Skip to content
Snippets Groups Projects
SMPDataFlowAnalysis.cpp 185 KiB
Newer Older
		case STARS_NN_xgetbv:               // Get Value of Extended Control Register
		case STARS_NN_xrstor:               // Restore Processor Extended States
		case STARS_NN_xsave:                // Save Processor Extended States
		case STARS_NN_xsetbv:               // Set Value of Extended Control Register
			SMP_fprintf(OutFile, "ERROR");
			break;

// Intel Safer Mode Extensions (SMX)

		case STARS_NN_getsec:               // Safer Mode Extensions (SMX) Instruction
			SMP_fprintf(OutFile, "ERROR");
			break;

// AMD-V Virtualization ISA Extension

		case STARS_NN_clgi:                 // Clear Global Interrupt Flag
		case STARS_NN_invlpga:              // Invalidate TLB Entry in a Specified ASID
		case STARS_NN_skinit:               // Secure Init and Jump with Attestation
		case STARS_NN_stgi:                 // Set Global Interrupt Flag
		case STARS_NN_vmexit:               // Stop Executing Guest: Begin Executing Host
		case STARS_NN_vmload:               // Load State from VMCB
		case STARS_NN_vmmcall:              // Call VMM
		case STARS_NN_vmrun:                // Run Virtual Machine
		case STARS_NN_vmsave:               // Save State to VMCB
			SMP_fprintf(OutFile, "ERROR");
			break;

// VMX+ instructions

		case STARS_NN_invept:               // Invalidate Translations Derived from EPT
		case STARS_NN_invvpid:              // Invalidate Translations Based on VPID
			SMP_fprintf(OutFile, "ERROR");
			break;

// Intel Atom instructions

		case STARS_NN_movbe:                // Move Data After Swapping Bytes
			SMP_fprintf(OutFile, "ERROR");
			break;

// Intel AES instructions

		case STARS_NN_aesenc:                // Perform One Round of an AES Encryption Flow
		case STARS_NN_aesenclast:            // Perform the Last Round of an AES Encryption Flow
		case STARS_NN_aesdec:                // Perform One Round of an AES Decryption Flow
		case STARS_NN_aesdeclast:            // Perform the Last Round of an AES Decryption Flow
		case STARS_NN_aesimc:                // Perform the AES InvMixColumn Transformation
		case STARS_NN_aeskeygenassist:       // AES Round Key Generation Assist
			SMP_fprintf(OutFile, "ERROR");
			break;

// Carryless multiplication

		case STARS_NN_pclmulqdq:            // Carry-Less Multiplication Quadword
			SMP_fprintf(OutFile, "ERROR");
			break;

// Returns modifies by operand size prefixes

		case STARS_NN_retnw:               // Return Near from Procedure (use16)
		case STARS_NN_retnd:               // Return Near from Procedure (use32)
		case STARS_NN_retnq:               // Return Near from Procedure (use64)
		case STARS_NN_retfw:               // Return Far from Procedure (use16)
		case STARS_NN_retfd:               // Return Far from Procedure (use32)
		case STARS_NN_retfq:               // Return Far from Procedure (use64)
			SMP_fprintf(OutFile, "return");
			break;

// RDRAND support

		case STARS_NN_rdrand:              // Read Random Number
			SMP_fprintf(OutFile, "ERROR");
			break;

// new GPR instructions

		case STARS_NN_adcx:                 // Unsigned Integer Addition of Two Operands with Carry Flag
		case STARS_NN_adox:                 // Unsigned Integer Addition of Two Operands with Overflow Flag
		case STARS_NN_andn:                 // Logical AND NOT
		case STARS_NN_bextr:                // Bit Field Extract
		case STARS_NN_blsi:                 // Extract Lowest Set Isolated Bit
		case STARS_NN_blsmsk:               // Get Mask Up to Lowest Set Bit
		case STARS_NN_blsr:                 // Reset Lowest Set Bit
		case STARS_NN_bzhi:                 // Zero High Bits Starting with Specified Bit Position
		case STARS_NN_clac:                 // Clear AC Flag in EFLAGS Register
		case STARS_NN_mulx:                 // Unsigned Multiply Without Affecting Flags
		case STARS_NN_pdep:                 // Parallel Bits Deposit
		case STARS_NN_pext:                 // Parallel Bits Extract
		case STARS_NN_rorx:                 // Rotate Right Logical Without Affecting Flags
		case STARS_NN_sarx:                 // Shift Arithmetically Right Without Affecting Flags
		case STARS_NN_shlx:                 // Shift Logically Left Without Affecting Flags
		case STARS_NN_shrx:                 // Shift Logically Right Without Affecting Flags
		case STARS_NN_stac:                 // Set AC Flag in EFLAGS Register
		case STARS_NN_tzcnt:                // Count the Number of Trailing Zero Bits
		case STARS_NN_xsaveopt:             // Save Processor Extended States Optimized
		case STARS_NN_invpcid:              // Invalidate Processor Context ID
		case STARS_NN_rdseed:               // Read Random Seed
		case STARS_NN_rdfsbase:             // Read FS Segment Base
		case STARS_NN_rdgsbase:             // Read GS Segment Base
		case STARS_NN_wrfsbase:             // Write FS Segment Base
		case STARS_NN_wrgsbase:             // Write GS Segment Base
			SMP_fprintf(OutFile, "ERROR");
			break;

