Newer
Older
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
SMPOperandType SMPPhiFunction::ConditionalMeetType(void) const {
SMPOperandType MeetType;
SMPOperandType PtrType = UNINIT;
SMPOperandType NumericType = UNINIT; // can end up NUMERIC or CODEPTR
bool FoundUNINIT = false; // any USE type UNINIT?
bool FoundNUMERIC = false; // any USE type NUMERIC?
bool FoundPOINTER = false; // includes all POINTER subtypes
bool FoundUNKNOWN = false; // any USE type UNKNOWN?
bool ProfilerDerived = false; // was any USE type Profiler-derived?
for (size_t index = 0; index < this->GetPhiListSize(); ++index) {
SMPOperandType UseType = this->GetUseType(index);
if (IsEqType(UseType, UNINIT))
FoundUNINIT = true;
else if (IsNumeric(UseType)) {
FoundNUMERIC = true;
if (IsEqType(NumericType, CODEPTR)) {
// Already refined. If current type agrees, leave it
// alone, else revert to generic type NUMERIC.
if (IsNotEqType(UseType, NumericType))
NumericType = NUMERIC;
}
else {
// Have not yet refined NumericType; might still be UNINIT.
if (IsEqType(UNINIT, NumericType))
NumericType = UseType;
else { // NumericType is NUMERIC; leave it as NUMERIC.
assert(IsEqType(NUMERIC, NumericType));
}
}
}
else if (IsDataPtr(UseType)) {
FoundPOINTER = true;
// Perform a meet over the pointer types.
if (IsRefinedDataPtr(PtrType)) {
// Already refined. If current type agrees, leave it
// alone, else revert to generic type POINTER.
if (IsNotEqType(UseType, PtrType))
PtrType = POINTER;
}
else {
// Have not yet refined PtrType; might still be UNINIT.
if (IsEqType(UNINIT, PtrType))
PtrType = UseType;
else { // PtrType is POINTER because we saw POINTER or
// had a conflict between pointer refinements; leave
// it as POINTER.
assert(IsEqType(POINTER, PtrType));
}
}
}
else if (IsUnknown(UseType))
FoundUNKNOWN = true;
if (IsProfDerived(UseType))
ProfilerDerived = true;
}
// Use the boolean flags to compute the meet function.
if (FoundUNKNOWN || (FoundNUMERIC && FoundPOINTER))
MeetType = UNKNOWN;
else if (FoundNUMERIC)
MeetType = NumericType;
else if (FoundPOINTER)
MeetType = PtrType;
else {
assert(FoundUNINIT);
MeetType = UNINIT;
}
if (ProfilerDerived)
MeetType = MakeProfDerived(MeetType);
return MeetType;
} // end of SMPPhiFunction::ConditionalMeetType()
// Debug printing.
void SMPPhiFunction::Dump(void) const {
msg(" DEF: ");
this->DefName.Dump();
msg(" USEs: ");
this->SubscriptedOps.Dump();
return;
}
// *****************************************************************
// Class SMPDefUseChain
// *****************************************************************
// Constructors
SMPDefUseChain::SMPDefUseChain(void) {
this->SSAName.type = o_void;
clc5q
committed
this->RefInstrs.clear();
this->RefInstrs.push_back(BADADDR);
this->IndWrite = false;
return;
}
SMPDefUseChain::SMPDefUseChain(op_t Name, ea_t Def) {
this->SetName(Name);
this->RefInstrs.push_back(Def);
this->IndWrite = false;
return;
}
// Set the variable name.
void SMPDefUseChain::SetName(op_t Name) {
if (o_reg == Name.type) {
// We want to map AH, AL, and AX to EAX, etc. throughout our data flow analysis
// and type inference systems.
Name.reg = MDCanonicalizeSubReg(Name.reg);
}
this->SSAName = Name;
return;
}
// Set the DEF instruction.
void SMPDefUseChain::SetDef(ea_t Def) {
this->RefInstrs[0] = Def;
return;
}
// Push a USE onto the list
void SMPDefUseChain::PushUse(ea_t Use) {
this->RefInstrs.push_back(Use);
return;
}
// Set the indirect memory write flag.
void SMPDefUseChain::SetIndWrite(bool IndMemWrite) {
this->IndWrite = IndMemWrite;
return;
}
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
// DEBUG dump.
void SMPDefUseChain::Dump(int SSANum) {
msg("DEF-USE chain for: ");
PrintListOperand(this->SSAName, SSANum);
if (this->RefInstrs.size() < 1) {
msg(" no references.\n");
return;
}
msg("\n DEF: %x USEs: ", this->RefInstrs.at(0));
size_t index;
for (index = 1; index < this->RefInstrs.size(); ++index)
msg("%x ", this->RefInstrs.at(index));
msg("\n");
return;
} // end of SMPDefUseChain::Dump()
// *****************************************************************
// Class SMPDUChainArray
// *****************************************************************
SMPDUChainArray::SMPDUChainArray(void) {
this->SSAName.type = o_void;
this->DUChains.clear();
return;
}
SMPDUChainArray::SMPDUChainArray(op_t Name) {
if (o_reg == Name.type) {
// We want to map AH, AL, and AX to EAX, etc. throughout our data flow analysis
// and type inference systems.
Name.reg = MDCanonicalizeSubReg(Name.reg);
}
this->SSAName = Name;
this->DUChains.clear();
return;
}
void SMPDUChainArray::SetName(op_t Name) {
if (o_reg == Name.type) {
// We want to map AH, AL, and AX to EAX, etc. throughout our data flow analysis
// and type inference systems.
Name.reg = MDCanonicalizeSubReg(Name.reg);
}
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
this->SSAName = Name;
return;
}
// DEBUG dump.
void SMPDUChainArray::Dump(void) {
size_t index;
for (index = 0; index < this->DUChains.size(); ++index) {
this->DUChains.at(index).Dump((int) index);
}
return;
}
// *****************************************************************
// Class SMPCompleteDUChains
// *****************************************************************
// DEBUG dump.
void SMPCompleteDUChains::Dump(void) {
size_t index;
for (index = 0; index < this->ChainsByName.size(); ++index) {
this->ChainsByName.at(index).Dump();
}
return;
} // end of SMPCompleteDUChains::Dump()
// Initialize the DFACategory[] array to define instruction classes
// for the purposes of data flow analysis.
void InitDFACategory(void) {
// Default category is 0, not the start or end of a basic block.
