategory[NN_enterd] = 0; // Make Stack Frame for Procedure Parameters **
OptCategory[NN_enterq] = 0; // Make Stack Frame for Procedure Parameters **
OptCategory[NN_hlt] = 0; // Halt
OptCategory[NN_idiv] = 7; // Signed Divide
OptCategory[NN_imul] = 7; // Signed Multiply
OptCategory[NN_in] = 0; // Input from Port **
OptCategory[NN_inc] = 4; // Increment by 1
OptCategory[NN_ins] = 2; // Input Byte(s) from Port to String **
OptCategory[NN_int] = 1; // Call to Interrupt Procedure
OptCategory[NN_into] = 1; // Call to Interrupt Procedure if Overflow Flag = 1
OptCategory[NN_int3] = 1; // Trap to Debugger
OptCategory[NN_iretw] = 1; // Interrupt Return
OptCategory[NN_iret] = 1; // Interrupt Return
OptCategory[NN_iretd] = 1; // Interrupt Return (use32)
OptCategory[NN_iretq] = 1; // Interrupt Return (use64)
OptCategory[NN_ja] = 1; // Jump if Above (CF=0 & ZF=0)
OptCategory[NN_jae] = 1; // Jump if Above or Equal (CF=0)
OptCategory[NN_jb] = 1; // Jump if Below (CF=1)
OptCategory[NN_jbe] = 1; // Jump if Below or Equal (CF=1 | ZF=1)
OptCategory[NN_jc] = 1; // Jump if Carry (CF=1)
OptCategory[NN_jcxz] = 1; // Jump if CX is 0
OptCategory[NN_jecxz] = 1; // Jump if ECX is 0
OptCategory[NN_jrcxz] = 1; // Jump if RCX is 0
OptCategory[NN_je] = 1; // Jump if Equal (ZF=1)
OptCategory[NN_jg] = 1; // Jump if Greater (ZF=0 & SF=OF)
OptCategory[NN_jge] = 1; // Jump if Greater or Equal (SF=OF)
OptCategory[NN_jl] = 1; // Jump if Less (SF!=OF)
OptCategory[NN_jle] = 1; // Jump if Less or Equal (ZF=1 | SF!=OF)
OptCategory[NN_jna] = 1; // Jump if Not Above (CF=1 | ZF=1)
OptCategory[NN_jnae] = 1; // Jump if Not Above or Equal (CF=1)
OptCategory[NN_jnb] = 1; // Jump if Not Below (CF=0)
OptCategory[NN_jnbe] = 1; // Jump if Not Below or Equal (CF=0 & ZF=0)
OptCategory[NN_jnc] = 1; // Jump if Not Carry (CF=0)
OptCategory[NN_jne] = 1; // Jump if Not Equal (ZF=0)
OptCategory[NN_jng] = 1; // Jump if Not Greater (ZF=1 | SF!=OF)
OptCategory[NN_jnge] = 1; // Jump if Not Greater or Equal (ZF=1)
OptCategory[NN_jnl] = 1; // Jump if Not Less (SF=OF)
OptCategory[NN_jnle] = 1; // Jump if Not Less or Equal (ZF=0 & SF=OF)
OptCategory[NN_jno] = 1; // Jump if Not Overflow (OF=0)
OptCategory[NN_jnp] = 1; // Jump if Not Parity (PF=0)
OptCategory[NN_jns] = 1; // Jump if Not Sign (SF=0)
OptCategory[NN_jnz] = 1; // Jump if Not Zero (ZF=0)
OptCategory[NN_jo] = 1; // Jump if Overflow (OF=1)
OptCategory[NN_jp] = 1; // Jump if Parity (PF=1)
OptCategory[NN_jpe] = 1; // Jump if Parity Even (PF=1)
OptCategory[NN_jpo] = 1; // Jump if Parity Odd (PF=0)
OptCategory[NN_js] = 1; // Jump if Sign (SF=1)
OptCategory[NN_jz] = 1; // Jump if Zero (ZF=1)
OptCategory[NN_jmp] = 1; // Jump
OptCategory[NN_jmpfi] = 1; // Indirect Far Jump
OptCategory[NN_jmpni] = 1; // Indirect Near Jump
OptCategory[NN_jmpshort] = 1; // Jump Short (not used)
OptCategory[NN_lahf] = 2; // Load Flags into AH Register
OptCategory[NN_lar] = 2; // Load Access Rights Byte
OptCategory[NN_lea] = 0; // Load Effective Address **
OptCategory[NN_leavew] = 0; // High Level Procedure Exit **
OptCategory[NN_leave] = 0; // High Level Procedure Exit **
OptCategory[NN_leaved] = 0; // High Level Procedure Exit **
OptCategory[NN_leaveq] = 0; // High Level Procedure Exit **
OptCategory[NN_lgdt] = 0; // Load Global Descriptor Table Register
OptCategory[NN_lidt] = 0; // Load Interrupt Descriptor Table Register
OptCategory[NN_lgs] = 6; // Load Full Pointer to GS:xx
OptCategory[NN_lss] = 6; // Load Full Pointer to SS:xx
OptCategory[NN_lds] = 6; // Load Full Pointer to DS:xx
OptCategory[NN_les] = 6; // Load Full Pointer to ES:xx
OptCategory[NN_lfs] = 6; // Load Full Pointer to FS:xx
OptCategory[NN_lldt] = 0; // Load Local Descriptor Table Register
OptCategory[NN_lmsw] = 1; // Load Machine Status Word
OptCategory[NN_lock] = 1; // Assert LOCK# Signal Prefix
OptCategory[NN_lods] = 0; // Load String
OptCategory[NN_loopw] = 1; // Loop while ECX != 0
OptCategory[NN_loop] = 1; // Loop while CX != 0
OptCategory[NN_loopd] = 1; // Loop while ECX != 0
OptCategory[NN_loopq] = 1; // Loop while RCX != 0
OptCategory[NN_loopwe] = 1; // Loop while CX != 0 and ZF=1