// new AVX instructions
2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459
		case STARS_NN_vaddpd:               // Add Packed Double-Precision Floating-Point Values
		case STARS_NN_vaddps:               // Packed Single-FP Add
		case STARS_NN_vaddsd:               // Add Scalar Double-Precision Floating-Point Values
		case STARS_NN_vaddss:               // Scalar Single-FP Add
		case STARS_NN_vaddsubpd:            // Add /Sub packed DP FP numbers
		case STARS_NN_vaddsubps:            // Add /Sub packed SP FP numbers
		case STARS_NN_vaesdec:              // Perform One Round of an AES Decryption Flow
		case STARS_NN_vaesdeclast:          // Perform the Last Round of an AES Decryption Flow
		case STARS_NN_vaesenc:              // Perform One Round of an AES Encryption Flow
		case STARS_NN_vaesenclast:          // Perform the Last Round of an AES Encryption Flow
		case STARS_NN_vaesimc:              // Perform the AES InvMixColumn Transformation
		case STARS_NN_vaeskeygenassist:     // AES Round Key Generation Assist
		case STARS_NN_vandnpd:              // Bitwise Logical AND NOT of Packed Double-Precision Floating-Point Values
		case STARS_NN_vandnps:              // Bitwise Logical And Not for Single-FP
		case STARS_NN_vandpd:               // Bitwise Logical AND of Packed Double-Precision Floating-Point Values
		case STARS_NN_vandps:               // Bitwise Logical And for Single-FP
		case STARS_NN_vblendpd:             // Blend Packed Double Precision Floating-Point Values
		case STARS_NN_vblendps:             // Blend Packed Single Precision Floating-Point Values
		case STARS_NN_vblendvpd:            // Variable Blend Packed Double Precision Floating-Point Values
		case STARS_NN_vblendvps:            // Variable Blend Packed Single Precision Floating-Point Values
		case STARS_NN_vbroadcastf128:       // Broadcast 128 Bits of Floating-Point Data
		case STARS_NN_vbroadcasti128:       // Broadcast 128 Bits of Integer Data
		case STARS_NN_vbroadcastsd:         // Broadcast Double-Precision Floating-Point Element
		case STARS_NN_vbroadcastss:         // Broadcast Single-Precision Floating-Point Element
		case STARS_NN_vcmppd:               // Compare Packed Double-Precision Floating-Point Values
		case STARS_NN_vcmpps:               // Packed Single-FP Compare
		case STARS_NN_vcmpsd:               // Compare Scalar Double-Precision Floating-Point Values
		case STARS_NN_vcmpss:               // Scalar Single-FP Compare
		case STARS_NN_vcomisd:              // Compare Scalar Ordered Double-Precision Floating-Point Values and Set EFLAGS
		case STARS_NN_vcomiss:              // Scalar Ordered Single-FP Compare and Set EFLAGS
		case STARS_NN_vcvtdq2pd:            // Convert Packed Doubleword Integers to Packed Single-Precision Floating-Point Values
		case STARS_NN_vcvtdq2ps:            // Convert Packed Doubleword Integers to Packed Double-Precision Floating-Point Values
		case STARS_NN_vcvtpd2dq:            // Convert Packed Double-Precision Floating-Point Values to Packed Doubleword Integers
		case STARS_NN_vcvtpd2ps:            // Convert Packed Double-Precision Floating-Point Values to Packed Single-Precision Floating-Point Values
		case STARS_NN_vcvtph2ps:            // Convert 16-bit FP Values to Single-Precision FP Values
		case STARS_NN_vcvtps2dq:            // Convert Packed Single-Precision Floating-Point Values to Packed Doubleword Integers
		case STARS_NN_vcvtps2pd:            // Convert Packed Single-Precision Floating-Point Values to Packed Double-Precision Floating-Point Values
		case STARS_NN_vcvtps2ph:            // Convert Single-Precision FP value to 16-bit FP value
		case STARS_NN_vcvtsd2si:            // Convert Scalar Double-Precision Floating-Point Value to Doubleword Integer
		case STARS_NN_vcvtsd2ss:            // Convert Scalar Double-Precision Floating-Point Value to Scalar Single-Precision Floating-Point Value
		case STARS_NN_vcvtsi2sd:            // Convert Doubleword Integer to Scalar Double-Precision Floating-Point Value
		case STARS_NN_vcvtsi2ss:            // Scalar signed INT32 to Single-FP conversion
		case STARS_NN_vcvtss2sd:            // Convert Scalar Single-Precision Floating-Point Value to Scalar Double-Precision Floating-Point Value
		case STARS_NN_vcvtss2si:            // Scalar Single-FP to signed INT32 conversion
		case STARS_NN_vcvttpd2dq:           // Convert With Truncation Packed Double-Precision Floating-Point Values to Packed Doubleword Integers
		case STARS_NN_vcvttps2dq:           // Convert With Truncation Packed Single-Precision Floating-Point Values to Packed Doubleword Integers
		case STARS_NN_vcvttsd2si:           // Convert with Truncation Scalar Double-Precision Floating-Point Value to Doubleword Integer
		case STARS_NN_vcvttss2si:           // Scalar Single-FP to signed INT32 conversion (truncate)
		case STARS_NN_vdivpd:               // Divide Packed Double-Precision Floating-Point Values
		case STARS_NN_vdivps:               // Packed Single-FP Divide
		case STARS_NN_vdivsd:               // Divide Scalar Double-Precision Floating-Point Values
		case STARS_NN_vdivss:               // Scalar Single-FP Divide
		case STARS_NN_vdppd:                // Dot Product of Packed Double Precision Floating-Point Values
		case STARS_NN_vdpps:                // Dot Product of Packed Single Precision Floating-Point Values
		case STARS_NN_vextractf128:         // Extract Packed Floating-Point Values
		case STARS_NN_vextracti128:         // Extract Packed Integer Values
		case STARS_NN_vextractps:           // Extract Packed Floating-Point Values
		case STARS_NN_vfmadd132pd:          // Fused Multiply-Add of Packed Double-Precision Floating-Point Values
		case STARS_NN_vfmadd132ps:          // Fused Multiply-Add of Packed Single-Precision Floating-Point Values
		case STARS_NN_vfmadd132sd:          // Fused Multiply-Add of Scalar Double-Precision Floating-Point Values
		case STARS_NN_vfmadd132ss:          // Fused Multiply-Add of Scalar Single-Precision Floating-Point Values
		case STARS_NN_vfmadd213pd:          // Fused Multiply-Add of Packed Double-Precision Floating-Point Values
		case STARS_NN_vfmadd213ps:          // Fused Multiply-Add of Packed Single-Precision Floating-Point Values
		case STARS_NN_vfmadd213sd:          // Fused Multiply-Add of Scalar Double-Precision Floating-Point Values
		case STARS_NN_vfmadd213ss:          // Fused Multiply-Add of Scalar Single-Precision Floating-Point Values
		case STARS_NN_vfmadd231pd:          // Fused Multiply-Add of Packed Double-Precision Floating-Point Values
		case STARS_NN_vfmadd231ps:          // Fused Multiply-Add of Packed Single-Precision Floating-Point Values
		case STARS_NN_vfmadd231sd:          // Fused Multiply-Add of Scalar Double-Precision Floating-Point Values
		case STARS_NN_vfmadd231ss:          // Fused Multiply-Add of Scalar Single-Precision Floating-Point Values
		case STARS_NN_vfmaddsub132pd:       // Fused Multiply-Alternating Add/Subtract of Packed Double-Precision Floating-Point Values
		case STARS_NN_vfmaddsub132ps:       // Fused Multiply-Alternating Add/Subtract of Packed Single-Precision Floating-Point Values
		case STARS_NN_vfmaddsub213pd:       // Fused Multiply-Alternating Add/Subtract of Packed Double-Precision Floating-Point Values
		case STARS_NN_vfmaddsub213ps:       // Fused Multiply-Alternating Add/Subtract of Packed Single-Precision Floating-Point Values
		case STARS_NN_vfmaddsub231pd:       // Fused Multiply-Alternating Add/Subtract of Packed Double-Precision Floating-Point Values
		case STARS_NN_vfmaddsub231ps:       // Fused Multiply-Alternating Add/Subtract of Packed Single-Precision Floating-Point Values
		case STARS_NN_vfmsub132pd:          // Fused Multiply-Subtract of Packed Double-Precision Floating-Point Values