(void) memset(DFACategory, 0, sizeof(DFACategory));
DFACategory[NN_call] = CALL; // Call Procedure
DFACategory[NN_callfi] = INDIR_CALL; // Indirect Call Far Procedure
DFACategory[NN_callni] = INDIR_CALL; // Indirect Call Near Procedure
DFACategory[NN_hlt] = HALT; // Halt
DFACategory[NN_int] = INDIR_CALL; // Call to Interrupt Procedure
DFACategory[NN_into] = INDIR_CALL; // Call to Interrupt Procedure if Overflow Flag = 1
DFACategory[NN_int3] = INDIR_CALL; // Trap to Debugger
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
DFACategory[NN_iretw] = RETURN; // Interrupt Return
DFACategory[NN_iret] = RETURN; // Interrupt Return
DFACategory[NN_iretd] = RETURN; // Interrupt Return (use32)
DFACategory[NN_iretq] = RETURN; // Interrupt Return (use64)
DFACategory[NN_ja] = COND_BRANCH; // Jump if Above (CF=0 & ZF=0)
DFACategory[NN_jae] = COND_BRANCH; // Jump if Above or Equal (CF=0)
DFACategory[NN_jb] = COND_BRANCH; // Jump if Below (CF=1)
DFACategory[NN_jbe] = COND_BRANCH; // Jump if Below or Equal (CF=1 | ZF=1)
DFACategory[NN_jc] = COND_BRANCH; // Jump if Carry (CF=1)
DFACategory[NN_jcxz] = COND_BRANCH; // Jump if CX is 0
DFACategory[NN_jecxz] = COND_BRANCH; // Jump if ECX is 0
DFACategory[NN_jrcxz] = COND_BRANCH; // Jump if RCX is 0
DFACategory[NN_je] = COND_BRANCH; // Jump if Equal (ZF=1)
DFACategory[NN_jg] = COND_BRANCH; // Jump if Greater (ZF=0 & SF=OF)
DFACategory[NN_jge] = COND_BRANCH; // Jump if Greater or Equal (SF=OF)
DFACategory[NN_jl] = COND_BRANCH; // Jump if Less (SF!=OF)
DFACategory[NN_jle] = COND_BRANCH; // Jump if Less or Equal (ZF=1 | SF!=OF)
DFACategory[NN_jna] = COND_BRANCH; // Jump if Not Above (CF=1 | ZF=1)
DFACategory[NN_jnae] = COND_BRANCH; // Jump if Not Above or Equal (CF=1)
DFACategory[NN_jnb] = COND_BRANCH; // Jump if Not Below (CF=0)
DFACategory[NN_jnbe] = COND_BRANCH; // Jump if Not Below or Equal (CF=0 & ZF=0)
DFACategory[NN_jnc] = COND_BRANCH; // Jump if Not Carry (CF=0)
DFACategory[NN_jne] = COND_BRANCH; // Jump if Not Equal (ZF=0)
DFACategory[NN_jng] = COND_BRANCH; // Jump if Not Greater (ZF=1 | SF!=OF)
DFACategory[NN_jnge] = COND_BRANCH; // Jump if Not Greater or Equal (ZF=1)
DFACategory[NN_jnl] = COND_BRANCH; // Jump if Not Less (SF=OF)
DFACategory[NN_jnle] = COND_BRANCH; // Jump if Not Less or Equal (ZF=0 & SF=OF)
DFACategory[NN_jno] = COND_BRANCH; // Jump if Not Overflow (OF=0)
DFACategory[NN_jnp] = COND_BRANCH; // Jump if Not Parity (PF=0)
DFACategory[NN_jns] = COND_BRANCH; // Jump if Not Sign (SF=0)
DFACategory[NN_jnz] = COND_BRANCH; // Jump if Not Zero (ZF=0)
DFACategory[NN_jo] = COND_BRANCH; // Jump if Overflow (OF=1)
DFACategory[NN_jp] = COND_BRANCH; // Jump if Parity (PF=1)
DFACategory[NN_jpe] = COND_BRANCH; // Jump if Parity Even (PF=1)
DFACategory[NN_jpo] = COND_BRANCH; // Jump if Parity Odd (PF=0)
DFACategory[NN_js] = COND_BRANCH; // Jump if Sign (SF=1)
DFACategory[NN_jz] = COND_BRANCH; // Jump if Zero (ZF=1)
DFACategory[NN_jmp] = JUMP; // Jump
DFACategory[NN_jmpfi] = INDIR_JUMP; // Indirect Far Jump
DFACategory[NN_jmpni] = INDIR_JUMP; // Indirect Near Jump
DFACategory[NN_jmpshort] = JUMP; // Jump Short (only in 64-bit mode)
DFACategory[NN_loopw] = COND_BRANCH; // Loop while ECX != 0
DFACategory[NN_loop] = COND_BRANCH; // Loop while CX != 0
DFACategory[NN_loopd] = COND_BRANCH; // Loop while ECX != 0
DFACategory[NN_loopq] = COND_BRANCH; // Loop while RCX != 0
DFACategory[NN_loopwe] = COND_BRANCH; // Loop while CX != 0 and ZF=1
DFACategory[NN_loope] = COND_BRANCH; // Loop while rCX != 0 and ZF=1
DFACategory[NN_loopde] = COND_BRANCH; // Loop while ECX != 0 and ZF=1
DFACategory[NN_loopqe] = COND_BRANCH; // Loop while RCX != 0 and ZF=1
DFACategory[NN_loopwne] = COND_BRANCH; // Loop while CX != 0 and ZF=0
DFACategory[NN_loopne] = COND_BRANCH; // Loop while rCX != 0 and ZF=0
DFACategory[NN_loopdne] = COND_BRANCH; // Loop while ECX != 0 and ZF=0
DFACategory[NN_loopqne] = COND_BRANCH; // Loop while RCX != 0 and ZF=0
DFACategory[NN_retn] = RETURN; // Return Near from Procedure
DFACategory[NN_retf] = RETURN; // Return Far from Procedure
//
// Pentium instructions
//
DFACategory[NN_rsm] = HALT; // Resume from System Management Mode
// Pentium II instructions
DFACategory[NN_sysenter] = CALL; // Fast Transition to System Call Entry Point
DFACategory[NN_sysexit] = CALL; // Fast Transition from System Call Entry Point
// AMD syscall/sysret instructions NOTE: not AMD, found in Intel manual
DFACategory[NN_syscall] = CALL; // Low latency system call
DFACategory[NN_sysret] = CALL; // Return from system call
// VMX instructions
DFACategory[NN_vmcall] = INDIR_CALL; // Call to VM Monitor
return;
} // end InitDFACategory()
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
// Initialize the SMPDefsFlags[] array to define how we emit
// optimizing annotations.
void InitSMPDefsFlags(void) {
// Default value is true. Many instructions set the flags.
(void) memset(SMPDefsFlags, true, sizeof(SMPDefsFlags));
SMPDefsFlags[NN_null] = false; // Unknown Operation
SMPDefsFlags[NN_bound] = false; // Check Array Index Against Bounds
SMPDefsFlags[NN_call] = false; // Call Procedure
SMPDefsFlags[NN_callfi] = false; // Indirect Call Far Procedure
SMPDefsFlags[NN_callni] = false; // Indirect Call Near Procedure
SMPDefsFlags[NN_cbw] = false; // AL -> AX (with sign)
SMPDefsFlags[NN_cwde] = false; // AX -> EAX (with sign)
SMPDefsFlags[NN_cdqe] = false; // EAX -> RAX (with sign)
SMPDefsFlags[NN_clts] = false; // Clear Task-Switched Flag in CR0
SMPDefsFlags[NN_cwd] = false; // AX -> DX:AX (with sign)
SMPDefsFlags[NN_cdq] = false; // EAX -> EDX:EAX (with sign)
SMPDefsFlags[NN_cqo] = false; // RAX -> RDX:RAX (with sign)
SMPDefsFlags[NN_enterw] = false; // Make Stack Frame for Procedure Parameters
SMPDefsFlags[NN_enter] = false; // Make Stack Frame for Procedure Parameters
SMPDefsFlags[NN_enterd] = false; // Make Stack Frame for Procedure Parameters
SMPDefsFlags[NN_enterq] = false; // Make Stack Frame for Procedure Parameters
SMPDefsFlags[NN_hlt] = false; // Halt
SMPDefsFlags[NN_in] = false; // Input from Port
SMPDefsFlags[NN_ins] = false; // Input Byte(s) from Port to String
SMPDefsFlags[NN_iretw] = false; // Interrupt Return
SMPDefsFlags[NN_iret] = false; // Interrupt Return
SMPDefsFlags[NN_iretd] = false; // Interrupt Return (use32)