OptCategory[NN_loope] = 1; // Loop while rCX != 0 and ZF=1
OptCategory[NN_loopde] = 1; // Loop while ECX != 0 and ZF=1
OptCategory[NN_loopqe] = 1; // Loop while RCX != 0 and ZF=1
OptCategory[NN_loopwne] = 1; // Loop while CX != 0 and ZF=0
OptCategory[NN_loopne] = 1; // Loop while rCX != 0 and ZF=0
OptCategory[NN_loopdne] = 1; // Loop while ECX != 0 and ZF=0
OptCategory[NN_loopqne] = 1; // Loop while RCX != 0 and ZF=0
OptCategory[NN_lsl] = 6; // Load Segment Limit
OptCategory[NN_ltr] = 1; // Load Task Register
OptCategory[NN_mov] = 3; // Move Data
OptCategory[NN_movsp] = 3; // Move to/from Special Registers
OptCategory[NN_movs] = 0; // Move Byte(s) from String to String
OptCategory[NN_movsx] = 3; // Move with Sign-Extend
OptCategory[NN_movzx] = 3; // Move with Zero-Extend
OptCategory[NN_mul] = 7; // Unsigned Multiplication of AL or AX
OptCategory[NN_neg] = 2; // Two's Complement Negation
OptCategory[NN_nop] = 1; // No Operation
OptCategory[NN_not] = 2; // One's Complement Negation
OptCategory[NN_or] = 0; // Logical Inclusive OR
OptCategory[NN_out] = 0; // Output to Port
OptCategory[NN_outs] = 0; // Output Byte(s) to Port
OptCategory[NN_pop] = 0; // Pop a word from the Stack
OptCategory[NN_popaw] = 0; // Pop all General Registers
OptCategory[NN_popa] = 0; // Pop all General Registers
OptCategory[NN_popad] = 0; // Pop all General Registers (use32)
OptCategory[NN_popaq] = 0; // Pop all General Registers (use64)
OptCategory[NN_popfw] = 1; // Pop Stack into Flags Register **
OptCategory[NN_popf] = 1; // Pop Stack into Flags Register **
OptCategory[NN_popfd] = 1; // Pop Stack into Eflags Register **
OptCategory[NN_popfq] = 1; // Pop Stack into Rflags Register **
OptCategory[NN_push] = 0; // Push Operand onto the Stack
OptCategory[NN_pushaw] = 0; // Push all General Registers
OptCategory[NN_pusha] = 0; // Push all General Registers
OptCategory[NN_pushad] = 0; // Push all General Registers (use32)
OptCategory[NN_pushaq] = 0; // Push all General Registers (use64)
OptCategory[NN_pushfw] = 0; // Push Flags Register onto the Stack
OptCategory[NN_pushf] = 0; // Push Flags Register onto the Stack
OptCategory[NN_pushfd] = 0; // Push Flags Register onto the Stack (use32)
OptCategory[NN_pushfq] = 0; // Push Flags Register onto the Stack (use64)
OptCategory[NN_rcl] = 2; // Rotate Through Carry Left
OptCategory[NN_rcr] = 2; // Rotate Through Carry Right
OptCategory[NN_rol] = 2; // Rotate Left
OptCategory[NN_ror] = 2; // Rotate Right
OptCategory[NN_rep] = 0; // Repeat String Operation
OptCategory[NN_repe] = 0; // Repeat String Operation while ZF=1
OptCategory[NN_repne] = 0; // Repeat String Operation while ZF=0
OptCategory[NN_retn] = 0; // Return Near from Procedure
OptCategory[NN_retf] = 0; // Return Far from Procedure
OptCategory[NN_sahf] = 1; // Store AH into Flags Register
OptCategory[NN_sal] = 2; // Shift Arithmetic Left
OptCategory[NN_sar] = 2; // Shift Arithmetic Right
OptCategory[NN_shl] = 2; // Shift Logical Left
OptCategory[NN_shr] = 2; // Shift Logical Right
OptCategory[NN_sbb] = 5; // Integer Subtraction with Borrow
OptCategory[NN_scas] = 1; // Compare String
OptCategory[NN_seta] = 2; // Set Byte if Above (CF=0 & ZF=0)
OptCategory[NN_setae] = 2; // Set Byte if Above or Equal (CF=0)
OptCategory[NN_setb] = 2; // Set Byte if Below (CF=1)
OptCategory[NN_setbe] = 2; // Set Byte if Below or Equal (CF=1 | ZF=1)
OptCategory[NN_setc] = 2; // Set Byte if Carry (CF=1)
OptCategory[NN_sete] = 2; // Set Byte if Equal (ZF=1)
OptCategory[NN_setg] = 2; // Set Byte if Greater (ZF=0 & SF=OF)
OptCategory[NN_setge] = 2; // Set Byte if Greater or Equal (SF=OF)
OptCategory[NN_setl] = 2; // Set Byte if Less (SF!=OF)
OptCategory[NN_setle] = 2; // Set Byte if Less or Equal (ZF=1 | SF!=OF)
OptCategory[NN_setna] = 2; // Set Byte if Not Above (CF=1 | ZF=1)
OptCategory[NN_setnae] = 2; // Set Byte if Not Above or Equal (CF=1)
OptCategory[NN_setnb] = 2; // Set Byte if Not Below (CF=0)
OptCategory[NN_setnbe] = 2; // Set Byte if Not Below or Equal (CF=0 & ZF=0)
OptCategory[NN_setnc] = 2; // Set Byte if Not Carry (CF=0)
OptCategory[NN_setne] = 2; // Set Byte if Not Equal (ZF=0)