		case STARS_NN_vfmsub132ps:          // Fused Multiply-Subtract of Packed Single-Precision Floating-Point Values
		case STARS_NN_vfmsub132sd:          // Fused Multiply-Subtract of Scalar Double-Precision Floating-Point Values
		case STARS_NN_vfmsub132ss:          // Fused Multiply-Subtract of Scalar Single-Precision Floating-Point Values
		case STARS_NN_vfmsub213pd:          // Fused Multiply-Subtract of Packed Double-Precision Floating-Point Values
		case STARS_NN_vfmsub213ps:          // Fused Multiply-Subtract of Packed Single-Precision Floating-Point Values
		case STARS_NN_vfmsub213sd:          // Fused Multiply-Subtract of Scalar Double-Precision Floating-Point Values
		case STARS_NN_vfmsub213ss:          // Fused Multiply-Subtract of Scalar Single-Precision Floating-Point Values
		case STARS_NN_vfmsub231pd:          // Fused Multiply-Subtract of Packed Double-Precision Floating-Point Values
		case STARS_NN_vfmsub231ps:          // Fused Multiply-Subtract of Packed Single-Precision Floating-Point Values
		case STARS_NN_vfmsub231sd:          // Fused Multiply-Subtract of Scalar Double-Precision Floating-Point Values
		case STARS_NN_vfmsub231ss:          // Fused Multiply-Subtract of Scalar Single-Precision Floating-Point Values
		case STARS_NN_vfmsubadd132pd:       // Fused Multiply-Alternating Subtract/Add of Packed Double-Precision Floating-Point Values
		case STARS_NN_vfmsubadd132ps:       // Fused Multiply-Alternating Subtract/Add of Packed Single-Precision Floating-Point Values
		case STARS_NN_vfmsubadd213pd:       // Fused Multiply-Alternating Subtract/Add of Packed Double-Precision Floating-Point Values
		case STARS_NN_vfmsubadd213ps:       // Fused Multiply-Alternating Subtract/Add of Packed Single-Precision Floating-Point Values
		case STARS_NN_vfmsubadd231pd:       // Fused Multiply-Alternating Subtract/Add of Packed Double-Precision Floating-Point Values
		case STARS_NN_vfmsubadd231ps:       // Fused Multiply-Alternating Subtract/Add of Packed Single-Precision Floating-Point Values
		case STARS_NN_vfnmadd132pd:         // Fused Negative Multiply-Add of Packed Double-Precision Floating-Point Values
		case STARS_NN_vfnmadd132ps:         // Fused Negative Multiply-Add of Packed Single-Precision Floating-Point Values
		case STARS_NN_vfnmadd132sd:         // Fused Negative Multiply-Add of Scalar Double-Precision Floating-Point Values
		case STARS_NN_vfnmadd132ss:         // Fused Negative Multiply-Add of Scalar Single-Precision Floating-Point Values
		case STARS_NN_vfnmadd213pd:         // Fused Negative Multiply-Add of Packed Double-Precision Floating-Point Values
		case STARS_NN_vfnmadd213ps:         // Fused Negative Multiply-Add of Packed Single-Precision Floating-Point Values
		case STARS_NN_vfnmadd213sd:         // Fused Negative Multiply-Add of Scalar Double-Precision Floating-Point Values
		case STARS_NN_vfnmadd213ss:         // Fused Negative Multiply-Add of Scalar Single-Precision Floating-Point Values
		case STARS_NN_vfnmadd231pd:         // Fused Negative Multiply-Add of Packed Double-Precision Floating-Point Values
		case STARS_NN_vfnmadd231ps:         // Fused Negative Multiply-Add of Packed Single-Precision Floating-Point Values
		case STARS_NN_vfnmadd231sd:         // Fused Negative Multiply-Add of Scalar Double-Precision Floating-Point Values
		case STARS_NN_vfnmadd231ss:         // Fused Negative Multiply-Add of Scalar Single-Precision Floating-Point Values
		case STARS_NN_vfnmsub132pd:         // Fused Negative Multiply-Subtract of Packed Double-Precision Floating-Point Values
		case STARS_NN_vfnmsub132ps:         // Fused Negative Multiply-Subtract of Packed Single-Precision Floating-Point Values
		case STARS_NN_vfnmsub132sd:         // Fused Negative Multiply-Subtract of Scalar Double-Precision Floating-Point Values
		case STARS_NN_vfnmsub132ss:         // Fused Negative Multiply-Subtract of Scalar Single-Precision Floating-Point Values
		case STARS_NN_vfnmsub213pd:         // Fused Negative Multiply-Subtract of Packed Double-Precision Floating-Point Values
		case STARS_NN_vfnmsub213ps:         // Fused Negative Multiply-Subtract of Packed Single-Precision Floating-Point Values
		case STARS_NN_vfnmsub213sd:         // Fused Negative Multiply-Subtract of Scalar Double-Precision Floating-Point Values
		case STARS_NN_vfnmsub213ss:         // Fused Negative Multiply-Subtract of Scalar Single-Precision Floating-Point Values
		case STARS_NN_vfnmsub231pd:         // Fused Negative Multiply-Subtract of Packed Double-Precision Floating-Point Values
		case STARS_NN_vfnmsub231ps:         // Fused Negative Multiply-Subtract of Packed Single-Precision Floating-Point Values
		case STARS_NN_vfnmsub231sd:         // Fused Negative Multiply-Subtract of Scalar Double-Precision Floating-Point Values
		case STARS_NN_vfnmsub231ss:         // Fused Negative Multiply-Subtract of Scalar Single-Precision Floating-Point Values
		case STARS_NN_vgatherdps:           // Gather Packed SP FP Values Using Signed Dword Indices
		case STARS_NN_vgatherdpd:           // Gather Packed DP FP Values Using Signed Dword Indices
		case STARS_NN_vgatherqps:           // Gather Packed SP FP Values Using Signed Qword Indices
		case STARS_NN_vgatherqpd:           // Gather Packed DP FP Values Using Signed Qword Indices
		case STARS_NN_vhaddpd:              // Add horizontally packed DP FP numbers
		case STARS_NN_vhaddps:              // Add horizontally packed SP FP numbers
		case STARS_NN_vhsubpd:              // Sub horizontally packed DP FP numbers
		case STARS_NN_vhsubps:              // Sub horizontally packed SP FP numbers
		case STARS_NN_vinsertf128:          // Insert Packed Floating-Point Values
		case STARS_NN_vinserti128:          // Insert Packed Integer Values
		case STARS_NN_vinsertps:            // Insert Packed Single Precision Floating-Point Value
		case STARS_NN_vlddqu:               // Load Unaligned Packed Integer Values
		case STARS_NN_vldmxcsr:             // Load Streaming SIMD Extensions Technology Control/Status Register
		case STARS_NN_vmaskmovdqu:          // Store Selected Bytes of Double Quadword with NT Hint
		case STARS_NN_vmaskmovpd:           // Conditionally Load Packed Double-Precision Floating-Point Values
		case STARS_NN_vmaskmovps:           // Conditionally Load Packed Single-Precision Floating-Point Values
		case STARS_NN_vmaxpd:               // Return Maximum Packed Double-Precision Floating-Point Values
		case STARS_NN_vmaxps:               // Packed Single-FP Maximum
		case STARS_NN_vmaxsd:               // Return Maximum Scalar Double-Precision Floating-Point Value
		case STARS_NN_vmaxss:               // Scalar Single-FP Maximum
		case STARS_NN_vminpd:               // Return Minimum Packed Double-Precision Floating-Point Values
		case STARS_NN_vminps:               // Packed Single-FP Minimum
		case STARS_NN_vminsd:               // Return Minimum Scalar Double-Precision Floating-Point Value
		case STARS_NN_vminss:               // Scalar Single-FP Minimum
		case STARS_NN_vmovapd:              // Move Aligned Packed Double-Precision Floating-Point Values
		case STARS_NN_vmovaps:              // Move Aligned Four Packed Single-FP
		case STARS_NN_vmovd:                // Move 32 bits
		case STARS_NN_vmovddup:             // Move One Double-FP and Duplicate
		case STARS_NN_vmovdqa:              // Move Aligned Double Quadword
		case STARS_NN_vmovdqu:              // Move Unaligned Double Quadword
		case STARS_NN_vmovhlps:             // Move High to Low Packed Single-FP
		case STARS_NN_vmovhpd:              // Move High Packed Double-Precision Floating-Point Values
		case STARS_NN_vmovhps:              // Move High Packed Single-FP
		case STARS_NN_vmovlhps:             // Move Low to High Packed Single-FP