SMPDefsFlags[NN_iretq] = false; // Interrupt Return (use64)
SMPDefsFlags[NN_ja] = false; // Jump if Above (CF=0 & ZF=0)
SMPDefsFlags[NN_jae] = false; // Jump if Above or Equal (CF=0)
SMPDefsFlags[NN_jb] = false; // Jump if Below (CF=1)
SMPDefsFlags[NN_jbe] = false; // Jump if Below or Equal (CF=1 | ZF=1)
SMPDefsFlags[NN_jc] = false; // Jump if Carry (CF=1)
SMPDefsFlags[NN_jcxz] = false; // Jump if CX is 0
SMPDefsFlags[NN_jecxz] = false; // Jump if ECX is 0
SMPDefsFlags[NN_jrcxz] = false; // Jump if RCX is 0
SMPDefsFlags[NN_je] = false; // Jump if Equal (ZF=1)
SMPDefsFlags[NN_jg] = false; // Jump if Greater (ZF=0 & SF=OF)
SMPDefsFlags[NN_jge] = false; // Jump if Greater or Equal (SF=OF)
SMPDefsFlags[NN_jl] = false; // Jump if Less (SF!=OF)
SMPDefsFlags[NN_jle] = false; // Jump if Less or Equal (ZF=1 | SF!=OF)
SMPDefsFlags[NN_jna] = false; // Jump if Not Above (CF=1 | ZF=1)
SMPDefsFlags[NN_jnae] = false; // Jump if Not Above or Equal (CF=1)
SMPDefsFlags[NN_jnb] = false; // Jump if Not Below (CF=0)
SMPDefsFlags[NN_jnbe] = false; // Jump if Not Below or Equal (CF=0 & ZF=0)
SMPDefsFlags[NN_jnc] = false; // Jump if Not Carry (CF=0)
SMPDefsFlags[NN_jne] = false; // Jump if Not Equal (ZF=0)
SMPDefsFlags[NN_jng] = false; // Jump if Not Greater (ZF=1 | SF!=OF)
SMPDefsFlags[NN_jnge] = false; // Jump if Not Greater or Equal (ZF=1)
SMPDefsFlags[NN_jnl] = false; // Jump if Not Less (SF=OF)
SMPDefsFlags[NN_jnle] = false; // Jump if Not Less or Equal (ZF=0 & SF=OF)
SMPDefsFlags[NN_jno] = false; // Jump if Not Overflow (OF=0)
SMPDefsFlags[NN_jnp] = false; // Jump if Not Parity (PF=0)
SMPDefsFlags[NN_jns] = false; // Jump if Not Sign (SF=0)
SMPDefsFlags[NN_jnz] = false; // Jump if Not Zero (ZF=0)
SMPDefsFlags[NN_jo] = false; // Jump if Overflow (OF=1)
SMPDefsFlags[NN_jp] = false; // Jump if Parity (PF=1)
SMPDefsFlags[NN_jpe] = false; // Jump if Parity Even (PF=1)
SMPDefsFlags[NN_jpo] = false; // Jump if Parity Odd (PF=0)
SMPDefsFlags[NN_js] = false; // Jump if Sign (SF=1)
SMPDefsFlags[NN_jz] = false; // Jump if Zero (ZF=1)
SMPDefsFlags[NN_jmp] = false; // Jump
SMPDefsFlags[NN_jmpfi] = false; // Indirect Far Jump
SMPDefsFlags[NN_jmpni] = false; // Indirect Near Jump
SMPDefsFlags[NN_jmpshort] = false; // Jump Short (not used)
SMPDefsFlags[NN_lahf] = false; // Load Flags into AH Register
SMPDefsFlags[NN_lea] = false; // Load Effective Address
SMPDefsFlags[NN_leavew] = false; // High Level Procedure Exit
SMPDefsFlags[NN_leave] = false; // High Level Procedure Exit
SMPDefsFlags[NN_leaved] = false; // High Level Procedure Exit
SMPDefsFlags[NN_leaveq] = false; // High Level Procedure Exit
SMPDefsFlags[NN_lgdt] = false; // Load Global Descriptor Table Register
SMPDefsFlags[NN_lidt] = false; // Load Interrupt Descriptor Table Register
SMPDefsFlags[NN_lgs] = false; // Load Full Pointer to GS:xx
SMPDefsFlags[NN_lss] = false; // Load Full Pointer to SS:xx
SMPDefsFlags[NN_lds] = false; // Load Full Pointer to DS:xx
SMPDefsFlags[NN_les] = false; // Load Full Pointer to ES:xx
SMPDefsFlags[NN_lfs] = false; // Load Full Pointer to FS:xx
SMPDefsFlags[NN_loopwe] = false; // Loop while CX != 0 and ZF=1
SMPDefsFlags[NN_loope] = false; // Loop while rCX != 0 and ZF=1
SMPDefsFlags[NN_loopde] = false; // Loop while ECX != 0 and ZF=1
SMPDefsFlags[NN_loopqe] = false; // Loop while RCX != 0 and ZF=1
SMPDefsFlags[NN_loopwne] = false; // Loop while CX != 0 and ZF=0
SMPDefsFlags[NN_loopne] = false; // Loop while rCX != 0 and ZF=0
SMPDefsFlags[NN_loopdne] = false; // Loop while ECX != 0 and ZF=0
SMPDefsFlags[NN_loopqne] = false; // Loop while RCX != 0 and ZF=0
SMPDefsFlags[NN_ltr] = false; // Load Task Register
SMPDefsFlags[NN_mov] = false; // Move Data
SMPDefsFlags[NN_movsp] = false; // Move to/from Special Registers
SMPDefsFlags[NN_movs] = false; // Move Byte(s) from String to String
SMPDefsFlags[NN_movsx] = false; // Move with Sign-Extend
SMPDefsFlags[NN_movzx] = false; // Move with Zero-Extend
SMPDefsFlags[NN_nop] = false; // No Operation
SMPDefsFlags[NN_out] = false; // Output to Port
SMPDefsFlags[NN_outs] = false; // Output Byte(s) to Port
SMPDefsFlags[NN_pop] = false; // Pop a word from the Stack
SMPDefsFlags[NN_popaw] = false; // Pop all General Registers
SMPDefsFlags[NN_popa] = false; // Pop all General Registers
SMPDefsFlags[NN_popad] = false; // Pop all General Registers (use32)
SMPDefsFlags[NN_popaq] = false; // Pop all General Registers (use64)
SMPDefsFlags[NN_push] = false; // Push Operand onto the Stack
SMPDefsFlags[NN_pushaw] = false; // Push all General Registers
SMPDefsFlags[NN_pusha] = false; // Push all General Registers
SMPDefsFlags[NN_pushad] = false; // Push all General Registers (use32)
SMPDefsFlags[NN_pushaq] = false; // Push all General Registers (use64)
SMPDefsFlags[NN_pushfw] = false; // Push Flags Register onto the Stack
SMPDefsFlags[NN_pushf] = false; // Push Flags Register onto the Stack
SMPDefsFlags[NN_pushfd] = false; // Push Flags Register onto the Stack (use32)
SMPDefsFlags[NN_pushfq] = false; // Push Flags Register onto the Stack (use64)
SMPDefsFlags[NN_rep] = false; // Repeat String Operation
SMPDefsFlags[NN_repe] = false; // Repeat String Operation while ZF=1
SMPDefsFlags[NN_repne] = false; // Repeat String Operation while ZF=0
SMPDefsFlags[NN_retn] = false; // Return Near from Procedure
SMPDefsFlags[NN_retf] = false; // Return Far from Procedure
SMPDefsFlags[NN_shl] = false; // Shift Logical Left
SMPDefsFlags[NN_shr] = false; // Shift Logical Right
SMPDefsFlags[NN_seta] = false; // Set Byte if Above (CF=0 & ZF=0)
SMPDefsFlags[NN_setae] = false; // Set Byte if Above or Equal (CF=0)
SMPDefsFlags[NN_setb] = false; // Set Byte if Below (CF=1)
SMPDefsFlags[NN_setbe] = false; // Set Byte if Below or Equal (CF=1 | ZF=1)
SMPDefsFlags[NN_setc] = false; // Set Byte if Carry (CF=1)
SMPDefsFlags[NN_sete] = false; // Set Byte if Equal (ZF=1)
SMPDefsFlags[NN_setg] = false; // Set Byte if Greater (ZF=0 & SF=OF)
SMPDefsFlags[NN_setge] = false; // Set Byte if Greater or Equal (SF=OF)
SMPDefsFlags[NN_setl] = false; // Set Byte if Less (SF!=OF)
SMPDefsFlags[NN_setle] = false; // Set Byte if Less or Equal (ZF=1 | SF!=OF)
SMPDefsFlags[NN_setna] = false; // Set Byte if Not Above (CF=1 | ZF=1)
SMPDefsFlags[NN_setnae] = false; // Set Byte if Not Above or Equal (CF=1)