OptCategory[NN_setng] = 2; // Set Byte if Not Greater (ZF=1 | SF!=OF)
OptCategory[NN_setnge] = 2; // Set Byte if Not Greater or Equal (ZF=1)
OptCategory[NN_setnl] = 2; // Set Byte if Not Less (SF=OF)
OptCategory[NN_setnle] = 2; // Set Byte if Not Less or Equal (ZF=0 & SF=OF)
OptCategory[NN_setno] = 2; // Set Byte if Not Overflow (OF=0)
OptCategory[NN_setnp] = 2; // Set Byte if Not Parity (PF=0)
OptCategory[NN_setns] = 2; // Set Byte if Not Sign (SF=0)
OptCategory[NN_setnz] = 2; // Set Byte if Not Zero (ZF=0)
OptCategory[NN_seto] = 2; // Set Byte if Overflow (OF=1)
OptCategory[NN_setp] = 2; // Set Byte if Parity (PF=1)
OptCategory[NN_setpe] = 2; // Set Byte if Parity Even (PF=1)
OptCategory[NN_setpo] = 2; // Set Byte if Parity Odd (PF=0)
OptCategory[NN_sets] = 2; // Set Byte if Sign (SF=1)
OptCategory[NN_setz] = 2; // Set Byte if Zero (ZF=1)
OptCategory[NN_sgdt] = 0; // Store Global Descriptor Table Register
OptCategory[NN_sidt] = 0; // Store Interrupt Descriptor Table Register
OptCategory[NN_shld] = 2; // Double Precision Shift Left
OptCategory[NN_shrd] = 2; // Double Precision Shift Right
OptCategory[NN_sldt] = 6; // Store Local Descriptor Table Register
OptCategory[NN_smsw] = 2; // Store Machine Status Word
OptCategory[NN_stc] = 1; // Set Carry Flag
OptCategory[NN_std] = 1; // Set Direction Flag
OptCategory[NN_sti] = 1; // Set Interrupt Flag
OptCategory[NN_stos] = 0; // Store String
OptCategory[NN_str] = 6; // Store Task Register
OptCategory[NN_sub] = 5; // Integer Subtraction
OptCategory[NN_test] = 1; // Logical Compare
OptCategory[NN_verr] = 1; // Verify a Segment for Reading
OptCategory[NN_verw] = 1; // Verify a Segment for Writing
OptCategory[NN_wait] = 1; // Wait until BUSY# Pin is Inactive (HIGH)
OptCategory[NN_xchg] = 0; // Exchange Register/Memory with Register
OptCategory[NN_xlat] = 0; // Table Lookup Translation
OptCategory[NN_xor] = 2; // Logical Exclusive OR
//
// 486 instructions
//
OptCategory[NN_cmpxchg] = 0; // Compare and Exchange
OptCategory[NN_bswap] = 1; // Swap bytes in register
OptCategory[NN_xadd] = 0; // t<-dest; dest<-src+dest; src<-t
OptCategory[NN_invd] = 1; // Invalidate Data Cache
OptCategory[NN_wbinvd] = 1; // Invalidate Data Cache (write changes)
OptCategory[NN_invlpg] = 1; // Invalidate TLB entry
//
// Pentium instructions
//
OptCategory[NN_rdmsr] = 8; // Read Machine Status Register
OptCategory[NN_wrmsr] = 1; // Write Machine Status Register
OptCategory[NN_cpuid] = 8; // Get CPU ID
OptCategory[NN_cmpxchg8b] = 0; // Compare and Exchange Eight Bytes
OptCategory[NN_rdtsc] = 8; // Read Time Stamp Counter
OptCategory[NN_rsm] = 1; // Resume from System Management Mode
//
// Pentium Pro instructions
//
OptCategory[NN_cmova] = 0; // Move if Above (CF=0 & ZF=0)
OptCategory[NN_cmovb] = 0; // Move if Below (CF=1)
OptCategory[NN_cmovbe] = 0; // Move if Below or Equal (CF=1 | ZF=1)
OptCategory[NN_cmovg] = 0; // Move if Greater (ZF=0 & SF=OF)
OptCategory[NN_cmovge] = 0; // Move if Greater or Equal (SF=OF)
OptCategory[NN_cmovl] = 0; // Move if Less (SF!=OF)
OptCategory[NN_cmovle] = 0; // Move if Less or Equal (ZF=1 | SF!=OF)
OptCategory[NN_cmovnb] = 0; // Move if Not Below (CF=0)
OptCategory[NN_cmovno] = 0; // Move if Not Overflow (OF=0)
OptCategory[NN_cmovnp] = 0; // Move if Not Parity (PF=0)
OptCategory[NN_cmovns] = 0; // Move if Not Sign (SF=0)
OptCategory[NN_cmovnz] = 0; // Move if Not Zero (ZF=0)
OptCategory[NN_cmovo] = 0; // Move if Overflow (OF=1)
OptCategory[NN_cmovp] = 0; // Move if Parity (PF=1)
OptCategory[NN_cmovs] = 0; // Move if Sign (SF=1)
OptCategory[NN_cmovz] = 0; // Move if Zero (ZF=1)
OptCategory[NN_fcmovb] = 1; // Floating Move if Below
OptCategory[NN_fcmove] = 1; // Floating Move if Equal
OptCategory[NN_fcmovbe] = 1; // Floating Move if Below or Equal
OptCategory[NN_fcmovu] = 1; // Floating Move if Unordered
OptCategory[NN_fcmovnb] = 1; // Floating Move if Not Below
OptCategory[NN_fcmovne] = 1; // Floating Move if Not Equal
OptCategory[NN_fcmovnbe] = 1; // Floating Move if Not Below or Equal
OptCategory[NN_fcmovnu] = 1; // Floating Move if Not Unordered
OptCategory[NN_fcomi] = 1; // FP Compare, result in EFLAGS