		case STARS_NN_vmovlpd:              // Move Low Packed Double-Precision Floating-Point Values
		case STARS_NN_vmovlps:              // Move Low Packed Single-FP
		case STARS_NN_vmovmskpd:            // Extract Packed Double-Precision Floating-Point Sign Mask
		case STARS_NN_vmovmskps:            // Move Mask to Register
		case STARS_NN_vmovntdq:             // Store Double Quadword Using Non-Temporal Hint
		case STARS_NN_vmovntdqa:            // Load Double Quadword Non-Temporal Aligned Hint
		case STARS_NN_vmovntpd:             // Store Packed Double-Precision Floating-Point Values Using Non-Temporal Hint
		case STARS_NN_vmovntps:             // Move Aligned Four Packed Single-FP Non Temporal
		case STARS_NN_vmovntsd:             // Move Non-Temporal Scalar Double-Precision Floating-Point
		case STARS_NN_vmovntss:             // Move Non-Temporal Scalar Single-Precision Floating-Point
		case STARS_NN_vmovq:                // Move 64 bits
		case STARS_NN_vmovsd:               // Move Scalar Double-Precision Floating-Point Values
		case STARS_NN_vmovshdup:            // Move Packed Single-FP High and Duplicate
		case STARS_NN_vmovsldup:            // Move Packed Single-FP Low and Duplicate
		case STARS_NN_vmovss:               // Move Scalar Single-FP
		case STARS_NN_vmovupd:              // Move Unaligned Packed Double-Precision Floating-Point Values
		case STARS_NN_vmovups:              // Move Unaligned Four Packed Single-FP
		case STARS_NN_vmpsadbw:             // Compute Multiple Packed Sums of Absolute Difference
		case STARS_NN_vmulpd:               // Multiply Packed Double-Precision Floating-Point Values
		case STARS_NN_vmulps:               // Packed Single-FP Multiply
		case STARS_NN_vmulsd:               // Multiply Scalar Double-Precision Floating-Point Values
		case STARS_NN_vmulss:               // Scalar Single-FP Multiply
		case STARS_NN_vorpd:                // Bitwise Logical OR of Double-Precision Floating-Point Values
		case STARS_NN_vorps:                // Bitwise Logical OR for Single-FP Data
		case STARS_NN_vpabsb:               // Packed Absolute Value Byte
		case STARS_NN_vpabsd:               // Packed Absolute Value Doubleword
		case STARS_NN_vpabsw:               // Packed Absolute Value Word
		case STARS_NN_vpackssdw:            // Pack with Signed Saturation (Dword->Word)
		case STARS_NN_vpacksswb:            // Pack with Signed Saturation (Word->Byte)
		case STARS_NN_vpackusdw:            // Pack with Unsigned Saturation
		case STARS_NN_vpackuswb:            // Pack with Unsigned Saturation (Word->Byte)
		case STARS_NN_vpaddb:               // Packed Add Byte
		case STARS_NN_vpaddd:               // Packed Add Dword
		case STARS_NN_vpaddq:               // Add Packed Quadword Integers
		case STARS_NN_vpaddsb:              // Packed Add with Saturation (Byte)
		case STARS_NN_vpaddsw:              // Packed Add with Saturation (Word)
		case STARS_NN_vpaddusb:             // Packed Add Unsigned with Saturation (Byte)
		case STARS_NN_vpaddusw:             // Packed Add Unsigned with Saturation (Word)
		case STARS_NN_vpaddw:               // Packed Add Word
		case STARS_NN_vpalignr:             // Packed Align Right
		case STARS_NN_vpand:                // Bitwise Logical And
		case STARS_NN_vpandn:               // Bitwise Logical And Not
		case STARS_NN_vpavgb:               // Packed Average (Byte)
		case STARS_NN_vpavgw:               // Packed Average (Word)
		case STARS_NN_vpblendd:             // Blend Packed Dwords
		case STARS_NN_vpblendvb:            // Variable Blend Packed Bytes
		case STARS_NN_vpblendw:             // Blend Packed Words
		case STARS_NN_vpbroadcastb:         // Broadcast a Byte Integer
		case STARS_NN_vpbroadcastd:         // Broadcast a Dword Integer
		case STARS_NN_vpbroadcastq:         // Broadcast a Qword Integer
		case STARS_NN_vpbroadcastw:         // Broadcast a Word Integer
		case STARS_NN_vpclmulqdq:           // Carry-Less Multiplication Quadword
		case STARS_NN_vpcmpeqb:             // Packed Compare for Equal (Byte)
		case STARS_NN_vpcmpeqd:             // Packed Compare for Equal (Dword)
		case STARS_NN_vpcmpeqq:             // Compare Packed Qword Data for Equal
		case STARS_NN_vpcmpeqw:             // Packed Compare for Equal (Word)
		case STARS_NN_vpcmpestri:           // Packed Compare Explicit Length Strings: Return Index
		case STARS_NN_vpcmpestrm:           // Packed Compare Explicit Length Strings: Return Mask
		case STARS_NN_vpcmpgtb:             // Packed Compare for Greater Than (Byte)
		case STARS_NN_vpcmpgtd:             // Packed Compare for Greater Than (Dword)
		case STARS_NN_vpcmpgtq:             // Compare Packed Data for Greater Than
		case STARS_NN_vpcmpgtw:             // Packed Compare for Greater Than (Word)
		case STARS_NN_vpcmpistri:           // Packed Compare Implicit Length Strings: Return Index
		case STARS_NN_vpcmpistrm:           // Packed Compare Implicit Length Strings: Return Mask
		case STARS_NN_vperm2f128:           // Permute Floating-Point Values
		case STARS_NN_vperm2i128:           // Permute Integer Values
		case STARS_NN_vpermd:               // Full Doublewords Element Permutation
		case STARS_NN_vpermilpd:            // Permute Double-Precision Floating-Point Values
		case STARS_NN_vpermilps:            // Permute Single-Precision Floating-Point Values
		case STARS_NN_vpermpd:              // Permute Double-Precision Floating-Point Elements
		case STARS_NN_vpermps:              // Permute Single-Precision Floating-Point Elements
		case STARS_NN_vpermq:               // Qwords Element Permutation
		case STARS_NN_vpextrb:              // Extract Byte
		case STARS_NN_vpextrd:              // Extract Dword
		case STARS_NN_vpextrq:              // Extract Qword
		case STARS_NN_vpextrw:              // Extract Word
		case STARS_NN_vpgatherdd:           // Gather Packed Dword Values Using Signed Dword Indices
		case STARS_NN_vpgatherdq:           // Gather Packed Qword Values Using Signed Dword Indices
		case STARS_NN_vpgatherqd:           // Gather Packed Dword Values Using Signed Qword Indices
		case STARS_NN_vpgatherqq:           // Gather Packed Qword Values Using Signed Qword Indices
		case STARS_NN_vphaddd:              // Packed Horizontal Add Doubleword
		case STARS_NN_vphaddsw:             // Packed Horizontal Add and Saturate
		case STARS_NN_vphaddw:              // Packed Horizontal Add Word
		case STARS_NN_vphminposuw:          // Packed Horizontal Word Minimum
		case STARS_NN_vphsubd:              // Packed Horizontal Subtract Doubleword
		case STARS_NN_vphsubsw:             // Packed Horizontal Subtract and Saturate
		case STARS_NN_vphsubw:              // Packed Horizontal Subtract Word
		case STARS_NN_vpinsrb:              // Insert Byte
		case STARS_NN_vpinsrd:              // Insert Dword
		case STARS_NN_vpinsrq:              // Insert Qword
		case STARS_NN_vpinsrw:              // Insert Word
		case STARS_NN_vpmaddubsw:           // Multiply and Add Packed Signed and Unsigned Bytes
		case STARS_NN_vpmaddwd:             // Packed Multiply and Add
		case STARS_NN_vpmaskmovd:           // Conditionally Store Dword Values Using Mask
		case STARS_NN_vpmaskmovq:           // Conditionally Store Qword Values Using Mask
		case STARS_NN_vpmaxsb:              // Maximum of Packed Signed Byte Integers
		case STARS_NN_vpmaxsd:              // Maximum of Packed Signed Dword Integers
		case STARS_NN_vpmaxsw:              // Packed Signed Integer Word Maximum
		case STARS_NN_vpmaxub:              // Packed Unsigned Integer Byte Maximum
		case STARS_NN_vpmaxud:              // Maximum of Packed Unsigned Dword Integers
		case STARS_NN_vpmaxuw:              // Maximum of Packed Word Integers