SMPDefsFlags[NN_setnb] = false; // Set Byte if Not Below (CF=0)
SMPDefsFlags[NN_setnbe] = false; // Set Byte if Not Below or Equal (CF=0 & ZF=0)
SMPDefsFlags[NN_setnc] = false; // Set Byte if Not Carry (CF=0)
SMPDefsFlags[NN_setne] = false; // Set Byte if Not Equal (ZF=0)
SMPDefsFlags[NN_setng] = false; // Set Byte if Not Greater (ZF=1 | SF!=OF)
SMPDefsFlags[NN_setnge] = false; // Set Byte if Not Greater or Equal (ZF=1)
SMPDefsFlags[NN_setnl] = false; // Set Byte if Not Less (SF=OF)
SMPDefsFlags[NN_setnle] = false; // Set Byte if Not Less or Equal (ZF=0 & SF=OF)
SMPDefsFlags[NN_setno] = false; // Set Byte if Not Overflow (OF=0)
SMPDefsFlags[NN_setnp] = false; // Set Byte if Not Parity (PF=0)
SMPDefsFlags[NN_setns] = false; // Set Byte if Not Sign (SF=0)
SMPDefsFlags[NN_setnz] = false; // Set Byte if Not Zero (ZF=0)
SMPDefsFlags[NN_seto] = false; // Set Byte if Overflow (OF=1)
SMPDefsFlags[NN_setp] = false; // Set Byte if Parity (PF=1)
SMPDefsFlags[NN_setpe] = false; // Set Byte if Parity Even (PF=1)
SMPDefsFlags[NN_setpo] = false; // Set Byte if Parity Odd (PF=0)
SMPDefsFlags[NN_sets] = false; // Set Byte if Sign (SF=1)
SMPDefsFlags[NN_setz] = false; // Set Byte if Zero (ZF=1)
SMPDefsFlags[NN_sgdt] = false; // Store Global Descriptor Table Register
SMPDefsFlags[NN_sidt] = false; // Store Interrupt Descriptor Table Register
SMPDefsFlags[NN_sldt] = false; // Store Local Descriptor Table Register
SMPDefsFlags[NN_str] = false; // Store Task Register
SMPDefsFlags[NN_wait] = false; // Wait until BUSY# Pin is Inactive (HIGH)
SMPDefsFlags[NN_xchg] = false; // Exchange Register/Memory with Register
//
// 486 instructions
//
SMPDefsFlags[NN_bswap] = false; // Swap bytes in register
SMPDefsFlags[NN_invd] = false; // Invalidate Data Cache
SMPDefsFlags[NN_wbinvd] = false; // Invalidate Data Cache (write changes)
SMPDefsFlags[NN_invlpg] = false; // Invalidate TLB entry
//
// Pentium instructions
//
SMPDefsFlags[NN_rdmsr] = false; // Read Machine Status Register
SMPDefsFlags[NN_wrmsr] = false; // Write Machine Status Register
SMPDefsFlags[NN_cpuid] = false; // Get CPU ID
SMPDefsFlags[NN_rdtsc] = false; // Read Time Stamp Counter
//
// Pentium Pro instructions
//
SMPDefsFlags[NN_cmova] = false; // Move if Above (CF=0 & ZF=0)
SMPDefsFlags[NN_cmovb] = false; // Move if Below (CF=1)
SMPDefsFlags[NN_cmovbe] = false; // Move if Below or Equal (CF=1 | ZF=1)
SMPDefsFlags[NN_cmovg] = false; // Move if Greater (ZF=0 & SF=OF)
SMPDefsFlags[NN_cmovge] = false; // Move if Greater or Equal (SF=OF)
SMPDefsFlags[NN_cmovl] = false; // Move if Less (SF!=OF)
SMPDefsFlags[NN_cmovle] = false; // Move if Less or Equal (ZF=1 | SF!=OF)
SMPDefsFlags[NN_cmovnb] = false; // Move if Not Below (CF=0)
SMPDefsFlags[NN_cmovno] = false; // Move if Not Overflow (OF=0)
SMPDefsFlags[NN_cmovnp] = false; // Move if Not Parity (PF=0)
SMPDefsFlags[NN_cmovns] = false; // Move if Not Sign (SF=0)
SMPDefsFlags[NN_cmovnz] = false; // Move if Not Zero (ZF=0)
SMPDefsFlags[NN_cmovo] = false; // Move if Overflow (OF=1)
SMPDefsFlags[NN_cmovp] = false; // Move if Parity (PF=1)
SMPDefsFlags[NN_cmovs] = false; // Move if Sign (SF=1)
SMPDefsFlags[NN_cmovz] = false; // Move if Zero (ZF=1)
SMPDefsFlags[NN_fcmovb] = false; // Floating Move if Below
SMPDefsFlags[NN_fcmove] = false; // Floating Move if Equal
SMPDefsFlags[NN_fcmovbe] = false; // Floating Move if Below or Equal
SMPDefsFlags[NN_fcmovu] = false; // Floating Move if Unordered
SMPDefsFlags[NN_fcmovnb] = false; // Floating Move if Not Below
SMPDefsFlags[NN_fcmovne] = false; // Floating Move if Not Equal
SMPDefsFlags[NN_fcmovnbe] = false; // Floating Move if Not Below or Equal
SMPDefsFlags[NN_fcmovnu] = false; // Floating Move if Not Unordered
SMPDefsFlags[NN_rdpmc] = false; // Read Performance Monitor Counter
//
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
//
SMPDefsFlags[NN_fld] = false; // Load Real
SMPDefsFlags[NN_fst] = false; // Store Real
SMPDefsFlags[NN_fstp] = false; // Store Real and Pop
SMPDefsFlags[NN_fxch] = false; // Exchange Registers
SMPDefsFlags[NN_fild] = false; // Load Integer
SMPDefsFlags[NN_fist] = false; // Store Integer
SMPDefsFlags[NN_fistp] = false; // Store Integer and Pop
SMPDefsFlags[NN_fbld] = false; // Load BCD
SMPDefsFlags[NN_fbstp] = false; // Store BCD and Pop
SMPDefsFlags[NN_fadd] = false; // Add Real
SMPDefsFlags[NN_faddp] = false; // Add Real and Pop
SMPDefsFlags[NN_fiadd] = false; // Add Integer
SMPDefsFlags[NN_fsub] = false; // Subtract Real
SMPDefsFlags[NN_fsubp] = false; // Subtract Real and Pop
SMPDefsFlags[NN_fisub] = false; // Subtract Integer
SMPDefsFlags[NN_fsubr] = false; // Subtract Real Reversed
SMPDefsFlags[NN_fsubrp] = false; // Subtract Real Reversed and Pop
SMPDefsFlags[NN_fisubr] = false; // Subtract Integer Reversed
SMPDefsFlags[NN_fmul] = false; // Multiply Real
SMPDefsFlags[NN_fmulp] = false; // Multiply Real and Pop
SMPDefsFlags[NN_fimul] = false; // Multiply Integer
SMPDefsFlags[NN_fdiv] = false; // Divide Real
SMPDefsFlags[NN_fdivp] = false; // Divide Real and Pop
SMPDefsFlags[NN_fidiv] = false; // Divide Integer
SMPDefsFlags[NN_fdivr] = false; // Divide Real Reversed
SMPDefsFlags[NN_fdivrp] = false; // Divide Real Reversed and Pop
SMPDefsFlags[NN_fidivr] = false; // Divide Integer Reversed
SMPDefsFlags[NN_fsqrt] = false; // Square Root
SMPDefsFlags[NN_fscale] = false; // Scale: st(0) <- st(0) * 2^st(1)
SMPDefsFlags[NN_fprem] = false; // Partial Remainder
SMPDefsFlags[NN_frndint] = false; // Round to Integer
SMPDefsFlags[NN_fxtract] = false; // Extract exponent and significand
SMPDefsFlags[NN_fabs] = false; // Absolute value
SMPDefsFlags[NN_fchs] = false; // Change Sign
SMPDefsFlags[NN_ficom] = false; // Compare Integer
SMPDefsFlags[NN_ficomp] = false; // Compare Integer and Pop
SMPDefsFlags[NN_ftst] = false; // Test
SMPDefsFlags[NN_fxam] = false; // Examine
SMPDefsFlags[NN_fptan] = false; // Partial tangent
SMPDefsFlags[NN_fpatan] = false; // Partial arctangent
SMPDefsFlags[NN_f2xm1] = false; // 2^x - 1
SMPDefsFlags[NN_fyl2x] = false; // Y * lg2(X)
SMPDefsFlags[NN_fyl2xp1] = false; // Y * lg2(X+1)
SMPDefsFlags[NN_fldz] = false; // Load +0.0
SMPDefsFlags[NN_fld1] = false; // Load +1.0
SMPDefsFlags[NN_fldpi] = false; // Load PI=3.14...