OptCategory[NN_fucomi] = 1; // FP Unordered Compare, result in EFLAGS
OptCategory[NN_fcomip] = 1; // FP Compare, result in EFLAGS, pop stack
OptCategory[NN_fucomip] = 1; // FP Unordered Compare, result in EFLAGS, pop stack
OptCategory[NN_rdpmc] = 8; // Read Performance Monitor Counter
//
// FPP instructuions
//
OptCategory[NN_fld] = 1; // Load Real ** Infer src is 'n'
OptCategory[NN_fst] = 9; // Store Real
OptCategory[NN_fstp] = 9; // Store Real and Pop
OptCategory[NN_fxch] = 1; // Exchange Registers
OptCategory[NN_fild] = 1; // Load Integer ** Infer src is 'n'
OptCategory[NN_fist] = 0; // Store Integer
OptCategory[NN_fistp] = 0; // Store Integer and Pop
OptCategory[NN_fbld] = 1; // Load BCD
OptCategory[NN_fbstp] = 1; // Store BCD and Pop
OptCategory[NN_fadd] = 1; // Add Real
OptCategory[NN_faddp] = 1; // Add Real and Pop
OptCategory[NN_fiadd] = 1; // Add Integer
OptCategory[NN_fsub] = 1; // Subtract Real
OptCategory[NN_fsubp] = 1; // Subtract Real and Pop
OptCategory[NN_fisub] = 1; // Subtract Integer
OptCategory[NN_fsubr] = 1; // Subtract Real Reversed
OptCategory[NN_fsubrp] = 1; // Subtract Real Reversed and Pop
OptCategory[NN_fisubr] = 1; // Subtract Integer Reversed
OptCategory[NN_fmul] = 1; // Multiply Real
OptCategory[NN_fmulp] = 1; // Multiply Real and Pop
OptCategory[NN_fimul] = 1; // Multiply Integer
OptCategory[NN_fdiv] = 1; // Divide Real
OptCategory[NN_fdivp] = 1; // Divide Real and Pop
OptCategory[NN_fidiv] = 1; // Divide Integer
OptCategory[NN_fdivr] = 1; // Divide Real Reversed
OptCategory[NN_fdivrp] = 1; // Divide Real Reversed and Pop
OptCategory[NN_fidivr] = 1; // Divide Integer Reversed
OptCategory[NN_fsqrt] = 1; // Square Root
OptCategory[NN_fscale] = 1; // Scale: st(0) <- st(0) * 2^st(1)
OptCategory[NN_fprem] = 1; // Partial Remainder
OptCategory[NN_frndint] = 1; // Round to Integer
OptCategory[NN_fxtract] = 1; // Extract exponent and significand
OptCategory[NN_fabs] = 1; // Absolute value
OptCategory[NN_fchs] = 1; // Change Sign
OptCategory[NN_fcom] = 1; // Compare Real
OptCategory[NN_fcomp] = 1; // Compare Real and Pop
OptCategory[NN_fcompp] = 1; // Compare Real and Pop Twice
OptCategory[NN_ficom] = 1; // Compare Integer
OptCategory[NN_ficomp] = 1; // Compare Integer and Pop
OptCategory[NN_ftst] = 1; // Test
OptCategory[NN_fxam] = 1; // Examine
OptCategory[NN_fptan] = 1; // Partial tangent
OptCategory[NN_fpatan] = 1; // Partial arctangent
OptCategory[NN_f2xm1] = 1; // 2^x - 1
OptCategory[NN_fyl2x] = 1; // Y * lg2(X)
OptCategory[NN_fyl2xp1] = 1; // Y * lg2(X+1)
OptCategory[NN_fldz] = 1; // Load +0.0
OptCategory[NN_fld1] = 1; // Load +1.0
OptCategory[NN_fldpi] = 1; // Load PI=3.14...
OptCategory[NN_fldl2t] = 1; // Load lg2(10)
OptCategory[NN_fldl2e] = 1; // Load lg2(e)
OptCategory[NN_fldlg2] = 1; // Load lg10(2)
OptCategory[NN_fldln2] = 1; // Load ln(2)
OptCategory[NN_finit] = 1; // Initialize Processor
OptCategory[NN_fninit] = 1; // Initialize Processor (no wait)
OptCategory[NN_fsetpm] = 1; // Set Protected Mode
OptCategory[NN_fldcw] = 1; // Load Control Word
OptCategory[NN_fstcw] = 0; // Store Control Word
OptCategory[NN_fnstcw] = 0; // Store Control Word (no wait)
OptCategory[NN_fstsw] = 2; // Store Status Word to memory or AX
OptCategory[NN_fnstsw] = 2; // Store Status Word (no wait) to memory or AX
OptCategory[NN_fclex] = 1; // Clear Exceptions
OptCategory[NN_fnclex] = 1; // Clear Exceptions (no wait)
OptCategory[NN_fstenv] = 0; // Store Environment
OptCategory[NN_fnstenv] = 0; // Store Environment (no wait)
OptCategory[NN_fldenv] = 1; // Load Environment
OptCategory[NN_fsave] = 0; // Save State
OptCategory[NN_fnsave] = 0; // Save State (no wait)
OptCategory[NN_frstor] = 1; // Restore State ** infer src is 'n'
OptCategory[NN_fincstp] = 1; // Increment Stack Pointer
OptCategory[NN_fdecstp] = 1; // Decrement Stack Pointer
OptCategory[NN_ffree] = 1; // Free Register
OptCategory[NN_fnop] = 1; // No Operation
OptCategory[NN_feni] = 1; // (8087 only)
OptCategory[NN_fneni] = 1; // (no wait) (8087 only)
OptCategory[NN_fdisi] = 1; // (8087 only)
OptCategory[NN_fndisi] = 1; // (no wait) (8087 only)
//