		case STARS_NN_vpminsb:              // Minimum of Packed Signed Byte Integers
		case STARS_NN_vpminsd:              // Minimum of Packed Signed Dword Integers
		case STARS_NN_vpminsw:              // Packed Signed Integer Word Minimum
		case STARS_NN_vpminub:              // Packed Unsigned Integer Byte Minimum
		case STARS_NN_vpminud:              // Minimum of Packed Unsigned Dword Integers
		case STARS_NN_vpminuw:              // Minimum of Packed Word Integers
		case STARS_NN_vpmovmskb:            // Move Byte Mask to Integer
		case STARS_NN_vpmovsxbd:            // Packed Move with Sign Extend
		case STARS_NN_vpmovsxbq:            // Packed Move with Sign Extend
		case STARS_NN_vpmovsxbw:            // Packed Move with Sign Extend
		case STARS_NN_vpmovsxdq:            // Packed Move with Sign Extend
		case STARS_NN_vpmovsxwd:            // Packed Move with Sign Extend
		case STARS_NN_vpmovsxwq:            // Packed Move with Sign Extend
		case STARS_NN_vpmovzxbd:            // Packed Move with Zero Extend
		case STARS_NN_vpmovzxbq:            // Packed Move with Zero Extend
		case STARS_NN_vpmovzxbw:            // Packed Move with Zero Extend
		case STARS_NN_vpmovzxdq:            // Packed Move with Zero Extend
		case STARS_NN_vpmovzxwd:            // Packed Move with Zero Extend
		case STARS_NN_vpmovzxwq:            // Packed Move with Zero Extend
		case STARS_NN_vpmuldq:              // Multiply Packed Signed Dword Integers
		case STARS_NN_vpmulhrsw:            // Packed Multiply High with Round and Scale
		case STARS_NN_vpmulhuw:             // Packed Multiply High Unsigned
		case STARS_NN_vpmulhw:              // Packed Multiply High
		case STARS_NN_vpmulld:              // Multiply Packed Signed Dword Integers and Store Low Result
		case STARS_NN_vpmullw:              // Packed Multiply Low
		case STARS_NN_vpmuludq:             // Multiply Packed Unsigned Doubleword Integers
		case STARS_NN_vpor:                 // Bitwise Logical Or
		case STARS_NN_vpsadbw:              // Packed Sum of Absolute Differences
		case STARS_NN_vpshufb:              // Packed Shuffle Bytes
		case STARS_NN_vpshufd:              // Shuffle Packed Doublewords
		case STARS_NN_vpshufhw:             // Shuffle Packed High Words
		case STARS_NN_vpshuflw:             // Shuffle Packed Low Words
		case STARS_NN_vpsignb:              // Packed SIGN Byte
		case STARS_NN_vpsignd:              // Packed SIGN Doubleword
		case STARS_NN_vpsignw:              // Packed SIGN Word
		case STARS_NN_vpslld:               // Packed Shift Left Logical (Dword)
		case STARS_NN_vpslldq:              // Shift Double Quadword Left Logical
		case STARS_NN_vpsllq:               // Packed Shift Left Logical (Qword)
		case STARS_NN_vpsllvd:              // Variable Bit Shift Left Logical (Dword)
		case STARS_NN_vpsllvq:              // Variable Bit Shift Left Logical (Qword)
		case STARS_NN_vpsllw:               // Packed Shift Left Logical (Word)
		case STARS_NN_vpsrad:               // Packed Shift Right Arithmetic (Dword)
		case STARS_NN_vpsravd:              // Variable Bit Shift Right Arithmetic
		case STARS_NN_vpsraw:               // Packed Shift Right Arithmetic (Word)
		case STARS_NN_vpsrld:               // Packed Shift Right Logical (Dword)
		case STARS_NN_vpsrldq:              // Shift Double Quadword Right Logical (Qword)
		case STARS_NN_vpsrlq:               // Packed Shift Right Logical (Qword)
		case STARS_NN_vpsrlvd:              // Variable Bit Shift Right Logical (Dword)
		case STARS_NN_vpsrlvq:              // Variable Bit Shift Right Logical (Qword)
		case STARS_NN_vpsrlw:               // Packed Shift Right Logical (Word)
		case STARS_NN_vpsubb:               // Packed Subtract Byte
		case STARS_NN_vpsubd:               // Packed Subtract Dword
		case STARS_NN_vpsubq:               // Subtract Packed Quadword Integers
		case STARS_NN_vpsubsb:              // Packed Subtract with Saturation (Byte)
		case STARS_NN_vpsubsw:              // Packed Subtract with Saturation (Word)
		case STARS_NN_vpsubusb:             // Packed Subtract Unsigned with Saturation (Byte)
		case STARS_NN_vpsubusw:             // Packed Subtract Unsigned with Saturation (Word)
		case STARS_NN_vpsubw:               // Packed Subtract Word
		case STARS_NN_vptest:               // Logical Compare
		case STARS_NN_vpunpckhbw:           // Unpack High Packed Data (Byte->Word)
		case STARS_NN_vpunpckhdq:           // Unpack High Packed Data (Dword->Qword)
		case STARS_NN_vpunpckhqdq:          // Unpack High Packed Data (Qword->Xmmword)
		case STARS_NN_vpunpckhwd:           // Unpack High Packed Data (Word->Dword)
		case STARS_NN_vpunpcklbw:           // Unpack Low Packed Data (Byte->Word)
		case STARS_NN_vpunpckldq:           // Unpack Low Packed Data (Dword->Qword)
		case STARS_NN_vpunpcklqdq:          // Unpack Low Packed Data (Qword->Xmmword)
		case STARS_NN_vpunpcklwd:           // Unpack Low Packed Data (Word->Dword)
		case STARS_NN_vpxor:                // Bitwise Logical Exclusive Or
		case STARS_NN_vrcpps:               // Packed Single-FP Reciprocal
		case STARS_NN_vrcpss:               // Scalar Single-FP Reciprocal
		case STARS_NN_vroundpd:             // Round Packed Double Precision Floating-Point Values
		case STARS_NN_vroundps:             // Round Packed Single Precision Floating-Point Values
		case STARS_NN_vroundsd:             // Round Scalar Double Precision Floating-Point Values
		case STARS_NN_vroundss:             // Round Scalar Single Precision Floating-Point Values
		case STARS_NN_vrsqrtps:             // Packed Single-FP Square Root Reciprocal
		case STARS_NN_vrsqrtss:             // Scalar Single-FP Square Root Reciprocal
		case STARS_NN_vshufpd:              // Shuffle Packed Double-Precision Floating-Point Values
		case STARS_NN_vshufps:              // Shuffle Single-FP
		case STARS_NN_vsqrtpd:              // Compute Square Roots of Packed Double-Precision Floating-Point Values
		case STARS_NN_vsqrtps:              // Packed Single-FP Square Root
		case STARS_NN_vsqrtsd:              // Compute Square Rootof Scalar Double-Precision Floating-Point Value
		case STARS_NN_vsqrtss:              // Scalar Single-FP Square Root
		case STARS_NN_vstmxcsr:             // Store Streaming SIMD Extensions Technology Control/Status Register
		case STARS_NN_vsubpd:               // Subtract Packed Double-Precision Floating-Point Values
		case STARS_NN_vsubps:               // Packed Single-FP Subtract
		case STARS_NN_vsubsd:               // Subtract Scalar Double-Precision Floating-Point Values
		case STARS_NN_vsubss:               // Scalar Single-FP Subtract
		case STARS_NN_vtestpd:              // Packed Double-Precision Floating-Point Bit Test
		case STARS_NN_vtestps:              // Packed Single-Precision Floating-Point Bit Test
		case STARS_NN_vucomisd:             // Unordered Compare Scalar Ordered Double-Precision Floating-Point Values and Set EFLAGS
		case STARS_NN_vucomiss:             // Scalar Unordered Single-FP Compare and Set EFLAGS
		case STARS_NN_vunpckhpd:            // Unpack and Interleave High Packed Double-Precision Floating-Point Values
		case STARS_NN_vunpckhps:            // Unpack High Packed Single-FP Data
		case STARS_NN_vunpcklpd:            // Unpack and Interleave Low Packed Double-Precision Floating-Point Values
		case STARS_NN_vunpcklps:            // Unpack Low Packed Single-FP Data
		case STARS_NN_vxorpd:               // Bitwise Logical OR of Double-Precision Floating-Point Values
		case STARS_NN_vxorps:               // Bitwise Logical XOR for Single-FP Data
		case STARS_NN_vzeroall:             // Zero All YMM Registers
		case STARS_NN_vzeroupper:           // Zero Upper Bits of YMM Registers
			SMP_fprintf(OutFile, "ERROR");
			break;