SMPDefsFlags[NN_fldl2t] = false; // Load lg2(10)
SMPDefsFlags[NN_fldl2e] = false; // Load lg2(e)
SMPDefsFlags[NN_fldlg2] = false; // Load lg10(2)
SMPDefsFlags[NN_fldln2] = false; // Load ln(2)
SMPDefsFlags[NN_finit] = false; // Initialize Processor
SMPDefsFlags[NN_fninit] = false; // Initialize Processor (no wait)
SMPDefsFlags[NN_fsetpm] = false; // Set Protected Mode
SMPDefsFlags[NN_fldcw] = false; // Load Control Word
SMPDefsFlags[NN_fstcw] = false; // Store Control Word
SMPDefsFlags[NN_fnstcw] = false; // Store Control Word (no wait)
SMPDefsFlags[NN_fstsw] = false; // Store Status Word to memory or AX
SMPDefsFlags[NN_fnstsw] = false; // Store Status Word (no wait) to memory or AX
SMPDefsFlags[NN_fclex] = false; // Clear Exceptions
SMPDefsFlags[NN_fnclex] = false; // Clear Exceptions (no wait)
SMPDefsFlags[NN_fstenv] = false; // Store Environment
SMPDefsFlags[NN_fnstenv] = false; // Store Environment (no wait)
SMPDefsFlags[NN_fldenv] = false; // Load Environment
SMPDefsFlags[NN_fsave] = false; // Save State
SMPDefsFlags[NN_fnsave] = false; // Save State (no wait)
SMPDefsFlags[NN_frstor] = false; // Restore State
SMPDefsFlags[NN_fincstp] = false; // Increment Stack Pointer
SMPDefsFlags[NN_fdecstp] = false; // Decrement Stack Pointer
SMPDefsFlags[NN_ffree] = false; // Free Register
SMPDefsFlags[NN_fnop] = false; // No Operation
SMPDefsFlags[NN_feni] = false; // (8087 only)
SMPDefsFlags[NN_fneni] = false; // (no wait) (8087 only)
SMPDefsFlags[NN_fdisi] = false; // (8087 only)
SMPDefsFlags[NN_fndisi] = false; // (no wait) (8087 only)
//
// 80387 instructions
//
SMPDefsFlags[NN_fprem1] = false; // Partial Remainder ( < half )
SMPDefsFlags[NN_fsincos] = false; // t<-cos(st); st<-sin(st); push t
SMPDefsFlags[NN_fsin] = false; // Sine
SMPDefsFlags[NN_fcos] = false; // Cosine
SMPDefsFlags[NN_fucom] = false; // Compare Unordered Real
SMPDefsFlags[NN_fucomp] = false; // Compare Unordered Real and Pop
SMPDefsFlags[NN_fucompp] = false; // Compare Unordered Real and Pop Twice
//
// Instructions added 28.02.96
//
SMPDefsFlags[NN_svdc] = false; // Save Register and Descriptor
SMPDefsFlags[NN_rsdc] = false; // Restore Register and Descriptor
SMPDefsFlags[NN_svldt] = false; // Save LDTR and Descriptor
SMPDefsFlags[NN_rsldt] = false; // Restore LDTR and Descriptor
SMPDefsFlags[NN_svts] = false; // Save TR and Descriptor
SMPDefsFlags[NN_rsts] = false; // Restore TR and Descriptor
SMPDefsFlags[NN_icebp] = false; // ICE Break Point
//
// MMX instructions
//
SMPDefsFlags[NN_emms] = false; // Empty MMX state
SMPDefsFlags[NN_movd] = false; // Move 32 bits
SMPDefsFlags[NN_movq] = false; // Move 64 bits
SMPDefsFlags[NN_packsswb] = false; // Pack with Signed Saturation (Word->Byte)
SMPDefsFlags[NN_packssdw] = false; // Pack with Signed Saturation (Dword->Word)
SMPDefsFlags[NN_packuswb] = false; // Pack with Unsigned Saturation (Word->Byte)
SMPDefsFlags[NN_paddb] = false; // Packed Add Byte
SMPDefsFlags[NN_paddw] = false; // Packed Add Word
SMPDefsFlags[NN_paddd] = false; // Packed Add Dword
SMPDefsFlags[NN_paddsb] = false; // Packed Add with Saturation (Byte)
SMPDefsFlags[NN_paddsw] = false; // Packed Add with Saturation (Word)
SMPDefsFlags[NN_paddusb] = false; // Packed Add Unsigned with Saturation (Byte)
SMPDefsFlags[NN_paddusw] = false; // Packed Add Unsigned with Saturation (Word)
SMPDefsFlags[NN_pand] = false; // Bitwise Logical And
SMPDefsFlags[NN_pandn] = false; // Bitwise Logical And Not
SMPDefsFlags[NN_pcmpeqb] = false; // Packed Compare for Equal (Byte)
SMPDefsFlags[NN_pcmpeqw] = false; // Packed Compare for Equal (Word)
SMPDefsFlags[NN_pcmpeqd] = false; // Packed Compare for Equal (Dword)
SMPDefsFlags[NN_pcmpgtb] = false; // Packed Compare for Greater Than (Byte)
SMPDefsFlags[NN_pcmpgtw] = false; // Packed Compare for Greater Than (Word)
SMPDefsFlags[NN_pcmpgtd] = false; // Packed Compare for Greater Than (Dword)
SMPDefsFlags[NN_pmaddwd] = false; // Packed Multiply and Add
SMPDefsFlags[NN_pmulhw] = false; // Packed Multiply High
SMPDefsFlags[NN_pmullw] = false; // Packed Multiply Low
SMPDefsFlags[NN_por] = false; // Bitwise Logical Or
SMPDefsFlags[NN_psllw] = false; // Packed Shift Left Logical (Word)
SMPDefsFlags[NN_pslld] = false; // Packed Shift Left Logical (Dword)
SMPDefsFlags[NN_psllq] = false; // Packed Shift Left Logical (Qword)
SMPDefsFlags[NN_psraw] = false; // Packed Shift Right Arithmetic (Word)
SMPDefsFlags[NN_psrad] = false; // Packed Shift Right Arithmetic (Dword)
SMPDefsFlags[NN_psrlw] = false; // Packed Shift Right Logical (Word)
SMPDefsFlags[NN_psrld] = false; // Packed Shift Right Logical (Dword)
SMPDefsFlags[NN_psrlq] = false; // Packed Shift Right Logical (Qword)
SMPDefsFlags[NN_psubb] = false; // Packed Subtract Byte
SMPDefsFlags[NN_psubw] = false; // Packed Subtract Word
SMPDefsFlags[NN_psubd] = false; // Packed Subtract Dword
SMPDefsFlags[NN_psubsb] = false; // Packed Subtract with Saturation (Byte)
SMPDefsFlags[NN_psubsw] = false; // Packed Subtract with Saturation (Word)
SMPDefsFlags[NN_psubusb] = false; // Packed Subtract Unsigned with Saturation (Byte)
SMPDefsFlags[NN_psubusw] = false; // Packed Subtract Unsigned with Saturation (Word)
SMPDefsFlags[NN_punpckhbw] = false; // Unpack High Packed Data (Byte->Word)
SMPDefsFlags[NN_punpckhwd] = false; // Unpack High Packed Data (Word->Dword)
SMPDefsFlags[NN_punpckhdq] = false; // Unpack High Packed Data (Dword->Qword)
SMPDefsFlags[NN_punpcklbw] = false; // Unpack Low Packed Data (Byte->Word)
SMPDefsFlags[NN_punpcklwd] = false; // Unpack Low Packed Data (Word->Dword)
SMPDefsFlags[NN_punpckldq] = false; // Unpack Low Packed Data (Dword->Qword)
SMPDefsFlags[NN_pxor] = false; // Bitwise Logical Exclusive Or
//
// Undocumented Deschutes processor instructions
//
SMPDefsFlags[NN_fxsave] = false; // Fast save FP context
SMPDefsFlags[NN_fxrstor] = false; // Fast restore FP context
// Pentium II instructions
SMPDefsFlags[NN_sysexit] = false; // Fast Transition from System Call Entry Point
// 3DNow! instructions
SMPDefsFlags[NN_pavgusb] = false; // Packed 8-bit Unsigned Integer Averaging
SMPDefsFlags[NN_pfadd] = false; // Packed Floating-Point Addition
SMPDefsFlags[NN_pfsub] = false; // Packed Floating-Point Subtraction
SMPDefsFlags[NN_pfsubr] = false; // Packed Floating-Point Reverse Subtraction
SMPDefsFlags[NN_pfacc] = false; // Packed Floating-Point Accumulate
SMPDefsFlags[NN_pfcmpge] = false; // Packed Floating-Point Comparison, Greater or Equal
SMPDefsFlags[NN_pfcmpgt] = false; // Packed Floating-Point Comparison, Greater
SMPDefsFlags[NN_pfcmpeq] = false; // Packed Floating-Point Comparison, Equal
SMPDefsFlags[NN_pfmin] = false; // Packed Floating-Point Minimum