// 80387 instructions
//
OptCategory[NN_fprem1] = 1; // Partial Remainder ( < half )
OptCategory[NN_fsincos] = 1; // t<-cos(st); st<-sin(st); push t
OptCategory[NN_fsin] = 1; // Sine
OptCategory[NN_fcos] = 1; // Cosine
OptCategory[NN_fucom] = 1; // Compare Unordered Real
OptCategory[NN_fucomp] = 1; // Compare Unordered Real and Pop
OptCategory[NN_fucompp] = 1; // Compare Unordered Real and Pop Twice
//
// Instructions added 28.02.96
//
OptCategory[NN_setalc] = 2; // Set AL to Carry Flag **
OptCategory[NN_svdc] = 0; // Save Register and Descriptor
OptCategory[NN_rsdc] = 0; // Restore Register and Descriptor
OptCategory[NN_svldt] = 0; // Save LDTR and Descriptor
OptCategory[NN_rsldt] = 0; // Restore LDTR and Descriptor
OptCategory[NN_svts] = 1; // Save TR and Descriptor
OptCategory[NN_rsts] = 1; // Restore TR and Descriptor
OptCategory[NN_icebp] = 1; // ICE Break Point
OptCategory[NN_loadall] = 0; // Load the entire CPU state from ES:EDI
//
// MMX instructions
//
OptCategory[NN_emms] = 1; // Empty MMX state
OptCategory[NN_movd] = 9; // Move 32 bits
OptCategory[NN_movq] = 9; // Move 64 bits
OptCategory[NN_packsswb] = 1; // Pack with Signed Saturation (Word->Byte)
OptCategory[NN_packssdw] = 1; // Pack with Signed Saturation (Dword->Word)
OptCategory[NN_packuswb] = 1; // Pack with Unsigned Saturation (Word->Byte)
OptCategory[NN_paddb] = 1; // Packed Add Byte
OptCategory[NN_paddw] = 1; // Packed Add Word
OptCategory[NN_paddd] = 1; // Packed Add Dword
OptCategory[NN_paddsb] = 1; // Packed Add with Saturation (Byte)
OptCategory[NN_paddsw] = 1; // Packed Add with Saturation (Word)
OptCategory[NN_paddusb] = 1; // Packed Add Unsigned with Saturation (Byte)
OptCategory[NN_paddusw] = 1; // Packed Add Unsigned with Saturation (Word)
OptCategory[NN_pand] = 1; // Bitwise Logical And
OptCategory[NN_pandn] = 1; // Bitwise Logical And Not
OptCategory[NN_pcmpeqb] = 1; // Packed Compare for Equal (Byte)
OptCategory[NN_pcmpeqw] = 1; // Packed Compare for Equal (Word)
OptCategory[NN_pcmpeqd] = 1; // Packed Compare for Equal (Dword)
OptCategory[NN_pcmpgtb] = 1; // Packed Compare for Greater Than (Byte)
OptCategory[NN_pcmpgtw] = 1; // Packed Compare for Greater Than (Word)
OptCategory[NN_pcmpgtd] = 1; // Packed Compare for Greater Than (Dword)
OptCategory[NN_pmaddwd] = 1; // Packed Multiply and Add
OptCategory[NN_pmulhw] = 1; // Packed Multiply High
OptCategory[NN_pmullw] = 1; // Packed Multiply Low
OptCategory[NN_por] = 1; // Bitwise Logical Or
OptCategory[NN_psllw] = 1; // Packed Shift Left Logical (Word)
OptCategory[NN_pslld] = 1; // Packed Shift Left Logical (Dword)
OptCategory[NN_psllq] = 1; // Packed Shift Left Logical (Qword)
OptCategory[NN_psraw] = 1; // Packed Shift Right Arithmetic (Word)
OptCategory[NN_psrad] = 1; // Packed Shift Right Arithmetic (Dword)
OptCategory[NN_psrlw] = 1; // Packed Shift Right Logical (Word)
OptCategory[NN_psrld] = 1; // Packed Shift Right Logical (Dword)
OptCategory[NN_psrlq] = 1; // Packed Shift Right Logical (Qword)
OptCategory[NN_psubb] = 1; // Packed Subtract Byte
OptCategory[NN_psubw] = 1; // Packed Subtract Word
OptCategory[NN_psubd] = 1; // Packed Subtract Dword
OptCategory[NN_psubsb] = 1; // Packed Subtract with Saturation (Byte)
OptCategory[NN_psubsw] = 1; // Packed Subtract with Saturation (Word)
OptCategory[NN_psubusb] = 1; // Packed Subtract Unsigned with Saturation (Byte)
OptCategory[NN_psubusw] = 1; // Packed Subtract Unsigned with Saturation (Word)
OptCategory[NN_punpckhbw] = 1; // Unpack High Packed Data (Byte->Word)
OptCategory[NN_punpckhwd] = 1; // Unpack High Packed Data (Word->Dword)
OptCategory[NN_punpckhdq] = 1; // Unpack High Packed Data (Dword->Qword)
OptCategory[NN_punpcklbw] = 1; // Unpack Low Packed Data (Byte->Word)
OptCategory[NN_punpcklwd] = 1; // Unpack Low Packed Data (Word->Dword)
OptCategory[NN_punpckldq] = 1; // Unpack Low Packed Data (Dword->Qword)
OptCategory[NN_pxor] = 1; // Bitwise Logical Exclusive Or
//
// Undocumented Deschutes processor instructions
//
OptCategory[NN_fxsave] = 1; // Fast save FP context ** to where?
OptCategory[NN_fxrstor] = 1; // Fast restore FP context ** from where?