// Transactional Synchronization Extensions

		case STARS_NN_xabort:               // Transaction Abort
		case STARS_NN_xbegin:               // Transaction Begin
		case STARS_NN_xend:                 // Transaction End
		case STARS_NN_xtest:                // Test If In Transactional Execution
			SMP_fprintf(OutFile, "ERROR");
			break;

// Virtual PC synthetic instructions

		case STARS_NN_vmgetinfo:            // Virtual PC - Get VM Information
		case STARS_NN_vmsetinfo:            // Virtual PC - Set VM Information
		case STARS_NN_vmdxdsbl:             // Virtual PC - Disable Direct Execution
		case STARS_NN_vmdxenbl:             // Virtual PC - Enable Direct Execution
		case STARS_NN_vmcpuid:              // Virtual PC - Virtualized CPU Information
		case STARS_NN_vmhlt:                // Virtual PC - Halt
		case STARS_NN_vmsplaf:              // Virtual PC - Spin Lock Acquisition Failed
		case STARS_NN_vmpushfd:             // Virtual PC - Push virtualized flags register
		case STARS_NN_vmpopfd:              // Virtual PC - Pop virtualized flags register
		case STARS_NN_vmcli:                // Virtual PC - Clear Interrupt Flag
		case STARS_NN_vmsti:                // Virtual PC - Set Interrupt Flag
		case STARS_NN_vmiretd:              // Virtual PC - Return From Interrupt
		case STARS_NN_vmsgdt:               // Virtual PC - Store Global Descriptor Table
		case STARS_NN_vmsidt:               // Virtual PC - Store Interrupt Descriptor Table
		case STARS_NN_vmsldt:               // Virtual PC - Store Local Descriptor Table
		case STARS_NN_vmstr:                // Virtual PC - Store Task Register
		case STARS_NN_vmsdte:               // Virtual PC - Store to Descriptor Table Entry
		case STARS_NN_vpcext:               // Virtual PC - ISA extension
			SMP_fprintf(OutFile, "ERROR");
			break;

		default:
			SMP_fprintf(OutFile, "ERROR");
			break;
	}

	return;
} // end of PrintOpcode()

// MACHINE DEPENDENT: Is operand type a known type that we want to analyze?
bool MDKnownOperandType(const STARSOpndTypePtr &TempOp) {
	bool GoodOpType = (nullptr != TempOp) && TempOp->MDIsKnownOpType();
#if SMP_DEBUG_OPERAND_TYPES
	if (!GoodOpType && (! TempOp->IsVoidOp())) {
		SMP_msg("WARNING: Operand type %d \n", TempOp->GetOpType());
	}
#endif 
	return GoodOpType;
clc5q's avatar
clc5q committed
// Meet function over any two types in the type lattice.
SMPOperandType SMPTypeMeet(SMPOperandType Type1, SMPOperandType Type2) {
	SMPOperandType MeetType = UNKNOWN;
	bool ProfDerived = IsProfDerived(Type1) || IsProfDerived(Type2);
	if (IsEqType(UNINIT, Type1))
		MeetType = Type2;
	else if (IsEqType(UNINIT, Type2) || IsEqType(Type1, Type2)
		|| IsUnknown(Type1))
		MeetType = Type1;
	else if (IsNumeric(Type1)) {
		if (IsNumeric(Type2))  // one is NUMERIC, one is CODEPTR
clc5q's avatar
clc5q committed
		else if (IsDataPtr(Type2) || IsUnknown(Type2))
			MeetType = UNKNOWN;
clc5q's avatar
clc5q committed
	}
	else if (IsDataPtr(Type1)) {
		if (IsDataPtr(Type2))  // two different POINTER subtypes
			MeetType = POINTER;
		else if (IsNumeric(Type2) || IsUnknown(Type2))
			MeetType = UNKNOWN;
clc5q's avatar
clc5q committed
	}
	if (ProfDerived && IsNotEqType(UNINIT, MeetType))
		MeetType = MakeProfDerived(MeetType);
clc5q's avatar
clc5q committed
	return MeetType;
} // end of SMPTypeMeet()

// Meet function for SCCP constant propagation; updates NewConstStruct
void STARSConstantTypeMeet(struct STARS_SCCP_Const_Struct OldConstStruct, struct STARS_SCCP_Const_Struct &NewConstStruct) {
	if ((OldConstStruct.ConstType != STARS_CONST_BOTTOM) && (NewConstStruct.ConstType != STARS_CONST_TOP)) {
		// We have four possibilities. Three of them have NewConstStruct lower in the type lattice, which means the final
		//  result is simply the NewConstStruct (i.e. if Old == TOP, New == CONST or BOTTOM; or Old == CONST, New == BOTTOM).
		// The fourth possibility is that Old == CONST, New == CONST, and we have to check the const values for consistency,
		//  lowering NewConstStruct to BOTTOM if they are inconsistent.
		if ((OldConstStruct.ConstType == STARS_CONST_HAS_VALUE) && (NewConstStruct.ConstType == STARS_CONST_HAS_VALUE)) {
			if (OldConstStruct.ConstValue != NewConstStruct.ConstValue) { // inconsistent const values
				NewConstStruct.ConstType = STARS_CONST_BOTTOM;
			}
		}
	}
	else {
		NewConstStruct = OldConstStruct;
	}
	return;
} // end of STARSConstantTypeMeet()
// *****************************************************************
// Class DisAsmString
// *****************************************************************
DisAsmString::DisAsmString(void) {
	this->CurrAddr = STARS_BADADDR;
	this->StringLen = 0;
	this->CachedDisAsm[0] = '\0';
	return;
}

char *DisAsmString::GetDisAsm(STARS_ea_t InstAddr, bool MarkerInst) {
	if (InstAddr != this->CurrAddr) {
		this->CurrAddr = InstAddr;
		if (MarkerInst) {
			this->SetMarkerInstText(InstAddr);
			bool IDAsuccess = SMP_generate_disasm_line(InstAddr, this->CachedDisAsm, sizeof(this->CachedDisAsm) - 1);
			if (IDAsuccess) {
				// Remove interactive color-coding tags.
				this->StringLen = SMP_tag_remove(this->CachedDisAsm, this->CachedDisAsm, sizeof(this->CachedDisAsm) - 1);
				if (-1 >= StringLen) {
					SMP_msg("ERROR: tag_remove failed at addr %lx \n", (unsigned long) InstAddr);
					this->CachedDisAsm[0] = '\0';
				}
			}
			else {
				SMP_msg("ERROR: generate_disasm_line failed at addr %lx \n", (unsigned long) InstAddr);
				this->CachedDisAsm[0] = '\0';
			}
		}
	}
	return (char *) this->CachedDisAsm;
} // end of DisAsmString::GetDisasm()

// Set the disasm text for the SSA marker instructions, which have no IDA Pro disasm because
//  they are pseudo-instructions that we add at the top of each function to hold LiveIn name info.
void DisAsmString::SetMarkerInstText(STARS_ea_t InstAddr) {
	if (InstAddr != this->CurrAddr) {
		this->CurrAddr = InstAddr;
		SMP_strncpy(this->CachedDisAsm, "\tfnop\t; Top of function SSA marker for SMP", 
		this->StringLen = (STARS_ssize_t) strlen(this->CachedDisAsm);
	}
	return;
} // end of DisAsmString::SetMarkerInstText()

clc5q's avatar
clc5q committed
// *****************************************************************
// Class DefOrUse
// *****************************************************************