SMPDefsFlags[NN_pfmax] = false; // Packed Floating-Point Maximum
SMPDefsFlags[NN_pi2fd] = false; // Packed 32-bit Integer to Floating-Point
SMPDefsFlags[NN_pf2id] = false; // Packed Floating-Point to 32-bit Integer
SMPDefsFlags[NN_pfrcp] = false; // Packed Floating-Point Reciprocal Approximation
SMPDefsFlags[NN_pfrsqrt] = false; // Packed Floating-Point Reciprocal Square Root Approximation
SMPDefsFlags[NN_pfmul] = false; // Packed Floating-Point Multiplication
SMPDefsFlags[NN_pfrcpit1] = false; // Packed Floating-Point Reciprocal First Iteration Step
SMPDefsFlags[NN_pfrsqit1] = false; // Packed Floating-Point Reciprocal Square Root First Iteration Step
SMPDefsFlags[NN_pfrcpit2] = false; // Packed Floating-Point Reciprocal Second Iteration Step
SMPDefsFlags[NN_pmulhrw] = false; // Packed Floating-Point 16-bit Integer Multiply with rounding
SMPDefsFlags[NN_femms] = false; // Faster entry/exit of the MMX or floating-point state
SMPDefsFlags[NN_prefetch] = false; // Prefetch at least a 32-byte line into L1 data cache
SMPDefsFlags[NN_prefetchw] = false; // Prefetch processor cache line into L1 data cache (mark as modified)
// Pentium III instructions
SMPDefsFlags[NN_addps] = false; // Packed Single-FP Add
SMPDefsFlags[NN_addss] = false; // Scalar Single-FP Add
SMPDefsFlags[NN_andnps] = false; // Bitwise Logical And Not for Single-FP
SMPDefsFlags[NN_andps] = false; // Bitwise Logical And for Single-FP
SMPDefsFlags[NN_cmpps] = false; // Packed Single-FP Compare
SMPDefsFlags[NN_cmpss] = false; // Scalar Single-FP Compare
SMPDefsFlags[NN_cvtpi2ps] = false; // Packed signed INT32 to Packed Single-FP conversion
SMPDefsFlags[NN_cvtps2pi] = false; // Packed Single-FP to Packed INT32 conversion
SMPDefsFlags[NN_cvtsi2ss] = false; // Scalar signed INT32 to Single-FP conversion
SMPDefsFlags[NN_cvtss2si] = false; // Scalar Single-FP to signed INT32 conversion
SMPDefsFlags[NN_cvttps2pi] = false; // Packed Single-FP to Packed INT32 conversion (truncate)
SMPDefsFlags[NN_cvttss2si] = false; // Scalar Single-FP to signed INT32 conversion (truncate)
SMPDefsFlags[NN_divps] = false; // Packed Single-FP Divide
SMPDefsFlags[NN_divss] = false; // Scalar Single-FP Divide
SMPDefsFlags[NN_ldmxcsr] = false; // Load Streaming SIMD Extensions Technology Control/Status Register
SMPDefsFlags[NN_maxps] = false; // Packed Single-FP Maximum
SMPDefsFlags[NN_maxss] = false; // Scalar Single-FP Maximum
SMPDefsFlags[NN_minps] = false; // Packed Single-FP Minimum
SMPDefsFlags[NN_minss] = false; // Scalar Single-FP Minimum
SMPDefsFlags[NN_movaps] = false; // Move Aligned Four Packed Single-FP
SMPDefsFlags[NN_movhlps] = false; // Move High to Low Packed Single-FP
SMPDefsFlags[NN_movhps] = false; // Move High Packed Single-FP
SMPDefsFlags[NN_movlhps] = false; // Move Low to High Packed Single-FP
SMPDefsFlags[NN_movlps] = false; // Move Low Packed Single-FP
SMPDefsFlags[NN_movmskps] = false; // Move Mask to Register
SMPDefsFlags[NN_movss] = false; // Move Scalar Single-FP
SMPDefsFlags[NN_movups] = false; // Move Unaligned Four Packed Single-FP
SMPDefsFlags[NN_mulps] = false; // Packed Single-FP Multiply
SMPDefsFlags[NN_mulss] = false; // Scalar Single-FP Multiply
SMPDefsFlags[NN_orps] = false; // Bitwise Logical OR for Single-FP Data
SMPDefsFlags[NN_rcpps] = false; // Packed Single-FP Reciprocal
SMPDefsFlags[NN_rcpss] = false; // Scalar Single-FP Reciprocal
SMPDefsFlags[NN_rsqrtps] = false; // Packed Single-FP Square Root Reciprocal
SMPDefsFlags[NN_rsqrtss] = false; // Scalar Single-FP Square Root Reciprocal
SMPDefsFlags[NN_shufps] = false; // Shuffle Single-FP
SMPDefsFlags[NN_sqrtps] = false; // Packed Single-FP Square Root
SMPDefsFlags[NN_sqrtss] = false; // Scalar Single-FP Square Root
SMPDefsFlags[NN_stmxcsr] = false; // Store Streaming SIMD Extensions Technology Control/Status Register
SMPDefsFlags[NN_subps] = false; // Packed Single-FP Subtract
SMPDefsFlags[NN_subss] = false; // Scalar Single-FP Subtract
SMPDefsFlags[NN_unpckhps] = false; // Unpack High Packed Single-FP Data
SMPDefsFlags[NN_unpcklps] = false; // Unpack Low Packed Single-FP Data
SMPDefsFlags[NN_xorps] = false; // Bitwise Logical XOR for Single-FP Data
SMPDefsFlags[NN_pavgb] = false; // Packed Average (Byte)
SMPDefsFlags[NN_pavgw] = false; // Packed Average (Word)
SMPDefsFlags[NN_pextrw] = false; // Extract Word
SMPDefsFlags[NN_pinsrw] = false; // Insert Word
SMPDefsFlags[NN_pmaxsw] = false; // Packed Signed Integer Word Maximum
SMPDefsFlags[NN_pmaxub] = false; // Packed Unsigned Integer Byte Maximum
SMPDefsFlags[NN_pminsw] = false; // Packed Signed Integer Word Minimum
SMPDefsFlags[NN_pminub] = false; // Packed Unsigned Integer Byte Minimum
SMPDefsFlags[NN_pmovmskb] = false; // Move Byte Mask to Integer
SMPDefsFlags[NN_pmulhuw] = false; // Packed Multiply High Unsigned
SMPDefsFlags[NN_psadbw] = false; // Packed Sum of Absolute Differences
SMPDefsFlags[NN_pshufw] = false; // Packed Shuffle Word
SMPDefsFlags[NN_maskmovq] = false; // Byte Mask write
SMPDefsFlags[NN_movntps] = false; // Move Aligned Four Packed Single-FP Non Temporal
SMPDefsFlags[NN_movntq] = false; // Move 64 Bits Non Temporal
SMPDefsFlags[NN_prefetcht0] = false; // Prefetch to all cache levels
SMPDefsFlags[NN_prefetcht1] = false; // Prefetch to all cache levels
SMPDefsFlags[NN_prefetcht2] = false; // Prefetch to L2 cache
SMPDefsFlags[NN_prefetchnta] = false; // Prefetch to L1 cache
SMPDefsFlags[NN_sfence] = false; // Store Fence
// Pentium III Pseudo instructions
SMPDefsFlags[NN_cmpeqps] = false; // Packed Single-FP Compare EQ
SMPDefsFlags[NN_cmpltps] = false; // Packed Single-FP Compare LT
SMPDefsFlags[NN_cmpleps] = false; // Packed Single-FP Compare LE
SMPDefsFlags[NN_cmpunordps] = false; // Packed Single-FP Compare UNORD
SMPDefsFlags[NN_cmpneqps] = false; // Packed Single-FP Compare NOT EQ
SMPDefsFlags[NN_cmpnltps] = false; // Packed Single-FP Compare NOT LT
SMPDefsFlags[NN_cmpnleps] = false; // Packed Single-FP Compare NOT LE
SMPDefsFlags[NN_cmpordps] = false; // Packed Single-FP Compare ORDERED
SMPDefsFlags[NN_cmpeqss] = false; // Scalar Single-FP Compare EQ
SMPDefsFlags[NN_cmpltss] = false; // Scalar Single-FP Compare LT
SMPDefsFlags[NN_cmpless] = false; // Scalar Single-FP Compare LE
SMPDefsFlags[NN_cmpunordss] = false; // Scalar Single-FP Compare UNORD
SMPDefsFlags[NN_cmpneqss] = false; // Scalar Single-FP Compare NOT EQ
SMPDefsFlags[NN_cmpnltss] = false; // Scalar Single-FP Compare NOT LT
SMPDefsFlags[NN_cmpnless] = false; // Scalar Single-FP Compare NOT LE
SMPDefsFlags[NN_cmpordss] = false; // Scalar Single-FP Compare ORDERED
// AMD K7 instructions
// Revisit AMD if we port to it.