// Pentium II instructions
OptCategory[NN_sysenter] = 1; // Fast Transition to System Call Entry Point
OptCategory[NN_sysexit] = 1; // Fast Transition from System Call Entry Point
// 3DNow! instructions
OptCategory[NN_pavgusb] = 1; // Packed 8-bit Unsigned Integer Averaging
OptCategory[NN_pfadd] = 1; // Packed Floating-Point Addition
OptCategory[NN_pfsub] = 1; // Packed Floating-Point Subtraction
OptCategory[NN_pfsubr] = 1; // Packed Floating-Point Reverse Subtraction
OptCategory[NN_pfacc] = 1; // Packed Floating-Point Accumulate
OptCategory[NN_pfcmpge] = 1; // Packed Floating-Point Comparison, Greater or Equal
OptCategory[NN_pfcmpgt] = 1; // Packed Floating-Point Comparison, Greater
OptCategory[NN_pfcmpeq] = 1; // Packed Floating-Point Comparison, Equal
OptCategory[NN_pfmin] = 1; // Packed Floating-Point Minimum
OptCategory[NN_pfmax] = 1; // Packed Floating-Point Maximum
OptCategory[NN_pi2fd] = 1; // Packed 32-bit Integer to Floating-Point
OptCategory[NN_pf2id] = 1; // Packed Floating-Point to 32-bit Integer
OptCategory[NN_pfrcp] = 1; // Packed Floating-Point Reciprocal Approximation
OptCategory[NN_pfrsqrt] = 1; // Packed Floating-Point Reciprocal Square Root Approximation
OptCategory[NN_pfmul] = 1; // Packed Floating-Point Multiplication
OptCategory[NN_pfrcpit1] = 1; // Packed Floating-Point Reciprocal First Iteration Step
OptCategory[NN_pfrsqit1] = 1; // Packed Floating-Point Reciprocal Square Root First Iteration Step
OptCategory[NN_pfrcpit2] = 1; // Packed Floating-Point Reciprocal Second Iteration Step
OptCategory[NN_pmulhrw] = 1; // Packed Floating-Point 16-bit Integer Multiply with rounding
OptCategory[NN_femms] = 1; // Faster entry/exit of the MMX or floating-point state
OptCategory[NN_prefetch] = 1; // Prefetch at least a 32-byte line into L1 data cache
OptCategory[NN_prefetchw] = 1; // Prefetch processor cache line into L1 data cache (mark as modified)
// Pentium III instructions
OptCategory[NN_addps] = 1; // Packed Single-FP Add
OptCategory[NN_addss] = 1; // Scalar Single-FP Add
OptCategory[NN_andnps] = 1; // Bitwise Logical And Not for Single-FP
OptCategory[NN_andps] = 1; // Bitwise Logical And for Single-FP
OptCategory[NN_cmpps] = 1; // Packed Single-FP Compare
OptCategory[NN_cmpss] = 1; // Scalar Single-FP Compare
OptCategory[NN_comiss] = 1; // Scalar Ordered Single-FP Compare and Set EFLAGS
OptCategory[NN_cvtpi2ps] = 1; // Packed signed INT32 to Packed Single-FP conversion
OptCategory[NN_cvtps2pi] = 1; // Packed Single-FP to Packed INT32 conversion
OptCategory[NN_cvtsi2ss] = 1; // Scalar signed INT32 to Single-FP conversion
OptCategory[NN_cvtss2si] = 2; // Scalar Single-FP to signed INT32 conversion
OptCategory[NN_cvttps2pi] = 1; // Packed Single-FP to Packed INT32 conversion (truncate)
OptCategory[NN_cvttss2si] = 2; // Scalar Single-FP to signed INT32 conversion (truncate)
OptCategory[NN_divps] = 1; // Packed Single-FP Divide
OptCategory[NN_divss] = 1; // Scalar Single-FP Divide
OptCategory[NN_ldmxcsr] = 1; // Load Streaming SIMD Extensions Technology Control/Status Register
OptCategory[NN_maxps] = 1; // Packed Single-FP Maximum
OptCategory[NN_maxss] = 1; // Scalar Single-FP Maximum
OptCategory[NN_minps] = 1; // Packed Single-FP Minimum
OptCategory[NN_minss] = 1; // Scalar Single-FP Minimum
OptCategory[NN_movaps] = 9; // Move Aligned Four Packed Single-FP ** infer memsrc 'n'?