// Default constructor to make the compilers happy.
DefOrUse::DefOrUse(void) {
	this->SSANumber = -2;
	this->NonSpeculativeOpType = UNINIT;
	this->MetadataStatus = DEF_METADATA_UNANALYZED;
	this->booleans1 = 0;
clc5q's avatar
clc5q committed
// Constructor.
DefOrUse::DefOrUse(STARSOpndTypePtr Ref, SMPOperandType Type, int SSASub) {
	if (Ref->IsRegOp()) {
		// We want to map AH, AL, and AX to EAX, etc. throughout our data flow analysis
		//  and type inference systems.
		STARSOpndTypePtr Ref2 = CloneIfSubwordReg(Ref);
		this->Operand = Ref2;
		this->Operand = Ref;
	this->SSANumber = SSASub;
clc5q's avatar
clc5q committed
	this->OpType = Type;

	assert(!IsProfDerived(Type));
	this->NonSpeculativeOpType = Type;
	this->MetadataStatus = DEF_METADATA_UNANALYZED;
	this->booleans1 = 0;
// Copy constructor.
DefOrUse::DefOrUse(const DefOrUse &CopyIn) {
	*this = CopyIn;
	return;
}

// Assignment operator for copy constructor use.
DefOrUse &DefOrUse::operator=(const DefOrUse &rhs) {
	this->Operand = rhs.Operand;
	this->OpType = rhs.OpType;
	this->NonSpeculativeOpType = rhs.NonSpeculativeOpType;
	this->SSANumber = rhs.SSANumber;
	this->MetadataStatus = rhs.MetadataStatus;
	this->booleans1 = rhs.booleans1;
// Set the operand type for this DEF or USE - don't forget to take
//  into account the speculative (profiler) status.
void DefOrUse::SetType(SMPOperandType Type, const SMPInstr *Instr) {
	SMPOperandType OldType = this->OpType;
	SMPOperandType NewType = Type;
	if (Instr->GetBlock()->GetFunc()->GetIsSpeculative()) {
		NewType = (SMPOperandType)(((int)NewType) | PROF_BASE);
		if (!IsProfDerived(OldType))
			this->NonSpeculativeOpType = OldType;
	this->OpType = NewType;
void DefOrUse::SetMetadataStatus(SMPMetadataType NewStatus) {
	// See if we are just updating explanation codes.
	bool OldUsed = ((this->MetadataStatus >= DEF_METADATA_USED) && (this->MetadataStatus < DEF_METADATA_REDUNDANT));
	if (OldUsed) {
		bool NewUsed = ((NewStatus >= DEF_METADATA_USED) && (NewStatus < DEF_METADATA_REDUNDANT));
		if (NewUsed) { 
			// Union the explanation codes.
			int TempInt = (int) this->GetMetadataStatus();
			TempInt |= (int) NewStatus; 
			this->MetadataStatus = (SMPMetadataType) TempInt; 
			return;
		}
	}
	this->MetadataStatus = NewStatus;
	return;
}

// Debug printing.
void DefOrUse::Dump(void) const {
	PrintListOperand(this->Operand, this->SSANumber);
	if (IsEqType(this->OpType , NUMERIC))
	else if (IsEqType(this->OpType , CODEPTR))
	else if (IsEqType(this->OpType , POINTER))
	else if (IsEqType(this->OpType , STACKPTR))
	else if (IsEqType(this->OpType , GLOBALPTR))
	else if (IsEqType(this->OpType , HEAPPTR))
	else if (IsEqType(this->OpType , PTROFFSET))
	else if (IsEqType(this->OpType , UNKNOWN))
	if (IsProfDerived(this->OpType))
	// Don't write anything for UNINIT OpType

	// Emit the metadata status.
	if (DEF_METADATA_UNUSED == this->MetadataStatus)
	else if (DEF_METADATA_USED == this->MetadataStatus)
	else if (DEF_METADATA_REDUNDANT == this->MetadataStatus)
	// Is the DEF possibly aliased because of an indirect write in
	//  the DEF-USE chain?
	if (this->HasIndirectWrite())
	return;
} // end of DefOrUse::Dump()

// *****************************************************************
// Class DefOrUseSet
// *****************************************************************

// Default constructor.
DefOrUseSet::DefOrUseSet(void) {
// Destructor.
DefOrUseSet::~DefOrUseSet() {
// Find the reference for a given operand type.
set<DefOrUse, LessDefUse>::iterator DefOrUseSet::FindRef(const STARSOpndTypePtr &SearchOp) {
	set<DefOrUse, LessDefUse>::iterator CurrRef;
	DefOrUse DummyRef(SearchOp);
	CurrRef = this->Refs.find(DummyRef);
	return CurrRef;
}

// Insert a new DEF or USE; must be new, insert must succeed else we assert.
set<DefOrUse, LessDefUse>::iterator DefOrUseSet::InsertRef(DefOrUse Ref) {
	pair<set<DefOrUse, LessDefUse>::iterator, bool> InsertResult;
	InsertResult = this->Refs.insert(Ref);
	assert(InsertResult.second);
	return InsertResult.first;
}

// Set a Def or Use into the list, along with its type.
void DefOrUseSet::SetRef(STARSOpndTypePtr Ref, SMPOperandType Type, int SSASub) {
	pair<set<DefOrUse, LessDefUse>::iterator, bool> InsertResult;
	DefOrUse CurrRef(Ref, Type, SSASub);
	InsertResult = this->Refs.insert(CurrRef);
	if ((!(InsertResult.second)) && (! Ref->IsRegOp())) {
clc5q's avatar
clc5q committed
		SMP_msg("ERROR: Inserted duplicate DEF or USE: ");
		CurrRef.Dump(); SMP_msg("\n");
// Change the indirect write status for a reference.
set<DefOrUse, LessDefUse>::iterator DefOrUseSet::SetOp(set<DefOrUse, LessDefUse>::iterator CurrRef, STARSOpndTypePtr NewOp) {
	// To change a field within a set, we must grab a copy, change the copy,
	//  delete the old set member, and insert the updated copy as a new member.
	assert(CurrRef != this->Refs.end());
	DefOrUse NewCopy = (*CurrRef);
	NewCopy.SetOp(NewOp);
	this->Refs.erase(CurrRef);
	pair<set<DefOrUse, LessDefUse>::iterator, bool> InsertResult;
	InsertResult = this->Refs.insert(NewCopy);
	assert(InsertResult.second);
	return InsertResult.first;
} // end of DefOrUseSet::SetOp()

// Change the SSA subscript for a reference.
set<DefOrUse, LessDefUse>::iterator DefOrUseSet::SetSSANum(const STARSOpndTypePtr &CurrOp, int NewSSASub) {
	// To change a field within a set, we must grab a copy, change the copy,
	//  delete the old set member, and insert the updated copy as a new member.
	set<DefOrUse, LessDefUse>::iterator CurrRef = this->FindRef(CurrOp);
	assert(CurrRef != this->Refs.end());
	set<DefOrUse, LessDefUse>::iterator NextRef = CurrRef;
	++NextRef;
	DefOrUse NewCopy = (*CurrRef);
	NewCopy.SetSSANum(NewSSASub);
	this->Refs.erase(CurrRef);
	CurrRef = this->Refs.insert(NextRef, NewCopy);
	return CurrRef;
} // end of DefOrUseSet::SetSSANum()

// Change the operand type for a reference.
set<DefOrUse, LessDefUse>::iterator DefOrUseSet::SetType(const STARSOpndTypePtr &CurrOp, SMPOperandType Type, const SMPInstr* Instr) {
	// To change a field within a set, we must grab a copy, change the copy,
	//  delete the old set member, and insert the updated copy as a new member.
	set<DefOrUse, LessDefUse>::iterator CurrRef = this->FindRef(CurrOp);
	assert(CurrRef != this->Refs.end());
		if (UNINIT != CurrRef->GetType() && Type != CurrRef->GetType()) {
			SMP_msg("ERROR: Changing type of immediate from %d to %d at %lx: ", CurrRef->GetType(), Type, (unsigned long) Instr->GetAddr());
			SMPInstr InstCopy = (*Instr);
			InstCopy.Dump();
	DefOrUse NewCopy = (*CurrRef);
	this->Refs.erase(CurrRef);
	pair<set<DefOrUse, LessDefUse>::iterator, bool> InsertResult;
	InsertResult = this->Refs.insert(NewCopy);
	assert(InsertResult.second);
	CurrRef = InsertResult.first;
} // end of DefOrUseSet::SetType()