SMPDefsFlags[NN_pf2iw] = false; // Packed Floating-Point to Integer with Sign Extend
SMPDefsFlags[NN_pfnacc] = false; // Packed Floating-Point Negative Accumulate
SMPDefsFlags[NN_pfpnacc] = false; // Packed Floating-Point Mixed Positive-Negative Accumulate
SMPDefsFlags[NN_pi2fw] = false; // Packed 16-bit Integer to Floating-Point
SMPDefsFlags[NN_pswapd] = false; // Packed Swap Double Word
// Undocumented FP instructions (thanks to norbert.juffa@adm.com)
SMPDefsFlags[NN_fstp1] = false; // Alias of Store Real and Pop
SMPDefsFlags[NN_fxch4] = false; // Alias of Exchange Registers
SMPDefsFlags[NN_ffreep] = false; // Free Register and Pop
SMPDefsFlags[NN_fxch7] = false; // Alias of Exchange Registers
SMPDefsFlags[NN_fstp8] = false; // Alias of Store Real and Pop
SMPDefsFlags[NN_fstp9] = false; // Alias of Store Real and Pop
// Pentium 4 instructions
SMPDefsFlags[NN_addpd] = false; // Add Packed Double-Precision Floating-Point Values
SMPDefsFlags[NN_addsd] = false; // Add Scalar Double-Precision Floating-Point Values
SMPDefsFlags[NN_andnpd] = false; // Bitwise Logical AND NOT of Packed Double-Precision Floating-Point Values
SMPDefsFlags[NN_andpd] = false; // Bitwise Logical AND of Packed Double-Precision Floating-Point Values
SMPDefsFlags[NN_clflush] = false; // Flush Cache Line
SMPDefsFlags[NN_cmppd] = false; // Compare Packed Double-Precision Floating-Point Values
SMPDefsFlags[NN_cmpsd] = false; // Compare Scalar Double-Precision Floating-Point Values
SMPDefsFlags[NN_cvtdq2pd] = false; // Convert Packed Doubleword Integers to Packed Single-Precision Floating-Point Values
SMPDefsFlags[NN_cvtdq2ps] = false; // Convert Packed Doubleword Integers to Packed Double-Precision Floating-Point Values
SMPDefsFlags[NN_cvtpd2dq] = false; // Convert Packed Double-Precision Floating-Point Values to Packed Doubleword Integers
SMPDefsFlags[NN_cvtpd2pi] = false; // Convert Packed Double-Precision Floating-Point Values to Packed Doubleword Integers
SMPDefsFlags[NN_cvtpd2ps] = false; // Convert Packed Double-Precision Floating-Point Values to Packed Single-Precision Floating-Point Values
SMPDefsFlags[NN_cvtpi2pd] = false; // Convert Packed Doubleword Integers to Packed Double-Precision Floating-Point Values
SMPDefsFlags[NN_cvtps2dq] = false; // Convert Packed Single-Precision Floating-Point Values to Packed Doubleword Integers
SMPDefsFlags[NN_cvtps2pd] = false; // Convert Packed Single-Precision Floating-Point Values to Packed Double-Precision Floating-Point Values
SMPDefsFlags[NN_cvtsd2si] = false; // Convert Scalar Double-Precision Floating-Point Value to Doubleword Integer
SMPDefsFlags[NN_cvtsd2ss] = false; // Convert Scalar Double-Precision Floating-Point Value to Scalar Single-Precision Floating-Point Value
SMPDefsFlags[NN_cvtsi2sd] = false; // Convert Doubleword Integer to Scalar Double-Precision Floating-Point Value
SMPDefsFlags[NN_cvtss2sd] = false; // Convert Scalar Single-Precision Floating-Point Value to Scalar Double-Precision Floating-Point Value
SMPDefsFlags[NN_cvttpd2dq] = false; // Convert With Truncation Packed Double-Precision Floating-Point Values to Packed Doubleword Integers
SMPDefsFlags[NN_cvttpd2pi] = false; // Convert with Truncation Packed Double-Precision Floating-Point Values to Packed Doubleword Integers
SMPDefsFlags[NN_cvttps2dq] = false; // Convert With Truncation Packed Single-Precision Floating-Point Values to Packed Doubleword Integers
SMPDefsFlags[NN_cvttsd2si] = false; // Convert with Truncation Scalar Double-Precision Floating-Point Value to Doubleword Integer
SMPDefsFlags[NN_divpd] = false; // Divide Packed Double-Precision Floating-Point Values
SMPDefsFlags[NN_divsd] = false; // Divide Scalar Double-Precision Floating-Point Values
SMPDefsFlags[NN_lfence] = false; // Load Fence
SMPDefsFlags[NN_maskmovdqu] = false; // Store Selected Bytes of Double Quadword
SMPDefsFlags[NN_maxpd] = false; // Return Maximum Packed Double-Precision Floating-Point Values
SMPDefsFlags[NN_maxsd] = false; // Return Maximum Scalar Double-Precision Floating-Point Value
SMPDefsFlags[NN_mfence] = false; // Memory Fence
SMPDefsFlags[NN_minpd] = false; // Return Minimum Packed Double-Precision Floating-Point Values
SMPDefsFlags[NN_minsd] = false; // Return Minimum Scalar Double-Precision Floating-Point Value
SMPDefsFlags[NN_movapd] = false; // Move Aligned Packed Double-Precision Floating-Point Values
SMPDefsFlags[NN_movdq2q] = false; // Move Quadword from XMM to MMX Register
SMPDefsFlags[NN_movdqa] = false; // Move Aligned Double Quadword
SMPDefsFlags[NN_movdqu] = false; // Move Unaligned Double Quadword
SMPDefsFlags[NN_movhpd] = false; // Move High Packed Double-Precision Floating-Point Values
SMPDefsFlags[NN_movlpd] = false; // Move Low Packed Double-Precision Floating-Point Values
SMPDefsFlags[NN_movmskpd] = false; // Extract Packed Double-Precision Floating-Point Sign Mask
SMPDefsFlags[NN_movntdq] = false; // Store Double Quadword Using Non-Temporal Hint
SMPDefsFlags[NN_movnti] = false; // Store Doubleword Using Non-Temporal Hint
SMPDefsFlags[NN_movntpd] = false; // Store Packed Double-Precision Floating-Point Values Using Non-Temporal Hint
SMPDefsFlags[NN_movq2dq] = false; // Move Quadword from MMX to XMM Register
SMPDefsFlags[NN_movsd] = false; // Move Scalar Double-Precision Floating-Point Values
SMPDefsFlags[NN_movupd] = false; // Move Unaligned Packed Double-Precision Floating-Point Values
SMPDefsFlags[NN_mulpd] = false; // Multiply Packed Double-Precision Floating-Point Values
SMPDefsFlags[NN_mulsd] = false; // Multiply Scalar Double-Precision Floating-Point Values
SMPDefsFlags[NN_orpd] = false; // Bitwise Logical OR of Double-Precision Floating-Point Values
SMPDefsFlags[NN_paddq] = false; // Add Packed Quadword Integers
SMPDefsFlags[NN_pause] = false; // Spin Loop Hint
SMPDefsFlags[NN_pmuludq] = false; // Multiply Packed Unsigned Doubleword Integers
SMPDefsFlags[NN_pshufd] = false; // Shuffle Packed Doublewords
SMPDefsFlags[NN_pshufhw] = false; // Shuffle Packed High Words
SMPDefsFlags[NN_pshuflw] = false; // Shuffle Packed Low Words
SMPDefsFlags[NN_pslldq] = false; // Shift Double Quadword Left Logical
SMPDefsFlags[NN_psrldq] = false; // Shift Double Quadword Right Logical
SMPDefsFlags[NN_psubq] = false; // Subtract Packed Quadword Integers
SMPDefsFlags[NN_punpckhqdq] = false; // Unpack High Data
SMPDefsFlags[NN_punpcklqdq] = false; // Unpack Low Data
SMPDefsFlags[NN_shufpd] = false; // Shuffle Packed Double-Precision Floating-Point Values
SMPDefsFlags[NN_sqrtpd] = false; // Compute Square Roots of Packed Double-Precision Floating-Point Values
SMPDefsFlags[NN_sqrtsd] = false; // Compute Square Rootof Scalar Double-Precision Floating-Point Value
SMPDefsFlags[NN_subpd] = false; // Subtract Packed Double-Precision Floating-Point Values
SMPDefsFlags[NN_subsd] = false; // Subtract Scalar Double-Precision Floating-Point Values
SMPDefsFlags[NN_unpckhpd] = false; // Unpack and Interleave High Packed Double-Precision Floating-Point Values
SMPDefsFlags[NN_unpcklpd] = false; // Unpack and Interleave Low Packed Double-Precision Floating-Point Values
SMPDefsFlags[NN_xorpd] = false; // Bitwise Logical OR of Double-Precision Floating-Point Values
// AMD syscall/sysret instructions NOTE: not AMD, found in Intel manual
// AMD64 instructions NOTE: not AMD, found in Intel manual
SMPDefsFlags[NN_swapgs] = false; // Exchange GS base with KernelGSBase MSR
// New Pentium instructions (SSE3)