OptCategory[NN_movhlps] = 1; // Move High to Low Packed Single-FP
OptCategory[NN_movhps] = 1; // Move High Packed Single-FP
OptCategory[NN_movlhps] = 1; // Move Low to High Packed Single-FP
OptCategory[NN_movlps] = 1; // Move Low Packed Single-FP
OptCategory[NN_movmskps] = 1; // Move Mask to Register
OptCategory[NN_movss] = 9; // Move Scalar Single-FP
OptCategory[NN_movups] = 9; // Move Unaligned Four Packed Single-FP
OptCategory[NN_mulps] = 1; // Packed Single-FP Multiply
OptCategory[NN_mulss] = 1; // Scalar Single-FP Multiply
OptCategory[NN_orps] = 1; // Bitwise Logical OR for Single-FP Data
OptCategory[NN_rcpps] = 1; // Packed Single-FP Reciprocal
OptCategory[NN_rcpss] = 1; // Scalar Single-FP Reciprocal
OptCategory[NN_rsqrtps] = 1; // Packed Single-FP Square Root Reciprocal
OptCategory[NN_rsqrtss] = 1; // Scalar Single-FP Square Root Reciprocal
OptCategory[NN_shufps] = 1; // Shuffle Single-FP
OptCategory[NN_sqrtps] = 1; // Packed Single-FP Square Root
OptCategory[NN_sqrtss] = 1; // Scalar Single-FP Square Root
OptCategory[NN_stmxcsr] = 0; // Store Streaming SIMD Extensions Technology Control/Status Register ** Infer dest is 'n'
OptCategory[NN_subps] = 1; // Packed Single-FP Subtract
OptCategory[NN_subss] = 1; // Scalar Single-FP Subtract
OptCategory[NN_ucomiss] = 1; // Scalar Unordered Single-FP Compare and Set EFLAGS
OptCategory[NN_unpckhps] = 1; // Unpack High Packed Single-FP Data
OptCategory[NN_unpcklps] = 1; // Unpack Low Packed Single-FP Data
OptCategory[NN_xorps] = 1; // Bitwise Logical XOR for Single-FP Data
OptCategory[NN_pavgb] = 1; // Packed Average (Byte)
OptCategory[NN_pavgw] = 1; // Packed Average (Word)
OptCategory[NN_pextrw] = 2; // Extract Word
OptCategory[NN_pinsrw] = 1; // Insert Word
OptCategory[NN_pmaxsw] = 1; // Packed Signed Integer Word Maximum
OptCategory[NN_pmaxub] = 1; // Packed Unsigned Integer Byte Maximum
OptCategory[NN_pminsw] = 1; // Packed Signed Integer Word Minimum
OptCategory[NN_pminub] = 1; // Packed Unsigned Integer Byte Minimum
OptCategory[NN_pmovmskb] = 1; // Move Byte Mask to Integer
OptCategory[NN_pmulhuw] = 1; // Packed Multiply High Unsigned
OptCategory[NN_psadbw] = 1; // Packed Sum of Absolute Differences
OptCategory[NN_pshufw] = 1; // Packed Shuffle Word
OptCategory[NN_maskmovq] = 0; // Byte Mask write ** Infer dest is 'n'
OptCategory[NN_movntps] = 0; // Move Aligned Four Packed Single-FP Non Temporal * infer dest is 'n'
OptCategory[NN_movntq] = 0; // Move 64 Bits Non Temporal ** Infer dest is 'n'
OptCategory[NN_prefetcht0] = 1; // Prefetch to all cache levels
OptCategory[NN_prefetcht1] = 1; // Prefetch to all cache levels
OptCategory[NN_prefetcht2] = 1; // Prefetch to L2 cache
OptCategory[NN_prefetchnta] = 1; // Prefetch to L1 cache
OptCategory[NN_sfence] = 1; // Store Fence
// Pentium III Pseudo instructions
OptCategory[NN_cmpeqps] = 1; // Packed Single-FP Compare EQ
OptCategory[NN_cmpltps] = 1; // Packed Single-FP Compare LT
OptCategory[NN_cmpleps] = 1; // Packed Single-FP Compare LE
OptCategory[NN_cmpunordps] = 1; // Packed Single-FP Compare UNORD
OptCategory[NN_cmpneqps] = 1; // Packed Single-FP Compare NOT EQ
OptCategory[NN_cmpnltps] = 1; // Packed Single-FP Compare NOT LT
OptCategory[NN_cmpnleps] = 1; // Packed Single-FP Compare NOT LE
OptCategory[NN_cmpordps] = 1; // Packed Single-FP Compare ORDERED
OptCategory[NN_cmpeqss] = 1; // Scalar Single-FP Compare EQ
OptCategory[NN_cmpltss] = 1; // Scalar Single-FP Compare LT
OptCategory[NN_cmpless] = 1; // Scalar Single-FP Compare LE
OptCategory[NN_cmpunordss] = 1; // Scalar Single-FP Compare UNORD
OptCategory[NN_cmpneqss] = 1; // Scalar Single-FP Compare NOT EQ
OptCategory[NN_cmpnltss] = 1; // Scalar Single-FP Compare NOT LT
OptCategory[NN_cmpnless] = 1; // Scalar Single-FP Compare NOT LE
OptCategory[NN_cmpordss] = 1; // Scalar Single-FP Compare ORDERED
// AMD K7 instructions
// Revisit AMD if we port to it.
OptCategory[NN_pf2iw] = 0; // Packed Floating-Point to Integer with Sign Extend
OptCategory[NN_pfnacc] = 0; // Packed Floating-Point Negative Accumulate
OptCategory[NN_pfpnacc] = 0; // Packed Floating-Point Mixed Positive-Negative Accumulate
OptCategory[NN_pi2fw] = 0; // Packed 16-bit Integer to Floating-Point
OptCategory[NN_pswapd] = 0; // Packed Swap Double Word
// Undocumented FP instructions (thanks to norbert.juffa@adm.com)
OptCategory[NN_fstp1] = 9; // Alias of Store Real and Pop
OptCategory[NN_fcom2] = 1; // Alias of Compare Real
OptCategory[NN_fcomp3] = 1; // Alias of Compare Real and Pop
OptCategory[NN_fxch4] = 1; // Alias of Exchange Registers
OptCategory[NN_fcomp5] = 1; // Alias of Compare Real and Pop
OptCategory[NN_ffreep] = 1; // Free Register and Pop
OptCategory[NN_fxch7] = 1; // Alias of Exchange Registers
OptCategory[NN_fstp8] = 9; // Alias of Store Real and Pop
OptCategory[NN_fstp9] = 9; // Alias of Store Real and Pop
// Pentium 4 instructions
OptCategory[NN_addpd] = 1; // Add Packed Double-Precision Floating-Point Values
OptCategory[NN_addsd] = 1; // Add Scalar Double-Precision Floating-Point Values
OptCategory[NN_andnpd] = 1; // Bitwise Logical AND NOT of Packed Double-Precision Floating-Point Values