// Change the Metadata type for a reference.
set<DefOrUse, LessDefUse>::iterator DefOrUseSet::SetMetadata(const STARSOpndTypePtr &CurrOp, SMPMetadataType Status) {
	// To change a field within a set, we must grab a copy, change the copy,
	//  delete the old set member, and insert the updated copy as a new member.
	set<DefOrUse, LessDefUse>::iterator CurrRef = this->FindRef(CurrOp);
	assert(CurrRef != this->Refs.end());
	DefOrUse NewCopy = (*CurrRef);
	NewCopy.SetMetadataStatus(Status);
	this->Refs.erase(CurrRef);
	pair<set<DefOrUse, LessDefUse>::iterator, bool> InsertResult;
	InsertResult = this->Refs.insert(NewCopy);
	assert(InsertResult.second);
	CurrRef = InsertResult.first;
	return CurrRef;
} // end of DefOrUseSet::SetMetadata()
// Change the indirect write status for a reference.
set<DefOrUse, LessDefUse>::iterator DefOrUseSet::SetIndWrite(const STARSOpndTypePtr &CurrOp, bool IndWriteFlag) {
	// To change a field within a set, we must grab a copy, change the copy,
	//  delete the old set member, and insert the updated copy as a new member.
	set<DefOrUse, LessDefUse>::iterator CurrRef = this->FindRef(CurrOp);
	assert(CurrRef != this->Refs.end());
	DefOrUse NewCopy = (*CurrRef);
	NewCopy.SetIndWrite(IndWriteFlag);
	this->Refs.erase(CurrRef);
	pair<set<DefOrUse, LessDefUse>::iterator, bool> InsertResult;
	InsertResult = this->Refs.insert(NewCopy);
	assert(InsertResult.second);
	CurrRef = InsertResult.first;
	return CurrRef;
} // end of DefOrUseSet::SetIndWrite()

// Change the ignore apparent truncation flag for a reference.
set<DefOrUse, LessDefUse>::iterator DefOrUseSet::SetNoTruncation(const STARSOpndTypePtr &CurrOp, bool NoTruncFlag) {
	// To change a field within a set, we must grab a copy, change the copy,
	//  delete the old set member, and insert the updated copy as a new member.
	set<DefOrUse, LessDefUse>::iterator CurrRef = this->FindRef(CurrOp);
	assert(CurrRef != this->Refs.end());
	DefOrUse NewCopy = (*CurrRef);
	NewCopy.SetNoTruncation(NoTruncFlag);
	this->Refs.erase(CurrRef);
	pair<set<DefOrUse, LessDefUse>::iterator, bool> InsertResult;
	InsertResult = this->Refs.insert(NewCopy);
	assert(InsertResult.second);
	CurrRef = InsertResult.first;
	return CurrRef;
} // end of DefOrUseSet::SetNoTruncation()

// Change the ignore apparent overflow flag for a reference.
set<DefOrUse, LessDefUse>::iterator DefOrUseSet::SetNoOverflow(const STARSOpndTypePtr &CurrOp, bool NoOverflowFlag) {
	// To change a field within a set, we must grab a copy, change the copy,
	//  delete the old set member, and insert the updated copy as a new member.
	set<DefOrUse, LessDefUse>::iterator CurrRef = this->FindRef(CurrOp);
	assert(CurrRef != this->Refs.end());
	DefOrUse NewCopy = (*CurrRef);
	NewCopy.SetNoOverflow(NoOverflowFlag);
	this->Refs.erase(CurrRef);
	pair<set<DefOrUse, LessDefUse>::iterator, bool> InsertResult;
	InsertResult = this->Refs.insert(NewCopy);
	assert(InsertResult.second);
	CurrRef = InsertResult.first;
	return CurrRef;
} // end of DefOrUseSet::SetNoOverflow()

clc5q's avatar
clc5q committed
// Set a DEF as being invariant for all loops in the func.
set<DefOrUse, LessDefUse>::iterator DefOrUseSet::SetLoopInvariant(const STARSOpndTypePtr &CurrOp) {
	// To change a field within a set, we must grab a copy, change the copy,
	//  delete the old set member, and insert the updated copy as a new member.
	set<DefOrUse, LessDefUse>::iterator CurrRef = this->FindRef(CurrOp);
	assert(CurrRef != this->Refs.end());
	DefOrUse NewCopy = (*CurrRef);
	NewCopy.SetInvariantForAllLoops();
	this->Refs.erase(CurrRef);
	pair<set<DefOrUse, LessDefUse>::iterator, bool> InsertResult;
	InsertResult = this->Refs.insert(NewCopy);
	assert(InsertResult.second);
	CurrRef = InsertResult.first;
	return CurrRef;
} // end of DefOrUseSet::SetLoopInvariant()

// Debug printing.
	set<DefOrUse, LessDefUse>::iterator CurrRef;
	for (CurrRef = this->Refs.begin(); CurrRef != this->Refs.end(); ++CurrRef) {
		CurrRef->Dump();
	}
clc5q's avatar
clc5q committed
// Do all types agree, ignoring any flags registers in the set? This is used
//  for conditional move instructions; if all types agree, it does not matter
//  whether the move happens or not.
bool DefOrUseSet::TypesAgreeNoFlags(void) {
	bool FoundFirstUse = false;
	set<DefOrUse, LessDefUse>::iterator CurrUse;
	SMPOperandType UseType = UNINIT;
	for (CurrUse = this->Refs.begin(); CurrUse != this->Refs.end(); ++CurrUse) {
		if (!(CurrUse->GetOp()->MatchesReg(X86_FLAGS_REG))) { // ignore flags
			if (!FoundFirstUse) {
				FoundFirstUse = true;
				UseType = CurrUse->GetType();
			}
			else {
				if (IsNotEqType(CurrUse->GetType(), UseType)) {
					return false; // inconsistent types
				}
			}
		}
	}
	return true;
} // end of DefOrUseSet::TypesAgreeNoFlags()

clc5q's avatar
clc5q committed
// *****************************************************************
// Class DefOrUseList
// *****************************************************************

// Default constructor.
DefOrUseList::DefOrUseList(void) {
clc5q's avatar
clc5q committed
	return;
}

// Set a Def or Use into the list, along with its type.
void DefOrUseList::SetRef(STARSOpndTypePtr Ref, SMPOperandType Type, int SSASub) {
clc5q's avatar
clc5q committed
	DefOrUse CurrRef(Ref, Type, SSASub);
	this->Refs.push_back(CurrRef);
clc5q's avatar
clc5q committed
	return;
}

// Get a reference by index.
clc5q's avatar
clc5q committed
DefOrUse DefOrUseList::GetRef(size_t index) const {
clc5q's avatar
clc5q committed
	return Refs[index];
}

// Change the SSA subscript for a reference.
void DefOrUseList::SetSSANum(size_t index, int NewSSASub) {
	this->Refs[index].SetSSANum(NewSSASub);
	return;
}

// Change the operand type for a reference.
void DefOrUseList::SetType(size_t index, SMPOperandType Type, const SMPInstr* Instr) {
	this->Refs[index].SetType(Type,Instr);
	return;
}

// Debug printing.
void DefOrUseList::Dump(void) const {
	for (size_t index = 0; index < this->Refs.size(); ++index) {
		Refs[index].Dump();
	}