SMPDefsFlags[NN_movddup] = false; // Move One Double-FP and Duplicate
SMPDefsFlags[NN_movshdup] = false; // Move Packed Single-FP High and Duplicate
SMPDefsFlags[NN_movsldup] = false; // Move Packed Single-FP Low and Duplicate
// Missing AMD64 instructions NOTE: also found in Intel manual
SMPDefsFlags[NN_movsxd] = false; // Move with Sign-Extend Doubleword
// SSE3 instructions
SMPDefsFlags[NN_addsubpd] = false; // Add /Sub packed DP FP numbers
SMPDefsFlags[NN_addsubps] = false; // Add /Sub packed SP FP numbers
SMPDefsFlags[NN_haddpd] = false; // Add horizontally packed DP FP numbers
SMPDefsFlags[NN_haddps] = false; // Add horizontally packed SP FP numbers
SMPDefsFlags[NN_hsubpd] = false; // Sub horizontally packed DP FP numbers
SMPDefsFlags[NN_hsubps] = false; // Sub horizontally packed SP FP numbers
SMPDefsFlags[NN_monitor] = false; // Set up a linear address range to be monitored by hardware
SMPDefsFlags[NN_mwait] = false; // Wait until write-back store performed within the range specified by the MONITOR instruction
SMPDefsFlags[NN_fisttp] = false; // Store ST in intXX (chop) and pop
SMPDefsFlags[NN_lddqu] = false; // Load unaligned integer 128-bit
// SSSE3 instructions
SMPDefsFlags[NN_psignb] = false; // Packed SIGN Byte
SMPDefsFlags[NN_psignw] = false; // Packed SIGN Word
SMPDefsFlags[NN_psignd] = false; // Packed SIGN Doubleword
SMPDefsFlags[NN_pshufb] = false; // Packed Shuffle Bytes
SMPDefsFlags[NN_pmulhrsw] = false; // Packed Multiply High with Round and Scale
SMPDefsFlags[NN_pmaddubsw] = false; // Multiply and Add Packed Signed and Unsigned Bytes
SMPDefsFlags[NN_phsubsw] = false; // Packed Horizontal Subtract and Saturate
SMPDefsFlags[NN_phaddsw] = false; // Packed Horizontal Add and Saturate
SMPDefsFlags[NN_phaddw] = false; // Packed Horizontal Add Word
SMPDefsFlags[NN_phaddd] = false; // Packed Horizontal Add Doubleword
SMPDefsFlags[NN_phsubw] = false; // Packed Horizontal Subtract Word
SMPDefsFlags[NN_phsubd] = false; // Packed Horizontal Subtract Doubleword
SMPDefsFlags[NN_palignr] = false; // Packed Align Right
SMPDefsFlags[NN_pabsb] = false; // Packed Absolute Value Byte
SMPDefsFlags[NN_pabsw] = false; // Packed Absolute Value Word
SMPDefsFlags[NN_pabsd] = false; // Packed Absolute Value Doubleword
// VMX instructions
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
#if 599 < IDA_SDK_VERSION
// Added with x86-64
SMPDefsFlags[NN_rdtscp] = false; // Read Time-Stamp Counter and Processor ID
// Geode LX 3DNow! extensions
SMPDefsFlags[NN_pfrcpv] = false; // Reciprocal Approximation for a Pair of 32-bit Floats
SMPDefsFlags[NN_pfrsqrtv] = false; // Reciprocal Square Root Approximation for a Pair of 32-bit Floats
// SSE2 pseudoinstructions
SMPDefsFlags[NN_cmpeqpd] = false; // Packed Double-FP Compare EQ
SMPDefsFlags[NN_cmpltpd] = false; // Packed Double-FP Compare LT
SMPDefsFlags[NN_cmplepd] = false; // Packed Double-FP Compare LE
SMPDefsFlags[NN_cmpunordpd] = false; // Packed Double-FP Compare UNORD
SMPDefsFlags[NN_cmpneqpd] = false; // Packed Double-FP Compare NOT EQ
SMPDefsFlags[NN_cmpnltpd] = false; // Packed Double-FP Compare NOT LT
SMPDefsFlags[NN_cmpnlepd] = false; // Packed Double-FP Compare NOT LE
SMPDefsFlags[NN_cmpordpd] = false; // Packed Double-FP Compare ORDERED
SMPDefsFlags[NN_cmpeqsd] = false; // Scalar Double-FP Compare EQ
SMPDefsFlags[NN_cmpltsd] = false; // Scalar Double-FP Compare LT
SMPDefsFlags[NN_cmplesd] = false; // Scalar Double-FP Compare LE
SMPDefsFlags[NN_cmpunordsd] = false; // Scalar Double-FP Compare UNORD
SMPDefsFlags[NN_cmpneqsd] = false; // Scalar Double-FP Compare NOT EQ
SMPDefsFlags[NN_cmpnltsd] = false; // Scalar Double-FP Compare NOT LT
SMPDefsFlags[NN_cmpnlesd] = false; // Scalar Double-FP Compare NOT LE
SMPDefsFlags[NN_cmpordsd] = false; // Scalar Double-FP Compare ORDERED
// SSSE4.1 instructions
SMPDefsFlags[NN_blendpd] = false; // Blend Packed Double Precision Floating-Point Values
SMPDefsFlags[NN_blendps] = false; // Blend Packed Single Precision Floating-Point Values
SMPDefsFlags[NN_blendvpd] = false; // Variable Blend Packed Double Precision Floating-Point Values
SMPDefsFlags[NN_blendvps] = false; // Variable Blend Packed Single Precision Floating-Point Values
SMPDefsFlags[NN_dppd] = false; // Dot Product of Packed Double Precision Floating-Point Values
SMPDefsFlags[NN_dpps] = false; // Dot Product of Packed Single Precision Floating-Point Values
SMPDefsFlags[NN_extractps] = 2; // Extract Packed Single Precision Floating-Point Value
SMPDefsFlags[NN_insertps] = false; // Insert Packed Single Precision Floating-Point Value
SMPDefsFlags[NN_movntdqa] = false; // Load Double Quadword Non-Temporal Aligned Hint
SMPDefsFlags[NN_mpsadbw] = false; // Compute Multiple Packed Sums of Absolute Difference
SMPDefsFlags[NN_packusdw] = false; // Pack with Unsigned Saturation
SMPDefsFlags[NN_pblendvb] = false; // Variable Blend Packed Bytes
SMPDefsFlags[NN_pblendw] = false; // Blend Packed Words
SMPDefsFlags[NN_pcmpeqq] = false; // Compare Packed Qword Data for Equal
SMPDefsFlags[NN_pextrb] = false; // Extract Byte
SMPDefsFlags[NN_pextrd] = false; // Extract Dword
SMPDefsFlags[NN_pextrq] = false; // Extract Qword
SMPDefsFlags[NN_phminposuw] = false; // Packed Horizontal Word Minimum
SMPDefsFlags[NN_pinsrb] = false; // Insert Byte
SMPDefsFlags[NN_pinsrd] = false; // Insert Dword
SMPDefsFlags[NN_pinsrq] = false; // Insert Qword
SMPDefsFlags[NN_pmaxsb] = false; // Maximum of Packed Signed Byte Integers
SMPDefsFlags[NN_pmaxsd] = false; // Maximum of Packed Signed Dword Integers
SMPDefsFlags[NN_pmaxud] = false; // Maximum of Packed Unsigned Dword Integers
SMPDefsFlags[NN_pmaxuw] = false; // Maximum of Packed Word Integers
SMPDefsFlags[NN_pminsb] = false; // Minimum of Packed Signed Byte Integers
SMPDefsFlags[NN_pminsd] = false; // Minimum of Packed Signed Dword Integers
SMPDefsFlags[NN_pminud] = false; // Minimum of Packed Unsigned Dword Integers
SMPDefsFlags[NN_pminuw] = false; // Minimum of Packed Word Integers
SMPDefsFlags[NN_pmovsxbw] = false; // Packed Move with Sign Extend
SMPDefsFlags[NN_pmovsxbd] = false; // Packed Move with Sign Extend
SMPDefsFlags[NN_pmovsxbq] = false; // Packed Move with Sign Extend
SMPDefsFlags[NN_pmovsxwd] = false; // Packed Move with Sign Extend
SMPDefsFlags[NN_pmovsxwq] = false; // Packed Move with Sign Extend
SMPDefsFlags[NN_pmovsxdq] = false; // Packed Move with Sign Extend
SMPDefsFlags[NN_pmovzxbw] = false; // Packed Move with Zero Extend
SMPDefsFlags[NN_pmovzxbd] = false; // Packed Move with Zero Extend
SMPDefsFlags[NN_pmovzxbq] = false; // Packed Move with Zero Extend
SMPDefsFlags[NN_pmovzxwd] = false; // Packed Move with Zero Extend
SMPDefsFlags[NN_pmovzxwq] = false; // Packed Move with Zero Extend
SMPDefsFlags[NN_pmovzxdq] = false; // Packed Move with Zero Extend
SMPDefsFlags[NN_pmuldq] = false; // Multiply Packed Signed Dword Integers
SMPDefsFlags[NN_pmulld] = false; // Multiply Packed Signed Dword Integers and Store Low Result
SMPDefsFlags[NN_roundpd] = false; // Round Packed Double Precision Floating-Point Values
SMPDefsFlags[NN_roundps] = false; // Round Packed Single Precision Floating-Point Values
SMPDefsFlags[NN_roundsd] = false; // Round Scalar Double Precision Floating-Point Values
SMPDefsFlags[NN_roundss] = false; // Round Scalar Single Precision Floating-Point Values
// SSSE4.2 instructions
SMPDefsFlags[NN_crc32] = false; // Accumulate CRC32 Value
SMPDefsFlags[NN_pcmpgtq] = false; // Compare Packed Data for Greater Than