OptCategory[NN_andpd] = 1; // Bitwise Logical AND of Packed Double-Precision Floating-Point Values
OptCategory[NN_clflush] = 1; // Flush Cache Line
OptCategory[NN_cmppd] = 1; // Compare Packed Double-Precision Floating-Point Values
OptCategory[NN_cmpsd] = 1; // Compare Scalar Double-Precision Floating-Point Values
OptCategory[NN_comisd] = 1; // Compare Scalar Ordered Double-Precision Floating-Point Values and Set EFLAGS
OptCategory[NN_cvtdq2pd] = 1; // Convert Packed Doubleword Integers to Packed Single-Precision Floating-Point Values
OptCategory[NN_cvtdq2ps] = 1; // Convert Packed Doubleword Integers to Packed Double-Precision Floating-Point Values
OptCategory[NN_cvtpd2dq] = 1; // Convert Packed Double-Precision Floating-Point Values to Packed Doubleword Integers
OptCategory[NN_cvtpd2pi] = 1; // Convert Packed Double-Precision Floating-Point Values to Packed Doubleword Integers
OptCategory[NN_cvtpd2ps] = 1; // Convert Packed Double-Precision Floating-Point Values to Packed Single-Precision Floating-Point Values
OptCategory[NN_cvtpi2pd] = 1; // Convert Packed Doubleword Integers to Packed Double-Precision Floating-Point Values
OptCategory[NN_cvtps2dq] = 1; // Convert Packed Single-Precision Floating-Point Values to Packed Doubleword Integers
OptCategory[NN_cvtps2pd] = 1; // Convert Packed Single-Precision Floating-Point Values to Packed Double-Precision Floating-Point Values
OptCategory[NN_cvtsd2si] = 2; // Convert Scalar Double-Precision Floating-Point Value to Doubleword Integer
OptCategory[NN_cvtsd2ss] = 1; // Convert Scalar Double-Precision Floating-Point Value to Scalar Single-Precision Floating-Point Value
OptCategory[NN_cvtsi2sd] = 1; // Convert Doubleword Integer to Scalar Double-Precision Floating-Point Value
OptCategory[NN_cvtss2sd] = 1; // Convert Scalar Single-Precision Floating-Point Value to Scalar Double-Precision Floating-Point Value
OptCategory[NN_cvttpd2dq] = 1; // Convert With Truncation Packed Double-Precision Floating-Point Values to Packed Doubleword Integers
OptCategory[NN_cvttpd2pi] = 1; // Convert with Truncation Packed Double-Precision Floating-Point Values to Packed Doubleword Integers
OptCategory[NN_cvttps2dq] = 1; // Convert With Truncation Packed Single-Precision Floating-Point Values to Packed Doubleword Integers
OptCategory[NN_cvttsd2si] = 2; // Convert with Truncation Scalar Double-Precision Floating-Point Value to Doubleword Integer
OptCategory[NN_divpd] = 1; // Divide Packed Double-Precision Floating-Point Values
OptCategory[NN_divsd] = 1; // Divide Scalar Double-Precision Floating-Point Values
OptCategory[NN_lfence] = 1; // Load Fence
OptCategory[NN_maskmovdqu] = 0; // Store Selected Bytes of Double Quadword ** Infer dest is 'n'
OptCategory[NN_maxpd] = 1; // Return Maximum Packed Double-Precision Floating-Point Values
OptCategory[NN_maxsd] = 1; // Return Maximum Scalar Double-Precision Floating-Point Value
OptCategory[NN_mfence] = 1; // Memory Fence
OptCategory[NN_minpd] = 1; // Return Minimum Packed Double-Precision Floating-Point Values
OptCategory[NN_minsd] = 1; // Return Minimum Scalar Double-Precision Floating-Point Value
OptCategory[NN_movapd] = 9; // Move Aligned Packed Double-Precision Floating-Point Values ** Infer dest is 'n'
OptCategory[NN_movdq2q] = 1; // Move Quadword from XMM to MMX Register
OptCategory[NN_movdqa] = 9; // Move Aligned Double Quadword ** Infer dest is 'n'
OptCategory[NN_movdqu] = 9; // Move Unaligned Double Quadword ** Infer dest is 'n'
OptCategory[NN_movhpd] = 9; // Move High Packed Double-Precision Floating-Point Values ** Infer dest is 'n'
OptCategory[NN_movlpd] = 9; // Move Low Packed Double-Precision Floating-Point Values ** Infer dest is 'n'
OptCategory[NN_movmskpd] = 2; // Extract Packed Double-Precision Floating-Point Sign Mask
OptCategory[NN_movntdq] = 0; // Store Double Quadword Using Non-Temporal Hint
OptCategory[NN_movnti] = 0; // Store Doubleword Using Non-Temporal Hint
OptCategory[NN_movntpd] = 0; // Store Packed Double-Precision Floating-Point Values Using Non-Temporal Hint
OptCategory[NN_movq2dq] = 1; // Move Quadword from MMX to XMM Register
OptCategory[NN_movsd] = 9; // Move Scalar Double-Precision Floating-Point Values
OptCategory[NN_movupd] = 9; // Move Unaligned Packed Double-Precision Floating-Point Values
OptCategory[NN_mulpd] = 1; // Multiply Packed Double-Precision Floating-Point Values
OptCategory[NN_mulsd] = 1; // Multiply Scalar Double-Precision Floating-Point Values
OptCategory[NN_orpd] = 1; // Bitwise Logical OR of Double-Precision Floating-Point Values
OptCategory[NN_paddq] = 1; // Add Packed Quadword Integers
OptCategory[NN_pause] = 1; // Spin Loop Hint
OptCategory[NN_pmuludq] = 1; // Multiply Packed Unsigned Doubleword Integers
OptCategory[NN_pshufd] = 1; // Shuffle Packed Doublewords
OptCategory[NN_pshufhw] = 1; // Shuffle Packed High Words
OptCategory[NN_pshuflw] = 1; // Shuffle Packed Low Words
OptCategory[NN_pslldq] = 1; // Shift Double Quadword Left Logical
OptCategory[NN_psrldq] = 1; // Shift Double Quadword Right Logical
OptCategory[NN_psubq] = 1; // Subtract Packed Quadword Integers
OptCategory[NN_punpckhqdq] = 1; // Unpack High Data
OptCategory[NN_punpcklqdq] = 1; // Unpack Low Data